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The Dirichlet problem for the Stokes system in a multiply connected domain of R𝑛 (𝑛 ≥ 2) is considered in the present paper.
We give the necessary and sufficient conditions for the representability of the solution by means of a simple layer hydrodynamic
potential, instead of the classical double layer hydrodynamic potential.

1. Introduction

Potential theorymethods have been employed for a long time
in the study of boundary value problems. In particular they
were widely used in BVPs for the Stokes system, starting from
[1, 2].

Recently some papers have used the integral represen-
tations of solutions for studying some BVPs for the Stokes
system also in multiply connected domains [3–8]. All these
papers concern the double layer hydrodynamic potential
approach for the Dirichlet problem and the simple layer
hydrodynamic potential approach for the traction problem.

The aim of the present paper is to investigate a different
integral representation for the Dirichlet problem for the
Stokes system in a multiply connected bounded domain of
R𝑛 (𝑛 ≥ 2). Namely, we consider the simple layer potential
approach for the Dirichlet problem in a domain

Ω = Ω
0
\

𝑚

⋃
𝑗=1

Ω
𝑗
, (1)

whereΩ
𝑗
(𝑗 = 0, . . . , 𝑚) are suitable domains with connected

boundaries in 𝐶1,𝜆, 𝜆 ∈ (0, 1].
We use a newmethod which hinges on a singular integral

system in which the unknown is a usual vector valued
function, while the data is a vector whose components are
differential forms.

The paper is organized as follows. In Section 2 we give
an outlook of the method with a brief description of some
previous results.

After the preliminary Section 3, in Section 4 we study
in detail the case 𝑛 = 2, where some particular phenomena
appear.

Section 5 is devoted to determine the eigenspace of a
certain singular integral system in which the unknowns are
differential forms of degree 𝑛 − 2 on 𝜕Ω. In the same section,
we recall some known results concerning the eigenspaces of
some classical integral systems.

In Section 6 we construct a left reduction for the singular
integral system under study. Such a singular integral system is
equivalent in a precise sense to the Fredholm system obtained
through the reduction.

Finally, in the last section, we find the solution of
the Dirichlet problem for the Stokes system in a multiply
connected domain by means of a simple layer hydrodynamic
potential.

The main result is that, given 𝑓 ∈ [𝑊
1,𝑝(𝜕Ω)]

𝑛, we can
represent the solution of the Dirichlet problem

𝜇Δ𝑣 = ∇𝑟 in Ω,

div 𝑣 = 0 in Ω,

𝑣 = 𝑓 on 𝜕Ω,

(2)
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by means of a simple layer hydrodynamic potential if, and
only if, the conditions

∫
𝜕Ω𝑗

𝑓 ⋅ 𝜈𝑑𝜎 = 0, 𝑗 = 0, 1, . . . , 𝑚 (3)

are satisfied (𝜈 being the outwards unit normal on 𝜕Ω).
Moreover, if the data 𝑓 satisfies only the condition

∫
𝜕Ω

𝑓 ⋅ 𝜈𝑑𝜎 = 0 (4)

(which is necessary for the existence of a solution of the
Dirichlet problem (2)) we show how to modify the integral
representation of the solution (see Theorem 23).

2. Sketch of the Method

The aim of this section is to give a better understanding of the
method we are going to use in the present paper.

We will do that by considering the Dirichlet problem for
Laplace equation in a bounded simply connected domainΩ ⊂

R𝑛, whose boundary we denote by Σ as follows:

Δ𝑢 = 0 in Ω,

𝑢 = 𝑔 on Σ.
(5)

Suppose that 𝑔 ∈ 𝑊1,𝑝(Σ), 1 < 𝑝 < ∞. If we want to
find the solution in the form of a simple layer potential whose
density belongs to𝐿

𝑝(Σ), we have to solve an integral equation
of the first kind on Σ as follows:

∫
Σ

𝜑 (𝑦) 𝑠 (𝑥, 𝑦) 𝑑𝜎
𝑦
= 𝑔 (𝑥) , 𝑥 ∈ Σ, (6)

where 𝑠(𝑥, 𝑦) is the fundamental solution of Laplace equation

𝑠 (𝑥, 𝑦) =

{{{

{{{

{

−
1

2𝜋
log 1

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨
, if 𝑛 = 2,

−
1

𝜔
𝑛
(𝑛 − 2)

1
󵄨󵄨󵄨󵄨𝑥 − 𝑦

󵄨󵄨󵄨󵄨
𝑛−2

, if 𝑛 ≥ 3.
(7)

In [9] a new method for discussing such an equation was
proposed. Namely, the first step is to consider the differential
(in the sense of the theory of differential forms) of both sides
in (6). In this way we obtain the equation

∫
Σ

𝜑 (𝑦) 𝑑
𝑥
[𝑠 (𝑥, 𝑦)] 𝑑𝜎

𝑦
= 𝑑𝑔 (𝑥) , 𝑥 ∈ Σ, (8)

in which we look for a solution 𝜑 ∈ 𝐿𝑝(Σ).
The integral on the left hand side is a singular integral

and it can be considered as a linear and continuous operator
from 𝐿

𝑝(Σ) to 𝐿
𝑝

1
(Σ) (we denote by 𝐿

𝑝

ℎ
(Σ) the space of the

differential forms of degree ℎ whose coefficients belong to
𝐿
𝑝(Σ) in every local coordinate system).
It must be remarked that, if 𝑛 ≥ 3, the space in which we

look for the solution of (8) and the space in which the data is
given are different.

We recall that, if 𝐵 and 𝐵
󸀠 are two Banach spaces and

𝑆 : 𝐵 → 𝐵󸀠 is a continuous linear operator, 𝑆 can be reduced

on the left if there exists a continuous linear operator 𝑆
󸀠 :

𝐵󸀠 → 𝐵 such that 𝑆󸀠𝑆 = 𝐼 +𝑇, where 𝐼 stands for the identity
operator on 𝐵, and 𝑇 : 𝐵 → 𝐵 is compact. Analogously, one
can define an operator 𝑆 reducible on the right. One of the
main properties of such operators is that the equation 𝑆𝛼 = 𝛽

has a solution if, and only if, ⟨𝛾, 𝛽⟩ = 0 for any 𝛾 such that
𝑆
∗

𝛾 = 0, 𝑆∗ being the adjoint of 𝑆 (for more details see, e.g.,
[10, 11]).

Let us denote by 𝑆𝜑 the left hand side of (8). In [9] a reduc-
ing operator 𝑆

󸀠was explicitly constructed. This implies that
there exists a solution of (8) if, and only if, the compatibility
conditions

∫
Σ

𝑑𝑔 ∧ ℎ = 0 (9)

are satisfied for any ℎ ∈ 𝐿
𝑞

𝑛−2
(Σ) (𝑞 = 𝑝/(𝑝 − 1)) such

that 𝑆∗ℎ = 0. Moreover one can show that 𝑆∗ℎ = 0 if, and
only if, ℎ is a weakly closed form.Therefore the compatibility
conditions (9) are satisfied, and there exists a solution 𝜑 ∈

𝐿
𝑝(Σ) of (8).
A left reduction is said to be equivalent if N(𝑆󸀠) = {0},

where N(𝑆󸀠) denotes the kernel of 𝑆󸀠 (see, e.g., [11, page
19-20]). Obviously this means that 𝑆𝑥 = 𝑦 if, and only if,
𝑆
󸀠𝑆𝑥 = 𝑆󸀠𝑦. In [12] it was remarked that if N(𝑆󸀠𝑆) = N(𝑆),
we still have a kind of equivalence. Indeed the coincidence of
these two kernels implies the following fact: if 𝑦 is such that
the equation 𝑆𝑥 = 𝑦 is solvable, then this equation is satisfied
if, and only if, 𝑆󸀠𝑆𝑥 = 𝑆󸀠𝑦.

Since N(𝑆󸀠𝑆) = N(𝑆), then we have (8) equivalent to the
Fredholm equation 𝑆󸀠𝑆𝜑 = 𝑆󸀠(𝑑𝑔). These results lead to a
simple layer potential theory for the Dirichlet problem (5).

As a consequence one can obtain also a double layer rep-
resentation for the Neumann problem for Laplace equation
[12].

A characteristic of this method is that it uses neither
the theory of pseudodifferential operators nor the concept of
hypersingular integrals.

This method has been used also for studying other BVPs.
In particular in [13] it was used to study the Dirichlet and the
Neumann problems in multiply connected domains. Among
other things, an interesting by-product of these results was
obtained as follows (see [13, Theorem 6.1]).

Let 𝑢 be a harmonic function of class 𝐶
1(Ω), where Ω

is the multiple connected domain (1). There exists a 2-form 𝑣

conjugate to 𝑢 in Ω if, and only if,

∫
𝜕Ω𝑗

𝜕𝑢

𝜕𝜈
𝑑𝜎 = 0, 𝑗 = 0, 1, . . . , 𝑚. (10)

An explicit integral expression for 𝑣 was also given. We
recall that the 2-form 𝑣 is conjugate to 𝑢 if 𝑑𝑢 = 𝛿𝑣, 𝑑𝑣 = 0.

Themethod has been applied to different BVPs for several
PDEs (see [12–19]).

3. Preliminaries

In this paper Ω denotes an (𝑚 + 1)-connected domain of R𝑛
(𝑛 ≥ 2), that is an open-connected set of the form (1), where
each Ω

𝑗
(𝑗 = 0, . . . , 𝑚) is a bounded domain of R𝑛 with
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connected boundaries Σ
𝑗

∈ 𝐶1,𝜆 (𝜆 ∈ (0, 1]), and such that
Ω
𝑗
⊂ Ω
0
and Ω

𝑗
∩ Ω
𝑘

= 0, 𝑗, 𝑘 = 1, . . . , 𝑚, 𝑗 ̸= 𝑘. Let 𝜈 be
the outwards unit normal on the boundary Σ = 𝜕Ω.

