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We will first prove the existence of (V,V)- and (V, H 2)—absorbing sets for the three-dimensional primitive equations of large-scale
atmosphere in log-pressure coordinate and then prove the existence of (V, H?)-absorbing set by the use of the elliptic regularity
theory. Finally, we obtain the existence of (V, V)- and (V, H 2)—global attractors for the three-dimensional viscous primitive equations
of large-scale atmosphere in log-pressure coordinate by using the Sobolev compactness embedding theory.

1. Introduction

The fundamental equations governing the motion of the
atmosphere consist of the Navier-Stokes equations with
Coriolis force and thermodynamics, which account for the
buoyancy forces and stratification effects under the Boussi-
nesq approximation. Moreover, due to the shallowness of
the atmosphere, that is, the depth of the fluid layer is very
small in comparison with the radius of the earth, the vertical
large-scale motion in the atmosphere is much smaller than
the horizontal one, which in turn leads to modeling the
vertical motion by hydrostatic balance [1-3]. But for large-
scale atmospheric flows, it is often necessary to take account
of compressibility. This may be done most easily by a change
of vertical coordinates to log-pressure coordinate rather than
a function of geometric height. As a result, one can obtain the
system (1)-(4), which is known as the primitive equations for
large-scale atmosphere in log-pressure coordinate.

In recent years, the primitive equations of the atmosphere,
the ocean, and the coupled atmosphere-ocean have been
extensively studied from the mathematical point of view [1, 4-
13]. The mathematical framework of the primitive equations
of the ocean was formulated, and the existence of weak
solutions was proved by Lions et al. in [11]. In [1], the
authors have studied the primitive equations of large-scale

atmosphere in pressure coordinate, where the continuity
equation is changed into the incompressible equation, but the
thermodynamical equation is very complicated. For the sake
of simplicity, the authors have made some approximation of
the thermodynamical equation, and in this case, the authors
have proved the existence and the uniqueness of strong, local-
in-time solutions. By assuming that the initial data is small
enough, the authors have studied the existence of strong,
global-in-time solutions to the three-dimensional primitive
equations of large-scale ocean and obtained the existence of
strong, local-in-time solutions to the equations for all initial
data in [14]. In [5], the authors have proved the maximum
principles of the temperature for the primitive equations of
the atmosphere in pressure coordinate. The existence and the
uniqueness of strong, global-in-time solutions to the prim-
itive equations in thin domains for a large set of initial
datum whose sizes depend inversely on the thickness were
established in [9]. In [15], Temam and Ziane have considered
the existence of strong, local-in-time solutions for the prim-
itive equations of the atmosphere, the ocean, and the cou-
pled atmosphere-ocean. Asymptotic analysis of the primitive
equations under the small depth assumption was established
in [10]. In [8], the authors have proved the existence of weak
solutions and a trajectory attractors for the moist atmospheric
equations in geophysics. The existence and the uniqueness



of strong, global-in-time solutions for the three-dimensional
viscous primitive equations of large-scale ocean and atmo-
sphere dynamics were established by the authors in [4, 16].
In [6], the authors have considered the long-time dynamics
of the primitive equations of large-scale atmosphere and
obtained a weakly compact global attractor &/ which captures
all the trajectories with respect to the weak topology of V.
The existence and the uniqueness of strong solutions, the
existence of smooth solutions, and the existence of a compact
global attractor in V for the primitive equations with more
regular initial data than that in [6] were established in [7]. In
[12], the authors have proved the existence and the unique-
ness of z-weak, global-in-time solutions when the initial
conditions satisfy some regularity. The existence of global
attractor in V for the primitive equations with initial datum
in V and the heat source Q € L*(Q) was proved by use
of the Aubin-Lions compactness lemma in [17]. In [18], the
authors have proved the existence of the global attractor in
(H*(Q))? for the three-dimensional viscous primitive equa-
tions of large-scale ocean and atmosphere dynamics. In this
paper, we will consider the primitive equations of large-scale
atmosphere in log-pressure coordinate, where the continuity
equation is transformed into the incompressible equation
with the weighted function e*/**, which is more complicated
than that in pressure coordinate, but we do not need to make
any approximation of the thermodynamical equation such
that the accuracy of the temperature is higher than that in
pressure coordinate which will reveal the real world better.
Moreover, the appearance of the weighted function e =/
makes the calculations more difficult. In order to make sure
of the existence of the absorbing set, we need to add some
additional conditions (10) on &, which means that the thick-
ness of () is very small. In [18], there are not any restrictions
on the thickness of ) to ensure the existence of the absorbing
sets, and the H'(Q) estimate of T can be obtained directly
by taking the inner product (15) with —A,T. But in this
paper, thanks to the appearance of the weighted function
e /B we have to first estimate T, in L and then V, T in L* to
obtain a priori estimates on T in H'. In this paper, we
will prove the existence of (V, H?)-global attractor for the
three-dimensional primitive equations of large-scale atmo-
sphere in log-pressure coordinate under the assumptions (10)
on h.

In this paper, we will consider the following three-
dimensional viscous primitive equations of large-scale atmo-
sphere in log-pressure coordinate [3]:

%+(U.V)v+wg—z+f0§><v+V®+le=O, ¢))
0o® RT
% T H @
V- (e’Z/HSv) + 9 (e’Z/HSw) =0, 3)
0z
oT oT
il VT — +L,T=Q, 4
at+vV+waZ+2 Q (4)
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in the domain
Q=M x (-h,0) c R?, (5)

where M is a bounded domain in R* with smooth boundary.
Here, v = (v;,1,), (v;,v,, w) is the velocity field, T is the
temperature, ® is the geopotential, f, = 20, sinv, is the
Coriolis parameter, k is the vertical unit vector, R is a positive
constant, and Q is the heat source. The operators L, and L,
are given by

1 1 o
Ll =T 5 T 5. 3.
Re, Re, 0z
. (6)
1 1 0
Ly=——A-——,
Rt, Rt, 022

where Re; and Re, are positive constants representing the
horizontal and the vertical Reynolds numbers, respectively,
and Rt, and Rt, are positive constants which stand for the
horizontal and the vertical heat diffusivities, respectively. And
z = —H log(p/p.) is used as a vertical coordinate, where
H, is a constant “scale height” and p, is a constant reference
pressure. For the sake of simplicity, let V. = (0,,0,) be the

horizontal gradient operator and A = 9> + BJZ, the horizontal

Laplacian.
We denote the different parts of the boundary 0Q) by

L, = {(x,y,z)eﬁ:zzo},
L= {(x.92) eQ:z=-h}, )
I = {(x,y,z)eﬁ:(x,y)eaM,—hSZSO}.

