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The main feature of the boundary layer flow problems is the inclusion of the boundary conditions at infinity. Such boundary
conditions cause difficulties for any of the seriesmethodswhen applied to solve suchproblems. To the best of the authors’ knowledge,
two procedures were used extensively in the past two decades to deal with the boundary conditions at infinity, either the Padé
approximation or the direct numerical codes. However, an intensive work is needed to perform the calculations using the Padé
technique. Regarding this point, a new idea is proposed in this paper. The idea is based on transforming the unbounded domain
into a bounded one by the help of a transformation. Accordingly, the original differential equation is transformed into a singular
differential equation with classical boundary conditions.The current approach is applied to solve a class of the Blasius problem and
a special class of the Falkner-Skan problem via an improved version of Adomian’s method (Ebaid, 2011). In addition, the numerical
results obtained by using the proposed technique are compared with the other published solutions, where good agreement has
been achieved.Themain characteristic of the present approach is the avoidance of the Padé approximation to deal with the infinity
boundary conditions.

1. Introduction

During the past two decades much effort has been spent
in the numerical treatment of boundary value problems
over an unbounded domain. In fact, these problems arise
very frequently in many fields such as in fluid dynamics,
aerodynamics, and quantummechanics. A fewnotable exam-
ples are the Blasius and Falkner-Skan equations. The Blasius
equation is one of the basic equations in fluid dynamics. It
describes the velocity profile of the fluid in the boundary
layer theory [1, 2] on a half-infinite interval. Several analytical
and numerical methods have been proposed in [1–11] to
handle this problem.The two forms of the Blasius problemare
represented by the same differential equation with different
sets of boundary conditions, as will be indicated later. The
main feature of the Blasius problem is the existence of the
boundary conditions at infinity. Such conditions at infinity
cause difficulties for any of the series methods, such as the
Adomian decomposition method [12–14] and the differential
transformationmethod (or the Taylor series method) [15, 16].

This is because the infinity boundary condition cannot be
imposed directly in the series, where the Padé approximation
should be established before applying the boundary condition
at infinity. It was observed in the past two decades that
many authors [17–25] have been resorted to either the Padé
technique or some numerical methods to treat the boundary
conditions at infinity. Although the results obtained by
using the Padé technique were accurate in many cases, a
massive computational work was needed to obtain accurate
approximate solutions. A possible way to avoid the Padé
technique is to change the boundary conditions at infinity
into classical conditions. Therefore, a suggestion is proposed
in this paper to transform the domain of the problem from
an unbounded domain into a bounded one with the help of a
simple transformation.

According to the suggested transformation, the original
Blasius equation is transformed into a system of two singular
differential equations. Hence, the two mentioned forms are
described by this system with two different sets of boundary
conditions at classical point.The transformed singular system
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will be solved by a recent version of the ADM [26]. The first
form of the original Blasius problem is given by [6]

𝑓 (𝜂) +
1

2
𝑓 (𝜂) 𝑓 (𝜂) = 0, (1)

subject to the following boundary conditions:

𝑓 (0) = 0, 𝑓 (0) = 1, 𝑓 (∞) = 0, (2)

while the second form is given by (1) with the following
boundary conditions:

𝑓 (0) = 0, 𝑓 (0) = 0, 𝑓 (∞) = 1. (3)

A class of Blasius problem is given by

𝑓 (𝜂) + 𝛾𝑓 (𝜂) 𝑓 (𝜂) = 0, (4)

subject to the following boundary conditions:

𝑓 (0) = 0, 𝑓 (0) = 1 − 𝜖, 𝑓 (∞) = 𝜖, (5)

where 𝛾 and 𝜖 are finite constants.This class will be studied for
𝜖 ∈ [0, 1]. Here, it is noted that (2) and (3) are special examples
of (5) for 𝜖 = 0 and 𝜖 = 1, respectively. In addition, the class
(4)-(5) reduces to the two forms of the Blasius problem when
(𝛾 = 1/2, 𝜖 = 0) and (𝛾 = 1/2, 𝜖 = 1), respectively. At the same
time, when 𝛾 = 1, the suggested class reduces to a special class
of the Falkner-Skan problem, at 𝛿 = 0, which is well known
as [27]

𝑓 (𝜂) + 𝑓 (𝜂) 𝑓 (𝜂) + 𝛿 [𝜖2 − (𝑓 (𝜂))
2

] = 0, (6)

with the class of boundary conditions (5), where 𝛿 refers
to the pressure gradient parameter, while 𝜖 refers to the
velocity ratio parameter, 𝜖 = 𝑈