We consider the classical Stokes system for the incom-
pressible viscous fluid

𝜇Δ𝑢 = ∇𝑝,

div 𝑢 = 0,
in Ω, (11)

where the unknowns 𝑢 = (𝑢
1
, . . . , 𝑢

𝑛
) and 𝑝 = 𝑝(𝑥) are

the velocity and pressure of the fluid flow, respectively, and
the constant 𝜇 > 0 is the kinematic viscosity of the fluid. A
fundamental solution for this system is given by the pair of
fundamental velocity tensor and its associated pressure vector

𝛾
𝑖𝑗
(𝑥, 𝑦) =

{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{

{

−
1

4𝜋𝜇
[𝛿
𝑖𝑗
log 1

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨

+
(𝑥
𝑖
− 𝑦
𝑖
) (𝑥
𝑗
− 𝑦
𝑗
)

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨
2

] , if 𝑛 = 2,

−
1

2𝜔
𝑛
𝜇

[
𝛿
𝑖𝑗

𝑛 − 2

1
󵄨󵄨󵄨󵄨𝑥 − 𝑦

󵄨󵄨󵄨󵄨
𝑛−2

+
(𝑥
𝑖
− 𝑦
𝑖
) (𝑥
𝑗
− 𝑦
𝑗
)

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨
𝑛

] , if 𝑛 ≥ 3,

(12)

𝜀
𝑗
(𝑥, 𝑦) = −

1

𝜔
𝑛

𝑥
𝑗
− 𝑦
𝑗

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨
𝑛
, (13)

(𝑖, 𝑗 = 1, . . . , 𝑛), 𝜔
𝑛
being the hypersurface measure of the

unit sphere inR𝑛. For a solution (𝑢, 𝑝) of (11) we consider the
following classical boundary operators:

𝑇
𝑗
𝑢 = [−𝛿

𝑖𝑗
𝑝 + 𝜇 (𝜕

𝑗
𝑢
𝑖
+ 𝜕
𝑖
𝑢
𝑗
)] 𝜈
𝑖
,

𝑇
󸀠

𝑗
𝑢 = [𝛿

𝑖𝑗
𝑝 + 𝜇 (𝜕

𝑗
𝑢
𝑖
+ 𝜕
𝑖
𝑢
𝑗
)] 𝜈
𝑖
,

𝑗 = 1, . . . , 𝑛. (14)

Through this paper, 𝑝 indicates a real number such that
1 < 𝑝 < +∞. We denote by [𝐿𝑝(Σ)]

𝑛 the space of
all measurable vector-valued functions 𝑢 = (𝑢

1
, . . . , 𝑢

𝑛
)

such that |𝑢
𝑗
|𝑝 is integrable over Σ (𝑗 = 1, . . . , 𝑛). If ℎ

is any nonnegative integer, 𝐿
𝑝

ℎ
(Σ) is the vector space of

all differential forms of degree ℎ (briefly ℎ-forms) defined
on Σ such that their components are integrable functions
belonging to 𝐿𝑝(Σ) in a coordinate system of class 𝐶1 and
consequently in every coordinate system of class 𝐶1. The
space [𝐿

𝑝

ℎ
(Σ)]
𝑛 is constituted by the vectors (𝑣

1
, . . . , 𝑣

𝑛
) such

that 𝑣
𝑗
is a differential formof𝐿𝑝

ℎ
(Σ) (𝑗 = 1, . . . , 𝑛). [𝑊1,𝑝(Σ)]

𝑛

is the vector space of all measurable vector-valued functions
𝑢 = (𝑢

1
, . . . , 𝑢

𝑛
) such that 𝑢

𝑗
belongs to the Sobolev space

𝑊1,𝑝(Σ) (𝑗 = 1, . . . , 𝑛).
The pair (𝑣, 𝑟) with components

𝑣
𝑖
(𝑥) = −∫

Σ

𝛾
𝑖𝑗
(𝑥, 𝑦) 𝜑

𝑗
(𝑦) 𝑑𝜎

𝑦
, 𝑖 = 1, . . . , 𝑛, 𝑥 ∈ R

𝑛

,

(15)

𝑟 (𝑥) = −∫
Σ

𝜀
𝑗
(𝑥, 𝑦) 𝜑

𝑗
(𝑦) 𝑑𝜎

𝑦
, 𝑥 ∈ R

𝑛 (16)

is the simple layer hydrodynamic potential with density
𝜑.

The pair (𝑤, 𝑞) with components

𝑤
𝑖
(𝑥)=∫

Σ

𝑇
󸀠

𝑗,𝑦
[𝛾
𝑖

(𝑥, 𝑦)] 𝜓
𝑗
(𝑦) 𝑑𝜎

𝑦
, 𝑖=1, . . . , 𝑛, 𝑥 ∈ R

𝑛

,

(17)

𝑞 (𝑥) = 2𝜇∫
Σ

𝜕

𝜕𝜈
𝑦

[𝜀
𝑗
(𝑥, 𝑦)] 𝜓

𝑗
(𝑦) 𝑑𝜎

𝑦
, 𝑥 ∈ R

𝑛 (18)

is the double layer hydrodynamic potential with density 𝜓.

4. On the Bidimensional Case

It is wellknown that there are some exceptional plane
domains in which no every harmonic function can be
represented by a simple layer potential.The simplest example
of this kind is given by the unit disk, for which one has

∫
|𝑦|=1

log 󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨 𝑑𝑠𝑦 = 0, |𝑥| < 1. (19)

It is also known that such domains do not occur in higher
dimensions. For similar questions for the Laplace equation
and the elasticity system, see [13, Section 3] and [16, Section
4], respectively.

In this section we show that also for the Stokes system
there are similar domains. We say that the boundary of the
domain Ω is exceptional if there exists some constant vector
which cannot be represented inΩ by a simple layer potential.

Denoting by Σ
𝑅
the circle of radius 𝑅 centered at the

origin, we have the following lemma.

Lemma 1. The circle Σ
𝑅
with 𝑅 = exp(1/2) is exceptional for

the Stokes system.

Proof. Keeping in mind that (see, e.g., [16, Section 4])

∫
Σ𝑅

log 󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨 𝑑𝑠𝑦 = 2𝜋𝑅 log𝑅,

∫
Σ𝑅

(𝑥
𝑖
− 𝑦
𝑖
) (𝑥
𝑗
− 𝑦
𝑗
)

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨
2

𝑑𝑠
𝑦
= 𝛿
𝑖𝑗
𝜋𝑅, |𝑥| < 𝑅,

(20)

we find

∫
Σ𝑅

𝛾
𝑖𝑗
(𝑥, 𝑦) 𝑑𝑠

𝑦
=

𝑅

4𝜇
𝛿
𝑖𝑗
(2 log𝑅 − 1) , |𝑥| < 𝑅. (21)

Taking 𝑅 = exp(1/2) we obtain the result.

Let us consider now the exceptional boundaries of not
simply connected domains.

Proposition 2. Let Ω ⊂ R2 be an (𝑚 + 1)-connected domain.
Denote byP the eigenspace in [𝐿𝑝(Σ)]

2 of the singular integral
system

∫
Σ

𝜑
𝑗
(𝑦)

𝜕

𝜕𝑠
𝑥

𝛾
𝑖𝑗
(𝑥, 𝑦) 𝑑𝑠

𝑦
= 0, 𝑎.𝑒. 𝑥 ∈ Σ, 𝑖 = 1, 2. (22)

Then dimP = 2(𝑚 + 1).
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Proof. As in the proof of [16, Lemma 12], one can show that

𝜕

𝜕𝑠
𝑥

𝛾
𝑖𝑗
(𝑥, 𝑦) =

1

4𝜋𝜇
𝛿
𝑖𝑗

𝜕

𝜕𝑠
𝑥

log 󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨 + O (

󵄨󵄨󵄨󵄨𝑦 − 𝑥
󵄨󵄨󵄨󵄨
ℎ−1

) ,

(23)

deduce that system (22) can be regularized to a Fredholmone,
and see that its index is zero. Since the vectors 𝑒

𝑖
𝜒
Σ𝑗

(by𝜒
𝑋
we

denote the characteristic function of the set 𝑋) (𝑖 = 1, 2, 𝑗 =

0, 1, . . . , 𝑚) are the only eigensolutions of the adjoint system

∫
Σ

𝜑
𝑗
(𝑦)

𝜕

𝜕𝑠
𝑦

𝛾
𝑖𝑗
(𝑥, 𝑦) 𝑑𝑠

𝑦
= 0, a.e. 𝑥 ∈ Σ, 𝑖 = 1, 2, (24)

we have dimP = 2(𝑚 + 1).

Theorem 3. LetΩ ⊂ R2 be an (𝑚+1)-connected domain.The
following conditions are equivalent

(1) There exists aHölder continuous vector function𝜑 ̸≡ 0

such that

∫
Σ

𝛾 (𝑥, 𝑦) 𝜑 (𝑦) 𝑑𝑠
𝑦
= 0, 𝑥 ∈ Σ. (25)

(2) There exists a constant vector which cannot be repre-
sented in Ω by a simple layer potential;

(3) Σ
0
is exceptional.

(4) Let 𝜑
1
, . . . , 𝜑

2𝑚+2
be linearly independent vectors ofP

(see Proposition 2), and let 𝑐
𝑗𝑘

= (𝛼
𝑗𝑘
, 𝛽
𝑗𝑘
) ∈ R2 be

given by

∫
Σ

𝛾 (𝑥, 𝑦) 𝜑
𝑗
(𝑦) 𝑑𝑠

𝑦
= 𝑐
𝑗𝑘
,

𝑥 ∈ Σ
𝑘
, 𝑗 = 1, . . . , 2𝑚 + 2, 𝑘 = 0, 1, . . . , 𝑚.

(26)

Then detC = 0, where

C = (

(

𝛼
1,0

⋅ ⋅ ⋅ 𝛼
2𝑚+2,0

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

𝛼
1,𝑚

⋅ ⋅ ⋅ 𝛼
2𝑚+2,𝑚

𝛽
1,0

⋅ ⋅ ⋅ 𝛽
2𝑚+2,0

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

𝛽
1,𝑚

⋅ ⋅ ⋅ 𝛽
2𝑚+2,𝑚

)

)

. (27)

Proof. The proof runs as in [16, Theorem 1] with obvious
modifications. We omit the details.

5. Some Eigenspaces

We determine the structure of the kernel of a particular
singular integral system. Namely, let us denote by N

𝑝
the

space of 𝜓 ∈ [𝐿
𝑝

𝑛−2
(Σ)]
𝑛 such that

∫
Σ

𝜓
𝑗
(𝑦) ∧ 𝑑

𝑦
[𝛾
𝑖𝑗
(𝑥, 𝑦)] = 0, a.e. on Σ, 𝑖 = 1, . . . , 𝑛.

(28)

We begin by proving the following result.