We equip (1)-(4) with the following boundary conditions,
with nonslip and nonflux on the side walls and bottom [4]:

0 1 0T
@ =0, wlp =0, (__"'“T) =0,
ozlr, “ Rt, 0z T,
o} aT
_U = 0> w|1" = 0: e = 0,
0z I, b 0z I,
0 oT
veiil, =0, Zoxil =0, | =0,
on I on I
(8)

where « is a positive constant.
In addition, (1)-(8) are supplemented with the following
initial conditions:

v(x,9,2,0) = v, (x, y.2),

€
T (x,9,2,0) =Ty (x, y,2).
Additionally, assume that h satisfy
9n’* 4h
—+—— <1,

H’Re,A > 1.
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This paper is organized as follows. Section 2 is devoted
to introduce the mathematical framework and the definition
of solutions for (1)-(10) and give some auxiliary lemmas
used in the sequel. In Section 3, we will give the existence
and the uniqueness of solutions for (1)-(10). Next, some a
priori estimates of solutions corresponding to (1)-(10) will be
established, which imply the existence of (V, V)- and (V, H -
absorbing sets for (1)-(10). In Section 4, we first obtain the
existence of the (V, V))-global attractor for (1)-(10) by H lcv
compactly, and then get the existence of (V, H*)-absorbing
set of (1)-(10) by the elliptic regularity theory. Finally, we
prove the existence of the (V, Hz)—global attractor for the
three-dimensional viscous primitive equations of large-scale
atmosphere in log-pressure coordinate by the Sobolev com-
pactness embedding theory.

Throughout this paper, let C be positive constants inde-
pendent of t which may be different from line to line.

2. Mathematical Setting of (1)—(10)

2.1. Reformulation of (1)-(9). Integrating the continuity
equation (3) and taking the boundary conditions for w into
account, we obtain

z
w(x, y,z,t) = - J EOHY 4 (x, y,0,1) dC,
~h

. (11)
J e Y v (x, 9,0, t)d = 0.
h

And then, we consider the vertical momentum equation,
that is, the second equation (2). First, we define an unknown
function on z = 0 (ie, p = p,), where p, is a constant
reference pressure, say

O,: M — R, (12)

which is the geopotential of the atmosphere on z = 0.
Then,

z
O (x,y,2,t) = O, (x, y,t) + 5 J T (x,y,¢,t)d¢.
s Jo
(13)
Therefore, (1)-(4) can be rewritten as follows:
ov (7 eom, ) ov
at+(v V)v (j_he V-v(x,y,(,t)d¢ >
+ VO, (x, y,t) + fok X U (14)
R z
+ — J VT (x,y,{,t)d{ + L,v =0,
H, Jo
aa—:I; +0v-VT
_ (J eEVHY Ly (x, ,0,1) dC) a ., L,T=Q
—h 8z
(15)

3
with the following boundary conditions:
o |
0z T, - 0z T, -
5 (16)
. v
vl =0, ﬁxnn=0,
0z T, th 0z I, on I
17)
and the initial data
v (% ,2,0) = v (% ,2),
(18)

T (x,9,2,0) =Ty (x, y,2).
At last, we will divide (14) into two systems with respect to v

and v [4], where U and U are defined by

0
T J ey (x, y,2) dz,
Al

(19)
v=v-"0,
where

0
A= J e“Mdz = H, (eh/H‘ - 1) , (20)
—h

and we have T = 0.
Therefore, v satisfies the following systems:

%HE-V)T;—RielAz7+vcl>s(x,y,t)+(v-5)a+(a-v>a
> R (* 1 0o
kxv+—| VI'(x,5,(t)dl- — =0,

L XU+H3L Geyn Gt dg H_Re, Jz

(21)
with the boundary conditions
_ — o
V.-1=0, vl =0, ﬁxnnzo, (22)

and 7 satisfies the following systems

v o ([F oy~ >@
6t+(v V) o <J_he V-0 (x,y,0,t)d %

+5j VT (x,9,0,t) dl + fk xT+ Lo+ @-V)u+(@©-V)

H, Jo
—(V-U)U+(5-V)ﬁ+£rVT(x G dl - — Wy
H, ) % HRe, 0z
(23)
with the boundary conditions
% _ BN o, gl =0
aZru_ ’ aZI‘b_ ’ L=
- (24)
—lj x| =0.
on I




2.2. Some Function Spaces. In this subsection, we will quote
briefly some notations and function spaces used in this paper.

First of all, we introduce the notations for some function
spaces on () as follows:

:Oav

g 9]
7= {oelc@): 3 -2

"oz

:O,v'ﬁlrl :0,
L,

ov _ O m
— %l =0,J e "V-v(x,y,2)dz=0¢,
on I, -h
oo (= OT
7/2:{T6C <Q):$rh:0’
<La—T+(xT> =0,a—7_? =0¢.
Rt, 0z T, o |,

(25)

Let L? (or H®) be the weighted Hilbert spaces of L?(or H*)
functions or LP(or H®)-vector valued functions on Q and
denote the usual L?(Q)-norms by | - | 1r() Where 1 < p <

oo(or s > 0). Denote the inner product in L* by (-, -) and the
norm in Lf by || - | p» respectively, given by

(h,hy) = I e Hh  hydx dy dz,
Q

(26)
Il = J /M hiPdx dy dz,
o
forany hy,h, € L*and h e L (1 < p < 00).
Similarly, define
((v,0,)) = é L e vy, Vu,dx dy dz
1
1 _z/H, 0V OV,
1 U g dy dz,
+Re2Le 0z 0z xayaz
1 -z/H,
(1.1) = o JQ@ VT, - VT,dxdydz (27)
1
1 [ . 0T, 0T,
= N e dyd
+Rt2,|-ge Jz 0z xayaz

+« J T,T,dxdy,

u

foranyv,,v, € 7, and T}, T, € 7/,, respectively.
Let V7, V, be the closure of 77}, 7", with respect to the
following norms:

Ivl* = ((v,v)),  ITI> = (T, 1)), (28)

foranyv € 77, and T € 7, respectively, andlet V =V, xV,.
Next, we recall some results used in the sequel.
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Lemma 1 (see [19]). (i) foru € H' (M),

1/2 1/2
el any < Cllall 2y 1017 0y
2/3 1/3
lullzs < Clullses o 1l (29)
1/2 1/2
lullzsan < Cllll o2 Il e -
(ii) foru e V; (i = 1,2),
lually < Cllaally* el (30)

Proposition 2. There exists a positive constant A such that
2 2
loll™ = Aol (€2))

foranyv € V.
Lemma 3 (see [4, 6]). Letv,v, € V|, T € V,, and p > 1. Then,

we have

W [ - Vo, = (|7, =MV u(x, ,0)d0) (v, /02)] -
(e v, 1P vy) = 0,

@ [jlo - vr - (5, e5y
9z))e” ™| T|P7'T = 0,

v(x, y, O)dO) T/

3) fQ eiZ/HSVd)S(x, y)-v(x, y,2) = 0.