∞
/(𝑈
∞

+ 𝑈
𝑤
). Equation (6)

with the boundary conditions (5) is a new version of the
Falkner-Skan equation relating free stream velocity 𝑈

∞
to

composite reference velocity, that is, sum of the velocities of
stretching boundary 𝑈

𝑤
and free stream 𝑈

∞
. In order to use

the improved Adomian’s method [26] to solve the class (4)-
(5), we first transform the governing equation (4) into the
following system of differential equations:

𝑓 (𝜂) = 𝑢 (𝜂) ,

𝑢 (𝜂) + 𝛾𝑓 (𝜂) 𝑢 (𝜂) = 0.
(7)

Here, we may indicate that in the theory of the boundary
layer, it is usually important to get information about three
quantities: the skin-friction coefficient 𝑓(0), the fluid veloc-
ity 𝑓(𝜂), and the stream function 𝑓(𝜂). Also, it is well known
that at 𝜖 = 1 the problem reduces to one of the two forms
of the Blasius problem which has been studied extensively
during the past decades.

2. A Transformation and a New System

The unbounded domain of the independent variable 𝜂 ∈
[0,∞) can be changed into a bounded one by using a new

independent variable 𝑡 (say) ∈ [0, 1) using the transformation
𝑡 = 1 − 𝑒−𝜂. Accordingly, the governing system should be
expressed in terms of the new variable 𝑡. In order to do that,
we introduce the following relations between the derivatives
with respect to 𝜂 and the derivatives with respect to 𝑡:

𝑑

𝑑𝜂
(◻) = (1 − 𝑡)

𝑑

𝑑𝑡
(◻) ,

𝑑2

𝑑𝜂2
(◻) = (1 − 𝑡)

2 𝑑
2

𝑑𝑡2
(◻) − (1 − 𝑡)

𝑑

𝑑𝑡
(◻) .

(8)

The relations given by (8) are obtained by using the chain rule
in the differential calculus.Therefore, the system (7) becomes

𝑓 (𝑡) = (
1

1 − 𝑡
) 𝑢 (𝑡) , (9)

𝑢 (𝑡) = (
1

1 − 𝑡
) 𝑢 (𝑡) − 𝛾 (

1

1 − 𝑡
)𝑓 (𝑡) 𝑢



(𝑡) , (10)

subject to the following set of boundary conditions:

𝑓 (0) = 0, 𝑢 (0) = 1 − 𝜖, 𝑢 (1) = 𝜖. (11)

Equation (9) with the initial condition 𝑓(0) = 0 can
be easily integrated as an initial value problem, while (10)
with the boundary conditions given in (11) should be solved
as a two-point boundary value problem. In this regard, the
improved Adomian decomposition method is suggested to
deal with such a singular two-point boundary value problem.
Before launching into the the main idea of this paper, we
give an analysis for the improved Adomian decomposition
method in the next section to solving (10) with general two-
point boundary conditions 𝑢(𝑎) = 𝛼 and 𝑢(𝑏) = 𝛽.

3. The Improved Adomian
Decomposition Method

Consider the second order differential equation:

𝑢 (𝑡) + 𝑝 (𝑡) 𝑢


(𝑡) + 𝑞 (𝑡) 𝑓 (𝑡) 𝑢


(𝑡) = 0, (12)

subject to the boundary conditions

𝑢 (𝑎) = 𝛼, 𝑢 (𝑏) = 𝛽, (13)

where at least one of the functions 𝑝(𝑡) and 𝑞(𝑡) has a singular
point and 𝑓(𝑡) is an unspecified function. In order to apply
the approach suggested in [26], we first rewrite (12) as

𝑢 (𝑡) = −𝑝 (𝑡) 𝑢


(𝑡) − 𝑞 (𝑡) 𝑓 (𝑡) 𝑢


(𝑡) . (14)

Now, suppose that 𝑝(𝑡) and 𝑞(𝑡) have the same singular point
(𝑡 = 𝑡

0
, say), Ebaid [26] proposed the following inverse

operator to solve (14) with the boundary conditions (13):

𝐿−1 [⋅] = ∫
𝑡

𝑎

𝑑𝑡 ∫
𝑡


𝑐

[⋅] 𝑑𝑡
 −

𝑡 − 𝑎

𝑏 − 𝑎
∫
𝑏

𝑎

𝑑𝑡 ∫
𝑡


𝑐

[⋅] 𝑑𝑡
,

𝑎 ̸= 𝑏, 𝑐 (arbitrary) ̸= 𝑡
0
.