Lemma 4. Let 𝑢 ∈ [𝐶
∞

0
(R𝑛)]
𝑛. Then, for any 𝑥 ∈ R𝑛,

𝑢
𝑖
(𝑥) = 𝜇∫

R𝑛
Δ𝑢
𝑗
(𝑦) 𝛾
𝑖𝑗
(𝑥, 𝑦) 𝑑𝑦 + ∫

R𝑛

𝜕2𝑢
𝑗
(𝑦)

𝜕𝑦
𝑖
𝜕𝑦
𝑗

𝑠 (𝑥, 𝑦) 𝑑𝑦,

(29)
where 𝛾(𝑥, 𝑦) and 𝑠(𝑥, 𝑦) are given by (12) and (7), respectively.

Proof. By the well-known Stokes identity we have

𝑢
𝑖
(𝑥) = ∫

R𝑛
Δ𝑢
𝑖
(𝑦) 𝑠 (𝑥, 𝑦) 𝑑𝑦 = ∫

R𝑛
Δ𝑢
𝑗
(𝑦) 𝛿
𝑖𝑗
𝑠 (𝑥, 𝑦) 𝑑𝑦.

(30)
Since, for every 𝑛 ̸= 2, 4,

(𝑥
𝑖
− 𝑦
𝑖
) (𝑥
𝑗
− 𝑦
𝑗
)

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨
𝑛

=
1

(4 − 𝑛) (2 − 𝑛)

𝜕2

𝜕𝑦
𝑖
𝜕𝑦
𝑗

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨
4−𝑛

− 𝛿
𝑖𝑗
𝜔
𝑛
𝑠 (𝑥, 𝑦) ,

𝛾
𝑖𝑗
(𝑥, 𝑦) =

𝛿
𝑖𝑗

2𝜇
𝑠 (𝑥, 𝑦) −

1

2𝜇𝜔
𝑛

(𝑥
𝑖
− 𝑦
𝑖
) (𝑥
𝑗
− 𝑦
𝑗
)

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨
𝑛

, ∀𝑛 ≥ 2,

(31)
we can rewrite

𝛾
𝑖𝑗
(𝑥, 𝑦) =

𝛿
𝑖𝑗

𝜇
𝑠 (𝑥, 𝑦) −

1

2𝜇𝜔
𝑛

1

(4 − 𝑛) (2 − 𝑛)

𝜕
2

𝜕𝑦
𝑖
𝜕𝑦
𝑗

× 󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨
4−𝑛

.

(32)

Then

𝛿
𝑖𝑗
𝑠 (𝑥, 𝑦)=𝜇𝛾

𝑖𝑗
(𝑥, 𝑦)+

1

2𝜔
𝑛
(4−𝑛) (2−𝑛)

𝜕2

𝜕𝑦
𝑖
𝜕𝑦
𝑗

󵄨󵄨󵄨󵄨𝑥−𝑦
󵄨󵄨󵄨󵄨
4−𝑛

,

𝑢
𝑖
(𝑥)=𝜇∫

R𝑛
Δ𝑢
𝑗
(𝑦) 𝛾
𝑖𝑗
(𝑥, 𝑦) 𝑑𝑦

+
1

2𝜔
𝑛
(4−𝑛) (2−𝑛)

∫
R𝑛

Δ𝑢
𝑖
(𝑦)

𝜕2

𝜕𝑦
𝑖
𝜕𝑦
𝑗

󵄨󵄨󵄨󵄨𝑥−𝑦
󵄨󵄨󵄨󵄨
4−𝑛

𝑑𝑦.

(33)
Integrating by parts, it follows that the last integral is equal to

1

2𝜔
𝑛
(4 − 𝑛) (2 − 𝑛)

∫
R𝑛

𝜕2𝑢
𝑗
(𝑦)

𝜕𝑦
𝑖
𝜕𝑦
𝑗

Δ
𝑦

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨
4−𝑛

𝑑𝑦

= ∫
R𝑛

𝜕2𝑢
𝑗
(𝑦)

𝜕𝑦
𝑖
𝜕𝑦
𝑗

𝑠 (𝑥, 𝑦) 𝑑𝑦,

(34)

since Δ
𝑦
|𝑥 − 𝑦|4−𝑛 = 2(4 − 𝑛)|𝑥 − 𝑦|2−𝑛. Then the claim holds

for 𝑛 ̸= 2, 4.
In the samemanner it is possible to show formula (29) for

𝑛 = 2 and 𝑛 = 4 after observing that, if 𝑛 = 2, we have

(𝑥
𝑖
− 𝑦
𝑖
) (𝑥
𝑗
− 𝑦
𝑗
)

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨
2

=
1

2

𝜕2

𝜕𝑦
𝑖
𝜕𝑦
𝑗

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨
2 log 󵄨󵄨󵄨󵄨𝑥 − 𝑦

󵄨󵄨󵄨󵄨

− 𝛿
𝑖𝑗
log 󵄨󵄨󵄨󵄨𝑥 − 𝑦

󵄨󵄨󵄨󵄨 −
1

2
𝛿
𝑖𝑗
,

(35)
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Δ
𝑦
|𝑥 − 𝑦|

2 log |𝑥 − 𝑦| = 4(log |𝑥 − 𝑦| + 1), while, for 𝑛 = 4,

(𝑥
𝑖
− 𝑦
𝑖
) (𝑥
𝑗
− 𝑦
𝑗
)

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨
4

=
𝛿
𝑖𝑗

2
󵄨󵄨󵄨󵄨𝑥 − 𝑦

󵄨󵄨󵄨󵄨
2
+

1

2

𝜕2

𝜕𝑦
𝑖
𝜕𝑦
𝑗

log 󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨 ,

(36)

Δ
𝑦
log |𝑥 − 𝑦| = 2/|𝑥 − 𝑦|2.

Lemma 5. Let 𝜁
1
, . . . , 𝜁

𝑛
be differential forms in 𝐿

𝑝

𝑛−2
(Σ) such

that 𝑑𝜁
𝑗
= (−1)

𝑛−1

𝜈
𝑗
𝑑𝜎 on Σ. One has 𝜓 ∈ N

𝑝
if, and only if,

𝜓
𝑗
=

𝑚

∑
ℎ=0

𝑐
ℎ
𝜒
Σℎ

𝜁
𝑗
+ 𝜂
𝑗
, 𝑗 = 1, . . . , 𝑛, (37)

where 𝑐
0
, . . . , 𝑐

𝑚
∈ R and 𝜂

1
. . . , 𝜂
𝑛
are weakly closed forms

belonging to 𝐿
𝑝

𝑛−2
(Σ).

Proof. It is easy to construct the differential forms 𝜁
1
, . . . ,

𝜁
𝑛
. For example, one can take the restriction on Σ of

the following forms: 𝜁
1

= (−1)
𝑛−1

𝑥
2
𝑑𝑥
3

⋅ ⋅ ⋅ 𝑑𝑥
𝑛, 𝜁
𝑗

=

(−1)
𝑛−𝑗

𝑥
1
𝑑𝑥2 ⋅ ⋅ ⋅ 𝑗 ⋅ ⋅ ⋅ 𝑑𝑥𝑛 (𝑗 = 2, . . . , 𝑛). We remark that (37)

holds if, and only if, the weak differentials 𝑑𝜓
𝑗
exist and

𝑑𝜓
𝑗
= (−1)

𝑛−1

𝑚

∑
ℎ=0

𝑐
ℎ
𝜒
Σℎ

𝜈
𝑗
𝑑𝜎, 𝑗 = 1, . . . , 𝑛, (38)

that is,

∫
Σ

𝜓
𝑗
∧ 𝑑𝑢
𝑗
=

𝑚

∑
ℎ=0

𝑐
ℎ
∫
Σℎ

𝑢 ⋅ 𝜈𝑑𝜎, ∀𝑢 ∈ [𝐶
∞

0
(R
𝑛

)]
𝑛

. (39)

Let us prove that (39) holds if, and only if,

∫
Σ𝑘

𝜓
𝑗
∧ 𝑑𝑢
𝑗
= 𝑐
𝑘
∫
Σ𝑘

𝑢 ⋅ 𝜈𝑑𝜎,

∀𝑢 ∈ [𝐶
∞

0
(R
𝑛

)]
𝑛

, 𝑘 = 0, . . . , 𝑚.

(40)

It is obvious that (40) implies (39).
Conversely, suppose that (39) is true. Define 𝑈𝜀

𝑘
= {𝑥 ∈

R𝑛 | dist(𝑥, Σ
𝑘
) < 𝜀}, where 0 < 𝜀 < min

0≤ℎ<𝑘≤𝑚
dist(Σ

ℎ
, Σ
𝑘
).

Let 𝑣
𝑘

∈ 𝐶∞
0

(𝑈𝜀
𝑘
) be such that 𝑣

𝑘
= 1 in 𝑈

𝜀/2

𝑘
. Since 𝑣

𝑘
𝑢 ∈

[𝐶∞
0

(R𝑛)]
𝑛, we may write

∫
Σ

𝜓
𝑗
∧ 𝑑 (𝑣

𝑘
𝑢
𝑗
) =

𝑚

∑
ℎ=0

𝑐
ℎ
∫
Σℎ

𝑣
𝑘
𝑢 ⋅ 𝜈𝑑𝜎, (41)

and (40) follows immediately.
Suppose now that (39) is true. From (40) it follows that

∫
Σ𝑘

𝜓
𝑗
(𝑦) ∧ 𝑑

𝑦
[𝛾
𝑖𝑗
(𝑥, 𝑦)] = 𝑐

𝑘
∫
Σ𝑘

𝛾
𝑖𝑗
(𝑥, 𝑦) 𝜈

𝑗
(𝑦) 𝑑𝜎

𝑦
,

∀𝑥 ∉ Σ
𝑘
.

(42)

An integration by parts shows that

∫
Σ𝑘

𝜓
𝑗
(𝑦) ∧ 𝑑

𝑦
[𝛾
𝑖𝑗
(𝑥, 𝑦)] = 0, ∀𝑥 ∉ Ω

𝑘
. (43)

Taking the exterior angular boundary value (for the
definition of internal (external) angular boundary values see,
e.g., [20, page 53] or [21, page 293]), we have

∫
Σ𝑘

𝜓
𝑗
(𝑦) ∧ 𝑑

𝑦
[𝛾
𝑖𝑗
(𝑥, 𝑦)] = 0 (44)

a.e. on Σ
𝑘
. Arguing as in [9, pages 189-190], this implies that

∫
Σ𝑘

𝜓
𝑗
(𝑦) ∧ 𝑑

𝑦
[𝛾
𝑖𝑗
(𝑥, 𝑦)] = 0 (45)

also in Ω
𝑘
. Summing over 𝑘 we find

∫
Σ

𝜓
𝑗
(𝑦) ∧ 𝑑

𝑦
[𝛾
𝑖𝑗
(𝑥, 𝑦)] = 0, (46)

for every 𝑥 ∈ R𝑛 \ Σ and a.e. on Σ. In particular 𝜓 is the
solution of the singular integral system (28).

