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We will first prove the existence of (𝑉, 𝑉)- and (𝑉,𝐻2)-absorbing sets for the three-dimensional primitive equations of large-scale
atmosphere in log-pressure coordinate and then prove the existence of (𝑉,𝐻

3
)-absorbing set by the use of the elliptic regularity

theory. Finally, we obtain the existence of (𝑉, 𝑉)- and (𝑉,𝐻2)-global attractors for the three-dimensional viscous primitive equations
of large-scale atmosphere in log-pressure coordinate by using the Sobolev compactness embedding theory.

1. Introduction

The fundamental equations governing the motion of the
atmosphere consist of the Navier-Stokes equations with
Coriolis force and thermodynamics, which account for the
buoyancy forces and stratification effects under the Boussi-
nesq approximation. Moreover, due to the shallowness of
the atmosphere, that is, the depth of the fluid layer is very
small in comparison with the radius of the earth, the vertical
large-scale motion in the atmosphere is much smaller than
the horizontal one, which in turn leads to modeling the
vertical motion by hydrostatic balance [1–3]. But for large-
scale atmospheric flows, it is often necessary to take account
of compressibility. This may be done most easily by a change
of vertical coordinates to log-pressure coordinate rather than
a function of geometric height. As a result, one can obtain the
system (1)–(4), which is known as the primitive equations for
large-scale atmosphere in log-pressure coordinate.

In recent years, the primitive equations of the atmosphere,
the ocean, and the coupled atmosphere-ocean have been
extensively studied from themathematical point of view [1, 4–
13]. The mathematical framework of the primitive equations
of the ocean was formulated, and the existence of weak
solutions was proved by Lions et al. in [11]. In [1], the
authors have studied the primitive equations of large-scale

atmosphere in pressure coordinate, where the continuity
equation is changed into the incompressible equation, but the
thermodynamical equation is very complicated. For the sake
of simplicity, the authors have made some approximation of
the thermodynamical equation, and in this case, the authors
have proved the existence and the uniqueness of strong, local-
in-time solutions. By assuming that the initial data is small
enough, the authors have studied the existence of strong,
global-in-time solutions to the three-dimensional primitive
equations of large-scale ocean and obtained the existence of
strong, local-in-time solutions to the equations for all initial
data in [14]. In [5], the authors have proved the maximum
principles of the temperature for the primitive equations of
the atmosphere in pressure coordinate.The existence and the
uniqueness of strong, global-in-time solutions to the prim-
itive equations in thin domains for a large set of initial
datum whose sizes depend inversely on the thickness were
established in [9]. In [15], Temam and Ziane have considered
the existence of strong, local-in-time solutions for the prim-
itive equations of the atmosphere, the ocean, and the cou-
pled atmosphere-ocean. Asymptotic analysis of the primitive
equations under the small depth assumption was established
in [10]. In [8], the authors have proved the existence of weak
solutions and a trajectory attractors for themoist atmospheric
equations in geophysics. The existence and the uniqueness
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of strong, global-in-time solutions for the three-dimensional
viscous primitive equations of large-scale ocean and atmo-
sphere dynamics were established by the authors in [4, 16].
In [6], the authors have considered the long-time dynamics
of the primitive equations of large-scale atmosphere and
obtained a weakly compact global attractorAwhich captures
all the trajectories with respect to the weak topology of 𝑉.
The existence and the uniqueness of strong solutions, the
existence of smooth solutions, and the existence of a compact
global attractor in 𝑉 for the primitive equations with more
regular initial data than that in [6] were established in [7]. In
[12], the authors have proved the existence and the unique-
ness of 𝑧-weak, global-in-time solutions when the initial
conditions satisfy some regularity. The existence of global
attractor in 𝑉 for the primitive equations with initial datum
in 𝑉 and the heat source 𝑄 ∈ 𝐿

2(Ω) was proved by use
of the Aubin-Lions compactness lemma in [17]. In [18], the
authors have proved the existence of the global attractor in
(𝐻2(Ω))

3 for the three-dimensional viscous primitive equa-
tions of large-scale ocean and atmosphere dynamics. In this
paper, we will consider the primitive equations of large-scale
atmosphere in log-pressure coordinate, where the continuity
equation is transformed into the incompressible equation
with the weighted function 𝑒

−𝑧/𝐻
𝑠 , which ismore complicated

than that in pressure coordinate, but we do not need to make
any approximation of the thermodynamical equation such
that the accuracy of the temperature is higher than that in
pressure coordinate which will reveal the real world better.
Moreover, the appearance of the weighted function 𝑒

−𝑧/𝐻
𝑠

makes the calculations more difficult. In order to make sure
of the existence of the absorbing set, we need to add some
additional conditions (10) on ℎ, which means that the thick-
ness of Ω is very small. In [18], there are not any restrictions
on the thickness ofΩ to ensure the existence of the absorbing
sets, and the 𝐻

1
(Ω) estimate of 𝑇 can be obtained directly

by taking the inner product (15) with −Δ
3
𝑇. But in this

paper, thanks to the appearance of the weighted function
𝑒−𝑧/𝐻𝑠 , we have to first estimate 𝑇

𝑧
in 𝐿2 and then ∇

2
𝑇 in 𝐿2 to

obtain a priori estimates on 𝑇 in 𝐻
1. In this paper, we

will prove the existence of (𝑉,𝐻
2
)-global attractor for the

three-dimensional primitive equations of large-scale atmo-
sphere in log-pressure coordinate under the assumptions (10)
on ℎ.

In this paper, we will consider the following three-
dimensional viscous primitive equations of large-scale atmo-
sphere in log-pressure coordinate [3]:

𝜕𝑣

𝜕𝑡
+ (𝑣 ⋅ ∇) 𝑣 + 𝑤

𝜕𝑣

𝜕𝑧
+ 𝑓
0
𝑘⃗ × 𝑣 + ∇Φ + 𝐿

1
𝑣 = 0, (1)

𝜕Φ

𝜕𝑧
=

𝑅𝑇

𝐻
𝑠

, (2)

∇ ⋅ (𝑒
−𝑧/𝐻

𝑠𝑣) +
𝜕

𝜕𝑧
(𝑒
−𝑧/𝐻

𝑠𝑤) = 0, (3)

𝜕𝑇

𝜕𝑡
+ 𝑣 ⋅ ∇𝑇 + 𝑤

𝜕𝑇

𝜕𝑧
+ 𝐿

2
𝑇 = 𝑄, (4)

in the domain

Ω = 𝑀 × (−ℎ, 0) ⊂ R
3
, (5)

where𝑀 is a bounded domain inR2 with smooth boundary.
Here, 𝑣 = (𝑣

1
, 𝑣
2
), (𝑣

1
, 𝑣
2
, 𝑤) is the velocity field, 𝑇 is the

temperature, Φ is the geopotential, 𝑓
0

= 2Ω
1
sin 𝜈

0
is the

Coriolis parameter, 𝑘⃗ is the vertical unit vector, 𝑅 is a positive
constant, and 𝑄 is the heat source. The operators 𝐿

1
and 𝐿

2

are given by

𝐿
1
= −

1

Re
1

Δ −
1

Re
2

𝜕2

𝜕𝑧2
,

𝐿
2
= −

1

𝑅𝑡
1

Δ −
1

𝑅𝑡
2

𝜕2

𝜕𝑧2
,

(6)

where Re
1
and Re

2
are positive constants representing the

horizontal and the vertical Reynolds numbers, respectively,
and 𝑅𝑡

1
and 𝑅𝑡

2
are positive constants which stand for the

horizontal and the vertical heat diffusivities, respectively. And
𝑧 = −𝐻

𝑠
log(𝑝/𝑝

∗
) is used as a vertical coordinate, where

𝐻
𝑠
is a constant “scale height” and 𝑝

∗
is a constant reference

pressure. For the sake of simplicity, let ∇ = (𝜕
𝑥
, 𝜕
𝑦
) be the

horizontal gradient operator and Δ = 𝜕2
𝑥

+ 𝜕2
𝑦
the horizontal

Laplacian.
We denote the different parts of the boundary 𝜕Ω by

Γ
𝑢
= {(𝑥, 𝑦, 𝑧) ∈ Ω : 𝑧 = 0} ,

Γ
𝑏
= {(𝑥, 𝑦, 𝑧) ∈ Ω : 𝑧 = −ℎ} ,

Γ
𝑙
= {(𝑥, 𝑦, 𝑧) ∈ Ω : (𝑥, 𝑦) ∈ 𝜕𝑀, −ℎ ≤ 𝑧 ≤ 0} .

(7)

We equip (1)–(4) with the following boundary conditions,
with nonslip and nonflux on the side walls and bottom [4]:

𝜕𝑣

𝜕𝑧

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨Γ
𝑢

= 0, 𝑤|Γ
𝑢

= 0, (
1

𝑅𝑡
2

𝜕𝑇

𝜕𝑧
+ 𝛼𝑇)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨Γ
𝑢

= 0,

𝜕𝑣

𝜕𝑧

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨Γ
𝑏

= 0, 𝑤|Γ
𝑏

= 0,
𝜕𝑇

𝜕𝑧

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨Γ
𝑏

= 0,

𝑣 ⋅ ⃗𝑛|Γ
𝑙

= 0,
𝜕𝑣

𝜕 ⃗𝑛
× ⃗𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨Γ
𝑙

= 0,
𝜕𝑇

𝜕 ⃗𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨Γ
𝑙

= 0,

(8)

where 𝛼 is a positive constant.
In addition, (1)–(8) are supplemented with the following

initial conditions:

𝑣 (𝑥, 𝑦, 𝑧, 0) = 𝑣
0
(𝑥, 𝑦, 𝑧) ,

𝑇 (𝑥, 𝑦, 𝑧, 0) = 𝑇
0
(𝑥, 𝑦, 𝑧) .

(9)

Additionally, assume that ℎ satisfy

9ℎ
2

4𝐻2
𝑠

+
4ℎ

𝛼𝐻2
𝑠
𝑅𝑡
2

< 1,

𝐻
2

𝑠
Re
2
𝜆 > 1.

(10)
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This paper is organized as follows. Section 2 is devoted
to introduce the mathematical framework and the definition
of solutions for (1)–(10) and give some auxiliary lemmas
used in the sequel. In Section 3, we will give the existence
and the uniqueness of solutions for (1)–(10). Next, some a
priori estimates of solutions corresponding to (1)–(10) will be
established, which imply the existence of (𝑉, 𝑉)- and (𝑉,𝐻

2)-
absorbing sets for (1)–(10). In Section 4, we first obtain the
existence of the (𝑉, 𝑉)-global attractor for (1)–(10) by𝐻2 ⊂ 𝑉

compactly, and then get the existence of (𝑉,𝐻3)-absorbing
set of (1)–(10) by the elliptic regularity theory. Finally, we
prove the existence of the (𝑉,𝐻2)-global attractor for the
three-dimensional viscous primitive equations of large-scale
atmosphere in log-pressure coordinate by the Sobolev com-
pactness embedding theory.

Throughout this paper, let 𝐶 be positive constants inde-
pendent of 𝑡 which may be different from line to line.

2. Mathematical Setting of (1)–(10)
2.1. Reformulation of (1)–(9). Integrating the continuity
equation (3) and taking the boundary conditions for 𝑤 into
account, we obtain

𝑤 (𝑥, 𝑦, 𝑧, 𝑡) = −∫
𝑧

−ℎ

𝑒
(𝑧−𝜁)/𝐻

𝑠∇ ⋅ 𝑣 (𝑥, 𝑦, 𝜁, 𝑡) 𝑑𝜁,

∫
0

−ℎ

𝑒
−𝜁/𝐻

𝑠∇ ⋅ 𝑣 (𝑥, 𝑦, 𝜁, 𝑡) 𝑑𝜁 = 0.

(11)

And then, we consider the vertical momentum equation,
that is, the second equation (2). First, we define an unknown
function on 𝑧 = 0 (i.e., 𝑝 = 𝑝

∗
), where 𝑝

∗
is a constant

reference pressure, say

Φ
𝑠
: 𝑀 󳨀→ R, (12)

which is the geopotential of the atmosphere on 𝑧 = 0.
Then,

Φ(𝑥, 𝑦, 𝑧, 𝑡) = Φ
𝑠
(𝑥, 𝑦, 𝑡) +

𝑅

𝐻
𝑠

∫
𝑧

0

𝑇 (𝑥, 𝑦, 𝜁, 𝑡) 𝑑𝜁.

(13)

Therefore, (1)–(4) can be rewritten as follows:

𝜕𝑣

𝜕𝑡
+ (𝑣 ⋅ ∇) 𝑣 − (∫

𝑧

−ℎ

𝑒
(𝑧−𝜁)/𝐻

𝑠 ∇ ⋅ 𝑣 (𝑥, 𝑦, 𝜁, 𝑡) 𝑑𝜁)
𝜕𝑣

𝜕𝑧

+ ∇Φ
𝑠
(𝑥, 𝑦, 𝑡) + 𝑓

0
𝑘⃗ × 𝑣

+
𝑅

𝐻
𝑠

∫
𝑧

0

∇𝑇 (𝑥, 𝑦, 𝜁, 𝑡) 𝑑𝜁 + 𝐿
1
𝑣 = 0,

(14)

𝜕𝑇

𝜕𝑡
+ 𝑣 ⋅ ∇𝑇

− (∫
𝑧

−ℎ

𝑒
(𝑧−𝜁)/𝐻

𝑠∇ ⋅ 𝑣 (𝑥, 𝑦, 𝜁, 𝑡) 𝑑𝜁)
𝜕𝑇

𝜕𝑧
+ 𝐿

2
𝑇 = 𝑄,

(15)

with the following boundary conditions:

𝜕𝑣

𝜕𝑧

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨Γ
𝑏

= 0,
𝜕𝑣

𝜕𝑧

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨Γ
𝑢

= 0,

𝑣 ⋅ ⃗𝑛|Γ
𝑙

= 0,
𝜕𝑣

𝜕 ⃗𝑛
× ⃗𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨Γ
𝑙

= 0,

(16)

𝜕𝑇

𝜕𝑧

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨Γ
𝑏

= 0, (
1

𝑅𝑡
2

𝜕𝑇

𝜕𝑧
+ 𝛼𝑇)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨Γ
𝑢

= 0,
𝜕𝑇

𝜕 ⃗𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨Γ
𝑙

= 0,

(17)

and the initial data
𝑣 (𝑥, 𝑦, 𝑧, 0) = 𝑣

0
(𝑥, 𝑦, 𝑧) ,

𝑇 (𝑥, 𝑦, 𝑧, 0) = 𝑇
0
(𝑥, 𝑦, 𝑧) .

