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We study the effect of the coefficient h(x) of the critical nonlinearity on the number of positive solutions for semilinear elliptic
systems. Under suitable assumptions for f(x), g(x), and h(x), we should prove that for sufficiently small A,y > 0, there are at least
k + 1 positive solutions of the semilinear elliptic systems —Au = )\f(x)|u|‘172u + (af (o + ﬁ))h(x)|u|“72u|v|’3, —-Av = yg(x)|v|q72v +
B/« +ﬁ))h(x)|u|“|v|ﬁ72v, where 0 € Q ¢ RY is a bounded domain, « > 1, > 1,and N/(N -2) < g <2 <a+ =2"for N > 4.

1. Introduction and Main Results

ForN =23, a>1,>1l,andl <g<2<a+f=2"=
2N/(N - 2), consider the semilinear elliptic systems

[04

—Au = Af () [ulT?u + N /),h () [ul*2ulvf  in Q,

«
Ay = q-2 B h oy B2 in Q,
v=pg(x) v|T v+ wt B ) |u|*v|" v in

on 0Q,

(P Mi)

where A, u > 0, Q ¢ RY is a bounded domain with smooth
boundary 0Q.
Let f, g, and h satisfy the following conditions.

u=v=0

(H1) f, g, and hare positive continuous functions in Q and
max, gh(x) = 1.
(H?2) There exist k points a,, d,,...,aq;. € Q and some ¢ >

N — 2 such that h(g;) are strict maxima and satisty

h(a)=maxh(x)=1 V1<i<k )

x€Q

and h(x) = h(a;) + O(|x — a;|°) as x — a; uniformly in i.
Recent studies [1-10] have investigated the elliptic systems

with subcritical or critical exponents and have proved the

existence of a ground state solution or the existence of at

least two positive solutions for these problems. For the case of

N>4,a>1,8>1,and2 < g < a+f =2" =2N/(N-2),Lin
[11] constructs the k compact Palais-Smale sequences that are
suitably localized in correspondence of k maximum points
of h. Under assumptions (H1)-(H2), she has showed that
there are at least k positive solutions of the problem (P/L#)
for sufficiently small A,y > 0. In this paper, we study the
problem (P/Lu) and complement the results of [11] to the case
1 < g < 2. Under assumptions (H1)-(H2), we should prove
that there exist at least k + 1 positive solutions of the problem

(PA:H) for sufficiently small A, u > 0.

Let E = Hé(Q) X Hé(Q) be the space with the standard
norm

172
M%ﬂh=(LJWMZ+WWﬁdQ . 2)

Associated with the problem (PM), we consider the
C'-functional Iy for (u,v) € E,

L @6) = Sl DI
-1 J (Af (o) [ul? + pg (x) [vIT) dx  (3)
qJa

—ijhmmmww.
2* Ja



The weak solution (u,v) € E of the problem (PM) is the
critical point of the functional I ; that is, (1, v) € E satisfies

JQ (VuVe, + VvVe,)dx — A L f () |ulT*ug,dx

- ptj g (x) V|7 *vg,dx — % J h(x) [ul*2ulvPo,dx
Q 2% Ja

F [, B g = 0
2* Ja
(4)
for any (¢;,¢,) € E.
Let DY2(RN) = {u € I* RN) | Vu € (LX(RN)N} with
the norm |lul* = JRN |Vu|*dx, and let S be the best Sobolev
constant defined by

] IRN |Vul*dx
§= 1’211’1 N 2% 2/2*
ueD"?(R )\{0}(JRN |ul dx)
) (5)
|Vu|“dx
= inf —IQ — | >0,
ueH&(Q)\{O}(J’ |u|2*dx) /
Q
and let
2 2
, Jo (IVul? + v9]?) dx
Sap = inf ok (6)

wre OO} ([ 11%|y[F dix)

then, by [1, Theorem 5], we have

S“,ﬁ _ (<%>ﬁ/(06+,3) N <§>a/((x+ﬁ)) N o

where o + § =27
Set

5_ 2/(2*-2) 2* Co -2/(2—q)
A= ( ‘1) ( Q)Voolm(z 9)/2
2% —q 2% =2

x SN Al 5,
(8)

where y, = max{| f 1), gl ()}
The main results of this paper are given as follows.

Theorem 1. Assume that (H1) holds. If A, > 0 satisfy 0 <
A0 421G« N then there exists at least one positive
ground state solution of the problem (P/W)'

Theorem 2. Under the assumptions (H1)-(H2), and N/(N —
2) < g < 2and N > 4, there exists a positive number A* €
(0, A ) such that for A,y > 0 and A 4 217D < A* | the
problem (P/W) has k + 1 positive solutions.

This paper is organized as follows. In Section 2, we
consider the Nehari manifold

Nip={wv) e E\{0}| (Ii,y w,v),(wv)) =0}, (9)
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where

<I)'L,” (u,v), (u, v)>
I - JQ (Af () lul? + g () T dx (10
_J h () [ul[v]P dx.
Q

Note that ./, contains all nontrivial weak solution of
the problem (P/Lu)' Using the argument of Tarantello [12,
13], we split ./ , into two parts /VL4 and ./} , for 0 <

A=) 421G < A In Section 3, we prove Theorem 1.
In Section 4, since I, , satisfies the (PS)y—condition fory €

(=00, (1/N)(Sy p) = Co(A* P 4 12/ D)), for sufficiently
small A, y, and some restriction on g and N, we construct
the k compact Palais-Smale sequences which are suitably
localized in correspondence with the kK maximum points of
h and which converge to distinct solutions of the problem

(PA’#) belonging to ./} . Hence, we prove Theorem 2 (one
is the ground state solution belonging to ./} . and the others
arein A7y M).