Lemma 4 (see [4], (Minkowski inequality)). Let (X, u), (Y, v)
be two measure spaces and f(x,y) a measurable function
about p x v on X x Y, and p(y) is a measurable positive
function. If f(,y) € LP(X,u)(1 < p < o) foraey € Y
and [, pIf G P (x,0dv(y) < 00, then

|, r 5]

X1)
g (32)

< L PN Gy ()

Finally, we will recall the definition of strong solutions
and state it as follows.

Definition 5. Assume that (vy, T,) € V and Q € H' and let
be any fixed positive time. (v, T') is called a strong solution of
(14)-(18) on [0, 7], if

(. T) € L% (0,1;V)n L* (0,7: H?),
(33)
(v,T,) € L' (0,73 L%),
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and they satisfy
(L), ¢)

of e ([t

ov > R (*
x £+f0k><v+ﬁ L VT (x, 3,4, 1) d(]

S

o[ (o

1
T H Re,

(T (), v)

t z
+J- I e M [U'VT— (J Ty 0 (x, ,0,1) d()
ty, JO —h

v+ [ (@

[ o)+ it 9).

[ @0+ i | @nn+ ew),

H,Rt,
(34)

for every ¢ € 77, and v € 7',, almost every t,,t € [0, 7].

3. Some a Priori Estimates for (1)—(10)

We start with the following general existence and uniqueness
of solutions which can be obtained by the standard Fatou-
Galerkin methods [20-22] and similar methods in [4]. Here,
we only state it as follows.

Theorem 6. Assume that (vy,T,) € V and Q € H' and let
T be any fixed positive time. Then, there exists a unique strong
solution (v, T) of (14)-(18) on [0, T], which satisfies

(,T) € L® (0,1;V) n L* (0,7; H?) (35)

and depends continuously on the initial data (v, T,); that is,
the mapping (vy, T,) — (v, T) is continuous in V.

By Theorem 6, we can define the operator semigroup
{S(H)} 59 inV as

SC) (v, Ty) : R" xV — V, (36)

which is (V,V)-continuous.

In this section, we will give some a priori estimates which
imply the existence of the (X, Z)-absorbing set B, for (1)-(10).
That is, for any bounded subset B ¢ X, there exists T' = T'(B)
such that S(t)B ¢ B, for any t > T, where {S(t)},5, is a
semigroup on Banach space X generated by (1)-(10).

3.1 L* Estimates of T. Taking the L* inner product of
(15) with T, using the boundary conditions (17) and using
Lemma 3, we deduce that

1 or
T T|* < Tl + —— = 1T,
5 dtu 15+ 1T1* < IQILITI, + o, azHZ" I,
(37)
Employing Holder’s inequality yields
d
ST + 1T < Hth ———|TI; + H{R:IQl5.  (38)
Thanks to
or|> w
ITI; < 2hIT (2 = 0)l g + ) =— T — |75,
(39)
we obtain
I3
h?Rt, + 2h/a
4H? 1 [oT|?
S am - <Rt2 3z, "I )"izwn)-
S
(40)
Setting 8 = 1 — 8(Rt,h* + 2h/a)/Rt,(4H? — h*) and &, =
S(4H? — h*)/4H?(Rt,h* + 2h/e), we find that
d 2 2 2 2
T+ SITI < HIRe QI
. (41)
+ITI + 81ITI; < HIRG QL
which implies that
IT O < [Tole™ + =2 QI3 (1 -¢).
(42)

Therefore, there exist three positive constants p;, p,, T} such
that

IT O3 < py» (43)
e
| i<, (44
t
for any t > T,. For brevity, we omit writing out explicitly
these bounds here, and we also omit writing out other similar

bounds in our future discussion for all other uniform a priori
estimates.

3.2. L? Estimates of v. Multiplying (14) by v, integrating over
Q, and using Lemma 3, we deduce that

loll3 + Ivll* < CITI,IVoll, +

Zdtl HR

(45)



Setting §; = 1 - 1/Re2)tH2 and§, = A - 1/Re2H we obtain

d
anvui +85lvll* < CITI3,

p (46)
7 IE + 8.l < CITIE,
t
From the classical Gronwall inequality, we have
2 2 -5,t
lo 1 < [Jooll,e™ + Cpy, (47)

for all ¢+ > T, which implies that there exist three positive
constants ps,p,,T, > T such that

lo @5 < ps» (48)

t+1
j ol dr < p,, (49)
t

forallt > T,.

3.3. L%(Q) Estimates of T. Taking the L2(Q) inner product of
(15) with |T)*T and using Lemma 3, we have

5/3

/
- dtuTné e <l .+ v

||T| “10/3"TZ”2'
(50)

HRL‘|

2/50  13/5

From the inequality [|¢ll,o/5 < Cllol; , we get

Il
d
TG+ 2| TP < CITGITIE + CIQEITIE 6D
which implies that
4\r12 < LI + ClQl (52)
ZITIE < CIT. [} + ClQl;.

Therefore, by virtue of the uniform Gronwall lemma, from
(44) and | Tlls < CIT g2 (q)> we deduce that

ITIZ < ps, (53)

foranyt >T, + 1.
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3.4. (L%(Q))* Estimates of U. Multiplying (23) by |5]*7, inte-
grating over (), and using Lemma 3, we deduce that

J P ol dx dy dz
Q

5 dt || ollg +

+ L J —z/H,
Re, R

xJ e
Q
4 _

+ J e (54)
9Re, Ja

_315/3

1 _ /
T [ "

IN

3/2 3
+ Cllall o 107

172
<([ wvormrtardydz) +civriier: o]

n J e_Z/H‘(T)- V)T +(V-0)0- [0]'0dx dydz.
Q

It follows from the Sobolev interpolation inequality and
Lemma 4 that

J G V) o+ (V-0)0- |0)*vdxdy dz
0

0
< cj (J e vy |17|4dz>
M ~h

x(J e /s 52 dz)dxdy
-h
0 1/2
scj <J e‘Z/Hs|va|2|a|4dz>
M\ Jon
0
(J e_Z/H‘|17|4dz>dxdy

