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This paper deals with the derivation and the mathematical analysis of an autonomous and nonlinear ordinary differential-based
framework. Specifically, the mathematical framework consists of a system of two ordinary differential equations: a logistic equation
with a time lag and an equation for the carrying capacity that is assumed here to be time dependent. The qualitative analysis
refers to the stability analysis of the coexistence equilibrium and to the derivation of sufficient conditions for the existence of Hopf
bifurcations. The results are of great interest in living systems, including biological and economic systems.

1. Introduction

In the last three decades, themathematical modeling of living
systems has gained much attention and different mathemat-
ical methods have been developed in an attempt to obtain a
mathematical theory. Living systems, differently from physi-
cal systems, requiremore attention and a differentmathemat-
ical treatment depending on the system under investigation.

Different mathematical and also computational frame-
works have been proposed whose difficulty is strictly related
to the phenomena of the system that has to be modeled.
Indeed, if we are only interested in the time evolution of the
density of the elements in the system (no spatial dynamics),
the framework of the ordinary differential equations can be
employed; see the review paper [1]. It is worth stressing that
this framework requires the definition of a differential equa-
tion for each element of the system; therefore, if the number
of elements of the system is very large, the applicability of this
framework may be unfeasible. When the latter occurs, a con-
tinuummechanics approach can be performed; this approach
consists in deriving mass, momentum, and energy conser-
vation equations by phenomenological models; see the book
[2, 3].The description is obtained bymeans of suitable partial

differential equations. An intermediate approach is that pro-
posed by the kinetic theory. This approach allows the deriva-
tion of integrodifferential equations by considering the role
of the interactions that can be conservative, nonconservative,
and mutative; see the recent review paper [4].

The time evolution of the elements of the systemmodeled
with the previouslymentionedmathematical frameworks has
in common the characteristic that the description at a time
𝑡 depends on the description at the same time 𝑡. This is an
approximation of the reality because the phenomena that
occur at a time 𝑡 are strictly related to the behavior of the
system at a previous time 𝑡−𝜏, where 𝜏 is a time lag.Therefore,
recently the time delay has been inserted into mathematical
models for the biological and economical systems, especially
in the ordinary differential equations-based models; see,
among others, the review paper [5] and papers [6–14].

This paper is devoted to the definition of a mathematical
framework that can be proposed for the modeling of living
systems, especially of biological and economical nature. The
framework proposed in the present paper is based on
ordinary differential equations. Specifically, themathematical
framework consists of a system of two nonlinear ordinary
differential equations: a logistic equation with a time lag
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(see papers [15, 16]) and an equation for the carrying capacity
that is assumed to be time dependent.The qualitative analysis
refers to the stability analysis of the coexistence equilibrium
solution and to the derivation of sufficient conditions for the
existence of Hopf bifurcations.

The rest of the paper is organized as follows. After this
introduction, Section 2 deals with the definition of the
assumptions of the system to be modeled and the derivation
of the relative model. Section 3 focuses on the qualitative
analysis of the framework and specifically is concerned with
the coexistence equilibrium solution and the related stability
analysis including sufficient conditions for the existence of
a Hopf bifurcation. The quality of the Hopf bifurcation, the
stability of the bifurcating periodic trajectory, and the relative
period are investigated in Section 4. Finally, we conclude the
paper and present applications and research perspectives in
Section 5.

2. The Underlying Mathematical Framework

This section is concerned with the derivation of the mathe-
matical framework that can be proposed for the modeling of
biological and economic systems.

Specifically, we consider two cooperating populations
whose density is denoted by 𝜅 = 𝜅(𝑡) and 𝑛 = 𝑛(𝑡), respec-
tively. Furthermore, we assume that the population 𝑛 is
defined by a logistic term with time delay 𝜏 such that the
carrying capacity is time dependent and coincides with 𝜅. Let
𝑟 be the cooperation rate of population 𝑛, 𝑐 the cooperation
rate of population 𝜅, and 𝜆 the decrease rate of the population
𝜅. Bearing all the above assumptions in mind, the mathemat-
ical models thus reads as follows

�̇� (𝑡) = 𝑐𝑛 (𝑡) 𝜅 (𝑡) − 𝜆𝜅 (𝑡) ,

̇𝑛 (𝑡) = 𝑟𝜅 (𝑡) 𝑛 (𝑡) [1 −
𝑛 (𝑡 − 𝜏)

𝜅 (𝑡)
] .

(1)

Themathematical framework (1) thus consists of a system
of autonomous nonlinear ordinary differential equationswith
a time delay and is characterized by three nonnegative para-
meters that have specific meanings and can be tuned with
empirical data.