Conversely, suppose (28) holds. Arguing again as in [9,
pages 189-190], from (28) it follows that

∫
Σ

𝜓
𝑗
(𝑦) ∧ 𝑑

𝑦
[𝛾
𝑖𝑗
(𝑥, 𝑦)] = 0, 𝑥 ∉ Σ. (47)

Since 𝜀
𝑗
(𝑥, 𝑦) = −𝜕

𝑥𝑗
𝑠(𝑥, 𝑦), system (11) implies that

Δ
𝑥
[𝛾
𝑖𝑗
(𝑥, 𝑦)] = −(1/𝜇)(𝜕2/𝜕𝑥

𝑖
𝜕𝑥
𝑗
)𝑠(𝑥, 𝑦). Hence,

𝜕2

𝜕𝑥
𝑖
𝜕𝑥
𝑗

∫
Σ

𝜓
𝑗
(𝑦) ∧ 𝑑

𝑦
[𝑠 (𝑥, 𝑦)] = 0, 𝑥 ∉ Σ. (48)

Therefore, there exist some constants 𝑎
0
, 𝑎
1
, . . . , 𝑎

𝑚
such that

𝜕
𝑗
Ψ
𝑗
(𝑥) =

{{

{{

{

−𝑎
ℎ

𝑥 ∈ Ω
ℎ
, ℎ = 1, . . . , 𝑚,

−𝑎
0

𝑥 ∈ Ω,

0 𝑥 ∈ R𝑛 \ Ω,

(49)

where

Ψ
𝑗
(𝑥) = ∫

Σ

𝜓
𝑗
(𝑦) ∧ 𝑑

𝑦
[𝑠 (𝑥, 𝑦)] . (50)

Then, on account of Lemma 4, for every 𝑢 ∈ [𝐶∞
0

(R𝑛)]
𝑛,

∫
Σ

𝜓
𝑗
∧ 𝑑𝑢
𝑗
= 𝜇∫

R𝑛
Δ𝑢
𝑗
(𝑥) 𝑑𝑥∫

Σ

𝜓
𝑗
(𝑦) ∧ 𝑑

𝑦
[𝛾
𝑖𝑗
(𝑥, 𝑦)]

+∫
R𝑛

𝜕2

𝜕𝑥
𝑖
𝜕𝑥
𝑗

𝑢
𝑖
(𝑥) 𝑑𝑥∫

Σ

𝜓
𝑗
(𝑦)∧𝑑

𝑦
[𝑠 (𝑥, 𝑦)] .

(51)
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The first term of the right hand side vanishes because of
(47). As far as the second one is concerned, integrating by
parts we get

∫
R𝑛

𝜕2

𝜕𝑥
𝑖
𝜕𝑥
𝑗

𝑢
𝑖
(𝑥)Ψ
𝑗
(𝑥) 𝑑𝑥

=

𝑚

∑
ℎ=1

∫
Ωℎ

𝜕2

𝜕𝑥
𝑖
𝜕𝑥
𝑗

𝑢
𝑖
(𝑥)Ψ
𝑗
(𝑥) 𝑑𝑥

+ ∫
Ω

𝜕2

𝜕𝑥
𝑖
𝜕𝑥
𝑗

𝑢
𝑖
(𝑥)Ψ
𝑗
(𝑥) 𝑑𝑥

+ ∫
R𝑛\Ω0

𝜕2

𝜕𝑥
𝑖
𝜕𝑥
𝑗

𝑢
𝑖
(𝑥)Ψ
𝑗
(𝑥) 𝑑𝑥

= −

𝑚

∑
ℎ=1

∫
Σℎ

𝜕
𝑖
𝑢
𝑖
Ψ
𝑗
𝜈
𝑗
𝑑𝜎 +

𝑚

∑
ℎ=1

∫
Ωℎ

𝜕
𝑖
𝑢
𝑖
𝜕
𝑗
Ψ
𝑗
𝑑𝑥

+ ∫
Σ

𝜕
𝑖
𝑢
𝑖
Ψ
𝑗
𝜈
𝑗
𝑑𝜎 − ∫

Ω

𝜕
𝑖
𝑢
𝑖
𝜕
𝑗
Ψ
𝑗
𝑑𝑥

− ∫
Σ0

𝜕
𝑖
𝑢
𝑖
Ψ
𝑗
𝜈
𝑗
𝑑𝜎 + ∫

R𝑛\Ω0

𝜕
𝑖
𝑢
𝑖
𝜕
𝑗
Ψ
𝑗
𝑑𝑥

=

𝑚

∑
ℎ=1

∫
Ωℎ

𝜕
𝑖
𝑢
𝑖
𝜕
𝑗
Ψ
𝑗
𝑑𝑥 − ∫

Ω

𝜕
𝑖
𝑢
𝑖
𝜕
𝑗
Ψ
𝑗
𝑑𝑥.

(52)

Hence, by (49),

∫
R𝑛

𝜕2

𝜕𝑥
𝑖
𝜕𝑥
𝑗

𝑢
𝑖
(𝑥)Ψ
𝑗
(𝑥) 𝑑𝑥

= −

𝑚

∑
ℎ=1

𝑎
ℎ
∫
Ωℎ

𝜕
𝑖
𝑢
𝑖
𝑑𝑥 + 𝑎

0
∫
Ω

𝜕
𝑖
𝑢
𝑖
𝑑𝑥

=

𝑚

∑
ℎ=1

𝑎
ℎ
∫
Σℎ

𝑢 ⋅ 𝜈𝑑𝜎 + 𝑎
0
∫
Σ

𝑢 ⋅ 𝜈𝑑𝜎

= 𝑎
0
∫
Σ0

𝑢 ⋅ 𝜈𝑑𝜎 +

𝑚

∑
ℎ=1

(𝑎
0
+ 𝑎
ℎ
) ∫
Σℎ

𝑢 ⋅ 𝜈𝑑𝜎.

(53)

By setting 𝑐
0
= 𝑎
0
and 𝑐
ℎ
= 𝑎
0
+ 𝑎
ℎ
(ℎ = 1, . . . , 𝑚) we get the

claim.

Remark 6. Lemma 5 shows that the dimension of the kernel
N
𝑝
is infinite. However, if we consider the quotient space

N
𝑝
/Ξ
𝑝
,Ξ
𝑝
being the space ofweakly closed differential forms

in 𝐿
𝑝

𝑛−2
(Σ), we have dim(N

𝑝
/Ξ
𝑝
) = 𝑚 + 1.

We conclude this section by recalling some properties
concerning the following eigenspaces:

V
±
= {𝜑
𝑘
∈ 𝐿
𝑝

(Σ) : ±
1

2
𝜑
𝑘
(𝑥)

+∫
Σ

𝐹
𝑘𝑖

(𝑥, 𝑦) 𝜑
𝑖
(𝑦) 𝑑𝜎

𝑦
= 0, 𝑘 = 1, . . . , 𝑛} ,

W
±
= {𝜑
𝑘
∈ 𝐿
𝑝

(Σ) : ∓
1

2
𝜑
𝑘
(𝑥)

+∫
Σ

𝐹
𝑖𝑘
(𝑦, 𝑥) 𝜑

𝑖
(𝑦) 𝑑𝜎

𝑦
= 0, 𝑘 = 1, . . . , 𝑛} ,

(54)

where (see, e.g., [22])

𝐹
𝑘𝑖

(𝑥, 𝑦) := 𝑇
󸀠

𝑖,𝑦
[𝛾
𝑘

(𝑥, 𝑦)]

= −
𝑛

𝜔
𝑛

(𝑥
𝑘
− 𝑦
𝑘
) (𝑥
𝑖
− 𝑦
𝑖
) (𝑥
𝑗
− 𝑦
𝑗
)

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨
𝑛+2

𝜈
𝑗
(𝑦) .

(55)

For the proofs of the following two results see [7, Lemma 3.3]
and [8, Theorem 3.2], respectively.

Proposition 7. The sets V
+
and W

−
are linear subspaces of

𝐿1(Σ) and

dim (V
+
) = dim (W

−
) = 1 +

𝑛 (𝑛 + 1)𝑚

2
. (56)

A basis of W
−
is expressed by the fields {𝜓

𝑖ℎ
, 𝜈 : 𝑖 =

1, . . . , 𝑛(𝑛 + 1)/2, ℎ = 1, . . . , 𝑚}. The simple layer potentials
𝑣
𝑖ℎ

whose densities are 𝜓
𝑖𝑘

such that: 𝑣
𝑖ℎ
|
Ω𝑘

= 𝛿
ℎ𝑘

𝜌
𝑖
,

𝑖 = 1, . . . , 𝑛(𝑛 + 1)/2, ℎ, 𝑘 = 1, . . . , 𝑚, where 𝜌
𝑖
are rigid

displacement in R𝑛, specifically 𝜌
𝑖
(𝑥) = 𝑒

𝑖
, 𝑖 = 1, . . . , 𝑛, and,

for 𝑖 = 𝑛 + 1, . . . , 𝑛(𝑛 + 1)/2, 𝜌
𝑖
(𝑥) = (𝑒

ℎ
∧ 𝑒
𝑘
)𝑥, ℎ =

1, . . . , 𝑛 − 1, 𝑘 = ℎ + 1, . . . , 𝑛, ℎ[𝑛 − (ℎ + 1)/2] + 𝑘 = 𝑖.
In addition, every 𝜓 ∈ W

−
has the property that 𝑣|

Σ0
= 0,

where 𝑣 is the simple layer potential with density 𝜓.

Proposition 8. The sets V
−
and W

+
are linear subspaces of

𝐿1(Σ) and

dim (V
−
) = dim (W

+
) =

𝑛 (𝑛 + 1)

2
+ 𝑚. (57)

A basis for W
+
is expressed by the fields {𝜓

𝑖
, 𝜈𝜒
Σℎ

: 𝑖 =

1, . . . , 𝑛(𝑛+1)/2, ℎ = 1, . . . , 𝑚}, where𝜓
𝑖
, 𝑖 = 1, . . . , 𝑛(𝑛+1)/2

are zero on Σ \ Σ
0
, and such that the simple layer potentials

with density𝜓
𝑖
are 𝑛(𝑛+1)/2 rigid displacement inΩ

0
(linearly

independent for 𝑛 ≥ 3).
Finally, every function 𝜑 which is the restriction to Σ of a

rigid displacement belongs toV
−
.