2. Nehari Manifold

Throughout this paper, (H1) will be assumed. First, we give
some notations.

Notations. We make use of the following notations.

LP(Q),1 < p < 00, denote Lebesgue spaces; the norm
L? is denoted by | - | 5(q for 1 < p < c0.

E = [Hy(Q)]’ endowed with norm |z[} =
I, )IE = [Vul; + V0I5

The dual space of a Banach space E will be denoted by
E™

|z| = |(u, V)| = (lul, |v]) and tz = t(u,v) = (tu,tv) for
allz €e Eandt € R.

z = (u,v) is said to be nonnegative in Q if u > 0 and
vy >0in Q.

z = (u,v) is said to be positive in Q ifu > 0and v > 0
in Q.

|Q2] is the Lebesgue measure of Q.
B,(a) = {x € RN | |x —a| < r} isaball in RV,
O(¢") denotes |O(e")|/e' < Case — Ofort > 0.

O, (¢") means that there exist the constants C,,C, > 0
such that C,¢' < O, (¢") < C,¢" as e is small.

0,(1) denotes 0,(1) — Oasn — ©o.

Yoo = max{'flL“’(Q)’ |g|L°°(Q)}'

C, C; will denote various positive constants, the exact
values of which are not important.
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LetK, , : E — R be the functional defined by

Ky, (2) = J (Af (x) ||+ pg (x) [v|T)dx  Vz = (u,v) € E.
(11)

We know that I, , is not bounded below on E. From the
following lemma, we have that I , is bounded from below on
the Nehari manifold /4 A defined in (9).

Lemma 3. The energy functional I , is coercive and bounded
below on /W .

Proof. It z = (u,v) € W, then by (10), the Holder
inequality, and the Sobolev embedding theorem, we get

2"
I, (2) = || 2l - quM, @) (12)
> Slelf - Sy, s 0l
(13)
- (2-9)/2

x (AZ/(Z q) +u 2/(2- ) Iz "q
Hence, we have that I , is coercive and bounded below on
Ny O

Define

D, (2) = (I, (2),2). (14)

Then, forz € ./},

<q>;)ﬂ (2),2)
(15)
=2|lz|l}, -

gk, (2) - 2" J h(x) |u|“v‘8dx
Q

= 2-qlzli- (2" -q) jQ heo ul*Pdx  (16)

= (2" - @)Ky, (2) - (2" -2) |zl 17)
We apply the method in [12]; let

Nru=1z e, 1 (D), (2),2) >0}

‘/V(/{,[l = {Z € ‘/VA,[,L | <(D,A)‘u (Z) ,Z> = }, (18)

N = [z € e <<D'M (2),2) < 0}.

By using equality (17), we get that K, ,(z) > 0 for z €
N :{ v Moreover, we have the following results.

Lemma 4. Let A, be a constant defined as in (8). If 0 <
N/ 4 21D < A then NS, = 0
> N .

Proof. Assuming the contrary, there exist A,y > 0 with 0 <
A 4 21C7D) « A such that /V?L[4 # 0. Then, by (16) and
(17), foru € ./Vg’#, we have

*

2 - 2
Il = 5= [, hoo v = 2

*

K@) 19)

Using (H1) and both the Hélder and the Sobolev inequalities,
we get

D NV
lells > (— 1 /2) , (20)
2" -q

2 1/(2-q)
Izl < <2* _qS q/2|Q| @'-g9)/2" Yoo)
(21)

x (W29 4 Mz/(z—q))lﬂ_
This implies
PRy
_ g \H@D (o e
2<2 q) (( q)yoolm —q)/z)
2% —-q 2%
« §N/2+al-q) _ AL

(22)

which is a contradiction. O

For each z € E with IQ h(x)lul“lvlﬁdx > 0, we write

3 ) 1/(2*-2)
2= q) el ) >0 (23)

tmax =
( (2* = q) [, h () [ul*|v/Pdx

Then, the following lemma holds.

Lemma 5. Suppose that 0 < A9 4 (2120 < A and
z € E with IQ h(x)|u|“|v|ﬁdx > 0. Then, there exist unique
0 <t <ty <t suchthatt'z e N} ,t'z €N, and

I, (t'z) = oJ0f Ly (t2);
B (24)
I, (¢t 2) = supl , (tz).
£0

Proof. Thisis similar to the proof of Hsu [14, Lemma 2.7]. [J

Applying Lemma 4 (/Vi’ﬂ =@ for 0 < A7 4 2D <

A ), wewrite A, = A7 U and define

H Z€N 3,

0, = inf I, (2);
b = 08 D 2) (25)

0,,= inf I, ,(2).
Ap zeNy, A @
The following lemma shows that the minimizers on ./ ,
are usual critical points for I .

Lemma 6. For the case when A € (0,A,), if z, is a local
minimizer for I, , on V) ,, then I;'W(zo) =0inE".