12
sC(J e Z/Hs|va|2|a|4dxdydz) (55)
Q
0 2 1/2
><<J. <J eiZ/Hs|TJ|4dz> dxdy) ,
M\
0 2 1/2
(J (J e_z/H3|17|4dz> dxdy>
M \J-n

0 1/2
< J e_Z/H’<J |17|8dxdy) dz
“h M

0
—z/Hg )~ 13 ~
<C |, I ol d2

~n3 =~
< Clols ol
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which implies that

J G VYo + (V-0)0- |0 0dxdydz
Q
-z/H, 2\ ~4 12 3 oo
SC(JQe Vool dxdydz) 1olls 121l

where we use the inequality [T ) < CITl 5o 181171 (-
We deduce from (54) and (56) that

d _ ~ _
Ewﬁsc@m?wwﬂwﬁ+qu+CWH@
(57)

Therefore, it follows from (44)-(49) and the uniform Gron-
wall lemma that

1512 < pe> (58)

t+1
J J e Vol o) dx dy dz dt < p,, (59)
¢ Ja

foranyt >T, + 2.

3.5. (H(M))? Estimates of v. Taking the L*(Q) inner prod-
uct of (21) with —Av and combining the boundary conditions
(22), we deduce that

1d

—2
A I

1 _2
— | |AU|"dxd
Re, JM| v|”dxdy

1, _ _ _ _
mﬂvszIIAvllz + Clloll4IVol | Av],

0
+cj <J e #He vy |U|dz> |AT| dx dy
M h

+ Cloll | Avll, + CIVTI | AV,
(60)

By using the Holder inequality, we get
0
j <J M |75 (3] dz> AT dx dy
M\Jn

0 1/2
< J. (J e s vy dz)
M\ J-n

0 1/2
><<J ¢ ) |z7|2dz> |A5] dx dy

1/4

0 2
< (J <J e /B |vo| dz> dxdy)
M \J-n
0 2
x (J (J e #Hs vy |17|2dz>
M\J-n
0 1/2 1/2
< <J e_Z/HS(J |Vl7|2dxdy> dz)
~h M

0 1/2 1/2
y (I e*Z/qu Vool dxdy) dz) 1AT],
-h M

1/4
< cuvﬁl&“(L e /M |\vo* o] dx dy dz) AT,

1/4
dx d)’) [Av],

(61)

It follows from (60) and (61) that
d —n2 1 —2
E"VU”H(M) + R_el JM |Av|"dx dy
— — ~ 112 _
< Clol 720 IVOI 2 ap) + ClE. [, + CIVTIS + CIVDI;

iC <j ¢ /M |V 0] dx dy dz> + Cllo
Q
(62)

In view of (44)-(49) and (59) and the uniform Gronwall
lemma, we obtain

VOl a1y < Pos (63)

foranyt >T, + 3.

3.6. (L*(Q))* Estimates of v,. Denote that u = v,. It is clear
that u satisfies the following equation obtained by difterenti-
ating (14) with respect to z:

0
—u+L1u+(v-V)u

ot
z
_ (J' CEOMHY L (x,,0,1) d() ou
—h 0z
o (64)
__<J e(zfc)/HsV.U(x’y’(’t)dc)u
H,\J
> R
+Ww-Vy)v=(V-v)u+ fokxu+ EVT:O’
with the boundary conditions
u|1~u = 0, ulrb = 0,
(65)
u-#l, =0, a—bjxﬁ =0
! on I



Multiplying (64) by u, integrating over (), and using
Lemma 3, we get

1d
ujl, + [[u
. dtu I+ hul?

|||, llully + CllvllgllullsVull, + CITI I Vull,.
(66)

<
Re,H,

It follows from the Young inequality and the Sobolev embed-
ding theorem that

%nuué + ul® < C (1 + vl lul; + CITIS. — (67)
Since
lvlls < CHPlloll, + CHYC VD], + (1B, (68)
which implies that

lvll? < po, (69)

foranyt >T, + 3.
By virtue of the uniform Gronwall lemma, from (43),
(49), and (69), we deduce that

||vz||§ < Pio> (70)

t+1 2
j vl dr < puys 1)
t

foranyt > T, + 4.

3.7 (L*(Q))* Estimates of Vv. Taking the L*(Q2) inner prod-
uct of (14) with —Av and combining the boundary conditions
(16), we deduce that

——II ufly +

—z/H, 2
—_— s|Av|® dxdyd
T Jﬂe |Av|” dxdydz

Re,

1 _
+ —J e s
Re, Ja

v g IeelL1avl +Cle.,

1/2 1/2

Vo, |52 IVl 1av)3

< —
Re,H,

+ CIVT |, Av]l, + ClolslVullsllAvl, + Cllull | Av],.
(72)

We derive from (72) and the Young inequality that

%HVUH% + é J e M Av)Pdx dydz
1 JQ

1 _
+ —J e I
Re, Ja

< C (vl + o [31Vo.13) IVol +CIVT I3 +Cllol;+Cllu. .
(73)
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By virtue of (44)-(49), (69)-(71), and the uniform Gron-
wall lemma, we get

IVoll3 < pras (74)

t+1
—_— J- J. eiZ/H‘|Av|2dxdydsz
¢ Jo

t+1
+— j J e\, Pdx dy dz dr < pys,
Rez t Q

(75)

foranyt >T, +5.

3.8. L*(Q) Estimates of T,. Denote 6 = T,. It is clear that
0 satisfies the following equation obtained by differentiating
(15) with respect to z:

90 £ (z—{)/H, ) 00
— . — s . N s N —
t+1129+v Vo <J_he V-u(x,y,(t)d¢

_L<J/ e(z_c)/Hsv.v(x’y,c,t)d(>0
—h

HS

+v,-VI' - (V-v)0 =0,Q,

(76)
with the boundary conditions
1
<—9+04T> =0, O, =0 ﬁ =0

th I, b al’l I,

(77)

Multiplying (76) by 0, integrating over Q, and using Lemma 3,
we deduce that

—z/H 2
*|VO|" dxdyd
Zdt” Iz + RtIJ VO dxxdy dz

1 —2/H |5 |2 20
" L /H)0,6] dx dydz + Lu T dxdy
Rt H ———6.[,161l, + Cllvlsl61l511VOll, + C||Q.||, 101,

+ C[[Vu, [, ITlIs10l5 + Cllv, |1 TlII VOl
(78)
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We deduce from the Young inequality that