(15)
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Operating both sides of (14) with this inverse operator, we
have

𝑢 (𝑡) − 𝑢 (𝑎) −
𝑡 − 𝑎

𝑏 − 𝑎
[𝑢 (𝑏) − 𝑢 (𝑎)]

= −𝐿−1 [𝑝 (𝑡) 𝑢


(𝑡) + 𝑞 (𝑡) 𝑓 (𝑡) 𝑢


(𝑡)] ,

(16)

which can be rewritten as

𝑢 (𝑡) = 𝛼 +
𝑡 − 𝑎

𝑏 − 𝑎
(𝛽 − 𝛼)

− 𝐿−1 [𝑝 (𝑡) 𝑢


(𝑡) + 𝑞 (𝑡) 𝑓 (𝑡) 𝑢


(𝑡)] .

(17)

Based on Adomian’s method, the solutions 𝑢(𝑡) and 𝑓(𝑡) of
system (9)-(10) are assumed in the following form:

𝑢 (𝑡) =
∞

∑
𝑛=0

𝑢
𝑛
(𝑡) , 𝑓 (𝑡) =

∞

∑
𝑛=0

𝑓
𝑛
(𝑡) . (18)

Inserting these series into (17), we obtain

∞

∑
𝑛=0

𝑢
𝑛
(𝑡) = 𝛼 +

𝑡 − 𝑎

𝑏 − 𝑎
(𝛽 − 𝛼)

− 𝐿−1 [𝑝 (𝑡)
∞

∑
𝑛=0

𝑢
𝑛
(𝑡) + 𝑞 (𝑡)

∞

∑
𝑛=0

𝑛

∑
𝑖=0

𝑓
𝑖
(𝑡) 𝑢


𝑛−𝑖
(𝑡)] .

(19)

Substituting 𝑝(𝑡) = −(1/(1 − 𝑡)) and 𝑞(𝑡) = 𝛾(1/(1 − 𝑡)) into
the last equation yields

∞

∑
𝑛=0

𝑢
𝑛
(𝑡) = 𝛼 +

𝑡 − 𝑎

𝑏 − 𝑎
(𝛽 − 𝛼)

+ 𝐿−1 [(
1

1 − 𝑡
)
∞

∑
𝑛=0

𝑢
𝑛
(𝑡)

− 𝛾 (
1

1 − 𝑡
)
∞

∑
𝑛=0

𝑛

∑
𝑖=0

𝑓
𝑖
(𝑡) 𝑢


𝑛−𝑖
(𝑡)] .

(20)

To overcome the difficulty of the singular point, we may
replace the function 1/(1 − 𝑡) with the series form ∑

∞

𝑛=0
𝑡𝑛,

where 𝑡 ∈ [0, 1). Thus, we have

∞

∑
𝑛=0

𝑢
𝑛
(𝑡) = 𝛼 +

𝑡 − 𝑎

𝑏 − 𝑎
(𝛽 − 𝛼)

+ 𝐿−1 [

[

∞

∑
𝑛=0

𝑛

∑
𝑖=0

𝑡𝑛−𝑖𝑢
𝑖
(𝑡)

− 𝛾
∞

∑
𝑛=0

(
𝑛

∑
𝑗=0

𝑗

∑
𝑖=0

𝑡𝑛−𝑗𝑓
𝑖
(𝑡) 𝑢


𝑗−𝑖
(𝑡))]

]

.

(21)

According to the modified decomposition method [18], the
solution 𝑢(𝑡) can be evaluated by using the recurrence
scheme:

𝑢
0
(𝑡) = 𝛼,

𝑢
1
(𝑡) =

𝑡 − 𝑎

𝑏 − 𝑎
(𝛽 − 𝛼) + 𝐿−1 [𝑢

0
(𝑡) − 𝛾𝑓

0
(𝑡) 𝑢


0
(𝑡)] ,

𝑢
𝑛+1

(𝑡) = 𝐿−1 [

[

𝑛

∑
𝑖=0

𝑡𝑛−𝑖𝑢
𝑖
(𝑡) − 𝛾(

𝑛

∑
𝑗=0

𝑗

∑
𝑖=0

𝑡𝑛−𝑗𝑓
𝑖
(𝑡) 𝑢


𝑗−𝑖
(𝑡))]

]

,

𝑛 ≥ 1.