Proof. See Brown and Zhang [15, theorem 2.3]. O

Lemma7. (i) If0 < 2D ;42/(2_‘1) <A,andz = (u,v) €
/V:{,M, then one has

Ky (z) >0, Dy (z) < 0. (26)
In particular, 0 , < 67 , < 0.

(i) If 0 < A9 4 (21D < (gY@ DN and z =
(u,v) € ./VX,H, then onehasu # 0,v £ 0in Q,

_ 1/(2*-2)
wh>(i q) s, 27)
2*—q

and %l’; > d, for some positive constant dy = dy(A, 4, q, N, S,
Yoor 1421)-

Proof. (i) Letz = (u,v) € ./Vj{’y. By (16) and (17), we have

*

2" -2
KW@)>;jEwﬁ>a
(28)

2% -

qmﬁ>jhwwwM%x
q o

Then,

2 q
1 1 1 1) 2-
(-2
q q 2°/2"-q

2-q
= -—zl; <o.

(29)

By the definition of 0, ,, 0] ,, we deduce that 6, , < 6} , < 0.
(ii) Letz € A& X)#; by (16) and the Holder and the Sobolev
inequalities, we get

2 — o x
= qwﬁ<jluwwmw%xs8“Wdé. (30)
=4 5
This implies

2" —q

h(x) lul®vPdx > z

| B 5= ol
T
>(;q>2*_284 VzeN,,.

2% —q #

(31)
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By (13) and (31), we obtain thatu # 0,v # 0in Q, and

I/\,y (Z)

1, 2q (27— ‘J> —q/2) oy 2 -2
> lzld | = 1_ S
lzlg [N||Z||E ( X Yoo 1

. N2
x (20 4 21E0) ]

2%-2
N ( 2-q >Q/( )SqN/4
2% —q

N
oL ( 2-9q > §C-ON/4
N\2*-gq

2" — . .
'<3rﬂ>%§ﬂﬂﬂﬁ*wz
q

2/(2 q 2/(2 q 2—q 2

Thus, if 0 < A7 4 12/ < (g/2)Y* DA | forall z €
W) then

Ly (2) 2 dy (At ¢ N, S, Yos |1Q]) > 0. (33)
O

3. Existence of a Ground State Solution

First of all, we define the Palais-Smale (denote by (PS))
sequences and (PS)-condition in E for I, , as follows.

Definition 8. (i) For y € R, a sequence {z,} is a (PS),-
sequence in E for I) , if I} ,(z,) = y + 0,(1) and I)'w(zn) =
0,(1) strongly in E™" asn — oo.

(i) I , satisfies the (PS)Y—condition in E if any (PS)Y—
sequence {z,} in Efor I) , contains a convergent subsequence.

Proof of Theorem 1. Using the same argument as in Wu
[16, Proposition 9] or Hsu [14, Proposition 3.3], there exists
a minimizing sequence {z,} for I; , on /) , such that

I/I\»# (z,) =0,(1) in E".
(34)

IA,;A. (Zn) = 6/\,}4 +0, (1) >

Since I, , is coercive on J; , (see Lemma 3), we get that

{z,} is bounded in E. Then, there exist a subsequence {z,, =
1 _ 1 1

(u,,v,)} and = (uw, VMt) € E such that

1
U, — u/\,y’ Y

1 . 1
— Viu weakly in H, (Q),

1 1 .
Uy — Uy V= V), almost everywhere in ),

strongly in L° (Q) V1<s<2”.
(35)

1 1
Uy uA,y’ Y V)L,y
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This implies
Ky, (z,) = Ky, (z)lw) +0,(1) asn-— oo. (36)

First, we claim that z/l\’ . is a nontrivial solution of (PM). By
(34) and (35), it is easy to verify that zi’ " is a weak solution of
(P/W). From z, € /) , and (12), we deduce that

q(2 2"q

- 5

Ky, (z,) = qIA 2 (2,) (37)

Letn — ooin (37); by (34), (36), and QM < 0, we get

*

2q

1

Ky, (2,) 2 3 gt > 0. (38)
Thus, z}w € W), is a nontrivial solution of (PM). Now, we
prove that z, — Z}W strongly in E and I W(Z}W) = 0, By
(37),ifz € /VW’ then

-9

1
Dy (@) = lelz - g K@ (39)

In order to prove that I M(z/l\, W) = O, it suffices to recall that
zi’y € A, by (39) and applying Fatou’s lemma to get

1 2% —
Oru < Do (Z/lw) = N“Z}W"; quKM (Z)lw)
2% —
< lim inf <%||Zn||129 - quKw (Zn)> (40)

< llnrgl()%fl)"# (Zn) = 6/\’#.

This implies that I,L#(z/l\)ﬂ) 0, and lim, _, o lz,l% =

1 2 ~ 1 J . . .
IIZMII 5 LetZ, = zn—z/\’ﬂ;then Brézis-Lieblemma [17] implies

N 2

EA PR EA R E 4D
Therefore, z, — z/lw strongly in E. Since I,\,#(Z,l\’#) =
IW(IZ;IWI)
assume that z/l\) " is a nontrivial nonnegative solution of (PA’ ”).