(18)

At last, we will divide (14) into two systems with respect to 𝑣

and 𝑣 [4], where 𝑣 and 𝑣 are defined by

𝑣 =
1

𝐴
∫
0

−ℎ

𝑒
−𝑧/𝐻

𝑠 𝑣 (𝑥, 𝑦, 𝑧) 𝑑𝑧,

𝑣 = 𝑣 − 𝑣,

(19)

where

𝐴 = ∫
0

−ℎ

𝑒
−𝑧/𝐻

𝑠𝑑𝑧 = 𝐻
𝑠
(𝑒
ℎ/𝐻
𝑠 − 1) , (20)

and we have 𝑣 = 0.
Therefore, 𝑣 satisfies the following systems:

𝜕𝑣

𝜕𝑡
+ (𝑣 ⋅ ∇) 𝑣 −

1

Re
1

Δ𝑣 + ∇Φ
𝑠
(𝑥, 𝑦, 𝑡) + (∇ ⋅ 𝑣) 𝑣 + (𝑣 ⋅ ∇) 𝑣

+ 𝑓
0
𝑘⃗ × 𝑣 +

𝑅

𝐻
𝑠

∫
𝑧

0

∇𝑇 (𝑥, 𝑦, 𝜁, 𝑡) 𝑑𝜁 −
1

𝐻
𝑠
Re
2

𝜕𝑣

𝜕𝑧
= 0,

(21)

with the boundary conditions

∇ ⋅ 𝑣=0, 𝑣 ⋅ ⃗𝑛|
Γ
𝑙

=0,
𝜕𝑣

𝜕 ⃗𝑛
× ⃗𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨Γ
𝑙

=0, (22)

and 𝑣 satisfies the following systems

𝜕𝑣

𝜕𝑡
+ (𝑣 ⋅ ∇) 𝑣 − (∫

𝑧

−ℎ

𝑒
(𝑧−𝜁)/𝐻

𝑠∇ ⋅ 𝑣 (𝑥, 𝑦, 𝜁, 𝑡) 𝑑𝜁)
𝜕𝑣

𝜕𝑧

+
𝑅

𝐻
𝑠

∫
𝑧

0

∇𝑇 (𝑥, 𝑦, 𝜁, 𝑡) 𝑑𝜁 + 𝑓
0
𝑘⃗ × 𝑣 + 𝐿

1
𝑣 + (𝑣 ⋅∇) 𝑣 + (𝑣 ⋅∇) 𝑣

− (∇ ⋅𝑣) 𝑣 + (𝑣 ⋅∇) 𝑣 +
𝑅

𝐻
𝑠

∫
𝑧

0

∇𝑇 (𝑥, 𝑦, 𝜁, 𝑡) 𝑑𝜁−
1

𝐻
𝑠
Re
2

𝜕𝑣

𝜕𝑧
=0,

(23)

with the boundary conditions

𝜕𝑣

𝜕𝑧

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨Γ
𝑢

=0,
𝜕𝑣

𝜕𝑧

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨Γ
𝑏

=0, 𝑣 ⋅ ⃗𝑛|Γ
𝑙

=0,

𝜕𝑣

𝜕 ⃗𝑛
× ⃗𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨Γ
𝑙

=0.

(24)
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2.2. Some Function Spaces. In this subsection, we will quote
briefly some notations and function spaces used in this paper.

First of all, we introduce the notations for some function
spaces on Ω as follows:

V
1
= {𝑣 ∈ (𝐶

∞
(Ω))

2

:
𝜕𝑣

𝜕𝑧

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨Γ
𝑢

= 0,
𝜕𝑣

𝜕𝑧

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨Γ
𝑏

= 0, 𝑣 ⋅ ⃗𝑛|Γ
𝑙

= 0,

𝜕𝑣

𝜕 ⃗𝑛
× ⃗𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨Γ
𝑙

= 0, ∫
0

−ℎ

𝑒
−𝑧/𝐻

𝑠∇ ⋅ 𝑣 (𝑥, 𝑦, 𝑧) 𝑑𝑧 = 0} ,

V
2
= {𝑇 ∈ 𝐶

∞
(Ω) :

𝜕𝑇

𝜕𝑧

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨Γ
𝑏

= 0,

(
1

𝑅𝑡
2

𝜕𝑇

𝜕𝑧
+ 𝛼𝑇)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨Γ
𝑢

= 0,
𝜕𝑇

𝜕 ⃗𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨Γ
𝑙

= 0} .

(25)

Let 𝐿𝑝 (or 𝐻𝑠) be the weighted Hilbert spaces of 𝐿𝑝(or 𝐻𝑠)
functions or 𝐿𝑝(or 𝐻𝑠)-vector valued functions on Ω and
denote the usual 𝐿𝑝(Ω)-norms by ‖ ⋅ ‖

𝐿
𝑝
(Ω)

, where 1 ≤ 𝑝 ≤

∞(or 𝑠 ≥ 0). Denote the inner product in 𝐿2 by (⋅, ⋅) and the
norm in 𝐿𝑝 by ‖ ⋅ ‖

𝑝
, respectively, given by

(ℎ
1
, ℎ
2
) = ∫

Ω

𝑒
−𝑧/𝐻

𝑠ℎ
1
⋅ ℎ
2
𝑑𝑥 𝑑𝑦𝑑𝑧,

‖ℎ‖
𝑝

𝑝
= ∫
Ω

𝑒
−𝑧/𝐻

𝑠 |ℎ|
𝑝
𝑑𝑥 𝑑𝑦𝑑𝑧,

(26)

for any ℎ
1
, ℎ
2
∈ 𝐿
2 and ℎ ∈ 𝐿

𝑝
(1 ≤ 𝑝 ≤ ∞).

Similarly, define

((𝑣
1
, 𝑣
2
)) =

1

Re
1

∫
Ω

𝑒
−𝑧/𝐻

𝑠∇𝑣
1
⋅ ∇𝑣

2
𝑑𝑥 𝑑𝑦𝑑𝑧

+
1

Re
2

∫
Ω

𝑒
−𝑧/𝐻

𝑠

𝜕𝑣
1

𝜕𝑧
⋅
𝜕𝑣
2

𝜕𝑧
𝑑𝑥 𝑑𝑦𝑑𝑧,

((𝑇
1
, 𝑇
2
)) =

1

𝑅𝑡
1

∫
Ω

𝑒
−𝑧/𝐻

𝑠∇𝑇
1
⋅ ∇𝑇

2
𝑑𝑥 𝑑𝑦𝑑𝑧

+
1

𝑅𝑡
2

∫
Ω

𝑒
−𝑧/𝐻

𝑠

𝜕𝑇
1

𝜕𝑧

𝜕𝑇
2

𝜕𝑧
𝑑𝑥 𝑑𝑦 𝑑𝑧

+ 𝛼∫
Γ
𝑢

𝑇
1
𝑇
2
𝑑𝑥 𝑑𝑦,

(27)

for any 𝑣
1
, 𝑣
2
∈ V

1
and 𝑇

1
, 𝑇
2
∈ V

2
, respectively.

Let 𝑉
1
, 𝑉
2
be the closure of V

1
,V
2
with respect to the

following norms:

‖𝑣‖
2
= ((𝑣, 𝑣)) , ‖𝑇‖

2
= ((𝑇, 𝑇)) , (28)

for any 𝑣 ∈ V
1
and 𝑇 ∈ V

2
, respectively, and let𝑉 = 𝑉

1
×𝑉
2
.

Next, we recall some results used in the sequel.

Lemma 1 (see [19]). (i) for 𝑢 ∈ 𝐻
1(𝑀),

‖𝑢‖
𝐿
4
(𝑀)

≤ 𝐶‖𝑢‖
1/2

𝐿
2
(𝑀)

‖𝑢‖
1/2

𝐻
1
(𝑀)

,

‖𝑢‖𝐿6(𝑀) ≤ 𝐶‖𝑢‖
2/3

𝐿
2
(𝑀)

‖𝑢‖
1/3

𝐻
1
(𝑀)

,

‖𝑢‖𝐿8(𝑀) ≤ 𝐶‖𝑢‖
1/2

𝐿
4
(𝑀)

‖𝑢‖
1/2

𝐻
1
(𝑀)

.

(29)

(ii) for 𝑢 ∈ 𝑉
𝑖
(𝑖 = 1, 2),

‖𝑢‖4 ≤ 𝐶‖𝑢‖
1/4

2
‖𝑢‖
3/4

. (30)

Proposition 2. There exists a positive constant 𝜆 such that

‖𝑣‖
2
≥ 𝜆‖𝑣‖

2

2
, (31)

for any 𝑣 ∈ 𝑉
1
.

Lemma 3 (see [4, 6]). Let 𝑣, 𝑣
1
∈ 𝑉
1
,𝑇 ∈ 𝑉

2
, and 𝑝 ≥ 1.Then,

we have

(1) ∫
Ω
[(𝑣 ⋅ ∇)𝑣

1
− (∫

𝑧

−ℎ
𝑒(𝑧−𝜁)/𝐻𝑠∇ ⋅ 𝑣(𝑥, 𝑦, 𝜁)𝑑𝜁)(𝜕𝑣

1
/𝜕𝑧)] ⋅

(𝑒−𝑧/𝐻𝑠 |𝑣
1
|𝑝−1𝑣

1
) = 0,

(2) ∫
Ω
[𝑣 ⋅ ∇𝑇 − (∫

𝑧

−ℎ
𝑒(𝑧−𝜁)/𝐻𝑠∇ ⋅ 𝑣(𝑥, 𝑦, 𝜁)𝑑𝜁)(𝜕𝑇/

𝜕𝑧)]𝑒−𝑧/𝐻𝑠 |𝑇|𝑝−1𝑇 = 0,

(3) ∫
Ω
𝑒−𝑧/𝐻𝑠∇Φ

𝑠
(𝑥, 𝑦) ⋅ 𝑣(𝑥, 𝑦, 𝑧) = 0.

Lemma 4 (see [4], (Minkowski inequality)). Let (𝑋, 𝜇), (𝑌, 𝜈)
be two measure spaces and 𝑓(𝑥, 𝑦) a measurable function
about 𝜇 × 𝜈 on 𝑋 × 𝑌, and 𝜌(𝑦) is a measurable positive
function. If 𝑓(⋅, 𝑦) ∈ 𝐿

𝑝(𝑋, 𝜇) (1 ≤ 𝑝 ≤ ∞) for a.e.𝑦 ∈ 𝑌

and ∫
𝑌
𝜌(𝑦)‖𝑓(⋅, 𝑦)‖

𝐿
𝑝
(𝑋,𝜇)

𝑑𝜈(𝑦) < ∞, then

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
∫
𝑌

𝜌 (𝑦) 𝑓 (⋅, 𝑦) 𝑑𝜈 (𝑦)
󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿𝑝(𝑋,𝜇)

≤ ∫
𝑌

𝜌 (𝑦)
󵄩󵄩󵄩󵄩𝑓 (⋅, 𝑦)

󵄩󵄩󵄩󵄩𝐿𝑝(𝑋,𝜇)𝑑𝜈 (𝑦) .

(32)

Finally, we will recall the definition of strong solutions
and state it as follows.

Definition 5. Assume that (𝑣
0
, 𝑇
0
) ∈ 𝑉 and 𝑄 ∈ 𝐻1 and let 𝜏

be any fixed positive time. (𝑣, 𝑇) is called a strong solution of
(14)–(18) on [0, 𝜏], if

(𝑣, 𝑇) ∈ 𝐿
∞

(0, 𝜏; 𝑉) ∩ 𝐿
2
(0, 𝜏;𝐻

2
) ,

(𝑣
𝑡
, 𝑇
𝑡
) ∈ 𝐿

1
(0, 𝜏; 𝐿

2
) ,

(33)
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and they satisfy

(𝑣 (𝑡) , 𝜙)

+∫
𝑡

𝑡
0

∫
Ω

𝑒
−𝑧/𝐻

𝑠 [ (𝑣⋅∇) 𝑣−(∫
𝑧

−ℎ

𝑒
(𝑧−𝜁)/𝐻

𝑠∇⋅𝑣 (𝑥, 𝑦, 𝜁, 𝑡) 𝑑𝜁)

×
𝜕𝑣

𝜕𝑧
+𝑓
0
𝑘⃗×𝑣+

𝑅

𝐻
𝑠

∫
𝑧

0

∇𝑇 (𝑥, 𝑦, 𝜁, 𝑡) 𝑑𝜁]

⋅ 𝜙 + ∫
𝑡

𝑡
0

((𝑣, 𝜙))

=
1

𝐻
𝑠
Re
2

∫
𝑡

𝑡
0

(𝜕
𝑧
𝑣, 𝜙) + (𝑣 (𝑡

0
) , 𝜙) ,

(𝑇 (𝑡) , 𝜓)

+ ∫
𝑡

𝑡
0

∫
Ω

𝑒
−𝑧/𝐻

𝑠 [𝑣⋅∇𝑇 − (∫
𝑧

−ℎ

𝑒
(𝑧−𝜁)/𝐻

𝑠∇⋅𝑣 (𝑥, 𝑦, 𝜁, 𝑡) 𝑑𝜁)

×
𝜕𝑇

𝜕𝑧
]𝜓 + ∫

𝑡

𝑡
0

((𝑇, 𝜓))

= ∫
𝑡

𝑡
0

(𝑄, 𝜓) +
1

𝐻
𝑠
𝑅𝑡
2

∫
𝑡

𝑡
0

(𝜕
𝑧
𝑇, 𝜓) + (𝑇 (𝑡

0
) , 𝜓) ,

(34)

for every 𝜙 ∈ V
1
and 𝜓 ∈ V

2
, almost every 𝑡

0
, 𝑡 ∈ [0, 𝜏].

3. Some a Priori Estimates for (1)–(10)
We start with the following general existence and uniqueness
of solutions which can be obtained by the standard Fatou-
Galerkin methods [20–22] and similar methods in [4]. Here,
we only state it as follows.

Theorem 6. Assume that (𝑣
0
, 𝑇
0
) ∈ 𝑉 and 𝑄 ∈ 𝐻

1 and let
𝜏 be any fixed positive time. Then, there exists a unique strong
solution (𝑣, 𝑇) of (14)–(18) on [0, 𝜏], which satisfies

(𝑣, 𝑇) ∈ 𝐿
∞

(0, 𝜏; 𝑉) ∩ 𝐿
2
(0, 𝜏;𝐻

2
) (35)

and depends continuously on the initial data (𝑣
0
, 𝑇
0
); that is,

the mapping (𝑣
0
, 𝑇
0
) → (𝑣, 𝑇) is continuous in 𝑉.

By Theorem 6, we can define the operator semigroup
{𝑆(𝑡)}

𝑡≥0
in 𝑉 as

𝑆 (⋅) (𝑣
0
, 𝑇
0
) : R

+
× 𝑉 󳨀→ 𝑉, (36)

which is (𝑉, 𝑉)-continuous.

In this section, we will give some a priori estimates which
imply the existence of the (𝑋, 𝑍)-absorbing set𝐵

0
for (1)–(10).

That is, for any bounded subset 𝐵 ⊂ 𝑋, there exists 𝑇 = 𝑇(𝐵)

such that 𝑆(𝑡)𝐵 ⊂ 𝐵
0
for any 𝑡 ≥ 𝑇, where {𝑆(𝑡)}

𝑡≥0
is a

semigroup on Banach space 𝑋 generated by (1)–(10).

3.1. 𝐿
2 Estimates of 𝑇. Taking the 𝐿2 inner product of

(15) with 𝑇, using the boundary conditions (17) and using
Lemma 3, we deduce that

1

2

𝑑

𝑑𝑡
‖𝑇‖

2

2
+ ‖𝑇‖

2
≤ ‖𝑄‖2‖𝑇‖2 +

1

𝐻
𝑠
𝑅𝑡
2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝜕𝑇

𝜕𝑧

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩2
‖𝑇‖2.