It is worth stressing that the mathematical framework
(1) summarizes different mathematical models presented in
the literature. Indeed, if 𝜏 = 𝜆 = 0, we obtain the models
analyzed in papers [17, 18] where technological innovation is
the driving force behind human population growth; see also
papers [19, 20] where the authors assume a positive feedback
between technology and population; for 𝜏 = 0 and 𝜆 = 𝑟, we
obtain the model analyzed in paper [21].

3. Equilibrium Points and Stability Analysis

This section is devoted to analytical investigations on the
existence and stability analysis of the equilibria of the mathe-
matical model (1). The following proposition states the num-
ber of nontrivial equilibrium points.

Proposition 1. Themathematical model (1) admits the unique
nontrivial equilibrium point (𝜅

∗
, 𝑛
∗
) = (𝜆/𝑐, 𝜆/𝑐).

Proof. Theproof of this proposition follows by observing that
equilibrium points of system (1) correspond to solutions of
the algebraic system �̇� = ̇𝑛 = 0. Since themathematicalmodel
(1) is composed of autonomous differential equations, then
the equilibrium points of the system (1) coincide with those
of the undelayed counterpart, namely, when 𝜏 = 0.

Straightforward calculations show that the characteristic
equation of the linearized system at (𝜅

∗
, 𝑛
∗
) of themathemat-

ical model (1) model reads as follows:

𝜉
2

+ 𝑟𝑛
∗
𝜉𝑒
−𝜉𝜏

− 𝑐𝑟𝑛
2

∗
= 0, (2)

where, for notational convenience, we have 𝑛
∗
= 𝜆/𝑐.

The stability analysis of the nontrivial equilibrium (𝜅
∗
, 𝑛
∗
)

will be performed by examining first the undelayed system.
Thus, if there is no time delay, (2) reads as follows:

𝜉
2

+ 𝑟𝑛
∗
𝜉 − 𝑐𝑟𝑛

2

∗
= 0, (3)

and the associated eigenvalues are

𝜉
1,2

=
−𝑟𝑛
∗
± 𝑛
∗

√𝑟
2
+ 4𝑐𝑟

2
. (4)

Looking to formula (4), we have two real eigenvalues with
opposite signs.Then, the equilibriumpoint (𝜅

∗
, 𝑛
∗
) is a saddle

point (system instable).
Suppose now that 𝜏 > 0.The instability of the equilibrium

pointmay change when the characteristic equation of the sys-
tem under consideration has zero or a pair of pure imaginary
eigenvalues.The former case cannot happen since it occurs if
𝜉 = 0 in (2) and it is immediately seen that this leads to the
contradiction −𝑐𝑟𝑛

2

∗
= 0. Now, we study when (2) has pure

imaginary roots 𝜉 = ±𝑖𝜔, where 𝜔 is a positive real number.
Indeed, if 𝜉 = 𝑖𝜔,𝜔 > 0, is a root of (2), then the following

identity must be true:

−𝜔
2

+ 𝑟𝑛
∗
𝑖𝜔𝑒
−𝑖𝜔𝜏

− 𝑐𝑟𝑛
2

∗
= 0, (5)

and distinguishing between the real and imaginary parts, we
obtain the following two equations:

𝑟𝑛
∗
𝜔 cos (𝜔𝜏) = 0 ⇒ cos (𝜔𝜏) = 0,

𝜔
2

+ 𝑐𝑟𝑛
2

∗
= 𝑟𝑛
∗
𝜔 sin (𝜔𝜏) .

(6)

The solution of (6) is 𝜔𝜏 = 𝜋/2 (𝜔𝜏 = (3𝜋/2), in particular
the other solution has been excluded because it implies the
absurd 0 < 𝜔

2

+ 𝑐𝑟𝑛
2

∗
= 𝑟𝑛
∗
𝜔(−1) < 0) and

𝜔
2

− 𝑟𝑛
∗
𝜔 + 𝑐𝑟𝑛

2

∗
= 0, (7)

whose solutions read as

𝜔 =

𝑟𝑛
∗
± √(𝑟𝑛

∗
)
2

− 4𝑐𝑟𝑛
2

∗

2
= 𝑛
∗
(
𝑟 ± √𝑟

2
− 4𝑐𝑟

2
) .

(8)

The following lemma holds.
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Lemma 2. Let 𝑟 be the population growth rate of population 𝑛

and 𝑐 the cooperation rate of population 𝜅.

(1) If 𝑟−4𝑐 < 0 holds true, then (7) does not admit positive
roots. Then, there is no stability switch for system (1).
Moreover, since (𝜅

∗
, 𝑛
∗
) is unstable when 𝜏 = 0, it

remains unstable for all 𝜏 > 0.
(2) If 𝑟 − 4𝑐 ≥ 0 holds true, then (7) has a unique positive

root 𝜔
0
, if 𝑟 − 4𝑐 = 0, and admits two different positive

roots 𝜔
±
, respectively, if 𝑟 − 4𝑐 > 0. As 𝜏 increases,

stability switches may occur.

