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An adaptive wavelet precise integrationmethod (WPIM) based on the variational iterationmethod (VIM) for Black-Scholes model
is proposed. Black-Scholes model is a very useful tool on pricing options. First, an adaptive wavelet interpolation operator is
constructed which can transform the nonlinear partial differential equations into a matrix ordinary differential equations. Next,
VIM is developed to solve the nonlinearmatrix differential equation, which is a new asymptotic analytical method for the nonlinear
differential equations. Third, an adaptive precise integration method (PIM) for the system of ordinary differential equations is
constructed, with which the almost exact numerical solution can be obtained. At last, the famous Black-Scholes model is taken as
an example to test this new method. The numerical result shows the method’s higher numerical stability and precision.

1. Introduction

The Black-Scholes equation is a mathematical model of a
financial market containing certain derivative investment
instruments (definition). The idea behind the Black-Scholes
model is that the price of an option is determined implicitly
by the price of the underlying stock.TheBlack-Scholesmodel
is a mathematical model based on the notion that prices of
stock follow a stochastic process. It is widely employed as a
useful approximation, but proper application requires under-
standing its limitations. Therefore, many nonlinear Black-
Scholes equations are proposed in recent years [1, 2]. But it
is very difficult to obtain the exact analytical solutions of the
nonlinear Black-Scholes models. There are some numerical
algorithms that have been proposed based on the difference
method to solve those nonlinear problems, but the precision
depends on the time step and the discretization in definition
domain [3, 4].

Variational iteration method [5–9] proposed by He is a
new analytical method to solve nonlinear differential equa-
tions, which has been rapidly developed to solve various non-
linear problems of science and engineering as its flexibility

and ability to solve nonlinear equations accurately and con-
veniently [10]. The typical application includes solving free-
convective boundary-layer equation [11], q-difference equa-
tions [12, 13], and Burgers’ flow with fractional derivatives
[14, 15]. Comparing with the traditional numerical methods,
VIM needs no discretization, linearization, transformation,
or perturbation. The wavelet precise integration method
(WPIM) is a simple and effective method for linear partial
differential equations proposed by Mei [16–20]. For linear
steady structural dynamic systems, its numerical results at
the integration points are almost equal to that of the exact
solution in machine accuracy. But in solving the nonlinear
partial differentials, the time step has to be limited to a small
value in WPIM for high accuracy.

Themain purpose of this paper is to construct a modified
VIM for nonlinear Black-Scholes model with combining the
VIM with WPIM. According to WPIM, the nonlinear differ-
ential equation should be transformed to a system of ordinary
differential equations with the multiscales wavelet interpola-
tion operator, and then the nonlinear PDEs become a system
of nonlinear ordinary differential equations. So solving the
matrix differential equation (MDE) is the key in solving
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nonlinear PDEs with WPIM. In fact, the matrix differential
equation (MDE) is a crucial mathematical foundation of
the system engineering and the control theory. But most
matrix differential equations do not have precise analytical
solutions except linear time-invariant system. In this paper,
a coupling technique of He’s VIM and WPIM is developed
to establish an approximate analytical solution of the matrix
differential equations. In contrast to the traditional finite
difference approximation, the numerical result obtained with
PIM for a set of simultaneous linear time-invariant ODEs
approaches the computer precision and is also free from the
stiff problem.

2. Fundamental Theory of Coupling Technique
of VIM and WPIM

2.1. VIM for Matrix Differential Equation. Consider the non-
linear matrix differential equations as follows:

𝐿 (V̇,V, 𝑡) + 𝑁 (V̇,V, 𝑡) = G (𝑡) , (1)

where 𝐿 is a linear operator, 𝑁 is a nonlinear operator, G(𝑡)

is an inhomogeneous term, V is an 𝑛-dimensional unknown
vector, and dot stands for the differential with respect to time
variable 𝑡. For convenience, (1) can be rewritten as

V̇ −HV − F (V̇,V, 𝑡) = 0, (2)

where H is a given 𝑛 × 𝑛 constant matrix, and F(V̇,V, 𝑡) is a
𝑛-dimensional nonlinear external force vector.

According to VIM, we can write down a correction
functional as follows:

V
𝑛+1

(𝑡)

= V
𝑛
(𝑡) + ∫

𝑡

0

𝜆 ⌊V̇
𝑛
(𝜏) −HV

𝑛
(𝜏) − F (

̇̃V
𝑛
, Ṽ
𝑛
, 𝜏)⌋ 𝑑𝜏,

(3)

where 𝜆 is a general Lagrange vector multiplier [4, 5, 8]
which can be identified optimally via the variational theory.
The subscript 𝑛 denotes the 𝑛th approximation, and Ṽ

𝑛
is

considered as a restricted variation [13–15]; that is, 𝛿Ṽ
𝑛
= 0.

