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We consider a triple hierarchical variational inequality problem (THVIP), that is, a variational inequality problem defined over the
set of solutions of another variational inequality problem which is defined over the intersection of the fixed point set of a strict
pseudocontractive mapping and the solution set of the classical variational inequality problem. Moreover, we propose a multistep
hybrid extragradient method to compute the approximate solutions of the THVIP and present the convergence analysis of the
sequence generated by the proposed method. We also derive a solution method for solving a system of hierarchical variational
inequalities (SHVI), that is, a system of variational inequalities defined over the intersection of the fixed point set of a strict
pseudocontractive mapping and the solution set of the classical variational inequality problem. Under very mild conditions, it
is proven that the sequence generated by the proposed method converges strongly to a unique solution of the SHVI.

1. Introduction and Formulations

Throughout the paper, we will adopt the following terminol-
ogy and notations. H is a real Hilbert space, whose inner
product and norm are denoted by ⟨⋅, ⋅⟩ and ‖ ⋅ ‖, respectively.
The strong (resp., weak) convergence of the sequence {𝑥

𝑛
} to

𝑥 will be denoted by 𝑥
𝑛
→ 𝑥 (resp., 𝑥

𝑛
⇀ 𝑥). We shall use

𝜔
𝑤
(𝑥
𝑛
) to denote the weak 𝜔-limit set of the sequence {𝑥

𝑛
};

namely,

𝜔
𝑤
(𝑥
𝑛
)

:= {𝑥 : 𝑥
𝑛𝑘
⇀ 𝑥 for some subsequence {𝑥

𝑛𝑘
} of {𝑥

𝑛
}} .

(1)

Throughout the paper, unless otherwise specified, we
assume that 𝐶 is a nonempty, closed, and convex subset of
a Hilbert spaceH and 𝐴 : 𝐶 → H is a nonlinear mapping.

The variational inequality problem (VIP) on 𝐶 is defined as
follows:

find 𝑥
∗

∈ 𝐶 such that ⟨𝐴𝑥
∗

, 𝑥 − 𝑥
∗

⟩ ≥ 0, ∀𝑥 ∈ 𝐶. (2)

We denote by Γ the set of solutions of VIP. In particular, if𝐶 is
the set of fixed points of a nonexpansive mapping 𝑇, denoted
by Fix(𝑇), then (VIP) is called a hierarchical variational
inequality problem (HVIP), also known as a hierarchical
fixed point problem (HFPP). If we replace the mapping 𝐴 by
𝐼−𝑆, where 𝐼 is the identity mapping and 𝑆 is a nonexpansive
mapping (not necessarily with fixed points), then the VIP
becomes as follows:

find 𝑥
∗

∈ Fix (𝑇) such that ⟨(𝐼 − 𝑆) 𝑥
∗

, 𝑥 − 𝑥
∗

⟩ ≥ 0,

∀𝑥 ∈ Fix (𝑇) .
(3)

This problem, first introduced and studied in [1, 2], is called
a hierarchical variational inequality problem, also known as
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a hierarchical fixed point problem. Observe that if 𝑆 has
fixed points, then they are solutions of VIP (3). It is worth
mentioning that many practical problems can be written in
the form of a hierarchical variational inequality problem; see,
for example, [1–18] and the references therein.

If 𝑆 is a 𝜌-contractionwith coefficient 𝜌 ∈ [0, 1) (i.e., ‖𝑆𝑥−
𝑆𝑦‖ ≤ 𝜌‖𝑥 − 𝑦‖ for some 𝜌 ∈ [0, 1)), then the set of solutions
of VIP (3) is a singleton, and it is well known as a viscosity
problem,whichwas first introduced byMoudafi [19] and then
developed by Xu [20]. It is not hard to verify that solving VIP
(3) is equivalent to finding a fixed point of the nonexpansive
mapping𝑃Fix(𝑇)𝑆, where𝑃Fix(𝑇) is themetric projection on the
closed and convex set Fix(𝑇).