It is worth noting that it may be seen easily that the purely
imaginary roots𝜔

0
and𝜔

±
are simple.Moreover, from (6), we

also obtain a sequence of the critical values of 𝜏 defined as fol-
lows:

𝜏
0

𝑗
=

𝜋

2𝜔
0

+
2𝜋𝑗

𝜔
0

, 𝜏
±

𝑗
=

𝜋

2𝜔
±

+
2𝜋𝑗

𝜔
±

(𝑗 = 0, 1, 2, . . .) .

(9)

Lemma 3. Let 𝑟 be the population growth rate of population 𝑛

and 𝑐 the cooperation rate of population 𝜅.

(1) If 𝑟2−4𝑐𝑟 = 0, then (2)with 𝜏 = 𝜏
0

𝑗
has a pair of simple

pure imaginary roots ±𝑖𝜔
0
.

(2) If 𝑟2 − 4𝑐𝑟 > 0, then (2) with 𝜏 = 𝜏
±

𝑗
has two pairs of

simple pure imaginary roots ±𝑖𝜔
±
.

3.1. Existence of Hopf Bifurcations. In this subsection, suffi-
cient conditions for the existence of a Hopf bifurcation are
stated. The preliminary result is contained in the following
lemma.

Lemma 4. Let 𝜉(𝜏) = ](𝜏) + 𝑖𝜔(𝜏) denote the roots of (2)
near 𝜏 = 𝜏

∗
satisfying ](𝜏

∗
) = 0, 𝜔(𝜏

∗
) = 𝜔

∗
, where 𝜏

∗
∈

{𝜏
0

𝑗
, 𝜏
±

𝑗
} (𝑗 = 0, 1, 2, . . .) and 𝜔(𝜏

∗
) ∈ {𝜔

0
, 𝜔
±
}, with 𝜏

0

𝑗
, 𝜏
±

𝑗
and

𝜔
0
, 𝜔
±
being as defined in (8) and (9), respectively.

(1) Let 𝑟 − 4𝑐 = 0, so that 𝜔
∗

= 𝜔
0
. One has

𝑑[Re 𝜉(𝜏
∗
)]/𝑑𝜏 = 0. Hence, the transversality condi-

tion 𝑑[Re 𝜉(𝜏
∗
)]/𝑑𝜏 ̸= 0 does not hold.

(2) Let 𝑟 − 4𝑐 > 0.

(a) If 𝜔
∗

= 𝜔
+
, then the transversality condition

reads
𝑑 [Re 𝜉 (𝜏

∗
)]

𝑑𝜏
> 0. (10)

(b) If 𝜔
∗

= 𝜔
−
, then the transversality condition

reads
𝑑 [Re 𝜉 (𝜏

∗
)]

𝑑𝜏
< 0. (11)

Proof. Differentiating (2) with respect to 𝜏 and using (2), we
get

𝑑𝜉

𝑑𝜏
=

(𝑐𝑟𝑛
2

∗
− 𝜉
2

) 𝜉
2

2𝜉
2
+ (𝑐𝑟𝑛

2

∗
− 𝜉
2
) (1 − 𝜉𝜏)

. (12)

Substituting 𝜉 = 𝑖𝜔
∗
into (12), flipping it over, and taking its

real part, one has

Re(𝑑𝜉

𝑑𝜏
)

−1𝜏=𝜏
∗

=
2

𝑐𝑟𝑛
2

∗
+ 𝜔
2

∗

−
1

𝜔
2

∗

. (13)

Using (7), then (13) reads

Re( 𝜉

𝑑𝜏
)

−1𝜏=𝜏
∗

=
𝜔
2

∗
− 𝑐𝑟𝑛
2

∗

(𝑐𝑟𝑛
2

∗
+ 𝜔
2

∗
) 𝜔
2

∗

=
2𝜔
∗
− 𝑟𝑛
∗

(𝑐𝑟𝑛
2

∗
+ 𝜔
2

∗
) 𝜔
∗

.

(14)

Therefore,

sign{
𝑑 [Re 𝜉(𝜏)]

𝑑𝜏

𝜏=𝜏
∗

} = sign{Re(𝑑𝜉

𝑑𝜏
)

−1𝜏=𝜏
∗

}

= sign {2𝜔
∗
− 𝑟𝑛
∗
} .

(15)

Then, from (7), we have the following results.

(i) Let 𝑟−4𝑐 = 0; then𝜔
∗
= 𝜔
0
, so that sign{2𝜔

∗
−𝑟𝑛
∗
} =

0.
(ii) Let 𝑟 − 4𝑐 > 0.

If 𝜔
∗

= 𝜔
+
, then sign{2𝜔

∗
− 𝑟𝑛
∗
} =

sign{𝑛
∗

√𝑟
2
− 4𝑐𝑟} = +1.