Using VIM, the stationary conditions of (3) can be
obtained as follows:

𝜆


+ 𝜆H = 0,

1 + 𝜆 (𝜏)|
𝜏=𝑡

= 0.

(4)

The Lagrange vector multiplier can therefore be readily
identified as follows:

𝜆 (𝜏) = −𝑒
H(𝑡−𝜏)

. (5)

As a result, we obtain the following iteration formula:

V
𝑛+1

(𝑡) = V
𝑛
(𝑡) − ∫

𝑡

0

𝑒
H(𝑡−𝜏)

⌊V̇
𝑛
(𝜏)HV

𝑛
(𝜏) −

−F (
̇̃V
𝑛
, Ṽ
𝑛
, 𝜏)⌋ 𝑑𝜏.

(6)

According to VIM, we can start with an arbitrary initial
approximation that satisfies the initial condition. So we take
the exact analytical solution of V̇ − HV = 0 as the initial
approximation; that is,

V
0
(𝑡) = 𝑒

H𝑡A, (7)

where A is the given initial value vector.
Substituting (7) into (6) and after simplification, we have

V
𝑛+1

(𝑡) = V
𝑛
(𝑡) + ∫

𝑡

0

𝑒
H(𝑡−𝜏)F (

̇̃V
𝑛
, Ṽ
𝑛
, 𝜏) 𝑑𝜏. (8)

According to the theory of matrices, the analytical expression
of the external force F( ̇̃V

𝑛
, Ṽ
𝑛
, 𝜏) is required now, but it is

not always available, except F( ̇̃V
𝑛
, Ṽ
𝑛
, 𝜏) is a constant vector

f ; that is,

F (
̇̃V
𝑛
, Ṽ
𝑛
, 𝜏) = f (9)

the integration term of (8) is

∫

𝑡

0

𝑒
H(𝑡−𝜏)f𝑑𝜏 = (𝑒

H𝑡
− I)H−1f , (10)

where the exponentialmatrix 𝑒H𝑡 can be calculated accurately
in PIM and I is a unit matrix.

Substituting (10) into (8), we obtain the variational itera-
tion formula of the matrix differential equation:

V
𝑛+1

(𝑡) = V
𝑛
(𝑡) + (𝑒

H𝑡
− I)H−1f . (11)

2.2. Coupling Technique of VIM and WPIM for Nonlinear
Partial Differential Equation. Inmost cases, the second-order
nonlinear PDEs about the unknown function 𝑢(𝑡, 𝑥) can be
expressed as follows:

𝐹 (𝑢, 𝑢
𝑡
, 𝑢
𝑥
, 𝑢
𝑡,𝑥
, 𝑢
𝑥𝑥
) = 0. (12)

In order to transform the previous nonlinear PDEs into the
matrix ODEs form as (1), an adaptive multilevels wavelet
interpolation operator should be constructed firstly.

In this section, we take the quasi-Shannon wavelet
function as the basis function to approximate the solution
function of the nonlinear PDEs.The quasi-Shannon function
is defined as follows:

𝛿
Δ𝜎

(𝑥) =
sin (𝜋𝑥/Δ)

𝜋𝑥/Δ
exp(− 𝑥

2

2𝜎2
) , (13)

where Δ is the discrete step and 𝜎 = 𝑟Δ (𝑟 is a constant) is a
parameter relative to the size of the window.

To construct the multilevel interpolation wavelet opera-
tor, it is necessary to discretize the wavelet function and the
solution function 𝑢(𝑥) evenly in the definition domain [𝑎, 𝑏].
Let the amount of the discrete points be 2𝑗 + 1(𝑗 ∈ 𝑍), and
then the discrete points can be defined as

𝑥
𝑖

𝑗
= 𝑎 +

𝑖 (𝑏 − 𝑎)

2𝑗
. (14)
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The corresponding discrete basis function can be rewritten as

𝜑
𝑖

𝑗
(𝑥) =

sin (2
𝑗

𝜋/ (𝑏 − 𝑎)) (𝑥 − 𝑥
𝑖
)

(2𝑗𝜋/ (𝑏 − 𝑎)) (𝑥 − 𝑥
𝑖
)

exp(−
2
2𝑗−1

(𝑥 − 𝑥
𝑖
)
2

𝑟2(𝑏 − 𝑎)
2

) .