(37)

Employing Hölder’s inequality yields

𝑑

𝑑𝑡
‖𝑇‖

2

2
+ ‖𝑇‖

2
≤

2

𝐻2
𝑠
𝑅𝑡
2

‖𝑇‖
2

2
+ 𝐻

2

𝑠
𝑅𝑡
2‖𝑄‖

2

2
. (38)

Thanks to

‖𝑇‖
2

2
≤ 2ℎ‖𝑇 (𝑧 = 0)‖

2

𝐿
2
(𝑀)

+ ℎ
2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝜕𝑇

𝜕𝑧

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

2

+
ℎ2

4𝐻2
𝑠

‖𝑇‖
2

2
,

(39)

we obtain

‖𝑇‖
2

2

ℎ2𝑅𝑡
2
+ 2ℎ/𝛼

≤
4𝐻2
𝑠

4𝐻2
𝑠
− ℎ2

(
1

𝑅𝑡
2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝜕𝑇

𝜕𝑧

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

2

+ 𝛼‖𝑇 (𝑧 = 0)‖
2

𝐿
2
(𝑀)

) .

(40)

Setting 𝛿 = 1 − 8(𝑅𝑡
2
ℎ2 + 2ℎ/𝛼)/𝑅𝑡

2
(4𝐻2

𝑠
− ℎ2) and 𝛿

1
=

𝛿(4𝐻2
𝑠
− ℎ2)/4𝐻2

𝑠
(𝑅𝑡
2
ℎ2 + 2ℎ/𝛼), we find that

𝑑

𝑑𝑡
‖𝑇‖

2

2
+ 𝛿‖𝑇‖

2
≤ 𝐻

2

𝑠
𝑅𝑡
2‖𝑄‖

2

2
,

𝑑

𝑑𝑡
‖𝑇‖

2

2
+ 𝛿
1‖𝑇‖

2

2
≤ 𝐻

2

𝑠
𝑅𝑡
2‖𝑄‖

2

2
,

(41)

which implies that

‖𝑇 (𝑡)‖
2

2
≤

󵄩󵄩󵄩󵄩𝑇0
󵄩󵄩󵄩󵄩
2

2
𝑒
−𝛿
1
𝑡
+

𝐻2
𝑠
𝑅𝑡
2

𝛿
1

‖𝑄‖
2

2
(1 − 𝑒

−𝛿
1
𝑡
) .

(42)

Therefore, there exist three positive constants 𝜌
1
, 𝜌
2
, 𝑇
1
such

that

‖𝑇 (𝑡)‖
2

2
≤ 𝜌
1
, (43)

∫
𝑡+1

𝑡

‖𝑇‖
2
𝑑𝜏 ≤ 𝜌

2
, (44)

for any 𝑡 ≥ 𝑇
1
. For brevity, we omit writing out explicitly

these bounds here, and we also omit writing out other similar
bounds in our future discussion for all other uniform a priori
estimates.

3.2. 𝐿2 Estimates of 𝑣. Multiplying (14) by 𝑣, integrating over
Ω, and using Lemma 3, we deduce that

1

2

𝑑

𝑑𝑡
‖𝑣‖
2

2
+ ‖𝑣‖

2
≤ 𝐶‖𝑇‖2‖∇𝑣‖2 +

1

𝐻
𝑠
Re
2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝜕𝑣

𝜕𝑧

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩2
‖𝑣‖2.

(45)
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Setting 𝛿
3
= 1 − 1/Re

2
𝜆𝐻2
𝑠
and 𝛿

4
= 𝜆 − 1/Re

2
𝐻2
𝑠
, we obtain

𝑑

𝑑𝑡
‖𝑣‖
2

2
+ 𝛿
3‖𝑣‖

2
≤ 𝐶‖𝑇‖

2

2
,

𝑑

𝑑𝑡
‖𝑣‖
2

2
+ 𝛿
4‖𝑣‖

2

2
≤ 𝐶‖𝑇‖

2

2
.

(46)

From the classical Gronwall inequality, we have

‖𝑣 (𝑡)‖
2

2
≤

󵄩󵄩󵄩󵄩𝑣0
󵄩󵄩󵄩󵄩
2

2
𝑒
−𝛿
4
𝑡
+ 𝐶𝜌

1
, (47)

for all 𝑡 ≥ 𝑇
1
, which implies that there exist three positive

constants 𝜌
3
,𝜌
4
,𝑇
2
≥ 𝑇

1
such that

‖𝑣 (𝑡)‖
2

2
≤ 𝜌
3
, (48)

∫
𝑡+1

𝑡

‖𝑣‖
2
𝑑𝜏 ≤ 𝜌

4
, (49)

for all 𝑡 ≥ 𝑇
2
.

3.3. 𝐿6(Ω) Estimates of 𝑇. Taking the 𝐿2(Ω) inner product of
(15) with |𝑇|4𝑇 and using Lemma 3, we have

1

6

𝑑

𝑑𝑡
‖𝑇‖

6

6
+
5

9

󵄩󵄩󵄩󵄩󵄩|
𝑇|
3󵄩󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩󵄩|
𝑇|
3󵄩󵄩󵄩󵄩󵄩

5/3

10/3
‖𝑄‖2+

1

𝐻
𝑠
𝑅𝑡
2

󵄩󵄩󵄩󵄩󵄩|
𝑇|
3󵄩󵄩󵄩󵄩󵄩

5/3

10/3

󵄩󵄩󵄩󵄩𝑇𝑧
󵄩󵄩󵄩󵄩2.

(50)

From the inequality ‖𝜑‖
10/3

≤ 𝐶‖𝜑‖
2/5

2
‖𝜑‖3/5, we get

𝑑

𝑑𝑡
‖𝑇‖

6

6
+ 2

󵄩󵄩󵄩󵄩󵄩|
𝑇|
3󵄩󵄩󵄩󵄩󵄩

2

≤ 𝐶
󵄩󵄩󵄩󵄩𝑇𝑧

󵄩󵄩󵄩󵄩
2

2
‖𝑇‖

4

6
+ 𝐶‖𝑄‖

2

2
‖𝑇‖

4

6
, (51)

which implies that

𝑑

𝑑𝑡
‖𝑇‖

2

6
≤ 𝐶

󵄩󵄩󵄩󵄩𝑇𝑧
󵄩󵄩󵄩󵄩
2

2
+ 𝐶‖𝑄‖

2

2
. (52)

Therefore, by virtue of the uniform Gronwall lemma, from
(44) and ‖𝑇‖

6
≤ 𝐶‖𝑇‖

𝐻
1
(Ω)

, we deduce that

‖𝑇‖
2

6
≤ 𝜌
5
, (53)

for any 𝑡 ≥ 𝑇
2
+ 1.

3.4. (𝐿6(Ω))
2 Estimates of 𝑣. Multiplying (23) by |𝑣|4𝑣, inte-

grating over Ω, and using Lemma 3, we deduce that

1

6

𝑑

𝑑𝑡
‖𝑣‖
6

6
+

1

Re
1

∫
Ω

𝑒
−𝑧/𝐻

𝑠 |∇𝑣|
2
|𝑣|
4
𝑑𝑥 𝑑𝑦𝑑𝑧

+
1

Re
2

∫
Ω

𝑒
−𝑧/𝐻

𝑠
󵄨󵄨󵄨󵄨𝜕𝑧𝑣

󵄨󵄨󵄨󵄨
2

|𝑣|
4
𝑑𝑥 𝑑𝑦𝑑𝑧 +

4

9Re
1

× ∫
Ω

𝑒
−𝑧/𝐻

𝑠

󵄨󵄨󵄨󵄨󵄨
∇|𝑣|

3󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥 𝑑𝑦𝑑𝑧

+
4

9Re
2

∫
Ω

𝑒
−𝑧/𝐻

𝑠

󵄨󵄨󵄨󵄨󵄨
𝜕
𝑧|𝑣|

3󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥 𝑑𝑦𝑑𝑧

≤
1

Re
2
𝐻
𝑠

󵄩󵄩󵄩󵄩𝑣𝑧
󵄩󵄩󵄩󵄩2

󵄩󵄩󵄩󵄩󵄩|
𝑣|
3󵄩󵄩󵄩󵄩󵄩

5/3

10/3
+ 𝐶‖𝑣‖4‖𝑣‖

3/2

6

󵄩󵄩󵄩󵄩󵄩|
𝑣|
3󵄩󵄩󵄩󵄩󵄩

1/2

× (∫
Ω

|∇𝑣|
2
|𝑣|
4
𝑑𝑥 𝑑𝑦𝑑𝑧)

1/2

+ 𝐶‖∇𝑇‖2‖𝑣‖
2

6

󵄩󵄩󵄩󵄩󵄩|
𝑣|
3󵄩󵄩󵄩󵄩󵄩

+ ∫
Ω

𝑒
−𝑧/𝐻

𝑠(𝑣 ⋅ ∇) 𝑣 + (∇ ⋅ 𝑣) 𝑣 ⋅ |𝑣|
4
𝑣𝑑𝑥 𝑑𝑦 𝑑𝑧.

(54)

It follows from the Sobolev interpolation inequality and
Lemma 4 that

∫
Ω

𝑒
−𝑧/𝐻

𝑠(𝑣 ⋅ ∇) 𝑣 + (∇ ⋅ 𝑣) 𝑣 ⋅ |𝑣|
4
𝑣𝑑𝑥 𝑑𝑦 𝑑𝑧

≤ 𝐶∫
𝑀

(∫
0

−ℎ

𝑒
−𝑧/𝐻

𝑠 |∇𝑣| |𝑣|
4
𝑑𝑧)

× (∫
0

−ℎ

𝑒
−𝑧/𝐻

𝑠 |𝑣|
2
𝑑𝑧)𝑑𝑥𝑑𝑦

≤ 𝐶∫
𝑀

(∫
0

−ℎ

𝑒
−𝑧/𝐻

𝑠 |∇𝑣|
2
|𝑣|
4
𝑑𝑧)

1/2

× (∫
0

−ℎ

𝑒
−𝑧/𝐻

𝑠 |𝑣|
4
𝑑𝑧)𝑑𝑥𝑑𝑦

≤ 𝐶(∫
Ω

𝑒
−𝑧/𝐻

𝑠 |∇𝑣|
2
|𝑣|
4
𝑑𝑥 𝑑𝑦𝑑𝑧)

1/2

×(∫
𝑀

(∫
0

−ℎ

𝑒
−𝑧/𝐻

𝑠 |𝑣|
4
𝑑𝑧)

2

𝑑𝑥 𝑑𝑦)

1/2

,

(∫
𝑀

(∫
0

−ℎ

𝑒
−𝑧/𝐻

𝑠 |𝑣|
4
𝑑𝑧)

2

𝑑𝑥 𝑑𝑦)

1/2

≤ ∫
0

−ℎ

𝑒
−𝑧/𝐻

𝑠(∫
𝑀

|𝑣|
8
𝑑𝑥 𝑑𝑦)

1/2

𝑑𝑧

≤ 𝐶∫
0

−ℎ

𝑒
−𝑧/𝐻

𝑠‖𝑣‖
3

𝐿
6
(𝑀)

‖𝑣‖𝐻1(𝑀) 𝑑𝑧

≤ 𝐶‖𝑣‖
3

6
‖𝑣‖ ,

(55)
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which implies that

∫
Ω

𝑒
−𝑧/𝐻

𝑠(𝑣 ⋅ ∇) 𝑣 + (∇ ⋅ 𝑣) 𝑣 ⋅ |𝑣|
4
𝑣 𝑑𝑥 𝑑𝑦𝑑𝑧

≤ 𝐶(∫
Ω

𝑒
−𝑧/𝐻

𝑠 |∇𝑣|
2
|𝑣|
4
𝑑𝑥 𝑑𝑦𝑑𝑧)

1/2

‖𝑣‖
3

6
‖𝑣‖ ,

(56)

where we use the inequality ‖𝑣‖8
𝐿
8
(𝑀)

≤ 𝐶‖𝑣‖6
𝐿
6
(𝑀)

‖𝑣‖2
𝐻
1
(𝑀)

.
We deduce from (54) and (56) that

𝑑

𝑑𝑡
‖𝑣‖
2

6
≤ 𝐶 (‖𝑣‖

2
+ ‖𝑣‖

4

4
) ‖𝑣‖

2

6
+ 𝐶

󵄩󵄩󵄩󵄩𝑣𝑧
󵄩󵄩󵄩󵄩
2

2
+ 𝐶‖∇𝑇‖

2

2
.

(57)

Therefore, it follows from (44)–(49) and the uniform Gron-
wall lemma that

‖𝑣‖
2

6
≤ 𝜌
6
, (58)

∫
𝑡+1

𝑡

∫
Ω

𝑒
−𝑧/𝐻

𝑠 |∇𝑣|
2
|𝑣|
4
𝑑𝑥 𝑑𝑦𝑑𝑧 𝑑𝜏 ≤ 𝜌

7
, (59)

for any 𝑡 ≥ 𝑇
2
+ 2.

3.5. (𝐻1(𝑀))
2 Estimates of 𝑣. Taking the 𝐿2(Ω) inner prod-

uct of (21) with −Δ𝑣 and combining the boundary conditions
(22), we deduce that

1

2

𝑑

𝑑𝑡
‖∇𝑣‖

2

𝐿
2
(𝑀)

+
1

Re
1

∫
𝑀

|Δ𝑣|
2
𝑑𝑥 𝑑𝑦

≤
1

Re
2
𝐻
𝑠

󵄩󵄩󵄩󵄩𝑣𝑧
󵄩󵄩󵄩󵄩2‖Δ𝑣‖2 + 𝐶‖𝑣‖4‖∇𝑣‖4‖Δ𝑣‖2

+ 𝐶∫
𝑀

(∫
0

−ℎ

𝑒
−𝑧/𝐻

𝑠 |∇𝑣| |𝑣| 𝑑𝑧) |Δ𝑣| 𝑑𝑥 𝑑𝑦

+ 𝐶‖𝑣‖2‖Δ𝑣‖2 + 𝐶‖∇𝑇‖2‖Δ𝑣‖2.

(60)

By using the Hölder inequality, we get

∫
𝑀

(∫
0

−ℎ

𝑒
−𝑧/𝐻

𝑠 |∇𝑣| |𝑣| 𝑑𝑧) |Δ𝑣| 𝑑𝑥 𝑑𝑦

≤ ∫
𝑀

(∫
0

−ℎ

𝑒
−𝑧/𝐻

𝑠 |∇𝑣| 𝑑𝑧)

1/2

× (∫
0

−ℎ

𝑒
−𝑧/𝐻

𝑠 |∇𝑣| |𝑣|
2
𝑑𝑧)

1/2

|Δ𝑣| 𝑑𝑥 𝑑𝑦

≤ (∫
𝑀

(∫
0

−ℎ

𝑒
−𝑧/𝐻

𝑠 |∇𝑣| 𝑑𝑧)

2

𝑑𝑥 𝑑𝑦)

1/4

× (∫
𝑀

(∫
0

−ℎ

𝑒
−𝑧/𝐻

𝑠 |∇𝑣| |𝑣|
2
𝑑𝑧)

2

𝑑𝑥 𝑑𝑦)

1/4

‖Δ𝑣‖2

≤ (∫
0

−ℎ

𝑒
−𝑧/𝐻

𝑠(∫
𝑀

|∇𝑣|
2
𝑑𝑥 𝑑𝑦)

1/2

𝑑𝑧)

1/2

× (∫
0

−ℎ

𝑒
−𝑧/𝐻

𝑠(∫
𝑀

|∇𝑣|
2
|𝑣|
4
𝑑𝑥 𝑑𝑦)

1/2

𝑑𝑧)

1/2

‖Δ𝑣‖2

≤ 𝐶‖∇𝑣‖
1/2

2
(∫
Ω

𝑒
−𝑧/𝐻

𝑠 |∇𝑣|
2
|𝑣|
4
𝑑𝑥 𝑑𝑦𝑑𝑧)

1/4

‖Δ𝑣‖2.