Let 𝐹 : 𝐶 → H be 𝜅-Lipschitzian and 𝜂-strongly
monotone, where 𝜅 > 0, 𝜂 > 0 are constants, that is, for all
𝑥, 𝑦 ∈ 𝐶

𝐹𝑥 − 𝐹𝑦
 ≤ 𝜅

𝑥 − 𝑦
 , ⟨𝐹𝑥 − 𝐹𝑦, 𝑥 − 𝑦⟩ ≥ 𝜂

𝑥 − 𝑦

2

.

(4)

A mapping 𝑇 : 𝐶 → 𝐶 is called 𝜁-strictly pseudocon-
tractive if there exists a constant 𝜁 ∈ [0, 1) such that

𝑇𝑥 − 𝑇𝑦

2

≤
𝑥 − 𝑦


2

+ 𝜁
(𝐼 − 𝑇) 𝑥 − (𝐼 − 𝑇) 𝑦


2

,

∀𝑥, 𝑦 ∈ 𝐶;
(5)

see [21] for more details. We denote by Fix(𝑇) the fixed point
set of 𝑇; that is, Fix(𝑇) = {𝑥 ∈ 𝐶 : 𝑇𝑥 = 𝑥}.

We introduce and consider the following triple hierarchi-
cal variational inequality problem (THVIP).

Problem I. Let 𝐹 : 𝐶 → H be 𝜅-Lipschitzian and 𝜂-strongly
monotone on the nonempty, closed, and convex subset 𝐶 of
H, where 𝜅 and 𝜂 are positive constants. Let 𝑉 : 𝐶 → H
be a 𝜌-contraction with coefficient 𝜌 ∈ [0, 1), 𝑆 : 𝐶 → 𝐶

be a nonexpansive mapping, and, for 𝑖 = 1, 2, 𝑇
𝑖
: 𝐶 →

𝐶 be 𝜁
𝑖
-strictly pseudocontractive mapping with Fix(𝑇

1
) ∩

Fix(𝑇
2
) ̸= 0. Let 0 < 𝜇 < 2𝜂/𝜅

2 and 0 < 𝛾 ≤ 𝜏, where
𝜏 = 1−√1 − 𝜇(2𝜂 − 𝜇𝜅2).Then the objective is to find 𝑥∗ ∈ Ξ

such that

⟨(𝜇𝐹 − 𝛾𝑉) 𝑥
∗

, 𝑥 − 𝑥
∗

⟩ ≥ 0, ∀𝑥 ∈ Ξ, (6)

where Ξ denotes the solution set of the following hierarchical
variational inequality problem (HVIP) of finding 𝑧∗ ∈ Fix(𝑇)
such that

⟨(𝜇𝐹 − 𝛾𝑆) 𝑧
∗

, 𝑧 − 𝑧
∗

⟩ ≥ 0, ∀𝑧 ∈ Fix (𝑇
1
) ∩ Fix (𝑇

2
) .

(7)

In particular, whenever 𝑇
1
= 𝑇 a nonexpansive mapping,

and 𝑇
2
= 𝐼 an identity mapping, Problem I reduces to the

THVIP considered by Ceng et al. [22]. By combining the reg-
ularizationmethod, the hybrid steepest-descent method, and
the projection method, they proposed an iterative algorithm
that generates a sequence via the explicit scheme and studied
the convergence analysis of the sequences generated by the
proposed method.

We consider and study the following triple hierarchical
variational inequality problem.