(15)

The interpolation operator can be defined as

𝑢
𝐽
(𝑥) = ∑

𝑖∈𝑍
𝐽

Ω

𝐼
𝑖
(𝑥) 𝑢
𝑖

𝐽
, 𝑍

𝐽

Ω
:= 0, 1, 2, . . . , 2

𝐽

, (16)

where 𝐼
𝑖
(𝑥) is the interpolation function. According to the

wavelet transform theory, function 𝑢(𝑥) can be expressed
approximately as

𝑢
𝐽
(𝑥) =

2
𝑗0

∑

𝑘0=0

𝑢 (𝑥
𝑘0

𝑗0
) 𝜑
𝑘0

𝑗0
(𝑥) +

𝐽−1

∑

𝑗=𝑗0

∑

𝑘∈𝑍
𝑗

𝛼
𝑘

𝑗
𝜓
𝑘

𝑗
(𝑥) , (17)

where 𝑍
𝑗

:= 0, 1, 2, . . . , 2
𝑗 and the interpolation wavelet

transform coefficient can be denoted as

𝛼
𝑘

𝑗
= 𝑢 (𝑥

2𝑘+1

𝑗+1
) − [

[

2
𝑗0

∑

𝑘0=0

𝑢 (𝑥
𝑘0

𝑗0
) 𝜑
𝑘0

𝑗0
(𝑥
2𝑘+1

𝑗+1
)

+

𝑗−1

∑

𝑗1=𝑗0

2
𝑗1−1

∑

𝑘1=0

𝛼
𝑘1

𝑗1
𝜓
𝑘1

𝑗1
(𝑥
2𝑘+1

𝑗+1
)]

]

=

2
𝐽

∑

𝑛=0

[

[

𝑅
2𝑘+1,𝑛

𝑗+1,𝐽
−

2
𝑗0

∑

𝑘0=0

𝑅
𝑘0 ,𝑛

𝑗0 ,𝐽
𝜑
𝑘0

𝑗0
(𝑥
2𝑘+1

𝑗+1
)]

]

𝑢 (𝑥
𝑛

𝐽
)

−

2
𝐽

∑

𝑛=0

𝑗−1

∑

𝑗1=𝑗0

2
𝑗1−1

∑

𝑘1=0

𝛼
𝑘1

𝑗1
𝜓
𝑘1

𝑗1
(𝑥
2𝑘+1

𝑗+1
) ,

(18)

where 0 ≤ 𝑗 ≤ 𝐽 − 1, 𝑘 ∈ 𝑍
𝑗, 𝑛 ∈ 𝑍

𝐽, and 𝑅 is the restriction
operator defined as

𝑅
𝑖,𝑚

𝑙,𝑗
= {

1, 𝑥
𝑖

𝑙
= 𝑥
𝑚

𝑗

0, others.
(19)

Suppose that

𝛼
𝑘

𝑗
=

2
𝐽

∑

𝑛=0

𝐶
𝑘,𝑛

𝑗,𝐽
𝑢 (𝑥
𝑛

𝐽
) . (20)

Substituting (20) into (18), we can obtain

𝐶
𝑘,𝑛

𝑗,𝐽
= 𝑅
2𝑘+1,𝑛

𝑗+1,𝐽
−

2
𝑗0

∑

𝑘0=0

𝑅
𝑘0 ,𝑛

𝑗0 ,𝐽
𝜑
𝑘0

𝑗0
(𝑥
2𝑘+1

𝑗+1
)

−

𝑗−1

∑

𝑗1=𝑗0

2
𝑗1−1

∑

𝑘1=0

𝐶
𝑘1 ,𝑛

𝑗1 ,𝐽
𝜓
𝑗1 ,𝑘1

(𝑥
2𝑘+1

𝑗+1
) .

(21)

If 𝑗 = 𝑗
0
, then

𝐶
𝑘,𝑛

𝑗,𝐽
= 𝑅
2𝑘+1,𝑛

𝑗+1,𝐽
−

2
𝑗0

∑

𝑘0=0

𝑅
𝑘0 ,𝑛

𝑗0 ,𝐽
𝜑
𝑘0

𝑗0
(𝑥
2𝑘+1

𝑗+1
) . (22)

Substituting the restriction operator (19) and the wavelet
transform coefficient (20) into (17), the approximate expres-
sion of the solution function 𝑢(𝑥) can be obtained as

𝑢
𝐽
(𝑥) = ∑

𝑖∈𝑍
𝐽

(

2
𝑗0

∑

𝑘0=0

𝑅
𝑘0 ,𝑛

𝑗0 ,𝐽
𝜑
𝑘0

𝑗0
(𝑥
2𝑘+1

𝑗+1
)

+

𝑗−1

∑

𝑗1=𝑗0

2
𝑗1−1

∑

𝑘1=0

𝐶
𝑘1 ,𝑛

𝑗1 ,𝐽
𝜓
𝑗1 ,𝑘1

(𝑥
2𝑘+1

𝑗+1
))𝑢 (𝑥

𝑖

𝐽
) .