00
—Tdxd
“J-r 0z xay

u

= «Rt, J
T,

or 1

— -VT — —AT - Tdxd
u(at e Rt, Q) aiicd
:“thij |T|2dxdy+(xRt2J (v-VT)Tdxdy

2 dt T, L,

aRt,

ty

J [VT|* dx dy — aRt, J- QT dx dy,
ru ru

aRt, J (v-VT)T dxdy — aRt, j QT dx dy‘
ru ru
< C"U"L‘*(ru)"VT"LZ(ru)"T”L‘*(ru) + C"Q"LZ(ru)"T”LZ(ru)

3/2 1/2
< CIl VTG I + CIQIIT e, -

(79)

It follows from (78) and (79) that

d
= (1615 + aRETIE 1, )
P J 0P dx dy dz
Rt Ja

0, dx dydz + “Rb2
Ri

1 _
+—J e s
Q

VT|*dxd
Rt, Jru| "dxdy

1

< C(1+ lollg + T+ Io0*) (1613 + «RE T )

+C(IQIP + o |* + o 31T1E)
(80)

As aresult of (44), (53), (69)-(71), and (74), we get

1.5 + “RtZHT"iz(Fu) < Pia (81)

1 t+1
Rt )i Q

1 t+1
ST
Rt, )i Q

aRt,
+
Rt,

VT,|*dx dy dz dv

ST dxdydzdr  (82)

t+1
J J IVTdxdy dr < pys,
¢ Jr,

foranyt > T, + 6.

3.9. L*(Q) Estimates of VI'. Taking the L*(Q) inner product
of (15) with —AT and combining the boundary conditions
(17), we deduce that

1

1d 2
——|VT|; + —
2dt IVTT, Rt,

J e AT Pdx dydz
Q

— J VT, | dx dy dz + (xj IVT|*dx dy
Rt, Ja T,

2
1
< R—IITZIIZIIATIIZ + CllvllsIVTII51AT], + ClQIL AT,
tZHs

1/2
2

1/2

+ ClIVully*1avly | T )

VTN, 1A,

(83)
We derive from the Young inequality that

%nwug + % J e “™|ATPdx dy dz
1 JQ

efz/HS

VT, |’ dx dy dz

o)
+_
Rt, Ja
+o¢j VT (z = 0)Pdx dy
M

< CIIIVTIE + CIVoIZIAvI| T, | + CIQIE + C|T, |5

(84)
Using (44), (69), (74), (75), and (81), we get

t+1
—_— J J e “"MIAT? dx dy dz dr
Rt] t Q

1 t+1 B
" —J J VT, dx dy dz dr
th t Q (86)

t+1
+ocj J |VT(Z:0)|2dxdydT
t Jm

< P17

foranyt >T, +7.
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3.10. (L(Q)))? Estimates of 9,v. Taking the L?(Q) inner prod-
uct of (64) with |u|4u, combining the boundary conditions
(65), and using Lemma 3, we deduce that

S5 WS o | vl dxdy dz

1 _
+—j e /s .
R62 Q

)
+— | e
9Re; Ja

=
+ e
9Re, Ja
3 5/3

1
< o bl

(87)

+ Clollg 1l |, |viur

5/3

N c||VT|I2|||”|3“1o/3

+ Cllolg|lul®|| |1Vl 1]
From the Young inequality, we obtain

d
anuné < Clloligllz + CIVTI3 + Clu|)5- (88)

Thanks to (44), (69), and (71), we have
2
lozlls < prs> (89)
foranyt > T, + 8.

3.11. L%(Q) Estimates of 0,T. Takingthe L*(Q) inner product
of (76) with |0]*6, combining the boundary conditions (77),
and using Lemma 3, we deduce that

6dt” s + 9Rt J

. J
+—1 e
9Rt, Ja

00

55,4
+ o Rt —
2 .[r 0z

u

IT*T dx dy

5/3

<z 1OLlOP ] gy + Cloteior], v ier,

5/3

+ Clol 167 [ve110r], + L] er].,

+ l— J e M (v, - VT) |6]*0dx dy dzl .
Q
(90)

Abstract and Applied Analysis

It follows from the Holder inequality that

|— J ¢ (y_. VT |6]'0dx dy dz|
Q

< cj e/ o, | VT (6 dx dy dz
Q

< Clo.J v Tisier ],
< Clo | 7TV o 1] 167

2
ath;‘J o i*Tdxdy

u

oT
55,5
=a Rt -VT - —AT T|*Tdxd
" 2L<at RE, Q)| |"Tdxdy
“SRtg d 6 55,5 4
= — J IT"dx dy+a’Rt; J (v-VT) |T|"Tdx dy
6 dt I, I,

5a°Rt]
+ * =0 J |V|T|3|2 dxdy - ocSRt; J QIT|*Tdx dy,
9Rt, Jr, L,

(xSRt; J (v-VT)|T|*Tdx dy - octhg J Q|T|4dedy|
ru

u

<ol [T TP+ COQUz e | 1T,
<Cllol |V 171 s, )||T||i{3r FHCIQU TP o TP o
(91)

We derive from the Young inequality that

d
= (1612 + aRe, | TIe )

< C(1+ ol + Iol*) (161 + aRE T )
+Cle.]l; + CIQIP + Clo.fls + CIVTIZIVT I g

(92)

As a consequence of the uniform Gronwall lemma, we get
2

”Tz"e + "‘thnTuL6 ) < P19 (93)

foranyt >T, +9.
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3.12. H Estimates of (0,v, 0,T). Denote thatw = 0,v, £ = 9,T.
It is clear that 7, € satisfy the following equations obtained by
differentiating (14) and (15) with respect to t, respectively,

2—7;+L1n+(v‘V)n

© O/, on
- Sv : s Vs )t d —
(J_he v(er.1) C) 0z

+ fok X 7+ V0,0, (x, y,t) + (- V) v (94)
— (J‘ih e(z—f)/HsV - TT (x) y’ C’ t) d() Z_Z

' 5 E VE (%, 9,0, 8) dC = 0,

s

d ? e 9
a_f +LZE+ v- VE_ (J_h e(Z O/Hsv . U(x)y,c,t) dc) £

+m-VT - <J e(z_o/HSV-ﬂ(x,y,(,t)dC> o _ 0,
—h aZ

(95)
with the boundary conditions

on| _,  on| _

0z L, ’ 0z T, -
(96)

-l =0, a—fxﬁ =0,

! on I
( 1 aE+(X§> =0, a_f a—i =0,
th 0z L, 0z I, oi I

(97)

Multiplying (94) and (95), respectively, by 7, &, integrating
over (), and using Lemma 3, we deduce that
1d

T, + |[7T
S 15 + lll®

1
< |, lI7ll, + Cllvllgllzl; |V
re, 17, 7=l + Clellelels 19l

+ Cllv, (Il 1Vl + CIVal, €],

2
2dtufnz I

98)

< g Wl lel + Tl e,

+ CITl &[5Vl + CIT ||l 1Vl
It follows from the Young inequality that
d
= (gl + 1)
< C(1+1Tlg + ollg + T llg + lols) CIE15 + Iel3)

(99)

1

Multiplying (15) by & and integrating over ), we obtain
I€ll; < IQILJIE], + Cllvlahv T ], 00)

LT 18], + CIT. ol ],
Similarly, we have
I3 < CllvllghVollsll, + Clloz I vollslil,
+ Cllvll izl + CIVT I lilly + 1Lyl I,

(101)

We derive from the Young inequality that
Il + J815 < © (1 ol + ol + 1720e) (1971 + 17 2)

+ClIQIZ + C|L, T + C||Lv||5 + Clvll2.