Problem II. Let𝐹 : 𝐶 → H be 𝜅-Lipschitzian and 𝜂-strongly
monotone on the nonempty, closed, and convex subset 𝐶 of
H, where 𝜅 and 𝜂 are positive constants. Let 𝐴 : 𝐶 → H
be a monotone and 𝐿-Lipschitzian mapping, 𝑉 : 𝐶 → H
be a 𝜌-contraction with coefficient 𝜌 ∈ [0, 1), 𝑆 : 𝐶 → 𝐶

be a nonexpansive mapping, and 𝑇 : 𝐶 → 𝐶 be a 𝜁-strictly
pseudocontractive mapping with Fix(𝑇) ∩ Γ ̸= 0. Let 0 < 𝜇 <

2𝜂/𝜅
2 and 0 < 𝛾 ≤ 𝜏, where 𝜏 = 1 − √1 − 𝜇(2𝜂 − 𝜇𝜅2). Then

the objective is to find 𝑥∗ ∈ Ξ such that

⟨(𝜇𝐹 − 𝛾𝑉) 𝑥
∗

, 𝑥 − 𝑥
∗

⟩ ≥ 0, ∀𝑥 ∈ Ξ, (8)

where Ξ denotes the solution set of the following hierarchical
variational inequality problem (HVIP) of finding 𝑧

∗

∈

Fix(𝑇) ∩ Γ such that

⟨(𝜇𝐹 − 𝛾𝑆) 𝑧
∗

, 𝑧 − 𝑧
∗

⟩ ≥ 0, ∀𝑧 ∈ Fix (𝑇) ∩ Γ. (9)

We remark that Problem II is a generalization of Problem
I. Indeed, in Problem II we put 𝑇 = 𝑇

1
and 𝐴 = 𝐼 − 𝑇

2
, where

𝑇
𝑖
: 𝐶 → 𝐶 is a 𝜁

𝑖
-strictly pseudocontractive mapping for 𝑖 =

1, 2. Then from the definition of strictly pseudocontractive
mapping, it follows that

⟨𝑇
2
𝑥 − 𝑇
2
𝑦, 𝑥 − 𝑦⟩

≤
𝑥 − 𝑦


2

−
1 − 𝜁
2

2

(𝐼 − 𝑇
2
) 𝑥 − (𝐼 − 𝑇

2
) 𝑦


2

,

∀𝑥, 𝑦 ∈ 𝐶.

(10)

It is clear that the mapping 𝐴 = 𝐼 − 𝑇
2
is (1 − 𝜁

2
)/2-inverse

strongly monotone. Taking 𝐿 = 2/(1 − 𝜁
2
), we know that 𝐴 :

𝐶 → H is a monotone and 𝐿-Lipschitzian mapping. In this
case, Γ = Fix(𝑇

2
). Therefore, Problem II reduces to Problem

I.
Motivated and inspired by Korpelevich’s extragradient

method [23] and the iterative method proposed in [22], we
propose the followingmultistep hybrid extragradientmethod
for solving Problem II.

Algorithm I. Let 𝐹 : 𝐶 → H be 𝜅-Lipschitzian and 𝜂-
strongly monotone on the nonempty, closed, and convex
subset 𝐶 of H, 𝐴 : 𝐶 → H be a monotone and 𝐿-
Lipschitzian mapping, 𝑉 : 𝐶 → H be a 𝜌-contraction with
coefficient 𝜌 ∈ [0, 1), 𝑆 : 𝐶 → 𝐶 be a nonexpansivemapping,
and 𝑇 : 𝐶 → 𝐶 be a 𝜁-strictly pseudocontractive mapping.
Let {𝛼

𝑛
} ⊂ [0,∞), {]

𝑛
} ⊂ (0, 1/𝐿), {𝛾

𝑛
} ⊂ [0, 1) and {𝛽

𝑛
}, {𝛿
𝑛
},

{𝜎
𝑛
}, {𝜆
𝑛
} ⊂ (0, 1), 0 < 𝜇 < 2𝜂/𝜅

2, and 0 < 𝛾 ≤ 𝜏, where
𝜏 = 1 − √1 − 𝜇(2𝜂 − 𝜇𝜅2). The sequence {𝑥

𝑛
} is generated by

the following iterative scheme:

𝑥
0
= 𝑥 ∈ 𝐶 chosen arbitrarily,

𝑦
𝑛
= 𝑃
𝐶
(𝑥
𝑛
− ]
𝑛
𝐴
𝑛
𝑥
𝑛
) ,

𝑧
𝑛
= 𝛽
𝑛
𝑥
𝑛
+ 𝛾
𝑛
𝑃
𝐶
(𝑥
𝑛
− ]
𝑛
𝐴
𝑛
𝑦
𝑛
) + 𝜎
𝑛
𝑇𝑃
𝐶
(𝑥
𝑛
− ]
𝑛
𝐴
𝑛
𝑦
𝑛
) ,

𝑥
𝑛+1

= 𝑃
𝐶
[𝜆
𝑛
𝛾 (𝛿
𝑛
𝑉𝑥
𝑛
+ (1 − 𝛿

𝑛
) 𝑆𝑥
𝑛
) + (𝐼 − 𝜆

𝑛
𝜇𝐹) 𝑧
𝑛
] ,

∀𝑛 ≥ 0,

(11)
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where 𝐴
𝑛
= 𝛼
𝑛
𝐼 + 𝐴 for all 𝑛 ≥ 0. In particular, if 𝑉 ≡ 0, then

(11) reduces to the following iterative scheme:

𝑥
0
= 𝑥 ∈ 𝐶 chosen arbitrarily,

𝑦
𝑛
= 𝑃
𝐶
(𝑥
𝑛
− ]
𝑛
𝐴
𝑛
𝑥
𝑛
) ,

𝑧
𝑛
= 𝛽
𝑛
𝑥
𝑛
+ 𝛾
𝑛
𝑃
𝐶
(𝑥
𝑛
− ]
𝑛
𝐴
𝑛
𝑦
𝑛
) + 𝜎
𝑛
𝑇𝑃
𝐶
(𝑥
𝑛
− ]
𝑛
𝐴
𝑛
𝑦
𝑛
) ,

𝑥
𝑛+1

= 𝑃
𝐶
[𝜆
𝑛
(1 − 𝛿

𝑛
) 𝛾𝑆𝑥
𝑛
+ (𝐼 − 𝜆

𝑛
𝜇𝐹) 𝑧
𝑛
] , ∀𝑛 ≥ 0.

(12)

Further, if 𝑆 = 𝑉, then (11) reduces to the following iterative
scheme:

𝑥
0
= 𝑥 ∈ 𝐶 chosen arbitrarily,

𝑦
𝑛
= 𝑃
𝐶
(𝑥
𝑛
− ]
𝑛
𝐴
𝑛
𝑥
𝑛
) ,

𝑧
𝑛
= 𝛽
𝑛
𝑥
𝑛
+ 𝛾
𝑛
𝑃
𝐶
(𝑥
𝑛
− ]
𝑛
𝐴
𝑛
𝑦
𝑛
) + 𝜎
𝑛
𝑇𝑃
𝐶
(𝑥
𝑛
− ]
𝑛
𝐴
𝑛
𝑦
𝑛
) ,

𝑥
𝑛+1

= 𝑃
𝐶
[𝜆
𝑛
𝛾𝑉𝑥
𝑛
+ (𝐼 − 𝜆

𝑛
𝜇𝐹) 𝑧
𝑛
] , ∀𝑛 ≥ 0;

(13)

moreover, if 𝑆 = 𝑉 ≡ 0, then (12) reduces to the following
iterative scheme:

𝑥
0
= 𝑥 ∈ 𝐶 chosen arbitrarily,

𝑦
𝑛
= 𝑃
𝐶
(𝑥
𝑛
− ]
𝑛
𝐴
𝑛
𝑥
𝑛
) ,

𝑧
𝑛
= 𝛽
𝑛
𝑥
𝑛
+ 𝛾
𝑛
𝑃
𝐶
(𝑥
𝑛
− ]
𝑛
𝐴
𝑛
𝑦
𝑛
) + 𝜎
𝑛
𝑇𝑃
𝐶
(𝑥
𝑛
− ]
𝑛
𝐴
𝑛
𝑦
𝑛
) ,

𝑥
𝑛+1

= 𝑃
𝐶
[(𝐼 − 𝜆

𝑛
𝜇𝐹) 𝑧
𝑛
] , ∀𝑛 ≥ 0.