If 𝜔
∗

= 𝜔
−
, then sign{2𝜔

∗
− 𝑟𝑛
∗
} =

sign{−𝑛
∗

√𝑟
2
− 4𝑐𝑟} = −1.

This completes the proof.

Bearing the above analysis in mind, we have that the root
𝜉(𝜏) of (2) crosses the imaginary axis from left to right at 𝜏 =

𝜏
+

𝑗
(because 𝑑[Re 𝜉(𝜏+

𝑗
)]/𝑑𝜏 > 0) and from right to left at 𝜏 =

𝜏
−

𝑗
(because 𝑑[Re 𝜉(𝜏−

𝑗
)]/𝑑𝜏 < 0), as 𝜏 increases.

Summarizing the above remarks and combining the
lemmas, we have the following results on the distribution of
roots of (2).

Theorem 5. For the system (1), the following statements hold
true.

(1) If 𝑟 − 4𝑐 < 0, the equilibrium (𝜅
∗
, 𝑛
∗
) = (𝜆/𝑐, 𝜆/𝑐) is

unstable for all 𝜏 ≥ 0.
(2) If 𝑟 − 4𝑐 > 0, we have two cases:

(a) the equilibrium (𝜅
∗
, 𝑛
∗
) is unstable for all 𝜏 ≥

0 and undergoes a Hopf bifurcation at (𝜅
∗
, 𝑛
∗
)

when 𝜏 = 𝜏
+

𝑗
(𝑗 = 0, 1, 2, . . .);

(b) the equilibrium (𝜅
∗
, 𝑛
∗
) is unstable for 𝜏 ∈ [0, 𝜏

−

0
)

and stable for 𝜏 > 𝜏
−

0
. Moreover, it undergoes a

Hopf bifurcation at (𝜅
∗
, 𝑛
∗
) when 𝜏 = 𝜏

−

𝑗
(𝑗 =

0, 1, 2, . . .).

Remark 6. In the previous theorem, the dynamics proprieties
of the mathematical model are missing when 𝑟 − 4𝑐 = 0.
Indeed, in this case, the transversality condition disappears.
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4. Qualitative Analysis of the Hopf Bifurcation

Following the normal form method and the center manifold
theory [22], this section is concerned with the derivation of
explicit formulas for determining the properties of the Hopf
bifurcation (it exists when 𝑟−4𝑐 > 0, seeTheorem 5) at critical
value 𝜏

∗
= 𝜏
−

𝑗
or 𝜏+
𝑗
, where 𝜆(𝜏

∗
) = 𝑖𝜔

∗
.

In what follows, we denote by 𝐶 = 𝐶([−𝜏
∗
, 0],R2) the

space of the continuous vector function

V : [−𝜏
∗
, 0] → R

2

, (16)

and by 𝐶 = 𝐶([0, 𝜏
∗
],R2) the space of the continuous vector

function

V : [0, 𝜏
∗
] → R

2

. (17)

Setting 𝜇 = 𝜏 − 𝜏
∗

∈ R and applying to the mathematical
model (1) the change of variables

𝑢
1
= 𝜅 − 𝜅

∗
,

𝑢
2
= 𝑛 − 𝑛

∗
,

(18)

themodel is equivalent to the functional differential equation
system:

�̇� (𝑡) = 𝐿
𝜇
(𝑢
𝑡
) + 𝑓 (𝜇, 𝑢

𝑡
) , (19)

where

(i) 𝑢 = (𝑢
1
, 𝑢
2
),

(ii) 𝑢
𝑡
(𝜃) = 𝑢(𝑡 + 𝜃) for 𝜃 ∈ [−𝜏

∗
, 0],

(iii) 𝐿
𝜇
: 𝐶 → R2 reads as

𝐿
𝜇
(𝜑) = 𝐵

1
𝜑 (0) + 𝐵

2
𝜑 (−𝜏
∗
) , (20)

where

𝐵
1
= [

0 𝑐𝑛
∗

𝑟𝑛
∗

0
] , 𝐵

2
= [

0 0

0 −𝑟𝑛
∗

] , (21)

(iv) 𝑓 : R × 𝐶 → R2 reads as

𝑓 (𝜇, 𝜑) = [
𝑓
1

𝑓
2

] , (22)

where

𝑓
1
= 𝑐𝜑
1
(0) 𝜑
2
(0) , 𝑓

2
= 𝑟𝜑
1
(0) 𝜑
2
(0) − 𝑟𝜑

2
(0) 𝜑
2
(−𝜏
∗
) .

(23)

Lemma 7. Let 𝐿
𝜇
(𝜑) be the vector function defined by (20).