By an argument of Hsu [18, Lemma 4.2], we can deduce that
u/lw # 0 and v/lw # 0 in Q. Finally, from the maximum

_ 1 +
= 0y, and |23 ,| € /7 ,, by Lemma 6 we may

principle [19], we deduce that z/l\) . 18 positive in 0. O
1 1
Remark 9. zy , € /3 and D) (2, ) =0, , =6} .

Proof. We claim that Z/IW e N X’M. On the contrary, assume
that zi’y € ./VX’# (‘/V?LH = ¢ for AZ/(Z—q) + ‘MZ/(Z—q) € (O,Al));
then by Lemma 5, there exist unique t;’ and ] such that
tfz/ll,ﬂ e N :{)# and t;z/l\’ﬂ e N e In particular, we have

t; <t] = 1. Since

d2
ar e

I 0, (62h,) =0, (f1z0,) >0, (42

there exists t; < t < t; such that I)t,”(tfziﬂ) < IA,M(ZZJILM)' By
Lemma 5,

I (t123,) < D (For) < D (522,) = D (Zi,y)(,%)

. . e 1 + 1 _

which is a contradiction. Hence, Z), € N A and I %#(zl»ﬂ) =
_ Nt

9%# = QMV ]

4. Existence of k+1 Solutions

Throughout this section, (H1)-(H2) will be assumed. First of
all, we want to show that I A satisfies the (PS)y-condition in

Efory € (=00, (1/N)(S, p)V/? = Co(A @0 4 2/@-9)), where
C, is defined in the following lemma.

Lemma 0. If{z,} C E is a (PS),-sequence for I, , with z,, —
z weakly in E, then I )'W(z) =

Co(@s N, S, Voo» 1Q]) > 0 such that IW(Z) >
M2/(2—q))'

0 and there exists a constant C, =
~Co(WV D 4

Proof. Let z, = (u,,v,) and z = (u,v). If {z,} is a (PS),-
sequence for I; , with z, — z weakly in E, it is easy to check
that I/'\ (z) = 0in E"*. Then, we get <I)’L,,4(Z)’Z> = 0; that is,
[ PGl vIPdx = |lz]} - Ky ,(2). Thus, by (13), the Holder,
the e Young, and the Sobolev inequalities, we have

1 — _ " *
I (2) 2 el = S5 TpeS 2101 0"

T
- _on\@2-9)/2
X (R0 4 2100 P21 »
o 1 2/@-) | 2I2-0)
> 2l = laly = Co (A7 +p2/7)
= -C, ( 229 #Zl(zfq)) ,
where Cy = Cy(q, N, S, yoo» 1) > 0. O

Lemma 11. If{z,} C E is a (PS),-sequence for I) ,, then {z,}
is bounded in E.

Proof. See Hsu and Lin [8, Lemma 2.3]. O
Recall that
I, VI
Su g = inf E (45)

u,veHL(Q)\{0} (J |ul*|v |ﬁd )2/(a+ﬁ

and let

¢ = %(s%ﬁ)w oGy (WD L 2CD) (g6

where C;, > 0 is given in Lemma 10.

Lemma 12. I, , satisfies the (PS),-condition in E for y €
(=00, c™).



Proof. Let {z,} C E be a (PS),-sequence for I , with y €
(-00,c"). Write z,, = (u,, v,,)). We know from Lemma 11 that
{z,} isbounded in E, and then z,, — z = (4, v) weaklyup toa
subsequence; z is a critical point of I ,. Furthermore, we may

assume that u,, — u, v, — v weakly in HS(Q) andu, — u,
v, — vstrongly in L(Q) forall 1 < s < 2*,andu, — u,
v, — va.e. on Q. Hence, we have that I/'W(z) =0 and
Ky, (2,) = Ky, (2) + 0, (1). (47)
Leti, = u,—u, v, =v,—vandz, = (i,,7,). Then, we obtain
~ 12 2
”Zn"E = "zn”E - ”Z"?E 0y, (1) ’ (48)
and by an argument of Han [20, Lemma 2.1],
AN
(x) |, |* |7, dx
Q
- L B () || v, [Pl (49)

- J B () [ul*v]Pdx + o, (1).
Q

Since IA’H(ZW) =7y +o0,(1), I)'W(zn) = 0,(1) in E!and (47)-
(49), we deduce that

L 1 .
Nl 5 [ h@ P =y -1, @+ 0,0,
(50)
[l - [ h@ a7 fdx =0,

Hence, we may assume that

A A R N A )
Q

Assume that [ # 0; by the definition of S, g, ||y = 1 and
(52), we obtain

S, 2% =5, li o )
wpl T =Sqplim (| h(x) |7, |* |7, dx
@ (53)

< hl ) lim 2" = 1

N/2

which implies that/ > (S, 3)™'". In addition, from Lemma 10,

(50), and (52), we get

r=(5-5 )1+ 0@

2 2
. (54)
N/2 2/(2- 2/(2-
ZN(S(X,/;) —CO(A /( q)+H/( q)))
which is a contradiction. Hence, | = 0; that is, z, — z
strongly in E. 0

From assumption (H2), we can choose r, € (0,1) such
that

B, (a)NB, (aj) =0 fori#j, 1<i, j<k, (55)

Abstract and Applied Analysis

and Uf:IB,O(ai) c Q, where B,O(ai) ={xeRY||x- a;l <1y}
and h(g;) = |h|,, = 1forl <i<k.
Define

v @ (IVal + 199 dx

) = ) = (u, E\ {0},
Q (2) NG (,v) € E\ {0}

(56)

where y;(x) = min{L, |[x — g}, i=1,2..., k.
Then, we have the following separation result.