(22)

On integrating (9) with respect to 𝑡 form 0 to 𝑡, it then follows
that

𝑓 (𝑡) = 𝑓 (0) + ∫
𝑡

0

(
1

1 − 𝑧
) 𝑢 (𝑧) 𝑑𝑧. (23)

Hence, 𝑓(𝑡) is given by the recurrence scheme:

𝑓
0
(𝑡) = 0, 𝑓

𝑛+1
(𝑡) = ∫

𝑡

0

𝑧𝑛−𝑖𝑢
𝑖
(𝑧) 𝑑𝑧, 𝑛 ≥ 0. (24)

The algorithms given by (22) and (24) are applied in the next
section to construct the approximate solutions.

4. Applications

4.1. A Class of the Blasius Problem. Here, we show how to
implement (22) and (24) to solve the class of the Blasius
problem. On substituting 𝛾 = 1/2, 𝑎 = 0, 𝑏 = 1, 𝛼 = 1−𝜖, and
𝛽 = 𝜖 into (22), and using (24) we obtain

𝑢
0
(𝑡) = 1 − 𝜖,

𝑓
0
(𝑡) = 0,

𝑢
1
(𝑡) = (2𝜖 − 1) 𝑡,

𝑓
1
(𝑡) = (1 − 𝜖) 𝑡,

𝑢
𝑛+1

(𝑡) = 𝐿−1 [

[

𝑛

∑
𝑖=0

𝑡𝑛−𝑖𝑢
𝑖
(𝑡) −

1

2
(
𝑛

∑
𝑗=0

𝑗

∑
𝑖=0

𝑡𝑛−𝑗𝑓
𝑖
(𝑡) 𝑢


𝑗−𝑖
(𝑡))]

]

,

𝑓
𝑛+1

(𝑡) = ∫
𝑡

0

(
1

1 − 𝑧
) 𝑢
𝑛
(𝑧) 𝑑𝑧, 𝑛 ≥ 1,

𝐿−1 [⋅] = ∫
𝑡

0

𝑑𝑡 ∫
𝑡


𝑐

[⋅] 𝑑𝑡
 − 𝑡∫

1

0

𝑑𝑡 ∫
𝑡


𝑐

[⋅] 𝑑𝑡
,

𝑐 ̸= 1 (𝑐 = 0, for simplicity) .
(25)
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The first few terms of the stream function 𝑓(𝑡) are evaluated
by implementing the previous algorithm and are listed in the
following:

𝑓
0
(𝑡) = 0,

𝑓
1
(𝑡) = (1 − 𝜖) 𝑡,

𝑓
2
(𝑡) = (

𝜖

2
) 𝑡2,

𝑓
3
(𝑡) = (

1

4
−
𝜖

2
) 𝑡2 + (−

1

6
+
2𝜖

3
) 𝑡3,

𝑓
4
(𝑡) = (

𝜖

24
−

𝜖2

12
) 𝑡2 + (

1

4
−
𝜖

2
) 𝑡3

+ (−
3

16
+
29𝜖

28
+

𝜖2

24
) 𝑡4,

𝑓
5
(𝑡) = (

1

96
−

𝜖

48
) 𝑡2 + (

𝜖

24
−

𝜖2

12
) 𝑡3

+ (
7

32
−
41𝜖

96
−

𝜖2

48
) 𝑡4

+ (−
43

240
+
41𝜖

40
+

𝜖2

15
) 𝑡5.

(26)

The desired 𝑚th order approximate solution 𝜙
𝑚
(𝜂) obtained

by Adomian’s method is expressed as

𝜙
𝑚
(𝜂) =

𝑚−1

∑
𝑛=0

𝑓
𝑛
(𝜂) . (27)

Hence, the approximate solutions 𝜙
3
(𝜂), 𝜙
5
(𝜂), and 𝜙

7
(𝜂) are,

respectively, given in terms of the original variable 𝜂 as

𝜙
3
(𝜂) = (1 − 𝜖) (1 − 𝑒−𝜂) +

1

4
(1 − 𝑒−𝜂)

2

+ (−
1

6
+
2𝜖

3
) (1 − 𝑒−𝜂)

3

,

𝜙
5
(𝜂) = (1 − 𝜖) (1 − 𝑒−𝜂) + (

25

96
+

𝜖

48
−

𝜖2

12
) (1 − 𝑒−𝜂)