Then, there exists a 2 × 2 matrix-valued function of bounded
variation 𝜂(𝜃, 𝜇), for 𝜃 ∈ [−𝜏

∗
, 0], such that

𝐿
𝜇
𝜑 = ∫

0

−𝜏
∗

𝜑 (𝜃) 𝑑𝜂 (𝜃, 𝜇) . (24)

Proof. The proof is obtained by applying the Riesz represen-
tation theorem. Indeed, we may take

𝜂 (𝜃, 𝜇) = 𝐵
1
𝛿 (𝜃) + 𝐵

2
𝛿 (𝜃 + 𝜏

∗
) , (25)

where 𝛿(𝜃) is the Dirac delta function.

Definition 8. Let 𝜂(𝜃, 𝜇) be the 2 × 2 matrix-valued function
𝜂(𝜃, 𝜇) of bounded variation of Lemma 7. For 𝜑 ∈ 𝐶, one
defines the following operators:

𝐴 (𝜇) (𝜑) :=

{{{{

{{{{

{

𝑑𝜑 (𝜃)

𝑑𝜃
, 𝜃 ∈ [−𝜏

∗
, 0) ,

∫

0

−𝜏
∗

𝑑𝜂 (𝑠, 𝜇) 𝜑 (𝑠) , 𝜃 = 0,

(26)

𝑅 (𝜇) (𝜑) := {
0, 𝜃 ∈ [−𝜏

∗
, 0) ,

𝑓 (𝜇, 𝜑) , 𝜃 = 0.
(27)

Remark 9. A straightforward analysis shows that the system
(19) is equivalent to

�̇� (𝑡) = 𝐴 (𝜇) 𝑢
𝑡
+ 𝑅 (𝜇) 𝑢

𝑡
, (28)

where 𝐴(𝜇)(𝜑) and 𝑅(𝜇)(𝜑) are the operators (26) and (27),
respectively, and 𝑢

𝑡
= 𝑢(𝑡 + 𝜃), for 𝜃 ∈ [−𝜏

∗
, 0].

Definition 10. Let 𝜂(𝜃, 𝜇) be the 2 × 2matrix-valued function
𝜂(𝜃, 𝜇) of bounded variation of Lemma 7. For 𝜓 ∈ 𝐶 =

𝐶([0, 𝜏
∗
],R2), one defines the following operator:

𝐴
∗

(𝜇) 𝜓 (𝑠) =

{{{

{{{

{

−
𝑑𝜓 (𝑠)

𝑑𝑠
, 𝑠 ∈ (0, 𝜏

∗
] ,

∫

0

−𝜏
∗

𝑑𝜂 (𝜁, 𝜇) 𝜓 (−𝜁) , 𝑠 = 0,

(29)

and one defines the following bilinear form:

⟨𝜓 (𝑠) , 𝜑 (𝜃)⟩ = 𝜓 (0) 𝜑 (0)

− ∫

0

𝜃=−𝜏
∗

∫

𝜃

𝜎=0

𝜓 (𝜎 − 𝜃) 𝑑𝜂 (𝜃) 𝜑 (𝜎) 𝑑𝜎,

(30)

where 𝜂(𝜃) = 𝜂(𝜃, 0).

Remark 11. It is easy to show that 𝐴(0) and 𝐴
∗

(0) are adjoint
operators. We know that ±𝑖𝜔

∗
is an eigenvalue of 𝐴(0); then

±𝑖𝜔
∗
is also an eigenvalue of 𝐴∗(0).

Let 𝑞(𝜃) and 𝑞
∗

(𝑠) be the eigenvectors for 𝐴(0) and
𝐴
∗

(0) corresponding to 𝑖𝜔
∗
and −𝑖𝜔

∗
. Assume that 𝑞(𝜃) =

𝑞(0)𝑒
𝑖𝜔
∗
𝜃

= (1, 𝛼
1
)𝑒
𝑖𝜔
∗
𝜃, with 𝛼

1
∈ C, is the eigenvector of

𝐴(0) corresponding to 𝑖𝜔
∗
. From 𝐴(0)𝑞(𝜃) = 𝑖𝜔

∗
𝑞(𝜃), we

have (𝐵
1
− 𝑖𝜔
∗
𝐼 + 𝐵
2
𝑒
−𝑖𝜔
∗
𝜃

)𝑞(0) = 0, so that we can evaluate
𝛼
1
. Similarly, we assume 𝑞

∗

(𝑟) = 𝑞
∗

(0)𝑒
𝑖𝜔
∗
𝑟

= 𝐷(𝛼
2
, 1)𝑒
𝑖𝜔
∗
𝑟,

where 𝛼
2
and 𝐷 are complex values, and get (𝐵𝑇

1
+ 𝑖𝜔
∗
𝐼 +

𝐵
𝑇

2
𝑒
−𝑖𝜔
∗
𝜃

)𝑞
∗

(0) = 0. In this way, we can find 𝛼
2
with the value

of𝐷 chosen so that ⟨𝑞∗(𝑠), 𝑞(𝜃)⟩ = 1.
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We will use now the theory by Hassard et al. [22] to
compute the coordinates describing the center manifoldC at
𝜇 = 0. Let 𝑢

𝑡
be a solution of (28) with 𝜇 = 0 and

𝑧 (𝑡) := ⟨𝑞
∗

, 𝑢
𝑡
⟩ , 𝑊 (𝑡, 𝜃) := 𝑢

𝑡
(𝜃) − 2Re [𝑧 (𝑡) 𝑞 (𝜃)] .