(61)

It follows from (60) and (61) that

𝑑

𝑑𝑡
‖∇𝑣‖

2

𝐿
2
(𝑀)

+
1

Re
1

∫
𝑀

|Δ𝑣|
2
𝑑𝑥 𝑑𝑦

≤ 𝐶‖𝑣‖
2

𝐿
2
(𝑀)

‖∇𝑣‖
4

𝐿
2
(𝑀)

+ 𝐶
󵄩󵄩󵄩󵄩𝑣𝑧

󵄩󵄩󵄩󵄩
2

2
+ 𝐶‖∇𝑇‖

2

2
+ 𝐶‖∇𝑣‖

2

2

+ 𝐶(∫
Ω

𝑒
−𝑧/𝐻

𝑠 |∇𝑣|
2
|𝑣|
4
𝑑𝑥 𝑑𝑦𝑑𝑧) + 𝐶‖𝑣‖

2

2
.

(62)

In view of (44)–(49) and (59) and the uniform Gronwall
lemma, we obtain

‖∇𝑣‖
2

𝐿
2
(𝑀)

≤ 𝜌
8
, (63)

for any 𝑡 ≥ 𝑇
2
+ 3.

3.6. (𝐿2(Ω))
2 Estimates of 𝑣

𝑧
. Denote that 𝑢 = 𝑣

𝑧
. It is clear

that 𝑢 satisfies the following equation obtained by differenti-
ating (14) with respect to 𝑧:

𝜕𝑢

𝜕𝑡
+ 𝐿

1
𝑢 + (𝑣 ⋅ ∇) 𝑢

− (∫
𝑧

−ℎ

𝑒
(𝑧−𝜁)/𝐻

𝑠∇ ⋅ 𝑣 (𝑥, 𝑦, 𝜁, 𝑡) 𝑑𝜁)
𝜕𝑢

𝜕𝑧

−
1

𝐻
𝑠

(∫
𝑧

−ℎ

𝑒
(𝑧−𝜁)/𝐻

𝑠∇ ⋅ 𝑣 (𝑥, 𝑦, 𝜁, 𝑡) 𝑑𝜁) 𝑢

+ (𝑢 ⋅ ∇) 𝑣 − (∇ ⋅ 𝑣) 𝑢 + 𝑓
0
𝑘⃗ × 𝑢 +

𝑅

𝐻
𝑠

∇𝑇 = 0,

(64)

with the boundary conditions

𝑢|Γ
𝑢

= 0, 𝑢|Γ
𝑏

= 0,

𝑢 ⋅ ⃗𝑛|Γ
𝑙

= 0,
𝜕𝑢

𝜕 ⃗𝑛
× ⃗𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨Γ
𝑙

= 0.
(65)
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Multiplying (64) by 𝑢, integrating over Ω, and using
Lemma 3, we get

1

2

𝑑

𝑑𝑡
‖𝑢‖
2

2
+ ‖𝑢‖

2

≤
1

Re
2
𝐻
𝑠

󵄩󵄩󵄩󵄩𝑢𝑧
󵄩󵄩󵄩󵄩2‖𝑢‖2 + 𝐶‖𝑣‖6‖𝑢‖3‖∇𝑢‖2 + 𝐶‖𝑇‖2‖∇𝑢‖2.

(66)

It follows from the Young inequality and the Sobolev embed-
ding theorem that

𝑑

𝑑𝑡
‖𝑢‖
2

2
+ ‖𝑢‖

2
≤ 𝐶 (1 + ‖𝑣‖

4

6
) ‖𝑢‖

2

2
+ 𝐶‖𝑇‖

2

2
. (67)

Since

‖𝑣‖
6
≤ 𝐶ℎ

−1/3
‖𝑣‖2 + 𝐶ℎ

1/6
‖∇𝑣‖2 + ‖𝑣‖6, (68)

which implies that

‖𝑣‖
2

6
≤ 𝜌
9
, (69)

for any 𝑡 ≥ 𝑇
2
+ 3.

By virtue of the uniform Gronwall lemma, from (43),
(49), and (69), we deduce that

󵄩󵄩󵄩󵄩𝑣𝑧
󵄩󵄩󵄩󵄩
2

2
≤ 𝜌
10
, (70)

∫
𝑡+1

𝑡

󵄩󵄩󵄩󵄩𝑣𝑧
󵄩󵄩󵄩󵄩
2

𝑑𝜏 ≤ 𝜌
11
, (71)

for any 𝑡 ≥ 𝑇
2
+ 4.

3.7. (𝐿2(Ω))
2 Estimates of ∇𝑣. Taking the 𝐿

2
(Ω) inner prod-

uct of (14) with −Δ𝑣 and combining the boundary conditions
(16), we deduce that

1

2

𝑑

𝑑𝑡
‖∇𝑣‖

2

2
+

1

Re
1

∫
Ω

𝑒
−𝑧/𝐻

𝑠 |Δ𝑣|
2
𝑑𝑥 𝑑𝑦𝑑𝑧

+
1

Re
2

∫
Ω

𝑒
−𝑧/𝐻

𝑠
󵄨󵄨󵄨󵄨∇𝑣
𝑧

󵄨󵄨󵄨󵄨
2

𝑑𝑥 𝑑𝑦𝑑𝑧

≤
1

Re
2
𝐻
𝑠

󵄩󵄩󵄩󵄩𝑣𝑧
󵄩󵄩󵄩󵄩2‖Δ𝑣‖2+𝐶

󵄩󵄩󵄩󵄩𝑣𝑧
󵄩󵄩󵄩󵄩
1/2

2

󵄩󵄩󵄩󵄩∇𝑣
𝑧

󵄩󵄩󵄩󵄩
1/2

2
‖∇𝑣‖

1/2

2
‖Δ𝑣‖

3/2

2

+ 𝐶‖∇𝑇‖2‖Δ𝑣‖2 + 𝐶‖𝑣‖6‖∇𝑣‖3‖Δ𝑣‖2 + 𝐶‖𝑣‖2‖Δ𝑣‖2.

(72)

We derive from (72) and the Young inequality that

𝑑

𝑑𝑡
‖∇𝑣‖

2

2
+

1

Re
1

∫
Ω

𝑒
−𝑧/𝐻

𝑠 |Δ𝑣|
2
𝑑𝑥 𝑑𝑦𝑑𝑧

+
1

Re
2

∫
Ω

𝑒
−𝑧/𝐻

𝑠
󵄨󵄨󵄨󵄨∇𝑣
𝑧

󵄨󵄨󵄨󵄨
2

𝑑𝑥 𝑑𝑦𝑑𝑧

≤ 𝐶 (‖𝑣‖
4

6
+

󵄩󵄩󵄩󵄩𝑣𝑧
󵄩󵄩󵄩󵄩
2

2

󵄩󵄩󵄩󵄩∇𝑣
𝑧

󵄩󵄩󵄩󵄩
2

2
) ‖∇𝑣‖

2

2
+𝐶‖∇𝑇‖

2

2
+𝐶‖𝑣‖

2

2
+𝐶

󵄩󵄩󵄩󵄩𝑣𝑧
󵄩󵄩󵄩󵄩
2

2
.

(73)

By virtue of (44)–(49), (69)–(71), and the uniform Gron-
wall lemma, we get

‖∇𝑣‖
2

2
≤ 𝜌
12
, (74)

1

Re
1

∫
𝑡+1

𝑡

∫
Ω

𝑒
−𝑧/𝐻

𝑠 |Δ𝑣|
2
𝑑𝑥 𝑑𝑦𝑑𝑧 𝑑𝜏

+
1

Re
2

∫
𝑡+1

𝑡

∫
Ω

𝑒
−𝑧/𝐻

𝑠
󵄨󵄨󵄨󵄨∇𝑣
𝑧

󵄨󵄨󵄨󵄨
2

𝑑𝑥 𝑑𝑦𝑑𝑧 𝑑𝜏 ≤ 𝜌
13
,

(75)

for any 𝑡 ≥ 𝑇
2
+ 5.

3.8. 𝐿2(Ω) Estimates of 𝑇
𝑧
. Denote 𝜃 = 𝑇

𝑧
. It is clear that

𝜃 satisfies the following equation obtained by differentiating
(15) with respect to 𝑧:

𝜕𝜃

𝜕𝑡
+ 𝐿

2
𝜃 + 𝑣 ⋅ ∇𝜃 − (∫

𝑧

−ℎ

𝑒
(𝑧−𝜁)/𝐻

𝑠∇ ⋅ 𝑣 (𝑥, 𝑦, 𝜁, 𝑡) 𝑑𝜁)
𝜕𝜃

𝜕𝑧

−
1

𝐻
𝑠

(∫
𝑧

−ℎ

𝑒
(𝑧−𝜁)/𝐻

𝑠∇ ⋅ 𝑣 (𝑥, 𝑦, 𝜁, 𝑡) 𝑑𝜁) 𝜃

+ 𝑣
𝑧
⋅ ∇𝑇 − (∇ ⋅ 𝑣) 𝜃 = 𝜕

𝑧
𝑄,

(76)

with the boundary conditions

(
1

𝑅𝑡
2

𝜃 + 𝛼𝑇)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨Γ
𝑢

= 0, 𝜃|Γ
𝑏

= 0,
𝜕𝜃

𝜕 ⃗𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨Γ
𝑙

= 0.

(77)

Multiplying (76) by 𝜃, integrating overΩ, andusing Lemma 3,
we deduce that

1

2

𝑑

𝑑𝑡
‖𝜃‖
2

2
+

1

𝑅𝑡
1

∫
Ω

𝑒
−𝑧/𝐻

𝑠 |∇𝜃|
2
𝑑𝑥 𝑑𝑦𝑑𝑧

+
1

𝑅𝑡
2

∫
Ω

𝑒
−𝑧/𝐻

𝑠
󵄨󵄨󵄨󵄨𝜕𝑧𝜃

󵄨󵄨󵄨󵄨
2

𝑑𝑥 𝑑𝑦𝑑𝑧 + 𝛼∫
Γ
𝑢

𝜕𝜃

𝜕𝑧
𝑇𝑑𝑥𝑑𝑦

≤
1

𝑅𝑡
2
𝐻
𝑠

󵄩󵄩󵄩󵄩𝜃𝑧
󵄩󵄩󵄩󵄩2‖𝜃‖2 + 𝐶‖𝑣‖6‖𝜃‖3‖∇𝜃‖2 + 𝐶

󵄩󵄩󵄩󵄩𝑄𝑧
󵄩󵄩󵄩󵄩2‖𝜃‖2

+ 𝐶
󵄩󵄩󵄩󵄩∇𝑣

𝑧

󵄩󵄩󵄩󵄩2‖𝑇‖6‖𝜃‖3 + 𝐶
󵄩󵄩󵄩󵄩𝑣𝑧

󵄩󵄩󵄩󵄩3‖𝑇‖6‖∇𝜃‖2.

(78)
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We deduce from the Young inequality that

𝛼∫
Γ
𝑢

𝜕𝜃

𝜕𝑧
𝑇𝑑𝑥𝑑𝑦

= 𝛼𝑅𝑡
2
∫
Γ
𝑢

(
𝜕𝑇

𝜕𝑡
+ 𝑣 ⋅ ∇𝑇 −

1

𝑅𝑡
1

Δ𝑇 − 𝑄)𝑇𝑑𝑥𝑑𝑦

=
𝛼𝑅𝑡

2

2

𝑑

𝑑𝑡
∫
Γ
𝑢

|𝑇|
2
𝑑𝑥 𝑑𝑦 + 𝛼𝑅𝑡

2
∫
Γ
𝑢

(𝑣 ⋅ ∇𝑇) 𝑇 𝑑𝑥 𝑑𝑦

+
𝛼𝑅𝑡

2

𝑅𝑡
1

∫
Γ
𝑢

|∇𝑇|
2
𝑑𝑥 𝑑𝑦 − 𝛼𝑅𝑡

2
∫
Γ
𝑢

𝑄𝑇𝑑𝑥 𝑑𝑦,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝛼𝑅𝑡

2
∫
Γ
𝑢

(𝑣 ⋅ ∇𝑇) 𝑇 𝑑𝑥 𝑑𝑦 − 𝛼𝑅𝑡
2
∫
Γ
𝑢

𝑄𝑇 𝑑𝑥𝑑𝑦

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝐶‖𝑣‖𝐿4(Γ
𝑢
)‖∇𝑇‖𝐿2(Γ

𝑢
)‖𝑇‖𝐿4(Γ

𝑢
)
+ 𝐶‖𝑄‖𝐿2(Γ

𝑢
)‖𝑇‖𝐿2(Γ

𝑢
)

≤ 𝐶 ‖𝑣‖ ‖∇𝑇‖
3/2

𝐿
2
(Γ
𝑢
)
‖𝑇‖

1/2

𝐿
2
(Γ
𝑢
)
+ 𝐶 ‖𝑄‖ ‖𝑇‖𝐿2(Γ

𝑢
)
.

(79)

It follows from (78) and (79) that

𝑑

𝑑𝑡
(‖𝜃‖

2

2
+ 𝛼𝑅𝑡

2‖𝑇‖
2

𝐿
2(Γ𝑢)

)

+
1

𝑅𝑡
1

∫
Ω

𝑒
−𝑧/𝐻

𝑠 |∇𝜃|
2
𝑑𝑥 𝑑𝑦𝑑𝑧

+
1

𝑅𝑡
2

∫
Ω

𝑒
−𝑧/𝐻

𝑠
󵄨󵄨󵄨󵄨𝜃𝑧

󵄨󵄨󵄨󵄨
2

𝑑𝑥 𝑑𝑦𝑑𝑧 +
𝛼𝑅𝑡

2

𝑅𝑡
1

∫
Γ
𝑢

|∇𝑇|
2
𝑑𝑥 𝑑𝑦

≤ 𝐶 (1 + ‖𝑣‖
4

6
+ ‖𝑇‖

4

6
+ ‖𝑣‖

4
) (‖𝜃‖

2

2
+ 𝛼𝑅𝑡

2‖𝑇‖
2

𝐿
2(Γ𝑢)

)

+ 𝐶 (‖𝑄‖
2
+

󵄩󵄩󵄩󵄩𝑣𝑧
󵄩󵄩󵄩󵄩
2

+
󵄩󵄩󵄩󵄩𝑣𝑧

󵄩󵄩󵄩󵄩
2

2
‖𝑇‖

4

6
) .