2

+ (
1

12
+
5𝜖

24
−

𝜖2

12
) (1 − 𝑒−𝜂)

3

+ (
1

32
+
17𝜖

96
+

𝜖2

48
) (1 − 𝑒−𝜂)

4

+ (−
43

240
+
41𝜖

40
+

𝜖2

15
) (1 − 𝑒−𝜂)

5

,

𝜙
7
(𝜂) = (1 − 𝜖) (1 − 𝑒−𝜂)

+ (
171

640
+

𝜖

72
−
553𝜖2

5760
−

𝜖3

960
) (1 − 𝑒−𝜂)

2

+ (
47

480
+
11𝜖

60
−
53𝜖2

576
+

𝜖3

1440
) (1 − 𝑒−𝜂)

3

+ (
31

768
+
451𝜖

2304
−

59𝜖2

1152
−

𝜖3

288
) (1 − 𝑒−𝜂)

4

+ (
11

960
+
137𝜖

720
−

7𝜖2

288
−

𝜖3

240
) (1 − 𝑒−𝜂)

5

+ (
31

5760
+
367𝜖

2880
+

65𝜖2

1152
+

𝜖3

960
) (1 − 𝑒−𝜂)

6

+ (−
13

8960
+
5921𝜖

40320
−

83𝜖2

24192
+

89𝜖3

34560
−

19𝜖4

120960
)

× (1 − 𝑒−𝜂)
7

.

(28)

Here, we refer to that the series solution obtained previous
leads to an exact solution at 𝜖 = 0.5. In this case, the approxi-
mate solutions become

𝜙
3
(𝜂) =

1

2
(1 − 𝑒−𝜂) +

1

4
(1 − 𝑒−𝜂)

2

+
1

6
(1 − 𝑒−𝜂)

3

=
1

2

3

∑
𝑟=1

1

𝑟
(1 − 𝑒−𝜂)

𝑟

,

𝜙
5
(𝜂) =

1

2
(1 − 𝑒−𝜂) +

1

4
(1 − 𝑒−𝜂)

2

+
1

6
(1 − 𝑒−𝜂)

3

+
1

8
(1 − 𝑒−𝜂)

4

+
1

10
(1 − 𝑒−𝜂)

5

=
1

2

5

∑
𝑟=1

1

𝑟
(1 − 𝑒−𝜂)

𝑟

,

𝜙
7
(𝜂) =

1

2
(1 − 𝑒−𝜂) +

1

4
(1 − 𝑒−𝜂)

2

+
1

6
(1 − 𝑒−𝜂)

3

+
1

8
(1 − 𝑒−𝜂)

4

+
1

10
(1 − 𝑒−𝜂)

5

+
1

12
(1 − 𝑒−𝜂)

6

+
1

14
(1 − 𝑒−𝜂)

7

=
1

2

7

∑
𝑟=1

1

𝑟
(1 − 𝑒−𝜂)

𝑟

.

(29)

Therefore, the𝑚-term series solution is given by

𝜙
𝑚
(𝜂) =

1

2

𝑚

∑
𝑟=1

1

𝑟
(1 − 𝑒−𝜂)

𝑟

, (30)
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and thus, the following exact solution is obtained as𝑚 → ∞:

𝑓 (𝜂) = lim
𝑚→∞

𝜙
𝑚
(𝜂)

=
1

2

∞

∑
𝑟=1

1

𝑟
(1 − 𝑒−𝜂)

𝑟

= −
1

2
ln [1 − (1 − 𝑒−𝜂)] =

𝜂

2
.

(31)

This exact solution satisfies the boundary conditions and can
be easily verified by direct substitution. For more validation,
the results obtained by the present technique are checked here
via a comparison with those published in the literature. It
is well known that at 𝜖 = 1, the problem reduces to one of
the two forms of the Blasius problem. In that case, the skin-
friction coefficient is computed bymany authors as discussed
in Section 5.