(31)

On the center manifoldC, one has

𝑊(𝑡, 𝜃) = 𝑊 (𝑧 (𝑡) , 𝑧 (𝑡) , 𝜃) , (32)

where
𝑊(𝑡, 𝜃) = 𝑊 (𝑧 (𝑡) , 𝑧 (𝑡) , 𝜃)

= 𝑊
20

(𝜃)
𝑧
2

2
+ 𝑊
11

(𝜃) 𝑧𝑧 + 𝑊
02

(𝜃)
𝑧
2

2
+ ⋅ ⋅ ⋅ ,

(33)

and 𝑧 and 𝑧 are local coordinates for the center manifoldC in
the direction of 𝑞 and 𝑞. For the solution 𝑢

𝑡
∈ C of (28), since

𝜇 = 0, we get

�̇� (𝑡) = 𝑖𝜔 (𝜏
∗
) 𝑧 + 𝑞

∗

(0) 𝑓
0
(𝑧, 𝑧) , (34)

where

𝑓
0
(𝑧, 𝑧) = 𝑓 (0,𝑊 (𝑧, 𝑧, 0) + 2Re [𝑧 (𝑡) 𝑞 (0)]) , (35)

and𝑊(𝑧, 𝑧, 0) is given by (32).We rewrite this equation �̇�(𝑡) =

𝑖𝜔
∗
𝑧 + 𝑔(𝑧, 𝑧), where

𝑔 (𝑧, 𝑧) = 𝑞
∗

(0) 𝑓
0
(𝑧, 𝑧)

= 𝑔
20

𝑧
2

2
+ 𝑔
11
𝑧𝑧 + 𝑔

02

𝑧
2

2
+ 𝑔
21

𝑧
2

𝑧

2
+ ⋅ ⋅ ⋅ .

(36)

Since 𝑢
𝑡
(𝜃) = 𝑊(𝑡, 𝜃)+𝑧𝑞(𝜃)+𝑧 𝑞(𝜃), substituting into𝑓

0
, we

find

𝑓
0
= 𝑓
𝑧
2

𝑧
2

2
+ 𝑓
𝑧𝑧
𝑧𝑧 + 𝑓

𝑧
2

𝑧
2

2
+ 𝑓
𝑧
2
𝑧

𝑧
2

𝑧

2
+ ⋅ ⋅ ⋅ . (37)

Comparing the coefficients between (36) and (37), we obtain

𝑔
20

= 𝑞
∗

(0) 𝑓
𝑧
2 , 𝑔

02
= 𝑞
∗

(0) 𝑓
𝑧
2 ,

𝑔
11

= 𝑞
∗

(0) 𝑓
𝑧𝑧
, 𝑔

21
= 𝑞
∗

(0) 𝑓
𝑧
2
𝑧
.

(38)

We remark that 𝑔
21
, will depend on 𝑊

20
(𝜃) and 𝑊

11
(𝜃).

Hence, in order to determine 𝑔
21
, we need to compute them.

By (28) and (36), we have

�̇� = �̇�
𝑡
− �̇�𝑞 − �̇� 𝑞

= {

𝐴 (0)𝑊 − 2Re [𝑞∗ (0) 𝑓
0
𝑞 (𝜃)] , 𝜃 ∈ [−𝜏

∗
, 0) ,

𝐴 (0)𝑊 − 2Re [𝑞∗ (0) 𝑓
0
𝑞 (0)] + 𝑓

0
, 𝜃 = 0,

:= 𝐴 (0)𝑊 + 𝐻 (𝑧, 𝑧, 𝜃) ,

(39)

where

𝐻(𝑧, 𝑧, 𝜃) = 𝐻
20

(𝜃)
𝑧
2

2
+ 𝐻
11

(𝜃) 𝑧𝑧 + 𝐻
02

(𝜃)
𝑧
2

2
+ ⋅ ⋅ ⋅ .

(40)

Expanding the above series and comparing the correspond-
ing coefficients of 𝑧2, 𝑧𝑧, and 𝑧

2, we obtain

[𝐴 (0) − 2𝑖𝜔
∗
]𝑊
20

(𝜃) = −𝐻
20

(𝜃) ,

𝐴 (0)𝑊
11

(𝜃) = −𝐻
11

(𝜃) .