(80)

As a result of (44), (53), (69)–(71), and (74), we get

󵄩󵄩󵄩󵄩𝑇𝑧
󵄩󵄩󵄩󵄩
2

2
+ 𝛼𝑅𝑡

2‖𝑇‖
2

𝐿
2
(Γ
𝑢
)
≤ 𝜌
14
, (81)

1

𝑅𝑡
1

∫
𝑡+1

𝑡

∫
Ω

𝑒
−𝑧/𝐻

𝑠
󵄨󵄨󵄨󵄨∇𝑇

𝑧

󵄨󵄨󵄨󵄨
2

𝑑𝑥 𝑑𝑦𝑑𝑧 𝑑𝜏

+
1

𝑅𝑡
2

∫
𝑡+1

𝑡

∫
Ω

𝑒
−𝑧/𝐻

𝑠

󵄨󵄨󵄨󵄨󵄨
𝜕
2

𝑧
𝑇
󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥 𝑑𝑦𝑑𝑧 𝑑𝜏

+
𝛼𝑅𝑡

2

𝑅𝑡
1

∫
𝑡+1

𝑡

∫
Γ
𝑢

|∇𝑇|
2
𝑑𝑥 𝑑𝑦𝑑𝜏 ≤ 𝜌

15
,

(82)

for any 𝑡 ≥ 𝑇
2
+ 6.

3.9. 𝐿2(Ω) Estimates of ∇𝑇. Taking the 𝐿2(Ω) inner product
of (15) with −Δ𝑇 and combining the boundary conditions
(17), we deduce that

1

2

𝑑

𝑑𝑡
‖∇𝑇‖

2

2
+

1

𝑅𝑡
1

∫
Ω

𝑒
−𝑧/𝐻

𝑠 |Δ𝑇|
2
𝑑𝑥 𝑑𝑦𝑑𝑧

+
1

𝑅𝑡
2

∫
Ω

󵄨󵄨󵄨󵄨∇𝑇
𝑧

󵄨󵄨󵄨󵄨
2

𝑑𝑥 𝑑𝑦𝑑𝑧 + 𝛼∫
Γ
𝑢

|∇𝑇|
2
𝑑𝑥 𝑑𝑦

≤
1

𝑅𝑡
2
𝐻
𝑠

󵄩󵄩󵄩󵄩𝑇𝑧
󵄩󵄩󵄩󵄩2‖Δ𝑇‖2 + 𝐶‖𝑣‖6‖∇𝑇‖3‖Δ𝑇‖2 + 𝐶‖𝑄‖2‖Δ𝑇‖2

+ 𝐶‖∇𝑣‖
1/2

2
‖Δ𝑣‖

1/2

2

󵄩󵄩󵄩󵄩𝑇𝑧
󵄩󵄩󵄩󵄩
1/2

2

󵄩󵄩󵄩󵄩∇𝑇
𝑧

󵄩󵄩󵄩󵄩
1/2

2
‖Δ𝑇‖2.

(83)

We derive from the Young inequality that

𝑑

𝑑𝑡
‖∇𝑇‖

2

2
+

1

𝑅𝑡
1

∫
Ω

𝑒
−𝑧/𝐻

𝑠 |Δ𝑇|
2
𝑑𝑥 𝑑𝑦𝑑𝑧

+
1

𝑅𝑡
2

∫
Ω

𝑒
−𝑧/𝐻

𝑠
󵄨󵄨󵄨󵄨∇𝑇

𝑧

󵄨󵄨󵄨󵄨
2

𝑑𝑥 𝑑𝑦𝑑𝑧

+ 𝛼∫
𝑀

|∇𝑇 (𝑧 = 0)|
2
𝑑𝑥 𝑑𝑦

≤ 𝐶‖𝑣‖
4

6
‖∇𝑇‖

2

2
+ 𝐶‖∇𝑣‖

2

2
‖Δ𝑣‖

2

2

󵄩󵄩󵄩󵄩𝑇𝑧
󵄩󵄩󵄩󵄩
2

2
+ 𝐶‖𝑄‖

2

2
+ 𝐶

󵄩󵄩󵄩󵄩𝑇𝑧
󵄩󵄩󵄩󵄩
2

2
.

(84)

Using (44), (69), (74), (75), and (81), we get

‖∇𝑇‖
2

2
≤ 𝜌
16
, (85)

1

𝑅𝑡
1

∫
𝑡+1

𝑡

∫
Ω

𝑒
−𝑧/𝐻

𝑠 |Δ𝑇|
2
𝑑𝑥 𝑑𝑦𝑑𝑧 𝑑𝜏

+
1

𝑅𝑡
2

∫
𝑡+1

𝑡

∫
Ω

𝑒
−𝑧/𝐻

𝑠
󵄨󵄨󵄨󵄨∇𝑇

𝑧

󵄨󵄨󵄨󵄨
2

𝑑𝑥 𝑑𝑦𝑑𝑧 𝑑𝜏

+ 𝛼∫
𝑡+1

𝑡

∫
𝑀

|∇𝑇 (𝑧 = 0)|
2
𝑑𝑥 𝑑𝑦𝑑𝜏

≤ 𝜌
17
,

(86)

for any 𝑡 ≥ 𝑇
2
+ 7.
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3.10. (𝐿6(Ω))
2 Estimates of 𝜕

𝑧
𝑣. Taking the𝐿2(Ω) inner prod-

uct of (64) with |𝑢|4𝑢, combining the boundary conditions
(65), and using Lemma 3, we deduce that

1

6

𝑑

𝑑𝑡
‖𝑢‖
6

6
+

1

Re
1

∫
Ω

𝑒
−𝑧/𝐻

𝑠 |∇𝑢|
2
|𝑢|
4
𝑑𝑥 𝑑𝑦𝑑𝑧

+
1

Re
2

∫
Ω

𝑒
−𝑧/𝐻

𝑠
󵄨󵄨󵄨󵄨𝜕𝑧𝑢

󵄨󵄨󵄨󵄨
2

|𝑢|
4
𝑑𝑥 𝑑𝑦𝑑𝑧

+
4

9Re
1

∫
Ω

𝑒
−𝑧/𝐻

𝑠

󵄨󵄨󵄨󵄨󵄨
∇|𝑢|

3󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥 𝑑𝑦𝑑𝑧

+
4

9Re
2

∫
Ω

𝑒
−𝑧/𝐻

𝑠

󵄨󵄨󵄨󵄨󵄨
𝜕
𝑧 |𝑢|

3󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥 𝑑𝑦𝑑𝑧

≤
1

Re
2
𝐻
𝑠

󵄩󵄩󵄩󵄩𝑢𝑧
󵄩󵄩󵄩󵄩2

󵄩󵄩󵄩󵄩󵄩|
𝑢|
3󵄩󵄩󵄩󵄩󵄩

5/3

10/3
+ 𝐶‖𝑣‖6

󵄩󵄩󵄩󵄩󵄩|
𝑢|
3󵄩󵄩󵄩󵄩󵄩3

󵄩󵄩󵄩󵄩󵄩
∇|𝑢|

3󵄩󵄩󵄩󵄩󵄩2

+ 𝐶‖∇𝑇‖2
󵄩󵄩󵄩󵄩󵄩|
𝑢|
3󵄩󵄩󵄩󵄩󵄩

5/3

10/3
+ 𝐶‖𝑣‖6

󵄩󵄩󵄩󵄩󵄩|
𝑢|
3󵄩󵄩󵄩󵄩󵄩3

󵄩󵄩󵄩󵄩󵄩|
∇𝑢| |𝑢|

2󵄩󵄩󵄩󵄩󵄩2
.

(87)

From the Young inequality, we obtain

𝑑

𝑑𝑡
‖𝑢‖
2

6
≤ 𝐶‖𝑣‖

4

6
‖𝑢‖
2

6
+ 𝐶‖∇𝑇‖

2

2
+ 𝐶

󵄩󵄩󵄩󵄩𝑢𝑧
󵄩󵄩󵄩󵄩
2

2
. (88)

Thanks to (44), (69), and (71), we have

󵄩󵄩󵄩󵄩𝑣𝑧
󵄩󵄩󵄩󵄩
2

6
≤ 𝜌
18
, (89)

for any 𝑡 ≥ 𝑇
2
+ 8.

3.11. 𝐿6(Ω) Estimates of 𝜕
𝑧
𝑇. Taking the 𝐿2(Ω) inner product

of (76) with |𝜃|4𝜃, combining the boundary conditions (77),
and using Lemma 3, we deduce that

1

6

𝑑

𝑑𝑡
‖𝜃‖
6

6
+

5

9𝑅𝑡
1

∫
Ω

𝑒
−𝑧/𝐻

𝑠

󵄨󵄨󵄨󵄨󵄨
∇|𝜃|

3󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥 𝑑𝑦𝑑𝑧

+
5

9𝑅𝑡
2

∫
Ω

𝑒
−𝑧/𝐻

𝑠

󵄨󵄨󵄨󵄨󵄨
𝜕
𝑧|𝜃|

3󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥 𝑑𝑦𝑑𝑧

+ 𝛼
5
𝑅𝑡
4

2
∫
Γ
𝑢

𝜕𝜃

𝜕𝑧
|𝑇|
4
𝑇𝑑𝑥𝑑𝑦

≤
1

𝑅𝑡
2
𝐻
𝑠

󵄩󵄩󵄩󵄩𝜃𝑧
󵄩󵄩󵄩󵄩2

󵄩󵄩󵄩󵄩󵄩|
𝜃|
3󵄩󵄩󵄩󵄩󵄩

5/3

10/3
+ 𝐶‖𝑣‖6

󵄩󵄩󵄩󵄩󵄩|
𝜃|
3󵄩󵄩󵄩󵄩󵄩3

󵄩󵄩󵄩󵄩󵄩
∇ |𝜃|

3󵄩󵄩󵄩󵄩󵄩2

+ 𝐶‖𝑣‖6
󵄩󵄩󵄩󵄩󵄩|
𝜃|
3󵄩󵄩󵄩󵄩󵄩3

󵄩󵄩󵄩󵄩󵄩|
∇𝜃| |𝜃|

2󵄩󵄩󵄩󵄩󵄩2
+

󵄩󵄩󵄩󵄩𝑄𝑧
󵄩󵄩󵄩󵄩2

󵄩󵄩󵄩󵄩󵄩|
𝜃|
3󵄩󵄩󵄩󵄩󵄩

5/3

10/3

+
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
− ∫
Ω

𝑒
−𝑧/𝐻

𝑠 (𝑣
𝑧
⋅ ∇𝑇) |𝜃|

4
𝜃𝑑𝑥 𝑑𝑦𝑑𝑧

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
.

(90)

It follows from the Hölder inequality that

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
− ∫
Ω

𝑒
−𝑧/𝐻

𝑠 (𝑣
𝑧
⋅ ∇𝑇) |𝜃|

4
𝜃𝑑𝑥 𝑑𝑦 𝑑𝑧

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝐶∫
Ω

𝑒
−𝑧/𝐻

𝑠
󵄨󵄨󵄨󵄨𝑣𝑧

󵄨󵄨󵄨󵄨 |∇𝑇| |𝜃|
5
𝑑𝑥 𝑑𝑦𝑑𝑧

≤ 𝐶
󵄩󵄩󵄩󵄩𝑣𝑧

󵄩󵄩󵄩󵄩6‖∇𝑇‖3
󵄩󵄩󵄩󵄩󵄩|
𝜃|
3󵄩󵄩󵄩󵄩󵄩

5/3

10/3

≤ 𝐶
󵄩󵄩󵄩󵄩𝑣𝑧

󵄩󵄩󵄩󵄩6‖∇𝑇‖
1/2

2
‖∇𝑇‖

1/2

𝐻
1
(Ω)

󵄩󵄩󵄩󵄩󵄩|
𝜃|
3󵄩󵄩󵄩󵄩󵄩

2/3

2

󵄩󵄩󵄩󵄩󵄩|
𝜃|
3󵄩󵄩󵄩󵄩󵄩𝐻1(Ω)

,

𝛼
5
𝑅𝑡
4

2
∫
Γ
𝑢

𝜕𝜃

𝜕𝑧
|𝑇|
4
𝑇𝑑𝑥𝑑𝑦

= 𝛼
5
𝑅𝑡
5

2
∫
Γ
𝑢

(
𝜕𝑇

𝜕𝑡
+ 𝑣 ⋅ ∇𝑇 −

1

𝑅𝑡
1

Δ𝑇 − 𝑄) |𝑇|
4
𝑇𝑑𝑥𝑑𝑦

=
𝛼5𝑅𝑡5

2

6

𝑑

𝑑𝑡
∫
Γ
𝑢

|𝑇|
6
𝑑𝑥 𝑑𝑦+𝛼

5
𝑅𝑡
5

2
∫
Γ
𝑢

(𝑣⋅∇𝑇) |𝑇|
4
𝑇𝑑𝑥𝑑𝑦

+
5𝛼5𝑅𝑡5

2

9𝑅𝑡
1

∫
Γ
𝑢

󵄨󵄨󵄨󵄨󵄨
∇|𝑇|

3󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥 𝑑𝑦 − 𝛼
5
𝑅𝑡
5

2
∫
Γ
𝑢

𝑄|𝑇|
4
𝑇𝑑𝑥𝑑𝑦,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝛼
5
𝑅𝑡
5

2
∫
Γ
𝑢

(𝑣 ⋅ ∇𝑇) |𝑇|
4
𝑇𝑑𝑥𝑑𝑦 − 𝛼

5
𝑅𝑡
5

2
∫
Γ
𝑢

𝑄|𝑇|
4
𝑇𝑑𝑥𝑑𝑦

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤𝐶‖𝑣‖
𝐿
4
(Γ
𝑢
)

󵄩󵄩󵄩󵄩󵄩
∇|𝑇|

3󵄩󵄩󵄩󵄩󵄩𝐿2(Γ
𝑢
)

󵄩󵄩󵄩󵄩󵄩|
𝑇|
3󵄩󵄩󵄩󵄩󵄩𝐿4(Γ

𝑢
)
+𝐶‖𝑄‖𝐿2(Γ

𝑢
)

󵄩󵄩󵄩󵄩󵄩|
𝑇|
3󵄩󵄩󵄩󵄩󵄩

5/3

𝐿
10/3
(Γ
𝑢
)

≤𝐶‖𝑣‖
󵄩󵄩󵄩󵄩󵄩
∇ |𝑇|

3󵄩󵄩󵄩󵄩󵄩

3/2

𝐿
2
(Γ
𝑢
)
‖𝑇‖

3/2

𝐿
6
(Γ
𝑢
)
+𝐶 ‖𝑄‖

󵄩󵄩󵄩󵄩󵄩|
𝑇|
3󵄩󵄩󵄩󵄩󵄩𝐿2(Γ

𝑢
)

󵄩󵄩󵄩󵄩󵄩|
𝑇|
3󵄩󵄩󵄩󵄩󵄩

2/3

𝐻
1
(Γ
𝑢
)
.