Lemma 13. If Q;(2z) < ry/3 and Q;(2) < 1,/3 for z € E\ {0},
theni = j.

Proof. For any z € E\ {0} satistying Q;(z) < r,/3 (1 <i <k),
we get
.
Bal > [ vi o (Wl +19) dx
> () (IVul® + |Vv)?) dx
'[Q\Bro (a;) 1// ( ) (57)

J (1vul® + |Vv*) dx,
Q\B, (a))

which implies that

lzl13, = 3] (IVul® + Vv )dx, 1<i<k. (58)

O\B, ()

Hence, from (58), we obtain

20zl > 3 (j
O\B, (a;)

(Ivul® + |Vv*) dx

ro \ G
+j (1vul® + |Vv*) dx> (59)
Q\B,, (a;)
>3zl if i#
which is a contradiction. O
Fori=1,2,...,k, we set
; _ 7,
M, = {u ey, 1Q(2) < ?0}
(60)
i _ T
on, = {u ey, Q) = 30}
and define
0, =infl,,(z), 6, = infI,,(z).
Ay '/Vi\,‘u A’H( ) Ay B./V;’P‘ )L’I‘( ) (61)
Recall that the best Sobolev constant S is defined as
|Vul>dx
S= inf IRN (62)

ueD (N0 ([l dx)m* :
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It is well known that

[N (N - 2] "2

U(x) = [1 L |x|2](N72)/2 (63)

is a minimizer of S, and |VU|§;<RN |U|L2* [RN) = SN2 Fix
a maximum point a; of h (1 < i < k). Lety7; € C;°(Q) be a
cut-off function such that 0 < #; < 1, |[Vy;| < C,and #;(x) = 1
for |x — a;| < ry/2,1;(x) = 0 for |x — g;| > r,. We define

N 2)/2

1; (x)
[s + |x— a| ](N o
(64)

; _ x-a
ul (x) = 22y, (x)U< - ):

where ¢, = [N(N - 2)](N /% and e > 0.
From now on, we assume that N/(N - 2) < g < 2 and
N > 4.

Lemma 14. There exist g, > 0, A, € (0, (q/2)2/(27q)A 1), such
that for € € (0, &,) and ¢ yz/(z_q) € (0,A,), one has

supIA#<t\/_ue,t\f )

t=0

uniformly in i, (65)

where c* is the positive constant given in Lemma 12.
In particular, 0 < 8, , < GW <c'foralll <i<k

Proof. It is well known that (or see Brézis and Nirenberg [21],
Cheng and Ma [22, Lemma 3.2], Struwe [23], and Willem [24,
Lemma 1.46]) ase — 0%,

'uiﬁz*(g) = |U|iz* ®Y) T o (gNiz) , (66)
|Vu o) |VU|iz(RN) +0(N7?). (67)

For N/(N-2)<q<2,N>4ande <ry/2,

iq Q-N)/2, 7 [ X — G )]q N-2
|us ) = JB,U/Z(a,-) [s U (_s dx + O(s )

(N—Z)q_

>ced + O(SN_Z) , where 6 =N -

(68)
Set E; = (\/Eu;_, \/Bui). By Lemma 5, there exists ti >0

such that z. = £z, € N o for 0 < AH@ED @D A
Furthermore,

Q=)=

jﬂ ; (x) .Vui'zdx
_[Q |Vui|2dx

I(Q e Vi @+ &9) [V (1 (3 + 9) U () dy
Jioaye IV (s (@ + ) U () dy

— y;(a)=0 ase— 0.
(69)

7
Hence, there exists €, > 0 for any
_ i Ty
e€(0,%), Q; (z;) <3 (70)
which implies
Z =tz € ./Viw for € € (0,%,), (71)
and then
Orp < G)Ly < I/\#( ) < sgopIM (tt;E;) = stl:OPIA’M (tz_:;)
(72)

First, we consider the functional I;, : E — R defined by

I (1) = 16 1 - j W) [l fdx. (73)

Step I. Show that sup,.olo4(z0) < (1/N)(S,. )"/ + O(N2).
According to condition (H2), we conclude that

[ oo ae

< J |h(x) - h(a;)| |ufe (x)'z*dx
Q

— _a0° i 2
ol ot )

- 0(°).

From (66), (74), h(g;) = 1,and 0 > N -2, we can deduce that

(L h(x) .u’e (x)|2*dx>2/2*

” 2/2*
(|” |L2 © +0(e )) (75)

+0(&)

.
dxl

(74)

'” 12" (Q)

= |U|iz* ([RN) +0 (SN_Z) .
Using (67) and (75), then

'Vu

L*(Q)

(_[Q h(x) |ul (x)| dx)2/2

2 N-2
_ IVl +O (eN?) (76)
|U|Lz (RY) +0(eN?)
=S+0("7?).
Since
sup <ét2 - Et2 )
20 \ 2 2"
(77)

1/ A M2
=_<W> , forany A>0, B>0,



by (7) and (76), we conclude that

suply o (tE’s)
£>0

) N/2

1 (a+ p) |Vui

L*(Q)

(oc“/Zﬁﬁ/Z JQ h(x) |uf€ (x)|2*dx)2/2*

< (505)"7 +O().