4.2. Special Class of the Falkner-Skan Problem. Here, the
proposed approach is applied to a special class of the Falkner-
Skan problem. Asmentioned before, this special class is given
by (4)-(5) at 𝛾 = 1. Proceeding as in the previous example, the
approximate solution can be obtained by using the recurrence
scheme:

𝑢
0
(𝑡) = 1 − 𝜖,

𝑓
0
(𝑡) = 0,

𝑢
1
(𝑡) = (2𝜖 − 1) 𝑡,

𝑓
1
(𝑡) = (1 − 𝜖) 𝑡,

𝑢
𝑛+1

(𝑡) = 𝐿−1 [

[

𝑛

∑
𝑖=0

𝑡𝑛−𝑖𝑢
𝑖
(𝑡) −

𝑛

∑
𝑗=0

𝑗

∑
𝑖=0

𝑡𝑛−𝑗𝑓
𝑖
(𝑡) 𝑢


𝑗−𝑖
(𝑡)]

]

,

𝑓
𝑛+1

(𝑡) = ∫
𝑡

0

(
1

1 − 𝑧
) 𝑢
𝑛
(𝑧) 𝑑𝑧, 𝑛 ≥ 1,

𝐿−1 [⋅] = ∫
𝑡

0

𝑑𝑡 ∫
𝑡


𝑐

[⋅] 𝑑𝑡
 − 𝑡∫

1

0

𝑑𝑡 ∫
𝑡


𝑐

[⋅] 𝑑𝑡
, 𝑐 ̸= 1.

(32)

The first few terms of the stream function 𝑓(𝑡) are evaluated
by implementing the algorithm given in (32) and are listed in
the following:

𝑓
0
(𝑡) = 0,

𝑓
1
(𝑡) = (1 − 𝜖) 𝑡,

𝑓
2
(𝑡) = (

𝜖

2
) 𝑡2,

𝑓
3
(𝑡) = (

1

4
−
𝜖

2
) 𝑡2 + (−

1

6
+
2𝜖

3
) 𝑡3,

𝑓
4
(𝑡) = (−

1

24
+
𝜖

6
−
𝜖2

6
) 𝑡2 + (

1

4
−
𝜖

2
) 𝑡3

+ (−
1

6
+
13𝜖

24
+

𝜖2

12
) 𝑡4,

𝑓
5
(𝑡) = (−

1

24
+
𝜖

6
−
𝜖2

6
) 𝑡3 + (

5

24
−
19𝜖

48
−

𝜖2

24
) 𝑡4

+ (−
17

120
+
5𝜖

12
+
2𝜖2

15
) 𝑡5.

(33)

Hence, the approximate solutions 𝜙
3
(𝜂), 𝜙
5
(𝜂), and 𝜙

7
(𝜂) are,

respectively, given in terms of the original variable 𝜂 as

𝜙
3
(𝜂) = (1 − 𝜖) (1 − 𝑒−𝜂) +

1

4
(1 − 𝑒−𝜂)

2

+ (−
1

6
+
2𝜖

3
) (1 − 𝑒−𝜂)

3

,

𝜙
5
(𝜂) = (1 − 𝜖) (1 − 𝑒−𝜂) + (

5

24
+
𝜖

6
−
𝜖2

6
) (1 − 𝑒−𝜂)

2

+ (
1

24
+
𝜖

3
−
𝜖2

6
) (1 − 𝑒−𝜂)

3

+ (
1

24
+
7𝜖

48
+

𝜖2

24
) (1 − 𝑒−𝜂)

4

+ (−
17

120
+
5𝜖

12
+
2𝜖2

15
) (1 − 𝑒−𝜂)

5

,

𝜙
7
(𝜂) = (1 − 𝜖) (1 − 𝑒−𝜂)

+ (
191

960
+
19𝜖

96
−
91𝜖2

480
−

𝜖3

240
) (1 − 𝑒−𝜂)

2

+ (
13

360
+
17𝜖

48
−
3𝜖2

16
+

𝜖3

360
) (1 − 𝑒−𝜂)

3

+ (
1

144
+
9𝜖

32
−

𝜖2

12
−

𝜖3

72
) (1 − 𝑒−𝜂)

4

+ (
1

480
+
17𝜖

80
−

𝜖2

40
−

𝜖3

60
) (1 − 𝑒−𝜂)

5

+ (
1

30
+
13𝜖

288
+
31𝜖2

288
+

𝜖3

240
) (1 − 𝑒−𝜂)

6

+ (−
67

630
+
25𝜖

84
+
181𝜖2

1680
+

41𝜖3

2520
) (1 − 𝑒−𝜂)

7

.