(91)

We derive from the Young inequality that

𝑑

𝑑𝑡
(‖𝜃‖

2

6
+ 𝛼𝑅𝑡

2‖𝑇‖
2

𝐿
6(Γ𝑢)

)

≤ 𝐶 (1 + ‖𝑣‖
4

6
+ ‖𝑣‖

4
) (‖𝜃‖

2

6
+ 𝛼𝑅𝑡

2‖𝑇‖
2

𝐿
6(Γ𝑢)

)

+ 𝐶
󵄩󵄩󵄩󵄩𝜃𝑧

󵄩󵄩󵄩󵄩
2

2
+ 𝐶‖𝑄‖

2
+ 𝐶

󵄩󵄩󵄩󵄩𝑣𝑧
󵄩󵄩󵄩󵄩
4

6
+ 𝐶‖∇𝑇‖

2

2
‖∇𝑇‖

2

𝐻
1
(Ω)

.

(92)

As a consequence of the uniformGronwall lemma, we get

󵄩󵄩󵄩󵄩𝑇𝑧
󵄩󵄩󵄩󵄩
2

6
+ 𝛼𝑅𝑡

2‖𝑇‖
2

𝐿
6
(Γ
𝑢
)
≤ 𝜌
19
, (93)

for any 𝑡 ≥ 𝑇
2
+ 9.
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3.12.𝐻 Estimates of (𝜕
𝑡
𝑣, 𝜕

𝑡
𝑇). Denote that 𝜋 = 𝜕

𝑡
𝑣, 𝜉 = 𝜕

𝑡
𝑇.

It is clear that 𝜋, 𝜉 satisfy the following equations obtained by
differentiating (14) and (15) with respect to 𝑡, respectively,

𝜕𝜋

𝜕𝑡
+ 𝐿

1
𝜋 + (𝑣 ⋅ ∇) 𝜋

− (∫
𝑧

−ℎ

𝑒
(𝑧−𝜁)/𝐻

𝑠∇ ⋅ 𝑣 (𝑥, 𝑦, 𝜁, 𝑡) 𝑑𝜁)
𝜕𝜋

𝜕𝑧

+ 𝑓
0
𝑘⃗ × 𝜋 + ∇𝜕

𝑡
Φ
𝑠
(𝑥, 𝑦, 𝑡) + (𝜋 ⋅ ∇) 𝑣

− (∫
𝑧

−ℎ

𝑒
(𝑧−𝜁)/𝐻

𝑠∇ ⋅ 𝜋 (𝑥, 𝑦, 𝜁, 𝑡) 𝑑𝜁)
𝜕𝑣

𝜕𝑧

+
𝑅

𝐻
𝑠

∫
𝑧

0

∇𝜉 (𝑥, 𝑦, 𝜁, 𝑡) 𝑑𝜁 = 0,

(94)

𝜕𝜉

𝜕𝑡
+ 𝐿

2
𝜉 + 𝑣 ⋅ ∇𝜉 − (∫

𝑧

−ℎ

𝑒
(𝑧−𝜁)/𝐻

𝑠∇ ⋅ 𝑣 (𝑥, 𝑦, 𝜁, 𝑡) 𝑑𝜁)
𝜕𝜉

𝜕𝑧

+ 𝜋 ⋅ ∇𝑇 − (∫
𝑧

−ℎ

𝑒
(𝑧−𝜁)/𝐻

𝑠∇ ⋅ 𝜋 (𝑥, 𝑦, 𝜁, 𝑡) 𝑑𝜁)
𝜕𝑇

𝜕𝑧
= 0,

(95)

with the boundary conditions

𝜕𝜋

𝜕𝑧

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨Γ
𝑢

= 0,
𝜕𝜋

𝜕𝑧

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨Γ
𝑏

= 0,

𝜋 ⋅ ⃗𝑛|Γ
𝑙

= 0,
𝜕𝜋

𝜕 ⃗𝑛
× ⃗𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨Γ
𝑙

= 0,

(96)

(
1

𝑅𝑡
2

𝜕𝜉

𝜕𝑧
+ 𝛼𝜉)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨Γ
𝑢

= 0,
𝜕𝜉

𝜕𝑧

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨Γ
𝑏

= 0,
𝜕𝜉

𝜕 ⃗𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨Γ
𝑙

= 0,

(97)

Multiplying (94) and (95), respectively, by 𝜋, 𝜉, integrating
over Ω, and using Lemma 3, we deduce that

1

2

𝑑

𝑑𝑡
‖𝜋‖

2

2
+ ‖𝜋‖

2

≤
1

Re
2
𝐻
𝑠

󵄩󵄩󵄩󵄩𝜋𝑧
󵄩󵄩󵄩󵄩2‖𝜋‖2 + 𝐶‖𝑣‖6‖𝜋‖3‖∇𝜋‖2

+ 𝐶
󵄩󵄩󵄩󵄩𝑣𝑧

󵄩󵄩󵄩󵄩6‖𝜋‖3‖∇𝜋‖2 + 𝐶‖∇𝜋‖2
󵄩󵄩󵄩󵄩𝜉

󵄩󵄩󵄩󵄩2,

1

2

𝑑

𝑑𝑡

󵄩󵄩󵄩󵄩𝜉
󵄩󵄩󵄩󵄩
2

2
+

󵄩󵄩󵄩󵄩𝜉
󵄩󵄩󵄩󵄩
2

≤
1

𝑅𝑡
2
𝐻
𝑠

󵄩󵄩󵄩󵄩𝜉𝑧
󵄩󵄩󵄩󵄩2

󵄩󵄩󵄩󵄩𝜉
󵄩󵄩󵄩󵄩2 + 𝐶‖𝑇‖6‖𝜋‖3

󵄩󵄩󵄩󵄩∇𝜉
󵄩󵄩󵄩󵄩2

+ 𝐶‖𝑇‖6
󵄩󵄩󵄩󵄩𝜉

󵄩󵄩󵄩󵄩3‖∇𝜋‖2 + 𝐶
󵄩󵄩󵄩󵄩𝑇𝑧

󵄩󵄩󵄩󵄩6
󵄩󵄩󵄩󵄩𝜉

󵄩󵄩󵄩󵄩3‖∇𝜋‖2.

(98)

It follows from the Young inequality that

𝑑

𝑑𝑡
(
󵄩󵄩󵄩󵄩𝜉

󵄩󵄩󵄩󵄩
2

2
+ ‖𝜋‖

2

2
)

≤ 𝐶 (1 + ‖𝑇‖
4

6
+ ‖𝑣‖

4

6
+

󵄩󵄩󵄩󵄩𝑇𝑧
󵄩󵄩󵄩󵄩
4

6
+

󵄩󵄩󵄩󵄩𝑣𝑧
󵄩󵄩󵄩󵄩
4

6
) (

󵄩󵄩󵄩󵄩𝜉
󵄩󵄩󵄩󵄩
2

2
+ ‖𝜋‖

2

2
) .

(99)

Multiplying (15) by 𝜉 and integrating over Ω, we obtain
󵄩󵄩󵄩󵄩𝜉

󵄩󵄩󵄩󵄩
2

2
≤ ‖𝑄‖2

󵄩󵄩󵄩󵄩𝜉
󵄩󵄩󵄩󵄩2 + 𝐶‖𝑣‖6‖∇𝑇‖3

󵄩󵄩󵄩󵄩𝜉
󵄩󵄩󵄩󵄩2

+
󵄩󵄩󵄩󵄩𝐿2𝑇

󵄩󵄩󵄩󵄩2
󵄩󵄩󵄩󵄩𝜉

󵄩󵄩󵄩󵄩2 + 𝐶
󵄩󵄩󵄩󵄩𝑇𝑧

󵄩󵄩󵄩󵄩6‖∇𝑣‖3
󵄩󵄩󵄩󵄩𝜉

󵄩󵄩󵄩󵄩2.

(100)

Similarly, we have

‖𝜋‖
2

2
≤ 𝐶‖𝑣‖6‖∇𝑣‖3‖𝜋‖2 + 𝐶

󵄩󵄩󵄩󵄩𝑣𝑧
󵄩󵄩󵄩󵄩6‖∇𝑣‖3‖𝜋‖2

+ 𝐶‖𝑣‖2‖𝜋‖2 + 𝐶‖∇𝑇‖2‖𝜋‖2 +
󵄩󵄩󵄩󵄩𝐿1𝑣

󵄩󵄩󵄩󵄩2‖𝜋‖2.

(101)

We derive from the Young inequality that

‖𝜋‖
2

2
+

󵄩󵄩󵄩󵄩𝜉
󵄩󵄩󵄩󵄩
2

2
≤ 𝐶 (1 + ‖𝑣‖

4

6
+

󵄩󵄩󵄩󵄩𝑣𝑧
󵄩󵄩󵄩󵄩
4

6
+

󵄩󵄩󵄩󵄩𝑇𝑧
󵄩󵄩󵄩󵄩
4

6
) (‖∇𝑇‖

2

2
+ ‖∇𝑣‖

2

2
)

+ 𝐶‖𝑄‖
2

2
+ 𝐶

󵄩󵄩󵄩󵄩𝐿2𝑇
󵄩󵄩󵄩󵄩
2

2
+ 𝐶

󵄩󵄩󵄩󵄩𝐿1𝑣
󵄩󵄩󵄩󵄩
2

2
+ 𝐶‖𝑣‖

2

2
.

(102)

By use of the uniform Gronwall inequality, we have
󵄩󵄩󵄩󵄩𝑣𝑡

󵄩󵄩󵄩󵄩
2

2
+

󵄩󵄩󵄩󵄩𝑇𝑡
󵄩󵄩󵄩󵄩
2

2
≤ 𝜌
20
, (103)

for any 𝑡 ≥ 𝑇
2
+ 10.

Moreover, we have

∫
𝑡+1

𝑡

󵄩󵄩󵄩󵄩𝑣𝑡
󵄩󵄩󵄩󵄩
2

𝑑𝜏 + ∫
𝑡+1

𝑡

󵄩󵄩󵄩󵄩𝑇𝑡
󵄩󵄩󵄩󵄩
2

𝑑𝜏 ≤ 𝜌
21
, (104)

for any 𝑡 ≥ 𝑇
2
+ 10.

3.13.𝐻 Estimates of (𝐿
1
𝑣, 𝐿

2
𝑇). Multiplying (15) by 𝐿

2
𝑇 and

integrating over Ω, we obtain
󵄩󵄩󵄩󵄩𝐿2𝑇

󵄩󵄩󵄩󵄩
2

2
≤ 𝐶‖𝑣‖6‖∇𝑇‖3

󵄩󵄩󵄩󵄩𝐿2𝑇
󵄩󵄩󵄩󵄩2 + 𝐶

󵄩󵄩󵄩󵄩𝑇𝑧
󵄩󵄩󵄩󵄩6‖∇𝑣‖3

󵄩󵄩󵄩󵄩𝐿2𝑇
󵄩󵄩󵄩󵄩2

+ ‖𝑄‖2
󵄩󵄩󵄩󵄩𝐿2𝑇

󵄩󵄩󵄩󵄩2 +
󵄩󵄩󵄩󵄩𝜕𝑡𝑇

󵄩󵄩󵄩󵄩2
󵄩󵄩󵄩󵄩𝐿2𝑇

󵄩󵄩󵄩󵄩2.

(105)

Similarly, we have
󵄩󵄩󵄩󵄩𝐿1𝑣

󵄩󵄩󵄩󵄩
2

2
≤ 𝐶‖𝑣‖6‖∇𝑣‖3

󵄩󵄩󵄩󵄩𝐿1𝑣
󵄩󵄩󵄩󵄩2 + 𝐶

󵄩󵄩󵄩󵄩𝑣𝑧
󵄩󵄩󵄩󵄩6‖∇𝑣‖3

󵄩󵄩󵄩󵄩𝐿1𝑣
󵄩󵄩󵄩󵄩2

+ 𝐶‖𝑣‖2
󵄩󵄩󵄩󵄩𝐿1𝑣

󵄩󵄩󵄩󵄩2 + 𝐶‖∇𝑇‖2
󵄩󵄩󵄩󵄩𝐿1𝑣

󵄩󵄩󵄩󵄩2 +
󵄩󵄩󵄩󵄩𝑣𝑡

󵄩󵄩󵄩󵄩2
󵄩󵄩󵄩󵄩𝐿1𝑣

󵄩󵄩󵄩󵄩2.

(106)

It follows from the Young inequality that
󵄩󵄩󵄩󵄩𝐿1𝑣

󵄩󵄩󵄩󵄩
2

2
+

󵄩󵄩󵄩󵄩𝐿2𝑇
󵄩󵄩󵄩󵄩
2

2

≤ 𝐶 (1 + ‖𝑣‖
4

6
+

󵄩󵄩󵄩󵄩𝑇𝑧
󵄩󵄩󵄩󵄩
4

6
+

󵄩󵄩󵄩󵄩𝑣𝑧
󵄩󵄩󵄩󵄩
4

6
) (‖∇𝑇‖

2

2
+ ‖∇𝑣‖

2

2
)

+ 𝐶 (
󵄩󵄩󵄩󵄩𝑣𝑡

󵄩󵄩󵄩󵄩
2

2
+

󵄩󵄩󵄩󵄩𝑇𝑡
󵄩󵄩󵄩󵄩
2

2
) + 𝐶 (‖𝑣‖

2

2
+ ‖𝑄‖

2

2
) .

(107)

By virtue of (48), (69), (74), (85), (89), (93), and (103), we have
󵄩󵄩󵄩󵄩𝐿1𝑣

󵄩󵄩󵄩󵄩
2

2
+

󵄩󵄩󵄩󵄩𝐿2𝑇
󵄩󵄩󵄩󵄩
2

2
≤ 𝜌
22
, (108)

for any 𝑡 ≥ 𝑇
2
+ 10.
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3.14. 𝐿2 Estimates of (∇𝑣
𝑡
, ∇𝑇

𝑡
). Taking the𝐻

1
inner product

of (94) with −Δ𝜋 and combining the boundary conditions
(96), we have

1

2

𝑑

𝑑𝑡
‖∇𝜋‖

2

2
+

1

Re
1

∫
Ω

𝑒
−𝑧/𝐻

𝑠 |Δ𝜋|
2
𝑑𝑥 𝑑𝑦𝑑𝑧

+
1

Re
2

∫
Ω

𝑒
−𝑧/𝐻

𝑠
󵄨󵄨󵄨󵄨∇𝜋

𝑧

󵄨󵄨󵄨󵄨
2

𝑑𝑥 𝑑𝑦𝑑𝑧

≤
1

Re
2
𝐻
𝑠

󵄩󵄩󵄩󵄩𝜋𝑧
󵄩󵄩󵄩󵄩2‖Δ𝜋‖2 + 𝐶‖𝑣‖6‖∇𝜋‖3‖Δ𝜋‖2

+ 𝐶‖∇𝑣‖
1/2

2
‖Δ𝑣‖

1/2

2

󵄩󵄩󵄩󵄩𝜋𝑧
󵄩󵄩󵄩󵄩
1/2

2

󵄩󵄩󵄩󵄩∇𝜋
𝑧

󵄩󵄩󵄩󵄩
1/2

2
‖Δ𝜋‖2

+ 𝐶‖𝜋‖2‖Δ𝜋‖2 + 𝐶‖𝜋‖6‖∇𝑣‖3‖Δ𝜋‖2

+ 𝐶‖∇𝜋‖
1/2

2

󵄩󵄩󵄩󵄩𝑣𝑧
󵄩󵄩󵄩󵄩
1/2

2

󵄩󵄩󵄩󵄩∇𝑣
𝑧

󵄩󵄩󵄩󵄩
1/2

2
‖Δ𝜋‖

3/2

2
+ 𝐶

󵄩󵄩󵄩󵄩∇𝜉
󵄩󵄩󵄩󵄩2‖Δ𝜋‖2.