(78)

Step II. Let C,, be the positive constant given in Lemma 10. We
can choose §; > 0 such that forall 0 < 2@ 4 yz/(zfq) <dy,
we have

¢ = %(smﬁ)wz -Co (Azmiq) + #2/(27‘1)) > 0. (79)

Since I) , is continuousin E, I) ,(0) = 0,and {Ei} is uniformly
bounded in E for any 0 < & < min{g, r,/2} (see (67)), then
there exists £, > 0 (independent of €) such that for any 0 <
€ < minfgy, r4/2},

sup I, (t?s) <c*, uniformly in i,
0<t<t,

(80)
VO < /\2/(2—q) +‘u2/(2—q) < 81.

According to condition (H1), f;, = min 5 f(x) > 0and
Jmin = Min_5g(x) > 0. Applying the results of Step I and
(68), we have that for N/(N —2) < g < 2and N > 4,

supl P (tEL)

t>t,
i 11 i
= sup (1o (121) - K ()

t>t,

oyt
< (5up) rO (M) - mew
X J ui_ 1ax
Bry2(@;)
< (5e)" +0() - A4 w0, (),

wherem = min{(xq/zfmin, ﬁq/zgmin} and6 = N-((N-2)9)/2.
Therefore, we can choose A = O;(¢™) and p = O,(e™)
such that

2_
9 cq, < (N-2)-0. (82)
q
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This implies that

min {1}, 7,} + 6 < ZL min (1,,7,),

min {1, 7,} +6 < N -2,

(A + [/l) Ol (ge) — O1 (gmm{Tl)Tz}*-@) ’

(83)

/12/(2*11) + MZ/(Z*Q) =0, (82/(2*4) min{TpTz}) )

There exist §, > 0, g, € (0, min{ey, r,/2}) such that for all
0 < A0 4 217D < 5, and 0 < & < g, we have

0O (stz) _ (A + #) 0, (89) <-C, (/\2/(2—:1) + MZ/(Z*q))'
(84)

Thus, we can choose A, = min{(q/z)z/(z_q)A1,81,82} > 0.
Then, for all A/~ 4 [42/ =) ¢ (0, A,), there holds

supI/W (tfl) <c" uniformly in i. (85)
>0

Step TII. For 0 < A0 4 2D < A and 0 < € < g, by
Lemma 7, (72), and (85), we get

Vli<i<k. (86)
O

0<6;,<6,,<h,(z)<c

To proceed, we need to quote the concentration-
compactness principle (see [24, 25]) about the case of systems.

Lemmal5. Let {u,,v,} C Hé (Q) x Hé (Q) be a sequence such
that

u, —u, v,—v weaklyin Hé Q);

n

u, —u, v,—v ae onf,

lV (un - u)lz + |V (Vn - V)|2 - ﬁ

(87)
weakly in the sense of measures,
|un - u|a|vn - v|ﬁ -7
weakly in the sense of measures.
Then, it follows that
. 2 2
llrll‘llsolip JRN (|Vun| + Vv, )dx
- J (vul + 199 dx+ ]
® 88)

timsup [ ol = |l i+ 5,
n—oo JRN RN

PP < s -

Moreover, ifu = v = 0 and IWIIZ/(‘”’” = S;’lﬁllﬁll, then ji and v
concentrate at a single point.
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Proof. See Han [20, Lemma 2.2]. O

Lemma 16. For anyi € {1,2,...,k}, there exist A; > 0 such
that

1

gf\’ﬂ > ﬁ(smﬁ)N/z

V0 < AP 4 D R (89)

Proof. Fixi € {1,2,...,k}. Assume the contrary. There then
exists a sequence {(A,, 4,)} with (A,,,4,) — (0,0) asn —
00 such that éﬂn,m — ¢ < (l/N)(So‘,ﬁ)N/2 asn — 0.
Consequently, there exists a sequence {z, = (u,,v,)} C
a‘/V;an such thatasn — oo,

2 2
J, (v, 9, ) dx
= L (/\nf (x) [ + t,9 () |vn|q) dx (90)

+ J h(x) |un|a|vn|ﬁdx,
Q

1

Dy (20) = € = 5 (Sup

N/2
N (Sxs)

as n — 00. (91)

It then follows easily that {z,)} is uniformly bounded in E, and
since f and g are continuous on Q, we obtain

Ky, (2) = | O 0Ol + g (0|, [) s

=0,(1)

(92)

as n — 0.