(34)

The effectiveness of the present technique is used here not
only to obtain the exact solution of the Falkner-Skan equation
at 𝛿 = 0 and 𝜖 = 0.5 but also to get numerical solutions with
good accuracy. On inserting 𝜖 = 0.5 into the approximate
solutions given by (34), we have

𝜙
3
(𝜂) =

1

2
(1 − 𝑒−𝜂) +

1

4
(1 − 𝑒−𝜂)

2

+
1

6
(1 − 𝑒−𝜂)

3

=
1

2

3

∑
𝑟=1

1

𝑟
(1 − 𝑒−𝜂)

𝑟

,
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𝜙
5
(𝜂) =

1

2
(1 − 𝑒−𝜂) +

1

4
(1 − 𝑒−𝜂)

2

+
1

6
(1 − 𝑒−𝜂)

3

+
1

8
(1 − 𝑒−𝜂)

4

+
1

10
(1 − 𝑒−𝜂)

5

=
1

2

5

∑
𝑟=1

1

𝑟
(1 − 𝑒−𝜂)

𝑟

,

𝜙
7
(𝜂) =

1

2
(1 − 𝑒−𝜂) +

1

4
(1 − 𝑒−𝜂)

2

+
1

6
(1 − 𝑒−𝜂)

3

+
1

8
(1 − 𝑒−𝜂)

4

+
1

10
(1 − 𝑒−𝜂)

5

+
1

12
(1 − 𝑒−𝜂)

6

+
1

14
(1 − 𝑒−𝜂)

7

=
1

2

7

∑
𝑟=1

1

𝑟
(1 − 𝑒−𝜂)

𝑟

.

(35)

As indicated in Section 4.1, these approximate solutions lead
to the same exact solution given by (31): 𝑓(𝜂) = 𝜂/2 in the
limit.

5. Results and Discussion

At 𝜖 = 1, Bairstow [29] found that 𝑓(0) = 0.335 using
a power series, whereas Goldstein [30] obtained 𝑓(0) =
0.332. Besides, using a finite difference method, Falkner [31]
computed that 𝑓(0) = 0.3325765, and Horwarth [32]
yields that 𝑓(0) = 0.332057. In [33], Fazio computed
that 𝑓(0) = 0.332057336215. Also, in [34] Boyd used
Töpfer’s algorithm to obtain the accurate value 𝑓(0) =
0.33205733621519630. Adomain’s method was implemented
in [35] by Abbasbandy, and it was found that 𝑓(0) =
0.333329, whereas a variational iteration method with the
Padé approximants allows Wazwaz [6] to calculate the value
𝑓(0) = 0.3732905625. Tajvidi et al. [28] apply the modified
rational Legendre functions to get a value of𝑓(0) = 0.33209.
The values of the skin-friction coefficient are given in Table 1
at 𝜖 = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1 using
11, 13, and 15 terms of the series (27). The current method
finds that the skin-friction at 𝜖 = 1 approximately equals
𝜙
15
(0) = 0.331775, which is very close to those values

discussed previously.
Regarding the stream function 𝑓(𝜂), it is plotted in

Figure 1 using 15 terms, and the fluid velocity𝑓(𝜂) is depicted
in Figure 2 using the approximate solutions 𝜙

7
(𝜂), 𝜙

9
(𝜂),

𝜙
11
(𝜂), 𝜙

13
(𝜂), and 𝜙

15
(𝜂) at 𝜖 = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6,

0.7, 0.8, 0.9, and 1. It is observed from Figure 2 that the
approximate solutions using a few terms of Adomian’s series
converge rapidly to a certain curve at some values of the
parameter 𝜖.

The exact solution 𝑓(𝜂) = 𝜂/2 obtained in Section 4.2 for
the Falkner-Skan equation at 𝜖 = 0.5 has been reported very
recently by Kudenatti [27]. He has derived the exact solution
to the Falkner-Skan equation for general values of the
pressure gradient parameter 𝛿. In order to check the accuracy
of our approach, the values of the skin-friction coefficient are

Table 1: The approximate values of the skin-friction coefficient
𝑓(0) for the class of the Blasius problem using 11, 13, and 15 terms
of Adomian’s series.

𝜖 𝜙
11
(0) 𝜙

13
(0) 𝜙

15
(0)

0.0 −0.456523 −0.454506 −0.453122

0.1 −0.356731 −0.354995 −0.353838

0.2 −0.261082 −0.259650 −0.258715

0.3 −0.169677 −0.168611 −0.167920

0.4 −0.082616 −0.082014 −0.081624

0.5 0.000000 0.000000 0.000000
0.6 0.078072 0.077292 0.076775
0.7 0.151503 0.149723 0.148522
0.8 0.220194 0.217151 0.215060
0.9 0.284048 0.279437 0.276206
1.0 0.342969 0.336441 0.331775

1 2 3 4 5 6

0.5

1.0

1.5

𝜂

f
(𝜂
)

𝜖 = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1

Figure 1:The stream function for the class of the Blasius problem at
different values of 𝜖 using 15 terms of the current method.