One recalls that if 𝜑 ∈ [𝐿1(Σ)]
𝑛 belongs to one of the

eigenspaces V
±
,W
±
, then 𝜑 ∈ [𝐶𝜆(Σ)]

𝑛. This follows from
general results about integral equations (see [8, Lemma 31]
and [7, page 81]).
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Remark 9. We can make the statement of Proposition 8
slightly more precise, saying that the simple layer potentials
with density 𝜓

𝑖
are 𝑛(𝑛 + 1)/2 rigid displacement in Ω

0
linear

independent for any 𝑛 ≥ 2, unless 𝑛 = 2 and Σ
0
is exceptional.

Indeed, let us show that if 𝑛 = 2 and Σ
0
is not exceptional,

such rigid displacements are linearly independent. Let 𝑐
𝑖
be

such that
3

∑
𝑖=1

𝑐
𝑖
∫
Σ0

𝜓
𝑖
(𝑦) 𝛾 (𝑥, 𝑦) 𝑑𝜎

𝑦
= 0, in Ω

0
. (58)

We have also

∫
Σ0

3

∑
𝑖=1

𝑐
𝑖
𝜓
𝑖
(𝑦) 𝛾 (𝑥, 𝑦) 𝑑𝜎

𝑦
= 0, a.e. 𝑥 ∈ Σ

0
. (59)

Let 𝜑 = ∑
3

𝑖=1
𝑐
𝑖
𝜓
𝑖
. In view of the equivalence between (1)

and (3) of Theorem 3, 𝜑 has to vanish. Therefore 𝑐
𝑖

= 0

(𝑖 = 1, 2, 3) because of the linearly independence of 𝜓
𝑖
. On

the other hand, if 𝑛 = 2 and Σ
0
is exceptional, Theorem 3

shows that the potentials with densities {𝜓
𝑖
}
𝑖=1,2,3

are linearly
dependent.

6. Reduction of a Certain Singular
Integral Operator

For every 𝜓 ∈ 𝐿
𝑝

1
(Σ), let Θ

ℎ
be the operator defined by

Θ
ℎ
(𝜓) (𝑥) = ∗ (∫

Σ

𝑑
𝑥
[𝑠
𝑛−2

(𝑥, 𝑦)] ∧ 𝜓 (𝑦) ∧ 𝑑𝑥
ℎ

) ,

𝑥 ∈ Ω,

(60)

where ∗ and 𝑑 denote the Hodge star operator and the
exterior derivative, respectively, and 𝑠

ℎ
(𝑥, 𝑦) is the double ℎ-

form introduced by Hodge in [23] as follows:

𝑠
ℎ
(𝑥, 𝑦) = ∑

𝑗1<⋅⋅⋅<𝑗ℎ

𝑠 (𝑥, 𝑦) 𝑑𝑥
𝑗1 ⋅ ⋅ ⋅ 𝑑𝑥

𝑗ℎ𝑑𝑦
𝑗1 ⋅ ⋅ ⋅ 𝑑𝑦

𝑗ℎ . (61)

Note that the operator Θ
ℎ
satisfies the equation

𝜕
ℎ
∫
Σ

𝑢 (𝑦)
𝜕

𝜕𝜈
𝑦

𝑠 (𝑥, 𝑦) 𝑑𝜎
𝑦
= −Θ
ℎ
(𝑑𝑢) , 𝑥 ∈ Ω, (62)

for each 𝑢 ∈ 𝑊1,𝑝(Σ), since (see [9, page 187])

∗ 𝑑∫
Σ

𝑢 (𝑦)
𝜕

𝜕𝜈
𝑦

𝑠 (𝑥, 𝑦) 𝑑𝜎
𝑦

= 𝑑
𝑥
∫
Σ

𝑑𝑢 (𝑦) ∧ 𝑠
𝑛−2

(𝑥, 𝑦) , 𝑥 ∈ Ω.

(63)

Moreover we introduce the operatorsH
𝑗ℎ
defined as

H
𝑗ℎ

(𝜓) (𝑥) = Θ
ℎ
(𝜓
𝑗
) (𝑥) −

𝛿123⋅⋅⋅𝑛
𝑙𝑖𝑗3 ⋅⋅⋅𝑗𝑛

(𝑛 − 2)!

× ∫
Σ

𝜕
𝑥ℎ
𝐻
𝑙𝑗
(𝑥, 𝑦) ∧ 𝜓

𝑖
(𝑦) ∧ 𝑑𝑦

𝑗3 ⋅ ⋅ ⋅ ∧ 𝑑𝑦
𝑗𝑛 ,

(64)

for every 𝜓 ∈ [𝐿
𝑝

1
(Σ)]
𝑛, where

𝐻
𝑙𝑗
(𝑥, 𝑦) =

1

𝜔
𝑛

(𝑦
𝑙
− 𝑥
𝑙
) (𝑦
𝑗
− 𝑥
𝑗
)

󵄨󵄨󵄨󵄨𝑦 − 𝑥
󵄨󵄨󵄨󵄨
𝑛

. (65)

In the sequel 𝑑𝑢 denotes the vector (𝑑𝑢
1
, . . . , 𝑑𝑢

𝑛
) whose

elements are 1-forms, and 𝜓 = (𝜓
1
, . . . , 𝜓

𝑛
) ∈ [𝐿

𝑝

1
(Σ)]
𝑛.

Lemma 10. Let (𝑤, 𝑞) be the double layer hydrodynamic
potential of (17)-(18) with density 𝑢 ∈ [𝑊1,𝑝(Σ)]

𝑛. Then, for
𝑥 ∉ Σ,

𝜕
ℎ
𝑤
𝑗
(𝑥) = H

𝑗ℎ
(𝑑𝑢) (𝑥) , (66)

𝑞 (𝑥) = 2𝜇Θ
ℎ
(𝑑𝑢
ℎ
) (𝑥) , (67)

whereH
𝑗ℎ
and Θ

ℎ
are given by (60) and (64), respectively.

Proof. Note that, even if one could prove (66)-(67) directly, it
seems easier to deduce them from the similar results we have
already obtained for the elasticity system (see [16, Section 3]).
For 𝑘 > (𝑛 − 2)/𝑛, let

(𝑘)

𝑤 be the double layer elastic potential
with density 𝑢, that is,

(𝑘)

𝑤
𝑗
(𝑥) = ∫

Σ

𝑢
𝑖
(𝑦)
(𝑘)

𝐿
𝑖,𝑦

[

(𝑘)

Γ
𝑗

(𝑥, 𝑦)] 𝑑𝜎
𝑦
, (68)

where
(𝑘)

𝐿 and
(𝑘)

Γ are the stress operator and the Kelvin’s
matrix associated to the Lamé system −Δ𝑢 − 𝑘∇ div 𝑢 = 0,
respectively.

Thanks to [16, Lemma 1], we know that

𝜕
ℎ

(𝑘)

𝑤
𝑗
(𝑥) =

(𝑘)

H𝑗ℎ (𝑑𝑢) (𝑥) ,
(69)

where

(𝑘)

H𝑗ℎ (𝜓) (𝑥) = Θ
ℎ
(𝜓
𝑗
) (𝑥) −

𝛿123⋅⋅⋅𝑛
𝑙𝑖𝑗3 ⋅⋅⋅𝑗𝑛

(𝑛 − 2)!

× ∫
Σ

𝜕
𝑥ℎ

(𝑘)

𝐻
𝑙𝑗
(𝑥, 𝑦) ∧ 𝜓

𝑖
(𝑦) ∧ 𝑑𝑦

𝑗3 ⋅ ⋅ ⋅ 𝑑𝑦
𝑗𝑛 ,

(𝑘)

𝐻
𝑙𝑗
(𝑥, 𝑦) =

𝑘

𝜔
𝑛
(𝑘 + 1)

(𝑦
𝑙
− 𝑥
𝑙
) (𝑦
𝑗
− 𝑥
𝑗
)

󵄨󵄨󵄨󵄨𝑦 − 𝑥
󵄨󵄨󵄨󵄨
𝑛

−
1

𝑘 + 1
𝛿
𝑙𝑗
𝑠 (𝑥, 𝑦) ,

(70)

and Θ
ℎ
is given by (60).

From [16, formula (5)] (where we set 𝜉 = 1), letting 𝑘 →

+∞, we get

𝜕
𝑥ℎ

{
(𝑘)

𝐿
𝑖,𝑦

[

(𝑘)

Γ
𝑗

(𝑥, 𝑦)]}

󳨀→ −
𝑛

𝜔
𝑛

𝜕
𝑥ℎ

{
(𝑦
𝑖
− 𝑥
𝑖
) (𝑦
𝑗
− 𝑥
𝑗
) (𝑦
𝑘
− 𝑥
𝑘
)

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨
𝑛+2

𝜈
𝑘
(𝑦)}

= 𝜕
𝑥ℎ
𝑇
󸀠

𝑖,𝑦
[𝛾
𝑗

(𝑥, 𝑦)] ,

(71)
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𝑥 ∉ Σ, from which 𝜕
ℎ

(𝑘)

𝑤 → 𝜕
ℎ
𝑤 as 𝑘 → +∞. Therefore we

obtain formula (66) by letting 𝑘 → +∞ in (69). Formula
(67) is an immediate consequence of (62) because 𝜀

𝑗
(𝑥, 𝑦) =

−𝜕
𝑥𝑗
𝑠(𝑥, 𝑦).

For the next lemma it is convenient to recall here two
jump formulas proved in [16, Lemmas 2 and 3].

Let 𝑓 ∈ 𝐿1(Σ). If 𝜂 ∈ Σ is a Lebesgue point for 𝑓, we get

lim
𝑥→𝜂

∫
Σ

𝑓 (𝑦) 𝜕
𝑥𝑠

(𝑦
𝑙
− 𝑥
𝑙
) (𝑦
𝑗
− 𝑥
𝑗
)

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨
𝑛

𝑑𝜎
𝑦

=
𝜔
𝑛

2
(𝛿
𝑙𝑗
− 2𝜈
𝑗
(𝜂) 𝜈
𝑙
(𝜂)) 𝜈

𝑠
(𝜂) 𝑓 (𝜂)

+ ∫
Σ

𝑓 (𝑦) 𝜕
𝑥𝑠

(𝑦
𝑙
− 𝜂
𝑙
) (𝑦
𝑗
− 𝜂
𝑗
)

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨
𝑛

𝑑𝜎
𝑦
,

(72)

where the limit has to be understood as an internal angular
boundary value, and the integral in the right hand side is a
singular integral.