From (90), and by the Hélder and the Sobolev inequalities,
we can fix m,, > 0 such that

J (|Vun|2 + |an|2)dx > my,

? (93)
J h(x) |un|a|vn|ﬁdx > my.
o

Thus, up to a subsequence, we infer that

nli_)ngo JQ (|Vun|2 + |Vv,,|2) dx

(94)
- lim j B (x) [, P = 1> 0.
n—00 Q

Furthermore, by |h|;e(q) = 1, we deduce

I= nli_}n&) L h (x) |un|“|vn|ﬁdx
< |h|Lm(Q)nangOJ lunlalvnvgd'x
¢ (95)

« 272
<5 tim ([ (v + 9w, ) dx)

<SP,

9
which implies
1> (Sup) (96)
On the other hand, we have, asn — oo,
Lo L o L a, B
= el = o2 | neo [y Fax
- lI</\y,,;4,, (Zn) +0, (1)
1 (97)
= IA,,,;A" (Zn) + 0, (1)
1 N/2
< E(Smﬁ) .
Hence, together with (96), we get
1= (Sup)" (98)
and then from (95), we also have
lim J h (%) [uy|[v|Pdx = lim J |||V, Pdx = 1.
n— 00 Q n— 00 Q
(99)
Therefore,
Jim [ [l P = 1 (100)

SetZ, = (ii,,v,) = z,,/l|z,|l; then, we have | Z,,| = 1. Moreover,
by (94),(98), and (100), we get

ap B
IQ |un| |vn| dx

. = 1By 1 _ o N/(N-2)
Jim L |t [V, dx = ”lgréo—“znnz* =S, :
(101)
Thus, up to a subsequence, we may assume that
i, = u, v,—v weaklyin Hé Q)
u, —u, v,— v ae on Q,
- 2 - 2 -
|V (@, —u)|"+|V (¥,-v)| — @
(102)

weakly in the sense of measures,
~ o~ B ~
i@, - u|*[p, -] =%
weakly in the sense of measures.

Since ) is bounded, from (101) and Lemma 15, we deduce that

= [ (v e ) dsefal. a0y
Q
SHOV <[ Bl 0
Q
1517 < 5.5 |l - (105)
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If JQ(|VM|2 +|Vv[*)dx #0 and ||| # 0, we deduce that

>(a+ﬁ)/2

>

1= ([ (vl +19) dx-+ |
(

(ax+)/2
J (IVul® + [VvP) dx) + [P
Q

(106)

a,

(a+p)/2 ay B (@+B)/2 |~
>S 8 J;) [ue||v| dx+Sa’ﬁ 7l

_ Qatp)/2 o-N/(N-2)
_Soc,ﬁ -S(M6

:l’

which is a contradiction.

Thus, [ (IVul® + [Vv[*)dx = 0 or [l@l = 0. If @] =
0, from (103)-(105), we get fQ(IVMI2 + [Vy[Pdx = 1 and
[, lul®IvPdx = s;}Z“N‘”. Then,

Vul? + Vo) dx
.[Q (| |+ |V ) )
(fg |u|“|v|ﬁdx)2/<fx+ﬁ) 0

(107)

which means that Sap 1s achieved by (u, v). It is impossible
since S, 3 cannot be achieved on any bounded domain Q.
Hence,

J (Ivul® + Vv )dx =0,  |a|=1.  (108)
Q

Then, u = v = 0 on Q, and from (103), (104), we easily have

|72/ @R = ;lﬁ = ;’lﬁllﬁll. By Lemma 15, we conclude that

x, € Q such that

Vi, |* + V> — 8,

weakly in the sense of measures,

B /(N-2) (103)
~ %)~ —N/(N-2
|un| |Vn| _\Sa,ﬂ 6"0
weakly in the sense of measures.
Observe that Q;(z,,) = Q;(z,) = 1,/3;
- im Q (z,)
3 n— 00
(110)

~ 12 ~ 12
o Jow (x)(IVztnl kil L
n= 00 jQ(|van| +|v,[*) dx

which implies that x, # a; by the definition of y;(x). On the
other hand, from (95) and (101), we get

Abstract and Applied Analysis

n

NN () = lim Jgh(x) 1,7,

&%, n— 00

= lim JQ h(x) l”nla|"n|ﬁdx

e lzl”
[ leta] |yl lx 1)
N

- lim J 17,7, |Pdx
Q

n— 0o
_ o N/(N-2)
= Sd,ﬁ S
which is impossible, because h(x) is not a constant function
by condition (H2). O

Throughout this section, take A* = min{A ,, minlgigkxi};
A, and A; are as in Lemmas 14 and 16. Using the idea of
Tarantello [12], we have the following results. For z = (u, v),
¢ = (¢, 9,) € E, we define

z2=¢=(u-9,v-9,),

(z,9) = J (VuVe, + VvV, ) dx,
Q

Gru(z0) = JQ (/\f () || *ug, + ug (x) |v|q72wp2) dx,

« e
H(z,9)= m Lh(x) u 21,t|v|ﬁ<p1dx

B
+B

+

| B 12,
Q

112)
Lemma 17. For each 0 < A¥@™D 4 (2% < A* gnd z =
(u,v) € /Viw (1 <i< k), there exist € > 0 and a differentiable

function& : B.(0) C E — R such that&(0) = 1,&(¢)(z—¢) €
./Viwfor all ¢ € B.(0) and

) 2(z,¢) - 4G, (z,9) - 2"H (2,9)
0 5 = 5
O == -G - e

forallp = (¢,,¢,) € E.