(102)
By use of the uniform Gronwall inequality, we have
leells + T3 < oo (103)
foranyt > T, + 10.
Moreover, we have
t+1 5 t+1 5
[ WlPars [ pnpars e a0n
t t

foranyt > T, + 10.

3.13. H Estimates of (L,v, L,T). Multiplying (15) by L,T and
integrating over (), we obtain

|71 < ClollIVTI L, T, + CIT 1 Vol | T

QUL T, + 9T [1L2T],-

(105)
Similarly, we have
L1l < ClolgIVelsL 1], + ClogIvols|L o],
+ Cllvll,||L ]|, + CIVTIL | Lo, + |vell, [ L1v],-
106)
It follows from the Young inequality that
e

< C(1+olg + |Tefe + lolle) (IVTI5 + 19013)

+C(lurlly + 1Tl + € (Ioll3 + 1Q113)

(107)

By virtue of (48), (69), (74), (85), (89), (93), and (103), we have
”LZTHZ < P>

Lol + (108

foranyt > T, + 10.
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3.14. L? Estimates of (Vu,, VT,). Taking the H, inner product
of (94) with —Am and combining the boundary conditions
(96), we have

5 dt ||§ + % jﬂ e | AnPdx dydz
1

1 _
+ —J e s
Re, Ja

|||, 1A, + CllvllgI Vs Anl,

RH

1/2
I

+ CIVull 2ol |32 |V, 3 A,

+ Clzl, | Axll, + ClzllgIVulls | Al
+ CIVAl o, |32 [V S 2 1am 3 + C||VE, A%,
(109)

Therefore, in view of the Young inequality, we obtain

d ) 1 J' —z/H. 2
—|\Vrl; + — s|An|“dxdy d
dt" |5 Re, Qe |Ant|*dx dy dz

1 _
+ — J e M
Re, Ja

< C (Il + Jo:lN vzl 19l + Claly + Vel

+ Q|2 + CIVol 1AVl |, |2 + Clll Vo).

(110)
Employing the uniform Gronwall inequality, we get
2
[ved; < o (111)
foranyt > T, + 11.
Moreover, we have
1 t+1 —2/H. 5
— e %Ay, dx dy dz dr
Re1 t Q
+ ! JMJ —2/H T<
— e ' < Pys.
Re, J; 0 P23
(112)
Similarly, we can also obtain
IV, ”2 Paa>
1 J't+1 J 2/H
_— o 1Hs
Re1 t Q
1 t+1 3
il L
R€2 t Q
(113)

foranyt > T, + 12.
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3.15. L? Estimates of (3,v,,0,T,). Denotethat 8 =1, y=¢,.
It is clear that 3, y satisty the following equations obtained by
differentiating (94) and (95) with respect to z, respectively,

9P

at +Llﬁ+(v2.

V)7+@-V)B
F eOHy 9P
_(the \Y v(x,y,(,t)d() %

([ o) g

S

~(V-0) B+ fokx B+ (B-V)v+ (- V)v, (114)

z 0
_ (J e(z—()/HsV-n(x,y,C,t) d() %
h

L[ oy )@
o <Jﬁhe V-m(x, 9,0 t)d] 3

N

R
—(V‘rr)vz+ﬁv€:0,

S

%+L2y+vz~VE+v-Vy

_ (J DIy 4 (x, 9, t)d{) gy
“h 0z
1/ o
—(V-Tr)TZ—ES<Jhe( WHSV-U(x,y,C,t)dC)y
-(V-v)y+B-VT +n-VT,

_ (J (z— C)/HSV 7I(x y,C t) d() oT,

h
- T sv ° > Vs )t d = = 0)
([ e o)
(115)
with the boundary conditions
/Slru =0 ﬁlrb =0, B ﬁ'rl =0,
5 (116)
alf x |y, =0,
1 oy
— =0, =0, —=| =0.
<Rt2y +ak ) . Y, il (117)

Taking the L? inner product of (114) with 8 and combining
the boundary conditions (116), we have

D a2 + Ilﬁll2

2dt

I/\

oy [ [ e A WL

+ Cll|Bl VAL, + Clirls [ Ve, 1Bl
+ CIVals|o.v: 1Bl + CIELLIVA.:
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Therefore, in view of the Young inequality, we obtain

d 2 2
S 1Bl + 1Al
< C(1+ 1olg) 1AL + Cll-lhvs )
+Clr Vo + vl ozl + Il
Employing the uniform Gronwall inequality, we get
“azvtllz < P> (120)

foranyt > T, + 13.
Similarly, we can also obtain

J e*Z/Hs
Q

foranyt > T, + 14.
From (43), (48), (70), (74), (81), (85) and (108), we get the
following results.

0.1, dxdydz + aRt, | [1,fdxdy < py,
ru
(121)

Theorem 7. Assume that Q € H'(Q) and (v, Tp) € V.
Let {S(t)},5( be a semigroup generated by the initial boundary
problem (14)-(18). Then, there exists an absorbing set in H>.
That is, for any bounded subset B of V, there exist a positive
constant R and a positive time T = T) p which depend on the
norm of B, such that

I @), T @2z = IS ®) (ve To) 3

= v @l + 1T Ol

<R,

(122)

foranyt > 1.