Further, let 𝜓 ∈ 𝐿
𝑝

1
(Σ) and write 𝜓 as 𝜓 = 𝜓

ℎ
𝑑𝑥ℎ with

𝜈
ℎ
𝜓
ℎ
= 0. (73)

Assumption (73) is not restrictive, because, given the 1-form
𝜓 on Σ, there exist scalar functions 𝜓

ℎ
defined on Σ such that

𝜓 = 𝜓
ℎ
𝑑𝑥ℎ and (73) holds (see [24, page 41]).Then, for almost

every 𝜂 ∈ Σ,

lim
𝑥→𝜂

Θ
ℎ
(𝜓) (𝑥) = −

1

2
𝜓
ℎ
(𝜂) + Θ

ℎ
(𝜓) (𝜂) , (74)

whereΘ
ℎ
is given by (60), and the limit has to be understood

again as an internal angular boundary value.

Lemma 11. Let 𝜓 ∈ 𝐿
𝑝

1
(Σ). Let one write 𝜓 as 𝜓 = 𝜓

ℎ
𝑑𝑥ℎ and

suppose that (73) holds. Then, for almost every 𝜂 ∈ Σ,

lim
𝑥→𝜂

1

(𝑛 − 2)!
𝛿
123⋅⋅⋅𝑛

𝑙𝑖𝑗3 ⋅⋅⋅𝑗𝑛
∫
Σ

𝜕
𝑥𝑠
𝐻
𝑙𝑗
(𝑥, 𝑦) ∧ 𝜓 (𝑦) ∧ 𝑑𝑦

𝑗3 ⋅ ⋅ ⋅ ∧ 𝑑𝑦
𝑗𝑛

= −
1

2
[𝜈
𝑗
(𝜂) 𝜓
𝑖
(𝜂) + 𝜈

𝑖
(𝜂) 𝜓
𝑗
(𝜂)] 𝜈

𝑠
(𝜂)

+
1

(𝑛−2)!
𝛿
123⋅⋅⋅𝑛

𝑙𝑖𝑗3 ⋅⋅⋅𝑗𝑛
∫
Σ

𝜕
𝑥𝑠
𝐻
𝑙𝑗
(𝜂, 𝑦)∧𝜓 (𝑦)∧𝑑𝑦

𝑗3 ⋅ ⋅ ⋅∧𝑑𝑦
𝑗𝑛 ,

(75)

where𝐻
𝑙𝑗
is defined by (65), and the limit has to be understood

as an internal angular boundary value.

Proof. We have

1

(𝑛 − 2)!
𝛿
123⋅⋅⋅𝑛

𝑙𝑖𝑗3 ⋅⋅⋅𝑗𝑛
∫
Σ

𝜕
𝑥𝑠
𝐻
𝑙𝑗
(𝑥, 𝑦) ∧ 𝜓 (𝑦) ∧ 𝑑𝑦

𝑗3 ⋅ ⋅ ⋅ ∧ 𝑑𝑦
𝑗𝑛

=
1

(𝑛 − 2)!
𝛿
123⋅⋅⋅𝑛

𝑙𝑖𝑗3 ⋅⋅⋅𝑗𝑛
𝛿
123⋅⋅⋅𝑛

𝑟ℎ𝑗3 ⋅⋅⋅𝑗𝑛
∫
Σ

𝜕
𝑥𝑠
𝐻
𝑙𝑗
(𝑥, 𝑦) 𝜓

ℎ
(𝑦) 𝜈
𝑟
(𝑦) 𝑑𝜎

𝑦

= 𝛿
𝑙𝑖

𝑟ℎ
∫
Σ

𝜕
𝑥𝑠
𝐻
𝑙𝑗
(𝑥, 𝑦) 𝜓

ℎ
(𝑦) 𝜈
𝑟
(𝑦) 𝑑𝜎

𝑦
.

(76)

Hence, by (65) and (72),

lim
𝑥→𝜂

1

(𝑛 − 2)!
𝛿
123⋅⋅⋅𝑛

𝑙𝑖𝑗3 ⋅⋅⋅𝑗𝑛
∫
Σ

𝜕
𝑥𝑠
𝐻
𝑙𝑗
(𝑥, 𝑦) ∧ 𝜓 (𝑦) ∧ 𝑑𝑦

𝑗3 ⋅ ⋅ ⋅ ∧ 𝑑𝑦
𝑗𝑛

=
𝛿𝑙𝑖
𝑟ℎ

2
(𝛿
𝑙𝑗
− 2𝜈
𝑗
(𝜂) 𝜈
𝑙
(𝜂)) 𝜈

𝑠
(𝜂) 𝜈
𝑟
(𝜂) 𝜓
ℎ
(𝜂)

+
1

(𝑛−2)!
𝛿
123⋅⋅⋅𝑛

𝑙𝑖𝑗3 ⋅⋅⋅𝑗𝑛
∫
Σ

𝜕
𝑥𝑠
𝐻
𝑙𝑗
(𝜂, 𝑦)∧𝜓 (𝑦)∧𝑑𝑦

𝑗3 ⋅ ⋅ ⋅∧𝑑𝑦
𝑗𝑛 .

(77)

Keeping in mind (73), we find

𝛿
𝑙𝑖

𝑟ℎ

2
(𝛿
𝑙𝑗
− 2𝜈
𝑗
𝜈
𝑙
) 𝜈
𝑠
𝜈
𝑟
𝜓
ℎ
= (

1

2
𝛿
𝑙𝑗
𝜈
𝑠
− 𝜈
𝑗
𝜈
𝑙
𝜈
𝑠
) (𝜈
𝑙
𝜓
𝑖
− 𝜈
𝑖
𝜓
𝑙
)

= −
1

2
𝜈
𝑠
𝜈
𝑗
𝜓
𝑖
−

1

2
𝜈
𝑠
𝜈
𝑖
𝜓
𝑗
,

(78)

and the result follows.

Lemma 12. Let 𝜓 = (𝜓
1
, . . . , 𝜓

𝑛
) ∈ [𝐿

𝑝

1
(Σ)]
𝑛. Then, for almost

every 𝜂 ∈ Σ,

lim
𝑥→𝜂

𝜇 [2𝛿
𝑖𝑗
Θ
ℎ
(𝜓
ℎ
) (𝑥) + H

𝑖𝑗
(𝜓) (𝑥) + H

𝑗𝑖
(𝜓) (𝑥)] 𝜈

𝑖
(𝑥)

= 𝜇 [2𝛿
𝑖𝑗
Θ
ℎ
(𝜓
ℎ
) (𝜂) + H

𝑖𝑗
(𝜓) (𝜂) + H

𝑗𝑖
(𝜓) (𝜂)] 𝜈

𝑖
(𝜂) ,

(79)

Θ
ℎ
andH being as in (60) and (64), respectively, and the limit

has to be understood as an internal angular boundary value.

Proof. Let us write 𝜓
𝑖
as 𝜓
𝑖
= 𝜓
𝑖ℎ
𝑑𝑥ℎ with

𝜈
ℎ
𝜓
𝑖ℎ

= 0, 𝑖 = 1, . . . , 𝑛. (80)

On account of (72) and (74), we infer

lim
𝑥→𝜂

𝜇 [2𝛿
𝑖𝑗
Θ
ℎ
(𝜓
ℎ
) (𝑥) + H

𝑖𝑗
(𝜓) (𝑥) + H

𝑗𝑖
(𝜓) (𝑥)] 𝜈

𝑖
(𝑥)

= 𝜇Ψ
𝑖𝑗
(𝜓) (𝜂) 𝜈

𝑖
(𝜂)

+ 𝜇 [2𝛿
𝑖𝑗
Θ
ℎ
(𝜓
ℎ
) (𝜂)

+H
𝑖𝑗
(𝜓) (𝜂) + H

𝑗𝑖
(𝜓) (𝜂)] 𝜈

𝑖
(𝜂) ,

(81)

where

Ψ
𝑖𝑗
(𝜓) = − 𝛿

𝑖𝑗
𝜓
ℎℎ

−
1

2
𝜓
𝑖𝑗
+

1

2
(𝜈
𝑖
𝜓
𝑠𝑠

+ 𝜈
𝑠
𝜓
𝑠𝑖
) 𝜈
𝑗

−
1

2
𝜓
𝑗𝑖

+
1

2
(𝜈
𝑗
𝜓
𝑠𝑠

+ 𝜈
𝑠
𝜓
𝑠𝑗
) 𝜈
𝑖
.

(82)

By (80) we getΨ
𝑖𝑗
(𝜓)𝜈
𝑖
= −𝜓
ℎℎ

𝜈
𝑗
−𝜓
𝑖𝑗
𝜈
𝑖
/2+𝜓

𝑠𝑠
𝜈
𝑗
+𝜈
𝑠
𝜓
𝑠𝑗
/2 =

0.

Remark 13. Whenever we consider external boundary values,
we have just to change the sign in the first term on the
right hand sides in (72), (74), and (75), while (79) remains
unchanged.
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Lemma 14. Let 𝑤 be the double layer potential (17) with den-
sity 𝑢 ∈ [𝑊1,𝑝(Σ)]

𝑛. Then 𝑇
+,𝑗

𝑤 = 𝑇
−,𝑗

𝑤 = 𝜇[2𝛿
𝑖𝑗
Θ
ℎ
(𝑑𝑢
ℎ
) +

H
𝑖𝑗
(𝑑𝑢) + H

𝑗𝑖
(𝑑𝑢)]𝜈

𝑖
a.e. on Σ, where 𝑇

+
𝑤 and 𝑇

−
𝑤 denote

the internal and the external angular boundary limits of 𝑇𝑤,
respectively, and Θ

ℎ
is given by (60) andH by (64).

Proof. It is an immediate consequence of (66), (67), (79), and
Remark 13.

Proposition 15. Let 𝑅 : [𝐿𝑝(Σ)]
𝑛

→ [𝐿
𝑝

1
(Σ)]
𝑛 be the follow-

ing singular integral operator

𝑅𝜑 (𝑥) = −∫
Σ

𝑑
𝑥
[𝛾 (𝑥, 𝑦)] 𝜑 (𝑦) 𝑑𝜎

𝑦
. (83)

Let one define 𝑅󸀠 : [𝐿
𝑝

1
(Σ)]
𝑛

→ [𝐿𝑝(Σ)]
𝑛 to be the singular

integral operator

𝑅
󸀠

𝑗
(𝜓) (𝑥) = 𝜇 [2𝛿

𝑖𝑗
Θ
ℎ
(𝜓
ℎ
) (𝑥) + H

𝑖𝑗
(𝜓) (𝑥)

+H
𝑗𝑖
(𝜓) (𝑥)] 𝜈

𝑖
(𝑥) .