(14)

We prove that under appropriate conditions the sequence
{𝑥
𝑛
} generated by Algorithm I converges strongly to a unique

solution of Problem II. Our result improves and extends
Theorem 4.1 in [22] in the following aspects.

(a) Problem II generalizes Problem I from the fixed
point set Fix(𝑇) of a nonexpansive mapping 𝑇 to the
intersection Fix(𝑇)∩Γ of the fixed point set of a strictly
pseudocontractive mapping 𝑇 and the solution set Γ
of VIP (2).

(b) The Korpelevich extragradient algorithm is extended
to develop the multistep hybrid extragradient algo-
rithm (i.e., Algorithm I) for solving Problem II by
virtue of the iterative schemes inTheorem 4.1 in [22].

(c) The strong convergence of the sequence {𝑥
𝑛
} gener-

ated by Algorithm I holds under the lack of the same
restrictions as those inTheorem 4.1 in [22].

(d) The boundedness requirement of the sequence {𝑥
𝑛
} in

Theorem 4.1 in [22] is replaced by the boundedness
requirement of the sequence {𝑆𝑥

𝑛
}.

We also consider and study themultistep hybrid extragra-
dient algorithm (i.e., Algorithm I) for solving the following
system of hierarchical variational inequalities (SHVI).

Problem III. Let 𝐹 : 𝐶 → H be 𝜅-Lipschitzian and 𝜂-
strongly monotone on the nonempty, closed, and convex
subset 𝐶 of H, where 𝜅 and 𝜂 are positive constants. Let
𝐴 : 𝐶 → H be a monotone and 𝐿-Lipschitzian mapping,
𝑉 : 𝐶 → H be a 𝜌-contraction with coefficient 𝜌 ∈ [0, 1),
𝑆 : 𝐶 → 𝐶 be a nonexpansive mapping, and 𝑇 : 𝐶 → 𝐶 be a
𝜁-strictly pseudocontractive mapping with Fix(𝑇)∩Γ ̸= 0. Let
0 < 𝜇 < 2𝜂/𝜅

2 and 0 < 𝛾 ≤ 𝜏, where 𝜏 = 1−√1 − 𝜇(2𝜂 − 𝜇𝜅2).
Then the objective is to find 𝑥∗ ∈ Fix(𝑇) ∩ Γ such that

⟨(𝜇𝐹 − 𝛾𝑉) 𝑥
∗

, 𝑥 − 𝑥
∗

⟩ ≥ 0, ∀𝑥 ∈ Fix (𝑇) ∩ Γ,

⟨(𝜇𝐹 − 𝛾𝑆) 𝑥
∗

, 𝑦 − 𝑥
∗

⟩ ≥ 0, ∀𝑦 ∈ Fix (𝑇) ∩ Γ.
(15)

In particular, if 𝑇 = 𝑇
1
and 𝐴 = 𝐼 − 𝑇

2
where 𝑇

𝑖
: 𝐶 →

𝐶 is 𝜁
𝑖
-strictly pseudocontractive for 𝑖 = 1, 2, Problem III

reduces to the following Problem IV.

Problem IV. Let 𝐹 : 𝐶 → H be 𝜅-Lipschitzian and 𝜂-
strongly monotone on the nonempty, closed, and convex
subset 𝐶 of H, where 𝜅 and 𝜂 are positive constants. Let
𝑉 : 𝐶 → H be a 𝜌-contraction with coefficient 𝜌 ∈ [0, 1),
𝑆 : 𝐶 → 𝐶 be a nonexpansive mapping, and, for 𝑖 = 1, 2,
𝑇
𝑖
: 𝐶 → 𝐶 be 𝜁