Corollary 8. Assume that Q € H' and (v, T,) € V. Let
{S(B)}=o be a semigroup generated by the initial boundary
problem (14)-(18). Then, there exist an absorbing set in V. That
is, for any bounded subset B of V, there exist a positive constant
R, and a positive time T, = T, g, depending on the norm of B,
such that

lw®), T O = |SE) (v T[>

= lo @Iy, + 1T @I,

<R,

(123)

foranyt > T,

4. The Existence of the Global Attractors

In this section, we will recall some definitions and lemmas
about the global attractor and prove the existence of the global
attractor in H>.
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Definition 9 (see [23]). Let X be a Banach space and {S(t)},5¢
a family operators on X. We say that {S(t)},5, is a norm-to-
weak continuous semigroup on X, if {S(t)},5, satisfies that

(i) S(0) = Id (the identity),
(ii) S(t)S(s) = S(t + s), for all t,s > 0,
(iii) S(t,)x, — S(t)xift, — tandx, — xin X.

Lemma 10 (see [24]). Let X, Y be two Banach spaces and X*,
Y™ be the dual spaces of X, Y, respectively. If X is dense in
Y, the injection i : X — Y is continuous and its adjoint
i* 1 Y" — X" isdense. Let {S(t)},5, be a semigroup on X
and Y, respectively, and assume furthermore that {S(t)},s, is
continuous or weak continuous onY. Then, {S(t)},s, is a norm-
to-weak continuous semigroup on X if and only if {S(t)};5¢

maps compact subsets of R™ x X into bounded sets of X.

Definition 11 (see [20]). Let X be a Banach space and let
{S(t)},5( be a continuous semigroup on X. A subset & in X is
called a global attractor if and only if

(1) o is invariant; that is, S(t)«/ = of for all t > 0,
(2) o is compact in X,
(3)  attracts each bounded subset B in X.

Definition 12 (see [20]). Let {S(t)};>, be a semigroup on
Banach space X. {S(t)},», is called (X, Z) uniformly compact,
if for any bounded (in X) set B ¢ X, there exists t, = t,(B),
such that Uy, S(t)B is relatively compact in Z.

Lemma 13 (see [20, 24]). Let X be a Banach space and
{S(t)}so @ C° semigroup on X. Then {S(t)},s, has a global
attractor & in X provided that the following conditions hold
true:

(1) {S()},5¢ has a bounded absorbing set B, in X,
(2) {S(t)},5 is uniformly compact.

Lemma 14 (see [20, 24, 25]). Let {S(t)},, be a norm-to-weak
continuous semigroup such that {S(t)},s is uniformly compact.
If there exists an absorbing set B, then {S(t)},s, has a global
attractor of and

= Js®B.

s>0 t=s

(124)

By virtue of the Rellich-Kondrachov theorem, we obtain
the following.

Corollary 15. Assume that Q € H v (vy, Ty) € V. Then, the
semigroup {S(t)},so corresponding to (14)-(18) has a (V,V)-
global attractor o ;.

To prove the existence of the (V, H’)-absorbing set, we
need the following lemma.
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Lemma 16 (see [7]). Letv € V|, D, € L*(M) be a solution to
the following Stokes problem:

L+ VO, =g,
0
V-v(x,y,2z)dz =0,
L (072) (125)
e L -
oz z=—h 0z z=0
Ifge (W™ ()% 1< a< oo, m>0, then
veVn (W @), @ ew™ (). (126)

Next, we will prove the existence of absorbing set in H> by
the use of Lemma 16, which implies the existence of (V, H*)-
global attractor of the initial boundary problem (14)-(18).

Theorem 17. Assume that Q € H' and (v, T,) € V. Let
{S(H)};59 be a semigroup generated by the initial boundary

problem (14)-(18). Then, there exists an absorbing set in H°.
That is, for any bounded subset B of V, there exists a positive
constant R 5 depending on the norm of B, such that

lw @), T O =[S ®) (v To)| 2

= v @l + 1T O35
< R,

(127)

for any t > ,, where T, is specified in Theorem 7.

Proof. From the results of a priori estimates in the previ-
ous section, we know that there exists a strong solution
(v,T) to (14)-(18), which satisfies for any & > 71, v, €
L1, T8, T, € L®(1,, T;5L°), v, € L(1, T3 V), T, €
L®(1,, T3 V,),(, T) € L®(1,, T ; H*), where 1, is specified in
Theorem 7. Then,

Lu+VO, =g, (128)
where
- a_+(v Vv <j e(Z-O/Hsv.v(x,y,c,t)dC>a—v
ot -h 0
R z -
+_j VT (x, 3, (8 d{ + fok x v.
H, Jo
(129)

Since v € L(1,, ;3 H*) and v, € L®(1,, T; L), for any u €

L%, we have

J o7/ He (J EIEY y(x, 1,001 d() v ‘u dxdydz
N n 0z

< ClIVollgllv,|glulls /o
(130)
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which implies that

(J EOIHY .y (x, .0, t),;z() — e L®(1,T;L°).
~h
(131)

Since (v,T) is a strong solution to (14)-(18) and v, ¢

L®(1,, T; V), itis clear that 0v/0t +(v-V)v—(R/H,) _[OZ VT(x,
.6 0d + fok x v € L®(1,, T3 L%). Thus,
gel®(r,T;L%). (132)
By the use of Lemma 16, we get
ve Ll (r, 75V n (W (Q))z). (133)

Using the Sobolev embedding theorem W>(Q)* ¢

(W2(Q))?, we know that
ve L (5, 75V, n (W (Q))2>. (134)

Now, since v € L®(1;, 73V, N (W"'?(Q))*) and v, € L®(1,,
5 L°), for any u € L*/®, we have

J’ o IH, <J. e“ Y Ly (x, ,0,1) d() % ~udxdydz
0 T 0z

< ClIVl oo, [l

(135)
which implies that

(J e(Z*()/HsV.v(x)y’c’t)dC)@ ELOO (Tl,co/v;LZl)-
—h a

(136)
Therefore, we find that
gel®(r,T;LY). (137)
From Lemma 16, we know that
vel” (5, 75V n (W @), (138)

which implies that
(J EOHY 4y (x, 9,0, t)d()— e L® (1, 7:H").
-h
(139)

Sincev; € L®(1,, T;V,)and v € L™(1;, 75V, n(W>*(Q))?),
it is clear that dv/ot + (v - V)v — (R/Hy) foz VT (x, y,(,t)d{ +

fok x v e L®(1,, 75 HY). Thus,
gel®(r,T:HY). (140)
From Lemma 16, we deduce that
vel® (1, T:VinH). (141)
Employing the elliptic regularity theory, we obtain
Tel®(r,7;V,nH). (142)
This complete the proof of Theorem 17. O
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Since H* ¢ V is compact, from Theorem 7, we know that
the semigroup generated by (14)-(18) is compact in V. From
Theorem 7 and Lemma 10, we deduce that the semigroup
generated by (14)-(18) maps a compact set of H* to be
a bounded set of H?; that is, the semigroup generated by
(14)-(18) is norm to weak continuous in H>. Furthermore,
H? ¢ H? compactly, and from Theorem 7 and Lemma 13, we
immediately get the following result.