(109)

Therefore, in view of the Young inequality, we obtain

𝑑

𝑑𝑡
‖∇𝜋‖

2

2
+

1

Re
1

∫
Ω

𝑒
−𝑧/𝐻

𝑠 |Δ𝜋|
2
𝑑𝑥 𝑑𝑦𝑑𝑧

+
1

Re
2

∫
Ω

𝑒
−𝑧/𝐻

𝑠
󵄨󵄨󵄨󵄨∇𝜋

𝑧

󵄨󵄨󵄨󵄨
2

𝑑𝑥 𝑑𝑦𝑑𝑧

≤ 𝐶 (‖𝑣‖
4

6
+

󵄩󵄩󵄩󵄩𝑣𝑧
󵄩󵄩󵄩󵄩
2

2

󵄩󵄩󵄩󵄩∇𝑣
𝑧

󵄩󵄩󵄩󵄩
2

2
) ‖∇𝜋‖

2

2
+ 𝐶‖𝜋‖

2

2
+ 𝐶

󵄩󵄩󵄩󵄩∇𝜉
󵄩󵄩󵄩󵄩
2

2

+ 𝐶
󵄩󵄩󵄩󵄩𝜋𝑧

󵄩󵄩󵄩󵄩
2

2
+ 𝐶‖∇𝑣‖

2

2
‖Δ𝑣‖

2

2

󵄩󵄩󵄩󵄩𝜋𝑧
󵄩󵄩󵄩󵄩
2

2
+ 𝐶‖𝜋‖

2
‖∇𝑣‖

2

3
.

(110)

Employing the uniform Gronwall inequality, we get

󵄩󵄩󵄩󵄩∇𝑣
𝑡

󵄩󵄩󵄩󵄩
2

2
≤ 𝜌
22
, (111)

for any 𝑡 ≥ 𝑇
2
+ 11.

Moreover, we have

1

Re
1

∫
𝑡+1

𝑡

∫
Ω

𝑒
−𝑧/𝐻

𝑠
󵄨󵄨󵄨󵄨Δ𝑣
𝑡

󵄨󵄨󵄨󵄨
2

𝑑𝑥 𝑑𝑦𝑑𝑧 𝑑𝜏

+
1

Re
2

∫
𝑡+1

𝑡

∫
Ω

𝑒
−𝑧/𝐻

𝑠
󵄨󵄨󵄨󵄨∇𝜕
𝑧
𝑣
𝑡

󵄨󵄨󵄨󵄨
2

𝑑𝑥 𝑑𝑦𝑑𝑧 𝑑𝜏 ≤ 𝜌
23
.

(112)

Similarly, we can also obtain

󵄩󵄩󵄩󵄩∇𝑇
𝑡

󵄩󵄩󵄩󵄩
2

2
≤ 𝜌
24
,

1

Re
1

∫
𝑡+1

𝑡

∫
Ω

𝑒
−𝑧/𝐻

𝑠
󵄨󵄨󵄨󵄨Δ𝑇

𝑡

󵄨󵄨󵄨󵄨
2

𝑑𝑥 𝑑𝑦𝑑𝑧 𝑑𝜏

+
1

Re
2

∫
𝑡+1

𝑡

∫
Ω

𝑒
−𝑧/𝐻

𝑠
󵄨󵄨󵄨󵄨∇𝜕
𝑧
𝑇
𝑡

󵄨󵄨󵄨󵄨
2

𝑑𝑥 𝑑𝑦𝑑𝑧 𝑑𝜏 ≤ 𝜌
25
,

(113)

for any 𝑡 ≥ 𝑇
2
+ 12.

3.15. 𝐿2 Estimates of (𝜕
𝑧
𝑣
𝑡
, 𝜕
𝑧
𝑇
𝑡
). Denote that 𝛽 = 𝜋

𝑧
, 𝛾 = 𝜉

𝑧
.

It is clear that 𝛽, 𝛾 satisfy the following equations obtained by
differentiating (94) and (95) with respect to 𝑧, respectively,

𝜕𝛽

𝜕𝑡
+ 𝐿

1
𝛽 + (𝑣

𝑧
⋅ ∇) 𝜋 + (𝑣 ⋅ ∇) 𝛽

− (∫
𝑧

−ℎ

𝑒
(𝑧−𝜁)/𝐻

𝑠∇ ⋅ 𝑣 (𝑥, 𝑦, 𝜁, 𝑡) 𝑑𝜁)
𝜕𝛽

𝜕𝑧

−
1

𝐻
𝑠

(∫
𝑧

−ℎ

𝑒
(𝑧−𝜁)/𝐻

𝑠∇ ⋅ 𝑣 (𝑥, 𝑦, 𝜁, 𝑡) 𝑑𝜁) 𝛽

− (∇ ⋅ 𝑣) 𝛽 + 𝑓
0
𝑘⃗ × 𝛽 + (𝛽 ⋅ ∇) 𝑣 + (𝜋 ⋅ ∇) 𝑣

𝑧

− (∫
𝑧

−ℎ

𝑒
(𝑧−𝜁)/𝐻

𝑠∇ ⋅ 𝜋 (𝑥, 𝑦, 𝜁, 𝑡) 𝑑𝜁)
𝜕𝑣
𝑧

𝜕𝑧

−
1

𝐻
𝑠

(∫
𝑧

−ℎ

𝑒
(𝑧−𝜁)/𝐻

𝑠∇ ⋅ 𝜋 (𝑥, 𝑦, 𝜁, 𝑡) 𝑑𝜁)
𝜕𝑣

𝜕𝑧

− (∇ ⋅ 𝜋) 𝑣
𝑧
+

𝑅

𝐻
𝑠

∇𝜉 = 0,

(114)

𝜕𝛾

𝜕𝑡
+ 𝐿

2
𝛾 + 𝑣

𝑧
⋅ ∇𝜉 + 𝑣 ⋅ ∇𝛾

− (∫
𝑧

−ℎ

𝑒
(𝑧−𝜁)/𝐻

𝑠∇ ⋅ 𝑣 (𝑥, 𝑦, 𝜁, 𝑡) 𝑑𝜁)
𝜕𝛾

𝜕𝑧

− (∇ ⋅ 𝜋) 𝑇
𝑧
−

1

𝐻
𝑠

(∫
𝑧

−ℎ

𝑒
(𝑧−𝜁)/𝐻

𝑠∇ ⋅ 𝑣 (𝑥, 𝑦, 𝜁, 𝑡) 𝑑𝜁) 𝛾

− (∇ ⋅ 𝑣) 𝛾 + 𝛽 ⋅ ∇𝑇 + 𝜋 ⋅ ∇𝑇
𝑧

− (∫
𝑧

−ℎ

𝑒
(𝑧−𝜁)/𝐻

𝑠∇ ⋅ 𝜋 (𝑥, 𝑦, 𝜁, 𝑡) 𝑑𝜁)
𝜕𝑇
𝑧

𝜕𝑧

−
1

𝐻
𝑠

(∫
𝑧

−ℎ

𝑒
(𝑧−𝜁)/𝐻

𝑠∇ ⋅ 𝜋 (𝑥, 𝑦, 𝜁, 𝑡) 𝑑𝜁)
𝜕𝑇

𝜕𝑧
= 0,

(115)

with the boundary conditions

𝛽
󵄨󵄨󵄨󵄨Γ
𝑢

= 0, 𝛽
󵄨󵄨󵄨󵄨Γ
𝑏

= 0, 𝛽 ⋅ ⃗𝑛
󵄨󵄨󵄨󵄨Γ
𝑙

= 0,

𝜕𝛽

𝜕 ⃗𝑛
× ⃗𝑛|Γ

𝑙

= 0,

(116)

(
1

𝑅𝑡
2

𝛾 + 𝛼𝜉)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨Γ
𝑢

= 0, 𝛾
󵄨󵄨󵄨󵄨Γ
𝑏

= 0,
𝜕𝛾

𝜕 ⃗𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨Γ
𝑙

= 0. (117)

Taking the 𝐿2 inner product of (114) with 𝛽 and combining
the boundary conditions (116), we have

1

2

𝑑

𝑑𝑡

󵄩󵄩󵄩󵄩𝛽
󵄩󵄩󵄩󵄩
2

2
+

󵄩󵄩󵄩󵄩𝛽
󵄩󵄩󵄩󵄩
2

≤
1

Re
2
𝐻
𝑠

󵄩󵄩󵄩󵄩𝛽𝑧
󵄩󵄩󵄩󵄩2

󵄩󵄩󵄩󵄩𝛽
󵄩󵄩󵄩󵄩2 + 𝐶

󵄩󵄩󵄩󵄩𝑣𝑧
󵄩󵄩󵄩󵄩6‖∇𝜋‖3

󵄩󵄩󵄩󵄩𝛽
󵄩󵄩󵄩󵄩2

+ 𝐶‖𝑣‖6
󵄩󵄩󵄩󵄩𝛽

󵄩󵄩󵄩󵄩3
󵄩󵄩󵄩󵄩∇𝛽

󵄩󵄩󵄩󵄩2 + 𝐶‖𝜋‖3
󵄩󵄩󵄩󵄩∇𝑣

𝑧

󵄩󵄩󵄩󵄩2
󵄩󵄩󵄩󵄩𝛽

󵄩󵄩󵄩󵄩6

+ 𝐶‖∇𝜋‖3
󵄩󵄩󵄩󵄩𝜕𝑧𝑣𝑧

󵄩󵄩󵄩󵄩2
󵄩󵄩󵄩󵄩𝛽

󵄩󵄩󵄩󵄩6 + 𝐶
󵄩󵄩󵄩󵄩𝜉

󵄩󵄩󵄩󵄩2
󵄩󵄩󵄩󵄩∇𝛽

󵄩󵄩󵄩󵄩2.

(118)
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Therefore, in view of the Young inequality, we obtain

𝑑

𝑑𝑡

󵄩󵄩󵄩󵄩𝛽
󵄩󵄩󵄩󵄩
2

2
+

󵄩󵄩󵄩󵄩𝛽
󵄩󵄩󵄩󵄩
2

≤ 𝐶 (1 + ‖𝑣‖
4

6
)
󵄩󵄩󵄩󵄩𝛽

󵄩󵄩󵄩󵄩
2

2
+ 𝐶

󵄩󵄩󵄩󵄩𝑣𝑧
󵄩󵄩󵄩󵄩
2

6
‖∇𝜋‖

2

3

+ 𝐶‖𝜋‖
2

3

󵄩󵄩󵄩󵄩∇𝑣
𝑧

󵄩󵄩󵄩󵄩
2

2
+ 𝐶‖∇𝜋‖

2

3

󵄩󵄩󵄩󵄩𝜕𝑧𝑣𝑧
󵄩󵄩󵄩󵄩
2

2
+ 𝐶

󵄩󵄩󵄩󵄩𝜉
󵄩󵄩󵄩󵄩
2

2
.

(119)

Employing the uniform Gronwall inequality, we get

󵄩󵄩󵄩󵄩𝜕𝑧𝑣𝑡
󵄩󵄩󵄩󵄩
2

2
≤ 𝜌
26
, (120)

for any 𝑡 ≥ 𝑇
2
+ 13.

Similarly, we can also obtain

∫
Ω

𝑒
−𝑧/𝐻

𝑠
󵄨󵄨󵄨󵄨𝜕𝑧𝑇𝑡

󵄨󵄨󵄨󵄨
2

𝑑𝑥 𝑑𝑦𝑑𝑧 + 𝛼𝑅𝑡
2
∫
Γ
𝑢

󵄨󵄨󵄨󵄨𝑇𝑡
󵄨󵄨󵄨󵄨
2

𝑑𝑥 𝑑𝑦 ≤ 𝜌
27
,

(121)

for any 𝑡 ≥ 𝑇
2
+ 14.

From (43), (48), (70), (74), (81), (85) and (108), we get the
following results.

Theorem 7. Assume that 𝑄 ∈ 𝐻
1(Ω) and (𝑣

0
, 𝑇
0
) ∈ 𝑉.

Let {𝑆(𝑡)}
𝑡≥0

be a semigroup generated by the initial boundary
problem (14)–(18). Then, there exists an absorbing set in 𝐻2.
That is, for any bounded subset 𝐵 of 𝑉, there exist a positive
constantR

1
and a positive time 𝜏

1
= 𝜏
1,𝐵

which depend on the
norm of 𝐵, such that

‖(𝑣 (𝑡) , 𝑇 (𝑡))‖
2

𝐻
2 =

󵄩󵄩󵄩󵄩𝑆 (𝑡) (𝑣
0
, 𝑇
0
)
󵄩󵄩󵄩󵄩
2

𝐻
2

= ‖𝑣 (𝑡)‖
2

𝐻
2 + ‖𝑇 (𝑡)‖

2

𝐻
2

≤ R
1
,

(122)

for any 𝑡 ≥ 𝜏
1
.

Corollary 8. Assume that 𝑄 ∈ 𝐻1 and (𝑣
0
, 𝑇
0
) ∈ 𝑉. Let

{𝑆(𝑡)}
𝑡≥0

be a semigroup generated by the initial boundary
problem (14)–(18).Then, there exist an absorbing set in𝑉.That
is, for any bounded subset 𝐵 of𝑉, there exist a positive constant
R
2
and a positive time 𝜏

2
= 𝜏
2,𝐵
, depending on the norm of 𝐵,

such that

‖(𝑣 (𝑡) , 𝑇 (𝑡))‖
2

𝑉
=

󵄩󵄩󵄩󵄩𝑆 (𝑡) (𝑣
0
, 𝑇
0
)
󵄩󵄩󵄩󵄩
2

𝑉

= ‖𝑣 (𝑡)‖
2

𝑉
1

+ ‖𝑇 (𝑡)‖
2

𝑉
2

≤ R
2
,

(123)

for any 𝑡 ≥ 𝜏
2
.

4. The Existence of the Global Attractors

In this section, we will recall some definitions and lemmas
about the global attractor andprove the existence of the global
attractor in 𝐻2.

Definition 9 (see [23]). Let𝑋 be a Banach space and {𝑆(𝑡)}
𝑡≥0

a family operators on 𝑋. We say that {𝑆(𝑡)}
𝑡≥0

is a norm-to-
weak continuous semigroup on 𝑋, if {𝑆(𝑡)}

𝑡≥0
satisfies that

(i) 𝑆(0) = Id (the identity),

(ii) 𝑆(𝑡)𝑆(𝑠) = 𝑆(𝑡 + 𝑠), for all 𝑡, 𝑠 ≥ 0,

(iii) 𝑆(𝑡
𝑛
)𝑥
𝑛
⇀ 𝑆(𝑡)𝑥 if 𝑡

𝑛
→ 𝑡 and 𝑥

𝑛
→ 𝑥 in 𝑋.