𝑖
-strictly pseudocontractive mapping with

Fix(𝑇
1
) ∩ Fix(𝑇

2
) ̸= 0. Let 0 < 𝜇 < 2𝜂/𝜅

2 and 0 < 𝛾 ≤ 𝜏,
where 𝜏 = 1 −√1 − 𝜇(2𝜂 − 𝜇𝜅2). Then the objective is to find
𝑥
∗

∈ Fix(𝑇
1
) ∩ Fix(𝑇

2
) such that

⟨(𝜇𝐹 − 𝛾𝑉) 𝑥
∗

, 𝑥 − 𝑥
∗

⟩ ≥ 0, ∀𝑥 ∈ Fix (𝑇
1
) ∩ Fix (𝑇

2
) ,

⟨(𝜇𝐹 − 𝛾𝑆) 𝑥
∗

, 𝑦 − 𝑥
∗

⟩ ≥ 0, ∀𝑦 ∈ Fix (𝑇
1
) ∩ Fix (𝑇

2
) .

(16)

We prove that under very mild conditions the sequence
{𝑥
𝑛
} generated by Algorithm I converges strongly to a unique

solution of Problem III.

2. Preliminaries

Let 𝐶 be a nonempty, closed, and convex subset of H and
𝑉 : 𝐶 → H be a (possibly nonself) 𝜌-contraction mapping
with coefficient 𝜌 ∈ [0, 1); that is, there exists a constant 𝜌 ∈

[0, 1) such that ‖𝑉𝑥 − 𝑉𝑦‖ ≤ 𝜌‖𝑥 − 𝑦‖, for all 𝑥, 𝑦 ∈ 𝐶. Now
we present some known results and definitions which will be
used in the sequel.

The metric (or nearest point) projection from H onto 𝐶

is the mapping 𝑃
𝐶
: H → 𝐶 which assigns to each point

𝑥 ∈ H the unique point 𝑃
𝐶
𝑥 ∈ 𝐶 satisfying the property

𝑥 − 𝑃
𝐶
𝑥
 = inf
𝑦∈𝐶

𝑥 − 𝑦
 =: 𝑑 (𝑥, 𝐶) . (17)

The following properties of projections are useful and
pertinent to our purpose.

Proposition 1 (see [21]). Given any 𝑥 ∈ H and 𝑧 ∈ 𝐶. One
has

(i) 𝑧 = 𝑃
𝐶
𝑥 ⇔ ⟨𝑥 − 𝑧, 𝑦 − 𝑧⟩ ≤ 0, for all 𝑦 ∈ 𝐶,
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(ii) 𝑧 = 𝑃
𝐶
𝑥 ⇔ ‖𝑥 − 𝑧‖

2

≤ ‖𝑥 − 𝑦‖
2

− ‖𝑦 − 𝑧‖
2, for all

𝑦 ∈ 𝐶;
(iii) ⟨𝑃

𝐶
𝑥 − 𝑃

𝐶
𝑦, 𝑥 − 𝑦⟩ ≥ ‖𝑃

𝐶
𝑥 − 𝑃
𝐶
𝑦‖
2, for all 𝑥, 𝑦 ∈

H, which hence implies that 𝑃
𝐶
is nonexpansive and

monotone.

Definition 2. A mapping 𝑇 : H → H is said to be

(a) nonexpansive if
𝑇𝑥 − 𝑇𝑦

 ≤
𝑥 − 𝑦

 , ∀𝑥, 𝑦 ∈ H; (18)

(b) firmly nonexpansive if 2𝑇 − 𝐼 is nonexpansive, or,
equivalently,

⟨𝑥 − 𝑦, 𝑇𝑥 − 𝑇𝑦⟩ ≥
𝑇𝑥 − 𝑇𝑦


2

, ∀𝑥, 𝑦 ∈ H; (19)

alternatively, 𝑇 is firmly nonexpansive if and only if 𝑇 can be
expressed as

𝑇 =
1

2
(𝐼 + 𝑆) , (20)

where 𝑆 : H → H is nonexpansive; projections are firmly
nonexpansive.

Definition 3. Let 𝑇 be a nonlinear operator whose domain is
𝐷(𝑇) ⊆ H and whose range is 𝑅(𝑇) ⊆ H.