(84)

Then

𝑅
󸀠

𝑅𝜑 =
1

4
𝜑 − 𝐾

2

𝜑, (85)

where

𝐾𝜑 (𝑥) = −∫
Σ

𝑇
𝑥
[𝛾 (𝑥, 𝑦)] 𝜑 (𝑦) 𝑑𝜎

𝑦
. (86)

Proof. Let 𝑣 be the simple layer potential (15) with density𝜑 ∈

[𝐿
𝑝(Σ)]
𝑛. In view of Lemma 14, we have a.e. on Σ

𝑅
󸀠

𝑗
(𝑅𝜑) = 𝜇 [2𝛿

𝑖𝑗
Θ
ℎ
(𝑑𝑣
ℎ
) + H

𝑖𝑗
(𝑑𝑣) + H

𝑗𝑖
(𝑑𝑣)] 𝜈

𝑖
= 𝑇
𝑗
𝑤,

(87)

where 𝑤 is the double layer potential (17) with density 𝑣.
Moreover, if 𝑥 ∈ Ω,

𝑤
𝑘
(𝑥) = ∫

Σ

𝑣
𝑖
(𝑦) 𝑇
󸀠

𝑖,𝑦
[𝛾
𝑘

(𝑥, 𝑦)] 𝑑𝜎
𝑦

= 𝑣
𝑘
(𝑥) + ∫

Σ

𝛾
𝑖𝑘
(𝑥, 𝑦) 𝑇

𝑖
[𝑣 (𝑦)] 𝑑𝜎

𝑦
,

(88)

and then, on account of (86),

𝑇𝑤 =
1

2
𝑇𝑣 − 𝐾 (𝑇𝑣) =

1

2
(
1

2
𝜑 + 𝐾𝜑) − 𝐾(

1

2
𝜑 + 𝐾𝜑)

=
1

4
𝜑 − 𝐾2𝜑.

(89)

7. The Dirichlet Problem

Let us consider the Dirichlet problem for the Stokes system

𝜇Δ𝑣 = ∇𝑟 in Ω,

div 𝑣 = 0 in Ω,

𝑣 = 𝑓 on Σ,

(90)

where the given data 𝑓 ∈ [𝑊
1,𝑝(Σ)]

𝑛 satisfies the compatibil-
ity condition (4).

The aim of the present section is to study the repre-
sentability of the solution of this problem by means of a
simple layer hydrodynamic potential (15)-(16).

By the symbol S𝑝 we mean the class of the simple layer
hydrodynamic potentials (15)-(16) with density in [𝐿

𝑝

(Σ)]
𝑛.

Whenever 𝑛 = 2 and Σ
0
is exceptional (see Section 4), we say

that (𝑣, 𝑟) belongs to S𝑝 if, and only if,

𝑣 (𝑥) = −∫
Σ

𝛾 (𝑥, 𝑦) 𝜑 (𝑦) 𝑑𝜎
𝑦
+ 𝑐, 𝑥 ∈ Ω,

𝑟 (𝑥) = −∫
Σ

𝜀
𝑗
(𝑥, 𝑦) 𝜑

𝑗
(𝑦) 𝑑𝜎

𝑦
, 𝑥 ∈ Ω,

(91)

where 𝜑 ∈ [𝐿𝑝(Σ)]
2 and 𝑐 ∈ R2.

We will see that condition (4) is not sufficient to prove
the existence of the solution in the class S𝑝, but it must be
satisfied on each Σ

𝑗
, 𝑗 = 0, 1, . . . , 𝑚.

We begin by proving the following result.

Theorem 16. Given 𝜔 ∈ [𝐿
𝑝

1
(Σ)]
𝑛, there exists a solution 𝜑 ∈

[𝐿𝑝(Σ)]
𝑛 of the singular integral system

−∫
Σ

𝑑
𝑥
[𝛾 (𝑥, 𝑦)] 𝜑 (𝑦) 𝑑𝜎

𝑦
= 𝜔 (𝑥) , 𝑎.𝑒. 𝑥 ∈ Σ, (92)

if, and only if,

∫
Σ

𝜓
𝑖
∧ 𝜔
𝑖
= 0, (93)

for every 𝜓 = (𝜓
1
, . . . , 𝜓

𝑛
) ∈ [𝐿

𝑞

𝑛−2
(Σ)]
𝑛

(𝑞 = 𝑝/(𝑝 − 1)) such
that the weak differentials 𝑑𝜓

𝑗
exist and (38) holds for some

real constants 𝑐
0
, . . . , 𝑐

𝑚
.

Proof. Consider the adjoint of 𝑅 (see (83)),𝑅∗ : [𝐿𝑞
𝑛−2

(Σ)]
𝑛

→

[𝐿𝑞(Σ)]
𝑛, that is, the operator whose components are given by

𝑅
∗

𝑖
𝜓 (𝑥) = −∫

Σ

𝜓
𝑖
(𝑦) ∧ 𝑑

𝑦
[𝛾
𝑖𝑗
(𝑥, 𝑦)] . (94)

Proposition 15 implies that the integral system (92) has a
solution 𝜑 ∈ [𝐿𝑝(Σ)]

𝑛 if, and only if,

∫
Σ

𝜓
𝑖
∧ 𝜔
𝑖
= 0, (95)

for each 𝜓 = (𝜓
1
, . . . , 𝜓

𝑛
) ∈ [𝐿

𝑞

𝑛−2
(Σ)]
𝑛 such that 𝑅∗𝜓 = 0.

The result follows from Lemma 5.

Proposition 17. Given 𝑓 ∈ [𝑊1,𝑝(Σ)]
𝑛, there exists a solution

of the BVP

(𝑣, 𝑟) ∈ S
𝑝

,

𝜇Δ𝑣 = ∇𝑟 𝑖𝑛 Ω,

div 𝑣 = 0 𝑖𝑛 Ω,

𝑑𝑣 = 𝑑𝑓 𝑜𝑛 Σ,

(96)

if, and only if, conditions (3) are satisfied. The density 𝜑 of
the pair (𝑣, 𝑟) (see (15)-(16)) solves the singular integral system
𝑅𝜑 = 𝑑𝑓, where 𝑅 is given by (83).
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Proof. Clearly, there exists a solution of this BVP if, and only
if, there exists a solution 𝜑 ∈ [𝐿𝑝(Σ)]

𝑛 of the singular integral
system

−∫
Σ

𝑑
𝑥
[𝛾 (𝑥, 𝑦)] 𝜑 (𝑦) 𝑑𝜎

𝑦
= 𝑑𝑓 (𝑥) , a.e. 𝑥 ∈ Σ. (97)

In view of Theorem 16, there exists a solution 𝜑 of this
system if, and only if,

∫
Σ

𝜓
𝑖
∧ 𝑑𝑓
𝑖
= 0, (98)

for every 𝜓 = (𝜓
1
, . . . , 𝜓

𝑛
) ∈ [𝐿

𝑞

𝑛−2
(Σ)]
𝑛 satisfying 𝑅∗𝜓 =

0, that is, such that the weak differentials 𝑑𝜓
𝑗
exist and (39)

holds for some real constants 𝑐
0
, . . . , 𝑐

𝑚
. Equation (39) being

true for any 𝑢 ∈ [𝑊1,𝑝(Σ)]
𝑛, we can write

∫
Σ

𝜓
𝑖
∧ 𝑑𝑓
𝑖
=

𝑚

∑
ℎ=0

𝑐
ℎ
∫
Σℎ

𝑓 ⋅ 𝜈𝑑𝜎, (99)

because of a density argument. In view of the arbitrariness of
𝑐
0
, . . . , 𝑐

𝑚
, (98) is satisfied if, and only if, (3) holds.

Proposition 18. Let 𝑎
ℎ

∈ R𝑛 (ℎ = 0, . . . , 𝑚). Let 𝜓
𝑖𝑘
, 𝑖 =

1, . . . , 𝑛, 𝑘 = 1, . . . , 𝑚, be the elements of the basis ofW
−
given

by Proposition 7. The pair

𝑣
0
(𝑥)=

𝑚

∑
𝑘=1

𝑛

∑
𝑖=1

(𝑎
𝑖

𝑘
−𝑎
𝑖

0
)∫
Σ

𝛾 (𝑥, 𝑦) 𝜓
𝑖𝑘
(𝑦) 𝑑𝜎

𝑦
+𝑎
0
, 𝑥∈Ω,

𝑟
0
(𝑥) =

𝑚

∑
𝑘=1

𝑛

∑
𝑖=1

(𝑎
𝑖

𝑘
− 𝑎
𝑖

0
)∫
Σ

𝜀 (𝑥, 𝑦) 𝜓
𝑖𝑘
(𝑦) 𝑑𝜎

𝑦
, 𝑥 ∈ Ω,

(100)

is the solution of the BVP

(𝑣
0
, 𝑟
0
) ∈ S
𝑝

,

𝜇Δ𝑣
0
= ∇𝑟
0

𝑖𝑛 Ω,

div 𝑣
0
= 0 𝑖𝑛 Ω,

𝑣
0
= 𝑎
ℎ

𝑜𝑛 Σ
ℎ
, ℎ = 0, . . . , 𝑚.

(101)

Proof. The pair (𝑣
0
, 𝑟
0
) belongs to S𝑝 (for 𝑛 = 2, see

Remark 9). Obviously it satisfies the Stokes system, and it sat-
isfies the boundary conditions since, thanks to Proposition 7,

𝑣
0
|
Σ0

=

𝑚

∑
𝑘=1

𝑛

∑
𝑖=1

(𝑎
𝑖

𝑘
− 𝑎
𝑖

0
) 𝑣
𝑖𝑘
|
Σ0

+ 𝑎
0
= 𝑎
0
,

𝑣
0
|
Σℎ

=

𝑚

∑
𝑘=1

𝑛

∑
𝑖=1

(𝑎
𝑖

𝑘
− 𝑎
𝑖

0
) 𝑣
𝑖𝑘
|
Σℎ

+ 𝑎
0

=

𝑚

∑
𝑘=1

𝑛

∑
𝑖=1

(𝑎
𝑖

𝑘
− 𝑎
𝑖

0
) 𝛿
ℎ𝑘

𝑒
𝑖
+ 𝑎
0
= 𝑎
ℎ
,

(102)

for any ℎ = 1, . . . , 𝑚.