𝜂

1 2 3 4 5 6

0.2

0.4

0.6

0.8

1.0
𝜖 = 1.0 𝜖 = 0.9

𝜖 = 0.8

𝜖 = 0.7

𝜖 = 0.6

𝜖 = 0.5

𝜖 = 0.4

𝜖 = 0.3

𝜖 = 0.2

𝜖 = 0.1

𝜖 = 0.0

f
 (𝜂

)

Figure 2: The fluid velocity for the class of the Blasius problem at
different values of 𝜖 using 7, 9, 11, 13, and 15 terms of the current
method.

compared in Table 2 with those exactly obtained by Kudenatti
[27] in the range 0 < 𝜖 < 0.5. The results reveal that a good
agreement has been achieved via the present approach. In
addition, the stream function 𝑓(𝜂) is graphed in Figure 3 at
several values of the parameter 𝜖 by using 15 terms of the
decomposition series. At the same values and in Figure 4,
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Table 2: The approximate values of the skin-friction coefficient
𝑓(0) for the class of the Falkner-Skan problem using 11, 15, and 33
terms of Adomian’s series.

𝜖 𝜙
11
(0) 𝜙

15
(0) 𝜙

33
(0)

Exact values
Reference [28]

0.0 −0.617661 −0.622494 −0.625945 −0.627504

0.1 −0.479542 −0.485036 −0.490729 −0.492625

0.2 −0.348276 −0.353437 −0.360126 −0.363901

0.3 −0.224304 −0.228296 −0.234485 −0.237219

0.4 −0.108067 −0.110256 −0.114249 −0.115811

0.5 0.000000 0.000000 0.000000 0.000000
0.6 0.099467 0.101753 0.107483
0.7 0.189909 0.194253 0.207152
0.8 0.270907 0.276719 0.297613
0.9 0.342046 0.34835 0.377038
1.0 0.402921 0.408321 0.443088

1 2 3 4 5 6

0.5

1.0

1.5

𝜂

f
(𝜂
)

𝜖 = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1

Figure 3: The stream function for the class of the Falkner-Skan
problem at different values of 𝜖 using 15 terms of the currentmethod.

the fluid velocity is depicted by using the approximate
solutions 𝜙

11
(𝜂), 𝜙
13
(𝜂), and 𝜙

15
(𝜂). It can be concluded from

Figure 4 that our results are a coincidence with those exactly
obtained in [27] at the values 𝜖 = 0.1, 0.2, 0.3, 0.4, 0.5, 0.7, and
1, while the fluid velocity at the other values 𝜖 = 0, 0.6, 0.8, and
0.9 was not discussed by Kudenatti [27].

6. Conclusion

An approach is presented in this paper to treat the bound-
ary condition at infinity which is the main feature of the
boundary layer equations. The suggested approach is based
on changing the boundary condition at infinity to a classical
one by the help of a transformation. The current approach is
applied to solve a class of the Blasius problem and a special
class of the Falkner-Skan problem via an improved version of
Adomian’s method. Moreover, exact solutions are deduced at
a certain value of the velocity ratio parameter 𝜖. In addition,
the current numerical results are compared with the other
published solutions, where good agreement is found. One of

𝜂

1 2 3 4 5 6

0.2

0.4

0.6

0.8

1.0
𝜖 = 1.0 𝜖 = 0.9

𝜖 = 0.8

𝜖 = 0.7

𝜖 = 0.6

𝜖 = 0.5

𝜖 = 0.4

𝜖 = 0.3

𝜖 = 0.2

𝜖 = 0.1

𝜖 = 0.0

f
 (𝜂

)

Figure 4: The fluid velocity for the class of the Falkner-Skan prob-
lem at different values of 𝜖 using 11, 13, and 15 terms of the current
method.

the main advantages of the present approach is the avoidance
of the Padé approximation to deal with the infinity boundary
condition.
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Padé approximants for solving the Thomas-Fermi equation,”
Applied Mathematics and Computation, vol. 105, no. 1, pp. 11–19,
1999.

[19] A.-M. Wazwaz, “The modified decomposition method and
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