(23)

According to the definition of the interpolation operator (16),
it is easy to obtain the expression of the interpolation operator

𝐼
𝑖
(𝑥) =

2
𝑗0

∑

𝑘0=0

𝑅
𝑘0 ,𝑖

𝑗0 ,𝐽
𝜑
𝑘0

𝑗0
(𝑥) +

𝐽−1

∑

𝑗=𝑗0

∑

𝑘∈𝑍
𝑗

𝐶
𝑘,𝑖

𝑗,𝐽
𝜓
𝑘

𝑗
(𝑥) . (24)

The corresponding 𝑚-order derivate of the interpolation
operator is

𝐷
(𝑚)

𝑖
(𝑥) =

2
𝑗0

∑

𝑘0=0

𝑅
𝑘0 ,𝑖

𝑗0 ,𝐽
𝜑
(𝑚)

𝑗0 ,𝑘0
(𝑥) +

𝐽−1

∑

𝑗=𝑗0

∑

𝑘∈𝑍
𝑗

𝐶
𝑘,𝑖

𝑗,𝐽
𝜓
(𝑚)

𝑗,𝑘
(𝑥) . (25)

Substituting (24) and (25) into (12), the nonlinear PDEs can
be changed into an nonlinear ODEs like (1), and then the
corresponding analytical solution can be obtained with (11).

In order to solve (1) accurately, the exponential matrix
𝑇(𝑡) = 𝑒

H𝑡 can be calculated accurately by WPIM as follows:

𝑇 (𝑡) = exp (H𝑡) = [exp(H𝑡

2𝑁
)]

2
𝑁

. (26)

Let Δ𝑡 = 𝜏/2
𝑁, where 𝑁 is a positive integer (usually take

𝑁 = 20, and then Δ𝑡 = 𝜏/1048576). As 𝜏 is a small time step,
Δ𝑡 is a much smaller value, then

exp (H𝑡) = 𝐼 + Ta

= 𝐼 +H𝑡 +

(H𝑡)
2

[𝐼 + (H𝑡) /3 + (H𝑡)
2

/12]

2

(27)

which is the Taylor series expansion of exp(HΔ𝑡). In order
to calculate the matrix 𝑇 more accurately, it is necessary to
factorize the matrix 𝑇 as

T (𝑡) = [exp (H𝑡)]
2
𝑁

= (𝐼 + Ta)
2
𝑁−1

(𝐼 + Ta)
2
𝑁−1

. (28)

After doing 𝑁 times of factorization as mentioned above, a
more accurate solution of 𝑇 can be obtained.

The calculation of the exponent matrix 𝑇(𝑖ℎ) at different
time steps is needed in solving nonlinear equations through
iteration based on the precise integration method, and the
algorithm of the matrix 𝑇(𝑖ℎ) presented here can obtain all
the matrices at different time steps for once.

3. Coupling Technique of VIM and WPIM for
the Nonlinear Black-Scholes Model

In order to test the accuracy of the coupling technique of
VIM andWPIM for solving nonlinear PDEs, wewill consider
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Figure 1: Initial condition of Black-Scholes model.
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Figure 2: Evolution of the call option price with the parameter 𝑡.
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Figure 3: Error of call option price between the linear and nonlinear Black-Scholes models.

the nonlinear Black-Scholes equations which have been
increasingly attracting interest over the last two decades,
since they provide more accurate values by taking into
account more realistic assumptions, such as transaction
costs, risks from an unprotected portfolio, large investor’s
preferences, or illiquid markets, which may have an impact
on the stock price, the volatility, the drift, and the option price
itself.

Consider the Black-Scholes equation:

𝜕𝑉

𝜕𝑡
= 𝑟𝑉 −

1

2
𝜎
2

𝑆
2
𝜕
2

𝑉

𝜕𝑆2
− 𝑟𝑆

𝜕𝑉

𝜕𝑆
, (29)

where 𝑆(𝑡) denotes the underlying asset, 𝑡 ∈ (0, 𝑇), 𝑇 denotes
the expiry date, 𝜎 is the volatility (measures the standard
deviation of the returns), and 𝑟 is the riskless interest rate.