(41)

From (39), for 𝜃 ∈ [−𝜏
∗
, 0), we can get

𝐻(𝑧, 𝑧, 𝜃) = 2Re [𝑞∗ (0) 𝑓
0
𝑞 (𝜃)] = −𝑞 (𝜃) − 𝑔 𝑞 (𝜃) . (42)

Comparing the coefficients with (40), we obtain

𝐻
20

(𝜃) = −𝑔
20
𝑞 (𝜃) − 𝑔

02
𝑞 (𝜃) ,

𝐻
11

(𝜃) = −𝑔
11
𝑞 (𝜃) − 𝑔

11
𝑞 (𝜃) .

(43)

Combining (41) and (43), we derive

�̇�
20

(𝜃) = 2𝑖𝜔
∗
𝑊
20

(𝜃) − 𝐻
20

(𝜃) , (44)

�̇�
11

(𝜃) = −𝐻
11

(𝜃) . (45)

Therefore,

𝑊
20

(𝜃) = −
𝑔
20

𝑖𝜔
∗

𝑞 (0) 𝑒
𝑖𝜔
∗
𝜃

−
𝑔
02

3𝑖𝜔
∗

𝑞 (0) 𝑒
−𝑖𝜔
∗
𝜃

+ 𝐸
1
𝑒
2𝑖𝜔
∗
𝜃

,

(46)

𝑊
11

(𝜃) =
𝑔
11

𝑖𝜔
∗

𝑞 (0) 𝑒
𝑖𝜔
∗
𝜃

−
𝑔
11

𝑖𝜔
∗

𝑞 (0) 𝑒
−𝑖𝜔
∗
𝜃

+ 𝐸
2
, (47)

where (𝐸
1
, 𝐸
2
) is a constant vector to be determined. From

(31), we find

∫

0

−𝜏
∗

𝑑𝜂 (𝜃)𝑊
20

(𝜃) = 2𝑖𝜔
∗
𝑊
20

(𝜃) − 𝐻
20

(𝜃) , (48)

∫

0

−𝜏
∗

𝑑𝜂 (𝜃)𝑊
11

(𝜃) = −𝐻
11

(𝜃) . (49)

From (31) again, for 𝜃 = 0, we see that

𝐻
20

(0) = −𝑔
20
𝑞 (0) − 𝑔

02
𝑞 (0) + 𝑓

𝑧
2 , (50)

𝐻
11

(0) = −𝑔
11
𝑞 (0) − 𝑔

11
𝑞 (0) + 𝑓

𝑧𝑧
. (51)

Substituting (46) and (50) into (48) and observing that

[𝑖𝜔
∗
𝐼 − ∫

0

−𝜏
∗

𝑒
𝑖𝜔
∗
𝜃

𝑑𝜂 (𝜃)] 𝑞 (0) = 0, (52)

[−𝑖𝜔
∗
𝐼 − ∫

0

−𝜏
∗

𝑒
−𝑖𝜔
∗
𝜃

𝑑𝜂 (𝜃)] 𝑞 (0) = 0, (53)

we have

[2𝑖𝜔
∗
− ∫

0

−𝜏
∗

𝑒
2𝑖𝜔
∗
𝜃

𝑑𝜂 (𝜃)] 𝐸
1
= 𝑓
𝑧
2 , (54)

and then we get 𝐸
1
. Similarly for 𝐸

2
, we have

[∫

0

−𝜏
∗

𝑑𝜂 (𝜃)] 𝐸
2
= 𝑓
𝑧𝑧
. (55)
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Thus, we can calculate all the four coefficients 𝑔
𝑖𝑗
and so can

determine the following quantities, which are required for the
analysis of Hopf bifurcation:

𝐶
1
(0) =

𝑖

2𝜔
∗

[𝑔
11
𝑔
20

− 2

𝑔
11



2

−


𝑔
02



2

3
] +

𝑔
21

2
,

𝜇
2
= −

Re {𝐶
1
(0)}

Re {𝜆 (𝜏
∗
)}

, 𝛽
2
= 2Re {𝐶

1
(0)} ,

𝑇
2
= −

Im {𝐶
1
(0)} + 𝜇

2
Im {𝜆



(𝜏
∗
)}

𝜔
∗

.

(56)

The periodic solutions and their stabilities can be analyzed
with the aid of the normal form parameters𝐶

1
(0), 𝜇
2
, 𝛽
2
, and

𝑇
2
. In particular, 𝜇

2
allows us to determine the quality of the

Hopf bifurcation (supercritical or subcritical); 𝛽
2
determines

the stability of the bifurcating periodic solutions; 𝑇
2
deter-

mines the period of the bifurcating periodic solutions.