Theorem 19. Given 𝑓 ∈ [𝑊1,𝑝(Σ)]
𝑛, the Dirichlet problem

(𝑣, 𝑟) ∈ S
𝑝

,

𝜇Δ𝑣 = ∇𝑟 𝑖𝑛 Ω,

div 𝑣 = 0 𝑖𝑛 Ω,

𝑣 = 𝑓 𝑜𝑛 Σ,

(103)

is solvable if, and only if, conditions (3) are satisfied. Moreover
the solution (𝑣, 𝑟) is unique (𝑟 is unique up to an additive
constant).

Proof. Suppose conditions (3) are satisfied. Let (𝑣, 𝑟) be a
solution of the problem (96). Since 𝑑𝑣 = 𝑑𝑓 on Σ, 𝑣 = 𝑓 + 𝑎

ℎ

on Σ
ℎ
(ℎ = 0, . . . , 𝑚) for some 𝑎

ℎ
∈ R𝑛. The pair (𝑣, 𝑟) =

(𝑣, 𝑟) − (𝑣
0
, 𝑟
0
), where 𝑣

0
and 𝑟
0
are given by (100), solves the

problem (103).
Conversely, if there exists a solution (𝑣, 𝑟) of (103), the

compatibility condition (4) has to be satisfied. Moreover, for
any 𝑗 = 1, . . . , 𝑚, (𝑣, 𝑟) is the solution of the Stokes system
also in Ω

𝑗
. Therefore conditions (3) are satisfied for 𝑗 =

1, . . . , 𝑚. These, together with (4), imply (3) also for 𝑗 = 0.
The uniqueness is known [7, Theorem 5.5].

Remark 20. The density (𝜑, 𝜀) of (𝑣, 𝑟) can be written as
(𝜑, 𝜀) = (𝜑

0
+ 𝜆
0
, 𝜀), where 𝜑

0
solves the singular integral

system (97), and (𝜆
0
, 𝜀) is the density of a simple layer

potential which is constant on every connected component
of Σ.

Remark 21. If 𝑛 ≥ 3 or 𝑛 = 2 and Σ
0
is not exceptional,

denoting by 𝜑 the density of the simple layer potential (15)-
(16) obtained inTheorem 19, we have𝜑 that solves the integral
system of the first kind

−∫
Σ

𝛾 (𝑥, 𝑦) 𝜑 (𝑦) 𝑑𝜎
𝑦
= 𝑓 (𝑥) (104)

on Σ. Therefore, Theorem 19 can be seen as an existence
theorem for the integral systemof the first kind (104) in𝐿𝑝(Σ).

If 𝑛 = 2 and Σ
0
is exceptional, we have the existence of a

solution (𝜑, 𝑐) ∈ [𝐿𝑝(Σ)]
2

× R2 of the integral equation

−∫
Σ

𝛾 (𝑥, 𝑦) 𝜑 (𝑦) 𝑑𝜎
𝑦
= 𝑓 (𝑥) + 𝑐 on Σ. (105)

Remark 22. Observe that the solvability of the Dirichlet
problem (90) by means of a simple layer potential hinges on
the singular integral system (97). Thanks to Proposition 15,
the operator 𝑅

󸀠 provides a left reduction for such a system.
This reduction is not an equivalent one, but, as in [25,
pages 253-254], one can show that 𝑅󸀠 is a weakly equivalent
reduction (see definition in Section 3). Since the system 𝑅𝜑 =

𝑑𝑓 is solvable, we have 𝑅𝜑 = 𝑑𝑓 if, and only if, 𝜑 is solution
of the Fredholm system 𝑅

󸀠𝑅𝜑 = 𝑅󸀠𝑑𝑓. In this sense, such
Fredholm system is equivalent to the problem (103).

In order to obtain a similar integral representation for the
solution of the Dirichlet problem (90) when 𝑓 satisfies the
only condition (4), we need to modify the representation of
the solution by adding an extra term.
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By S̃𝑝 we denote the space of all pairs (𝑣, 𝑟) written as

𝑣
𝑖
(𝑥) = − ∫

Σ

𝛾
𝑖𝑗
(𝑥, 𝑦) 𝜑

𝑗
(𝑦) 𝑑𝜎

𝑦

+∫
Σ

𝑇
󸀠

𝑗,𝑦
[𝛾
𝑖

(𝑥, 𝑦)] 𝜓
𝑗
(𝑦) 𝑑𝜎

𝑦
, 𝑖=1, . . . , 𝑛, 𝑥∈Ω,

𝑟 (𝑥) = − ∫
Σ

𝜀
𝑗
(𝑥, 𝑦) 𝜑

𝑗
(𝑦) 𝑑𝜎

𝑦

+ 2𝜇∫
Σ

𝜕

𝜕𝜈
𝑦

[𝜀
𝑗
(𝑥, 𝑦)] 𝜓

𝑗
(𝑦) 𝑑𝜎

𝑦
, 𝑥 ∈ Ω,

(106)

where 𝜑 and 𝜓 belong to [𝐿
𝑝(Σ)]
𝑛.

Theorem 23. Given 𝑓 ∈ [𝑊1,𝑝(Σ)]
𝑛 satisfying (4), the

Dirichlet problem

(𝑣, 𝑟) ∈ S̃
𝑝

,

𝜇Δ𝑣 = ∇𝑟 𝑖𝑛 Ω,

div 𝑣 = 0 𝑖𝑛 Ω,

𝑣 = 𝑓 𝑜𝑛 Σ,

(107)

has one, and only one, solution (𝑣, 𝑟) given by

𝑣
𝑖
(𝑥) = − ∫

Σ

𝛾
𝑖𝑗
(𝑥, 𝑦) 𝜑

𝑗
(𝑦) 𝑑𝜎

𝑦

+ ∫
Σ

𝑇
󸀠

𝑗,𝑦
[𝛾
𝑖

(𝑥, 𝑦)] 𝑓
𝑗
(𝑦) 𝑑𝜎

𝑦
, 𝑥 ∈ Ω,

(108)

𝑟 (𝑥) = − ∫
Σ

𝜀
𝑗
(𝑥, 𝑦) 𝜑

𝑗
(𝑦) 𝑑𝜎

𝑦

+ 2𝜇∫
Σ

𝜕

𝜕𝜈
𝑦

[𝜀
𝑗
(𝑥, 𝑦)] 𝑓

𝑗
(𝑦) 𝑑𝜎

𝑦
, 𝑥 ∈ Ω,

(109)

where 𝜑 ∈ [𝐿𝑝(Σ)]
𝑛 is solution of the integral system of the first

kind

− ∫
Σ

𝛾
𝑖𝑗
(𝑥, 𝑦) 𝜑

𝑗
(𝑦) 𝑑𝜎

𝑦

=
1

2
𝑓
𝑖
(𝑥) − ∫

Σ

𝑇
󸀠

𝑗,𝑦
[𝛾
𝑖

(𝑥, 𝑦)] 𝑓
𝑗
(𝑦) 𝑑𝜎

𝑦
, 𝑎.𝑒. on Σ.

(110)

Proof. Let 𝑣 be given by (108); imposing the boundary
condition, we get (the symbol 𝑤

+
(𝑤
−
) stands for the interior

(exterior) value of the double layer potential (17) on Σ)

−∫
Σ

𝛾
𝑖𝑗
(𝑥, 𝑦) 𝜑

𝑗
(𝑦) 𝑑𝜎

𝑦
= 𝑓
𝑖
(𝑥) − 𝑤

+,𝑖
(𝑥) , a.e. 𝑥 ∈ Σ.

(111)

In view of Remark 21 such a system is solvable if, and only if,

∫
Σℎ

(𝑓
𝑖
− 𝑤
+,𝑖

) 𝜈
𝑖
𝑑𝜎 = 0, ℎ = 0, . . . , 𝑚. (112)

On the other hand, because of the jump formulas, we have

𝑓
𝑖
(𝑥) − 𝑤

+,𝑖
(𝑥)

= 𝑓
𝑖
(𝑥) − (

1

2
𝑓
𝑖
(𝑥) + ∫

Σ

𝑇
󸀠

𝑗,𝑦
[𝛾
𝑖

(𝑥, 𝑦)] 𝑓
𝑗
(𝑦) 𝑑𝜎

𝑦
)

:=
1

2
𝑓
𝑖
(𝑥) − 𝑤

𝑖
(𝑥) = −𝑤

−,𝑖
(𝑥) , a.e. 𝑥 ∈ Σ.

(113)

Therefore, conditions (112) become −∫
Σℎ

𝑤
−
⋅ 𝜈𝑑𝜎 = 0, ℎ =

0, . . . , 𝑚. Since 𝑤
−
can be considered as the datum of the

interior Dirichlet problem in Ω
ℎ
, for ℎ = 1, . . . , 𝑚, we have

∫
Σℎ

𝑤
−
⋅ 𝜈𝑑𝜎 = 0, ℎ = 1, . . . , 𝑚. (114)

As far as ℎ = 0 is concerned, first we remark that (4) implies
∫
Σ

𝑤 ⋅ 𝜈𝑑𝜎 = 0, because

0 = ∫
Σ

𝑤
+
⋅ 𝜈𝑑𝜎 = ∫

Σ

(
1

2
𝑓 + 𝑤) ⋅ 𝜈𝑑𝜎 = ∫

Σ

𝑤 ⋅ 𝜈𝑑𝜎. (115)

Keeping in mind (4) and (114), this leads to

∫
Σ0

(
1

2
𝑓 − 𝑤) ⋅ 𝜈𝑑𝜎

=
1

2
∫
Σ0

𝑓 ⋅ 𝜈𝑑𝜎 − ∫
Σ0

𝑤 ⋅ 𝜈𝑑𝜎

= −
1

2

𝑚

∑
𝑗=1

∫
Σ𝑗

𝑓 ⋅ 𝜈𝑑𝜎 +

𝑚

∑
𝑗=1

∫
Σ𝑗

𝑤 ⋅ 𝜈𝑑𝜎

=

𝑚

∑
𝑗=1

∫
Σ𝑗

𝑤
−
⋅ 𝜈𝑑𝜎 = 0.

(116)

Finally, assume that (𝑣, 𝑟) is the solution of (107) with the data
𝑓 = 0. The integral representation (108) shows that (𝑣, 𝑟) ∈

S𝑝, and then the uniqueness follows fromTheorem 19.
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