Theorem 18. Assume that Q € HY(Q), (vy, Ty) € V. Then,
the semigroup {S(t)},s, corresponding to (14)-(18) has a
(V,H 2)—global attractor .

By using the Rellich-Kondrachov theorem, we can obtain
the existence of the (V, H 2+‘S)-global attractor for & € [0, 1).

Appendix

Proof of Proposition 2

If this conclusion is not true, then for each natural number #,
there exists v, € V; such that

Y R Y (A1)
Let
Jenl = ol + o I (82
Hence,
lonli s 1+ 2 <2, (A3)

which implies that there exists a subsequence of {v,},., (still
denoted by {v,},,»,) such that

v, — v, weaklyin Hl,
(A4)
v, — v, stronglyin L.
Therefore, we have
lol3 =1, ol <liminf Jo,[7: =1, (A.5)
which implies that
ol = o. (A.6)
Combining [v* = 0 with v - 7i = 0, we obtain
v=0, (A7)

this is a contradiction.

References

(1] J.-L. Lions, R. Temam, and S. H. Wang, “New formulations
of the primitive equations of atmosphere and applications,”
Nonlinearity, vol. 5, no. 2, pp. 237-288, 1992.

15

[2] J. Pedlosky, Geophysical Fluid Dynamics, Springer, New York,
NY, USA, 1987.

[3] G. K. Vallis, Atmospheric and Oceanic Fluid Dynamics: Fun-
damentals and Large-Scale Circulation, Cambridge University
Press, Cambridge, UK, 2006.

[4] C. Cao and E. S. Titi, “Global well-posedness of the three-
dimensional viscous primitive equations of large scale ocean
and atmosphere dynamics,” Annals of Mathematics, vol. 166, no.
1, pp. 245-267, 2007,

[5] B.D.Ewald and R. Témam, “Maximum principles for the prim-
itive equations of the atmosphere,” Discrete and Continuous
Dynamical Systems, vol. 7, no. 2, pp. 343-362, 2001.

[6] D. W. Huang and B. L. Guo, “On the existence of atmospheric
attractors,” Science in China, Series D, vol. 51, no. 3, pp. 469-480,
2008.

[7] B.Guoand D. Huang, “On the 3D viscous primitive equations of
the large-scale atmosphere;” Acta Mathematica Scientia. Series
B, vol. 29, no. 4, pp. 846-866, 2009.

[8] B. Guo and D. Huang, “Existence of weak solutions and
trajectory attractors for the moist atmospheric equations in
geophysics,” Journal of Mathematical Physics, vol. 47, no. 8, p.
083508, 23, 2006.

[9] C. Hu, R. Temam, and M. Ziane, “The primitive equations on
the large scale ocean under the small depth hypothesis,” Discrete
and Continuous Dynamical Systems. Series A, vol. 9, no. 1, pp.
97-131, 2003.

[10] C.Hu, “Asymptotic analysis of the primitive equations under the
small depth assumption,” Nonlinear Analysis: Theory, Methods
& Applications, vol. 61, no. 3, pp. 425-460, 2005.

[11] J.-L. Lions, R. Temam, and S. H. Wang, “On the equations of
the large-scale ocean,” Nonlinearity, vol. 5, no. 5, pp. 1007-1053,
1992.

[12] T.Tachim Medjo, “On the uniqueness of z-weak solutions of the
three-dimensional primitive equations of the ocean,” Nonlinear
Analysis: Real World Applications, vol. 11, no. 3, pp. 1413-1421,
2010.

[13] M. Petcu, R. Temam, and D. Wirosoetisno, “Existence and
regularity results for the primitive equations in two space
dimensions,” Communications on Pure and Applied Analysis,
vol. 3, no. 1, pp. 115-131, 2004.

[14] F Guillén-Gonzilez, N. Masmoudi, and M. A. Rodriguez-
Bellido, “Anisotropic estimates and strong solutions of the
primitive equations,” Differential and Integral Equations, vol. 14,
no. 11, pp. 1381-1408, 2001.

[15] R. Temam and M. Ziane, “Some mathematical problems in
geophysical fluid dynamics,” in Handbook of Mathematical Fluid
Dynamics. Vol. III, pp. 535-657, North-Holland, Amsterdam,
2004.

[16] G. M. Kobelkov, “Existence of a solution ’in the large’ for the
3D large-scale ocean dynamics equations,” Comptes Rendus
Mathematique, vol. 343, no. 4, pp. 283-286, 2006.

[17] N. Ju, “The global attractor for the solutions to the 3D viscous
primitive equations,” Discrete and Continuous Dynamical Sys-
tems. Series A, vol. 17, no. 1, pp. 159-179, 2007.

[18] B. You, C. K. Zhong, and G. C. Yue, “Global attractor for
the three dimensional viscous primitive equations oflarge-scale
ocean and atmosphere dynamics,” submitted.

[19] R. A. Adams, Sobolev Spaces, vol. 65 of Pure and Applied
Mathematics, Academic Press, New York, NY, USA, 1975.

[20] R.Temam, Infinite-Dimensional Dynamical Systems in Mechan-
ics and Physics, vol. 68 of Applied Mathematical Sciences,
Springer, New York, 2nd edition, 1997.



16

(21]

(22]

(25]

R. Temam, Navier-Stokes Equations Theory and Numerical
Analysis, vol. 2 of Studies in Mathematics and Its Applications,
North-Holland, Amsterdam, The Netherlands, 1979.

R. Temam, Navier-Stokes Equations and Nonlinear Functional
Analysis, vol. 41 of CBMS-NSF Regional Conference Series in
Applied Mathematics, SIAM, Philadelphia, Pa, USA, 1983.

Q. Ma, S. Wang, and C. Zhong, “Necessary and sufficient
conditions for the existence of global attractors for semigroups
and applications,” Indiana University Mathematics Journal, vol.
51, no. 6, pp. 1541-1559, 2002.

C.-K. Zhong, M.-H. Yang, and C.-Y. Sun, “The existence of
global attractors for the norm-to-weak continuous semigroup
and application to the nonlinear reaction-diffusion equations,”
Journal of Differential Equations, vol. 223, no. 2, pp. 367-399,
2006.

A. V. Babin and M. 1. Vishik, Attractors of Evolution Equations,
vol. 25 of Studies in Mathematics and Its Applications, North-
Holland, Amsterdam, The Netherlands, 1992.

Abstract and Applied Analysis