Lemma 10 (see [24]). Let𝑋, 𝑌 be two Banach spaces and𝑋∗,
𝑌∗ be the dual spaces of 𝑋, 𝑌, respectively. If 𝑋 is dense in
𝑌, the injection 𝑖 : 𝑋 → 𝑌 is continuous and its adjoint
𝑖
∗ : 𝑌∗ → 𝑋∗ is dense. Let {𝑆(𝑡)}

𝑡≥0
be a semigroup on 𝑋

and 𝑌, respectively, and assume furthermore that {𝑆(𝑡)}
𝑡≥0

is
continuous or weak continuous on𝑌.Then, {𝑆(𝑡)}

𝑡≥0
is a norm-

to-weak continuous semigroup on 𝑋 if and only if {𝑆(𝑡)}
𝑡≥0

maps compact subsets of R+ × 𝑋 into bounded sets of 𝑋.

Definition 11 (see [20]). Let 𝑋 be a Banach space and let
{𝑆(𝑡)}

𝑡≥0
be a continuous semigroup on𝑋. A subsetA in𝑋 is

called a global attractor if and only if

(1) A is invariant; that is, 𝑆(𝑡)A = A for all 𝑡 ≥ 0,

(2) A is compact in 𝑋,

(3) A attracts each bounded subset 𝐵 in 𝑋.

Definition 12 (see [20]). Let {𝑆(𝑡)}
𝑡≥0

be a semigroup on
Banach space𝑋. {𝑆(𝑡)}

𝑡≥0
is called (𝑋, 𝑍) uniformly compact,

if for any bounded (in 𝑋) set 𝐵 ⊂ 𝑋, there exists 𝑡
0
= 𝑡
0
(𝐵),

such that ∪
𝑡≥𝑡
0

𝑆(𝑡)𝐵 is relatively compact in 𝑍.

Lemma 13 (see [20, 24]). Let 𝑋 be a Banach space and
{𝑆(𝑡)}

𝑡≥0
a 𝐶0 semigroup on 𝑋. Then {𝑆(𝑡)}

𝑡≥0
has a global

attractor A in 𝑋 provided that the following conditions hold
true:

(1) {𝑆(𝑡)}
𝑡≥0

has a bounded absorbing set 𝐵
0
in 𝑋,

(2) {𝑆(𝑡)}
𝑡≥0

is uniformly compact.

Lemma 14 (see [20, 24, 25]). Let {𝑆(𝑡)}
𝑡≥0

be a norm-to-weak
continuous semigroup such that {𝑆(𝑡)}

𝑡≥0
is uniformly compact.

If there exists an absorbing set 𝐵, then {𝑆(𝑡)}
𝑡≥0

has a global
attractorA and

A = ⋂
𝑠≥0

⋃
𝑡≥𝑠

𝑆 (𝑡) 𝐵. (124)

By virtue of the Rellich-Kondrachov theorem, we obtain
the following.

Corollary 15. Assume that 𝑄 ∈ 𝐻1, (𝑣
0
, 𝑇
0
) ∈ 𝑉. Then, the

semigroup {𝑆(𝑡)}
𝑡≥0

corresponding to (14)–(18) has a (𝑉, 𝑉)-
global attractorA

𝑉
.

To prove the existence of the (𝑉,𝐻3)-absorbing set, we
need the following lemma.
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Lemma 16 (see [7]). Let 𝑣 ∈ 𝑉
1
, Φ
𝑠
∈ 𝐿2(𝑀) be a solution to

the following Stokes problem:

𝐿
1
𝑣 + ∇Φ

𝑠
= 𝑔,

∫
0

−ℎ

∇ ⋅ 𝑣 (𝑥, 𝑦, 𝑧) 𝑑𝑧 = 0,

𝜕𝑣

𝜕𝑧

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑧=−ℎ
= 0,

𝜕𝑣

𝜕𝑧

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑧=0
= 0.

(125)

If 𝑔 ∈ (𝑊𝑚,𝛼(Ω))
2, 1 < 𝛼 < ∞, 𝑚 ≥ 0, then

𝑣 ∈ 𝑉
1
∩ (𝑊

𝑚+2,𝛼
(Ω))

2

, Φ
𝑠
∈ 𝑊

𝑚+1,𝛼
(𝑀) . (126)

Next, wewill prove the existence of absorbing set in𝐻3 by
the use of Lemma 16, which implies the existence of (𝑉,𝐻2)-
global attractor of the initial boundary problem (14)–(18).

Theorem 17. Assume that 𝑄 ∈ 𝐻1 and (𝑣
0
, 𝑇
0
) ∈ 𝑉. Let

{𝑆(𝑡)}
𝑡≥0

be a semigroup generated by the initial boundary
problem (14)–(18). Then, there exists an absorbing set in 𝐻3.
That is, for any bounded subset 𝐵 of 𝑉, there exists a positive
constantR

3
depending on the norm of 𝐵, such that

‖(𝑣 (𝑡) , 𝑇 (𝑡))‖
2

𝐻
3 =

󵄩󵄩󵄩󵄩𝑆 (𝑡) (𝑣
0
, 𝑇
0
)
󵄩󵄩󵄩󵄩
2

𝐻
3

= ‖𝑣 (𝑡)‖
2

𝐻
3 + ‖𝑇 (𝑡)‖

2

𝐻
3

≤ R
3
,

(127)

for any 𝑡 ≥ 𝜏
1
, where 𝜏

1
is specified in Theorem 7.

Proof. From the results of a priori estimates in the previ-
ous section, we know that there exists a strong solution
(𝑣, 𝑇) to (14)–(18), which satisfies for any T > 𝜏

1
, 𝑣
𝑧

∈

𝐿∞(𝜏
1
,T; 𝐿6), 𝑇

𝑧
∈ 𝐿∞(𝜏

1
,T; 𝐿6), 𝑣

𝑡
∈ 𝐿∞(𝜏

1
,T; 𝑉

1
), 𝑇

𝑡
∈

𝐿∞(𝜏
1
,T; 𝑉

2
),(𝑣, 𝑇) ∈ 𝐿∞(𝜏

1
,T; 𝐻2), where 𝜏

1
is specified in

Theorem 7. Then,

𝐿
1
𝑣 + ∇Φ

𝑠
= 𝑔, (128)

where

−𝑔 =
𝜕𝑣

𝜕𝑡
+ (𝑣 ⋅ ∇) 𝑣 − (∫

𝑧

−ℎ

𝑒
(𝑧−𝜁)/𝐻

𝑠∇ ⋅ 𝑣 (𝑥, 𝑦, 𝜁, 𝑡) 𝑑𝜁)
𝜕𝑣

𝜕𝑧

+
𝑅

𝐻
𝑠

∫
𝑧

0

∇𝑇 (𝑥, 𝑦, 𝜁, 𝑡) 𝑑𝜁 + 𝑓
0
𝑘⃗ × 𝑣.

(129)

Since 𝑣 ∈ 𝐿∞(𝜏
1
,T; 𝐻2) and 𝑣

𝑧
∈ 𝐿∞(𝜏

1
,T; 𝐿6), for any 𝑢 ∈

𝐿3/2, we have
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
Ω

𝑒
−𝑧/𝐻

𝑠 (∫
𝑧

−ℎ

𝑒
(𝑧−𝜁)/𝐻

𝑠∇ ⋅ 𝑣 (𝑥, 𝑦, 𝜁, 𝑡) 𝑑𝜁)
𝜕𝑣

𝜕𝑧
⋅ 𝑢 𝑑𝑥 𝑑𝑦 𝑑𝑧

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝐶‖∇𝑣‖
6

󵄩󵄩󵄩󵄩𝑣𝑧
󵄩󵄩󵄩󵄩6‖𝑢‖3/2,

(130)

which implies that

(∫
𝑧

−ℎ

𝑒
(𝑧−𝜁)/𝐻

𝑠∇ ⋅ 𝑣 (𝑥, 𝑦, 𝜁, 𝑡) 𝑑𝜁)
𝜕𝑣

𝜕𝑧
∈ 𝐿
∞

(𝜏
1
,T; 𝐿

3
) .

(131)

Since (𝑣, 𝑇) is a strong solution to (14)–(18) and 𝑣
𝑡

∈

𝐿∞(𝜏
1
,T; 𝑉

1
), it is clear that 𝜕𝑣/𝜕𝑡+(𝑣⋅∇)𝑣−(𝑅/𝐻

𝑠
) ∫
𝑧

0
∇𝑇(𝑥,

𝑦, 𝜁, 𝑡)𝑑𝜁 + 𝑓
0
𝑘⃗ × 𝑣 ∈ 𝐿∞(𝜏

1
,T; 𝐿3). Thus,

𝑔 ∈ 𝐿
∞

(𝜏
1
,T; 𝐿

3
) . (132)

By the use of Lemma 16, we get

𝑣 ∈ 𝐿
∞

(𝜏
1
,T; 𝑉

1
∩ (𝑊

2,3
(Ω))

2

) . (133)

Using the Sobolev embedding theorem (𝑊2,3(Ω))
2

⊂

(𝑊1,12(Ω))
2, we know that

𝑣 ∈ 𝐿
∞

(𝜏
1
,T; 𝑉

1
∩ (𝑊

1,12
(Ω))

2

) . (134)

Now, since 𝑣 ∈ 𝐿∞(𝜏
1
,T; 𝑉

1
∩ (𝑊1,12(Ω))

2
) and 𝑣

𝑧
∈ 𝐿∞(𝜏

1
,

T; 𝐿6), for any 𝑢 ∈ 𝐿4/3, we have
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
Ω

𝑒
−𝑧/𝐻

𝑠 (∫
𝑧

−ℎ

𝑒
(𝑧−𝜁)/𝐻

𝑠∇ ⋅ 𝑣 (𝑥, 𝑦, 𝜁, 𝑡) 𝑑𝜁)
𝜕𝑣

𝜕𝑧
⋅ 𝑢𝑑𝑥 𝑑𝑦𝑑𝑧

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝐶‖∇𝑣‖12
󵄩󵄩󵄩󵄩𝑣𝑧

󵄩󵄩󵄩󵄩6‖𝑢‖4/3,

(135)

which implies that

(∫
𝑧

−ℎ

𝑒
(𝑧−𝜁)/𝐻

𝑠∇ ⋅ 𝑣 (𝑥, 𝑦, 𝜁, 𝑡) 𝑑𝜁)
𝜕𝑣

𝜕𝑧
∈ 𝐿
∞

(𝜏
1
,T; 𝐿

4
) .

(136)

Therefore, we find that

𝑔 ∈ 𝐿
∞

(𝜏
1
,T; 𝐿

4
) . (137)

From Lemma 16, we know that

𝑣 ∈ 𝐿
∞

(𝜏
1
,T; 𝑉

1
∩ (𝑊

2,4
(Ω))

2

) , (138)

which implies that

(∫
𝑧

−ℎ

𝑒
(𝑧−𝜉)/𝐻

𝑠∇ ⋅ 𝑣 (𝑥, 𝑦, 𝜁, 𝑡) 𝑑𝜁)
𝜕𝑣

𝜕𝑧
∈ 𝐿
∞

(𝜏
1
,T; 𝐻

1
) .

(139)

Since 𝑣
𝑡
∈ 𝐿∞(𝜏

1
,T; 𝑉

1
) and 𝑣 ∈ 𝐿∞(𝜏

1
,T; 𝑉

1
∩ (𝑊2,4(Ω))

2
),

it is clear that 𝜕𝑣/𝜕𝑡 + (𝑣 ⋅ ∇)𝑣 − (𝑅/𝐻
𝑠
) ∫
𝑧

0
∇𝑇(𝑥, 𝑦, 𝜁, 𝑡)𝑑𝜁 +

𝑓
0
𝑘⃗ × 𝑣 ∈ 𝐿∞(𝜏

1
,T; 𝐻1). Thus,

𝑔 ∈ 𝐿
∞

(𝜏
1
,T; 𝐻

1
) . (140)

From Lemma 16, we deduce that

𝑣 ∈ 𝐿
∞

(𝜏
1
,T; 𝑉

1
∩ 𝐻

3
) . (141)

Employing the elliptic regularity theory, we obtain

𝑇 ∈ 𝐿
∞

(𝜏
1
,T; 𝑉

2
∩ 𝐻

3
) . (142)

This complete the proof of Theorem 17.
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Since𝐻2 ⊂ 𝑉 is compact, fromTheorem 7, we know that
the semigroup generated by (14)–(18) is compact in 𝑉. From
Theorem 7 and Lemma 10, we deduce that the semigroup
generated by (14)–(18) maps a compact set of 𝐻2 to be
a bounded set of 𝐻2; that is, the semigroup generated by
(14)–(18) is norm to weak continuous in 𝐻2. Furthermore,
𝐻3 ⊂ 𝐻2 compactly, and fromTheorem 7 and Lemma 13, we
immediately get the following result.

Theorem 18. Assume that 𝑄 ∈ 𝐻
1
(Ω), (𝑣

0
, 𝑇
0
) ∈ 𝑉. Then,

the semigroup {𝑆(𝑡)}
𝑡≥0

corresponding to (14)–(18) has a
(𝑉,𝐻2)-global attractorA.

By using the Rellich-Kondrachov theorem, we can obtain
the existence of the (𝑉,𝐻2+𝛿)-global attractor for 𝛿 ∈ [0, 1).

Appendix

Proof of Proposition 2

If this conclusion is not true, then for each natural number 𝑛,
there exists 𝑣

𝑛
∈ 𝑉
1
such that

󵄩󵄩󵄩󵄩𝑣𝑛
󵄩󵄩󵄩󵄩
2

2
= 1,

󵄩󵄩󵄩󵄩𝑣𝑛
󵄩󵄩󵄩󵄩
2

≤
1

𝑛
. (A.1)

Let
󵄩󵄩󵄩󵄩𝑣𝑛

󵄩󵄩󵄩󵄩
2

𝐻
1 =

󵄩󵄩󵄩󵄩𝑣𝑛
󵄩󵄩󵄩󵄩
2

2
+

󵄩󵄩󵄩󵄩𝑣𝑛
󵄩󵄩󵄩󵄩
2

. (A.2)

Hence,

󵄩󵄩󵄩󵄩𝑣𝑛
󵄩󵄩󵄩󵄩
2

𝐻
1 ≤ 1 +

1

𝑛
≤ 2, (A.3)

which implies that there exists a subsequence of {𝑣
𝑛
}
𝑛≥1

(still
denoted by {𝑣

𝑛
}
𝑛≥1

) such that

𝑣
𝑛
󳨀→ 𝑣, weakly in𝐻

1
,

𝑣
𝑛
󳨀→ 𝑣, strongly in 𝐿

2
.

(A.4)

Therefore, we have

‖𝑣‖
2

2
= 1, ‖𝑣‖

2

𝐻
1 ≤ lim inf

𝑛→∞

󵄩󵄩󵄩󵄩𝑣𝑛
󵄩󵄩󵄩󵄩
2

𝐻
1 = 1, (A.5)

which implies that

‖𝑣‖
2
= 0. (A.6)

Combining ‖𝑣‖2 = 0 with 𝑣 ⋅ ⃗𝑛 = 0, we obtain

𝑣 = 0, (A.7)

this is a contradiction.
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