Theorem 12. Let (𝜅
∗
, 𝑛
∗
) be the equilibrium point of themodel

(1).

(1) If 𝜇
2
> 0, then the Hopf bifurcation of system (1) at the

equilibrium point (𝜅
∗
, 𝑛
∗
), when 𝜏 = 𝜏

∗
, is supercriti-

cal; if 𝜇
2
< 0, the Hopf bifurcation is subcritical.

(2) The bifurcating periodic solutions are locally asymptot-
ically stable if 𝛽

2
< 0 and unstable if 𝛽

2
> 0.

(3) The period of the bifurcating periodic solutions
increases if 𝑇

2
> 0 and decreases if 𝑇

2
< 0.

5. Applications and Research Perspectives

The mathematical framework proposed in the present paper
can be used in applications. Indeed, the framework can be
applied for the modeling of biological system, such as the
competition between cancer cells and immune system cells;
see paper [23]. The logistic growth term models the maxi-
mumcancer cells population size that can be sustained during
proliferation. Moreover applications refer to economic
growth theory; see [24–26]. the logistic growth is usually
attributed to resources per individual becoming scarcer as
population size increases. In the case of human population
growth, however, it is natural to assume that technology,
social organization, and other aspects of culture have allowed
humans to increase the environment’s carrying capacity.

The mathematical framework proposed in this paper
is certainly worthy of future research concerning both its
qualitative analysis and the application to modeling complex
systems in applied sciences. Specifically, analytical investiga-
tions can be addressed to the existence of limit cycles [27–
29] such as the contents of the paper [30]. Moreover, it is a
research perspective to analyze the stability and Hopf bifur-
cation of the model (1) when time delay is inserted also in the
𝜅 function.

Finally, the mathematical framework (1) can be gener-
alized in order to take into account strategies performed
by the elements of the system (especially in the context

of biological systems) by using methods of thermostated
kinetic equations [31, 32] that allow the possibility to reach
a stationary state [33]. Moreover, this approach permits us to
perform asymptotic limits linking ordinary differential equa-
tionswith kinetic and continuummechanics approaches [34].
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2007.

[4] C. Bianca, “Thermostatted kinetic equations asmodels for com-
plex systems in physics and life sciences,” Physics of Life Reviews,
vol. 9, pp. 359–399, 2012.

[5] C. T.H. Baker, G.A. Bocharov, andC.A.H. Paul, “Mathematical
modelling of the interleukin-2 T-cell system: a comparative
study of approaches based on ordinary and delay differential
equations,” Journal of Theoretical Medicine, vol. 2, pp. 117–128,
1997.

[6] M. Badii and A. Schiaffino, “Asymptotic behaviour of positive
solutions of periodic delay logistic equations,” Journal of Math-
ematical Biology, vol. 14, no. 1, pp. 95–100, 1982.

[7] J. Bélair and S. A. Campbell, “Stability and bifurcations of equi-
libria in a multiple-delayed differential equation,” SIAM Jour-
nal on Applied Mathematics, vol. 54, no. 5, pp. 1402–1424, 1994.

[8] J. Blair,M. C.Mackey, and J.M.Mahay, “Age-structured and two
delay models for erythropoiesis,”Mathematical Biosciences, vol.
128, pp. 317–346, 1995.

[9] H. I. Freedman and K. Gopalsamy, “Global stability in time-
delayed single-species dynamics,” Bulletin ofMathematical Biol-
ogy, vol. 48, no. 5-6, pp. 485–492, 1986.

[10] S. A.Gourley andM.A. J. Chaplain, “Travelling fronts in a food-
limited population model with time delay,” Proceedings of the
Royal Society of Edinburgh A, vol. 132, no. 1, pp. 75–89, 2002.

[11] Y. Kuang, Delay Differential Equations with Applications in
Population Dynamics, vol. 191 of Mathematics in Science and
Engineering, Academic Press, Boston, Mass, USA, 1993.

[12] C. Bianca, M. Ferrara, and L. Guerrini, “Hopf bifurcations in a
delayed-energy-based model of capital accumulation,” Applied
Mathematics & Information Sciences, vol. 7, no. 1, pp. 139–143,
2013.

[13] C. Bianca, M. Ferrara, and L. Guerrini, “The Cai model with
time delay: existence of periodic solutions and asymptotic
analysis,”AppliedMathematics& Information Sciences, vol. 7, no.
1, pp. 21–27, 2013.



Abstract and Applied Analysis 7

[14] C. Bianca and L.Guerrini, “On theDalgaard-Strulikmodel with
logistic population growth rate and delayed-carrying capacity,”
Acta Applicandae Mathematicae, vol. 128, pp. 39–48, 2013.

[15] P. F. Verhulst, “Notice sur la loi que la population suit dans son
accroissement,” Correspondance Mathématique et Physique, vol.
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