(113)

Proof. For z € /V;H,

F,(&¢)= (I, (E(z-¢)).E(z—¢))
=8z - ¢’ -Gy, (z -z - ¢)

~EPH(z - ¢z - ¢).
Then, F,(1,0) = (I)'LH(z),z) =0 and

define a function F, : Rx E — R by

(114)

d
d—EFZ (1,0) = 2|z|l; - 4Gy, (2,2) — (a« + B) H (2, 2)
(115)

=(2-9)lzlz- (2" -9)H(z,2) < 0.
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According to the implicit function theorem, there exist € > 0
and a differentiable function & : B,(0) ¢ E — R such that

£(0)=1;

2(z,9) —qG), (z,9) —2"H (2, ¢)
2-q)lzl} - 2* -q)H(z,2) (116)
F,(§(9),9) =0 Vg€ B, (0),

which is equivalent to

(0, E(9)(z-9)),E(9) (z-9)) =0 Vg€ B(0e);
117)

(£0),9) =

that is, £(¢)(z — ¢) € oW for all ¢ € B,(0). Furthermore, by
the continuity of the functions & and Q;, we have that

2-9)[E(@) (z-9)|’
-(2"-9)H(E(9) (z-9).8(9) (- 9)) <0, (118)

Q; (&(9)(z-9)) < g(’

still holds if € is sufficiently small. This implies that £(¢)(z —
p)eN ’)W. O

Proposition 18. If 0 < AY®P 4 229 < A* then there
exists a (PS)eiM -sequence {z,} C N inE for I .

Proof. If /V i

./V’M = ./V’M U a./ViW foralli = 1,2,...,
from Lemmas 14 and 16, that

denotes the closure of A" 0 at first we note that

k. It then follows

9;"# < 53# fori=1,2,....,k 0< A4 /42/(27‘7) <A".
(119)

Hence,
O, =inf{L, () |z | fori=12,.. .k (120)

Now, we fixi € {1,2,...,k}. Applying the Ekeland variational
principle [26], there exists a minimizing sequence {z,} c
N iw such that

D(2) <6, 5
I)w( )<I/W((P "(p z“E foreach<p€./V
(121)

Using (119), we may assume that z/, € 4’ i\,# for n sufficiently

large. Applying Lemma 17 with z = 2!, we obtain the function

&, : B, (0) — R for some ¢, > 0 such that §,(¢)(z, — ¢) €

/Viw forall ¢ € Ben(O). Let0 < 6 <¢,and z € E\ {0}; we set
0z

122
%= zlls (122

1

and zg = &,(95) (2}, — @). Since z5 € ./Véw, we deduce from
(121) that
I, (z5) - IAM( ) > ——”25 zZ " (123)

By the mean-value theorem, we obtain

(B (2): (2 =2.)) + o ([ -

2, E) = _%"25 B Z;“E
(124)

Therefore,

(D (2)-=00) + € (95) = 1) (B (1) (2= 20))

ole)
Zu|lp) -

R
(125)

Now, we observe that &,(¢s)(z, — ¢5) € N f\)#, and conse-
quently we get from (125) that

-5 (i <Zf«>ﬁ>

f (‘Ps
E (4)) < (Z(S) 6 (Pé) (Z _(P6)>
+ (&, (9s) - <I/\;4( ") - IAM(Zé) (21— 95))

2=z =2l o (= -=l,)
(126)

Then, we write the pervious inequality in the following form:

(1) 2-)

i i
B O P )
- on 1)

G0 () -1 (2 - )

(127)

We can find a constant C > 0 independent of § such that

25 - 23] < 8+ C (&, (9) - 1D

(128)
. |En (§D8) - 1| ]
tim B e )] <
For a fixed n,let § — 0 in (127). Using the fact that
. il _
limz5 -z, = (129)
we obtain
i C
I (7 L> <= 130
< w(@) ) <5 (10
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This implies
Iy (z;) = f\)ﬂ +0,(1), I)'W (z;) =0,(1) in E.
(131)
O

Now, we complete the proof of Theorem 2. By Lemmas 12,
14 and Proposition 18, for all G [42/ 2= ¢ (0, A¥), there
existsa sequence {z,} ¢ 47  and z; = (ug, vp) € E, 1 <i <k,
such that
IA,# (Z;) = i\’# +0, (1) N

Ii,u (z,) =0,(1) inE", (132)
Z; — zf) strongly in E.

Moreover, {z;} c N X)H, and by Lemma 7 (ii), we get zg €
./I/X’#,ug % 0, vg # 0in Q,

) 9 1/(2*-2)
o> (5=2) s

(133)

3’#20;’#>0 fori=1,2,...,k.

Thus, 2z, is a nontrivial solution of the problem (P/W) and
I,\’M(zg) GIM fori = 1,2...,k. Set u, = max{u,0}
and v, = max{v,0}. Replace the terms IQ () |ul*|v|Pdx
and _[Q(Af(x)lulq + pg(x)lv[")dx of the functional I , by
jQ h(x)ufvfdx and JQ()tf(x)uﬁ]r +‘ug(x)vz)dx, respectively. It
then follows that z is a nonnegative solution of the problem
(P/W). Applying the maximum principle [19], } is a positive
solution of the problem (P/Lu)' Since Q;(z}) < 1,/3,
D €N Z €N, Ny, fori=12,...k
(134)

where z)lw is a positive solution of equation (PA,H) as in

Theorem 1. From Lemmal3, we conclude that /47 , are

disjoint for i = 1,2...,k. This implies that 2, (1 < i < k)
1 .. . .

and z; , are distinct positive solutions of the problem (PA)H>'
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