In (29), the parameter 𝜎 is constant since the transaction
cost is taken as zero. Obviously, the 𝜎 is not really a constant,
and then we can obtain the nonlinear Black-Scholes equation
as follows:

𝜕𝑉

𝜕𝑡
= 𝑟𝑉 −

1

2
�̃�
2

(𝑡, 𝑆,
𝜕𝑉

𝜕𝑆
,
𝜕
2

𝑉

𝜕𝑆2
)𝑆
2
𝜕
2

𝑉

𝜕𝑆2
− 𝑟𝑆

𝜕𝑉

𝜕𝑆
, (30)

where �̃� denotes a nonconstant volatility.
In order to solve the problem, it is necessary to perform a

variable transformation as follows:

𝑥 = ln(
𝑆

𝐾
) , 𝜏 =

1

2
𝜎
2

(𝑇 − 𝑡) , 𝑢 (𝑥, 𝜏) = 𝑒
−𝑥

𝑉 (𝑠, 𝑡)

𝐾
.

(31)

Substituting (31) into (30), the following equation can be
obtained:

𝜕𝑢

𝜕𝑡
=

�̃�
2

𝜎2
(
𝜕
2

𝑢

𝜕𝑥2
+
𝜕𝑢

𝜕𝑥
) + 𝐷

𝜕𝑢

𝜕𝑥
, (32)

where

𝐷 =
2𝑟

𝜎2
, 𝑥 ∈ 𝑅, 0 ≤ 𝜏 ≤ �̃� =

𝜎
2

2
. (33)

Initial condition

𝑢 (𝑥, 0) = (1 − 𝑒
−𝑥

)
+ for𝑥 ∈ 𝑅. (34)

Boundary condition

𝑢 (𝑥, 𝜏) = 0 as𝑥 → −∞,

𝑢 (𝑥, 𝜏) ∼ 1 − 𝑒
−𝐷𝜏−𝑥 as𝑥 → ∞.

(35)

The initial condition is shown in Figure 1. According to the
transformation relation (31), it is easy to understand that
the point 𝑥 = 0 is corresponding to the strike price 𝑆 =

𝐾. Obviously, the initial solution curve is smooth in most
positions except that near 𝑥 = 0, where a sharp steep wave
happened. So, an adaptive numerical method is necessary to
this problem.

The evolution of the call option price with the develop-
ment of the parameter 𝑡 is illustrated in Figure 2, which shows
that the volatility around the strike is greater and there is
a sharp shock around it in the transformation form of the
option price. The adaptive WPIM and VIM can capture it
precisely; that is, there are more collocation points around
this place than other places. This is helpful to improve the
accuracy and efficiency.

In following, an adaptive interpolation wavelet numerical
method is used to solve the nonlinear partial differential
equation.

It is well known that the analytical solution of the linear
Black-Scholes model for call option price (𝐶) can be obtained
as follows:

𝐶 = 𝑆 ⋅ 𝑁 (𝑑
1
) − 𝐾𝑒

−𝑟𝑇

𝑁(𝑑2) , (36)

where

𝑑
1
=

ln (𝑆/𝐾) + (𝑟 + (1/2) 𝜎
2

) 𝑇

𝜎√𝑇

, 𝑑
2
= 𝑑
1
− 𝜎√𝑇, (37)

where 𝐶 is the call price, 𝑆 is the underlying asset price, 𝐾 is
the strike price, 𝑟 is the riskless rate, 𝑇 is the maturity, 𝜎 is the
volatility, and𝑁(𝑑

1
) expresses the normal distribution.

The error of the call option price between linear and
nonlinear Black-Scholes models is shown in Figure 3. It
is obvious that the error arising around the strike price,
which expresses the nonlinear B-S model, and the coupling
technique are effective.With the call option price that is going
far away from the strike price, the error is becoming smaller
and smaller, which shows that coupling technique is accurate
and efficient.
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4. Conclusion

The coupling technique of VIM and WPIM developed in
this paper can solve nonlinear partial differential equations
successfully. Comparison between the numerical results of
the linear and nonlinear Black-Scholes models illustrates that
the proposed method is an accurate and efficient method for
the nonlinear PDEs. In addition, as the coupling technique
of VIM and WPIM for matrix differential equations has the
uniform analytical solution, it can be easily used to solve
various nonlinear problems.
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