(a) 𝑇 is said to be monotone if

⟨𝑥 − 𝑦, 𝑇𝑥 − 𝑇𝑦⟩ ≥ 0, ∀𝑥, 𝑦 ∈ 𝐷 (𝑇) . (21)

(b) Given a number 𝛽 > 0, 𝑇 is said to be 𝛽-strongly
monotone if

⟨𝑥 − 𝑦, 𝑇𝑥 − 𝑇𝑦⟩ ≥ 𝛽
𝑥 − 𝑦


2

, ∀𝑥, 𝑦 ∈ 𝐷 (𝑇) . (22)

(c) Given a number ] > 0, 𝑇 is said to be ]-inverse
strongly monotone (]-ism) if

⟨𝑥 − 𝑦, 𝑇𝑥 − 𝑇𝑦⟩ ≥ ]
𝑇𝑥 − 𝑇𝑦


2

, ∀𝑥, 𝑦 ∈ 𝐷 (𝑇) . (23)

It can be easily seen that if𝑇 is nonexpansive, then 𝐼−𝑇 is
monotone. It is also easy to see that a projection 𝑃

𝐶
is 1-ism.

Inverse strongly monotone (also referred to as cocoer-
cive) operators have been applied widely in solving practical
problems in various fields, for instance, in traffic assignment
problems; see [24, 25].

Definition 4. A mapping 𝑇 : H → H is said to be an
averaged mapping if it can be written as the average of the
identity 𝐼 and a nonexpansive mapping, that is,

𝑇 ≡ (1 − 𝛼) 𝐼 + 𝛼𝑆, (24)

where 𝛼 ∈ (0, 1) and 𝑆 : H → H are nonexpansive. More
precisely, when the last equality holds, we say that 𝑇 is 𝛼-
averaged. Thus firmly nonexpansive mappings (in particular,
projections) are 1/2-averaged maps.

Proposition 5 (see [26]). Let 𝑇 : H → H be a given
mapping.

(i) 𝑇 is nonexpansive if and only if the complement 𝐼 − 𝑇

is 1/2-ism.
(ii) If 𝑇 is ]-ism, then, for 𝛾 > 0, 𝛾𝑇 is ]/𝛾-ism.
(iii) 𝑇 is averaged if and only if the complement 𝐼 − 𝑇 is

]-ism for some ] > 1/2. Indeed, for 𝛼 ∈ (0, 1), 𝑇 is
𝛼-averaged if and only if 𝐼 − 𝑇 is 1/2𝛼-ism.

Proposition 6 (see [26, 27]). Let 𝑆, 𝑇, 𝑉 : H → H be given
operators.

(i) If 𝑇 = (1 − 𝛼)𝑆 + 𝛼𝑉 for some 𝛼 ∈ (0, 1) and if 𝑆 is
averaged and 𝑉 is nonexpansive, then 𝑇 is averaged.

(ii) 𝑇 is firmly nonexpansive if and only if the complement
𝐼 − 𝑇 is firmly nonexpansive.

(iii) If 𝑇 = (1 − 𝛼)𝑆 + 𝛼𝑉 for some 𝛼 ∈ (0, 1) and if 𝑆 is
firmly nonexpansive and 𝑉 is nonexpansive, then 𝑇 is
averaged.

(iv) The composite of finitely many averaged mappings is
averaged. That is, if each of the mappings {𝑇

𝑖
}
𝑁

𝑖=1
is

averaged, then so is the composite 𝑇
1
∘ ⋅ ⋅ ⋅ ∘ 𝑇

𝑁
. In

particular, if 𝑇
1
is 𝛼
1
-averaged and 𝑇

2
is 𝛼
2
-averaged,

where 𝛼
1
, 𝛼
2
∈ (0, 1), then the composite 𝑇

1
∘ 𝑇
2
is 𝛼-

averaged, where 𝛼 = 𝛼
1
+ 𝛼
2
− 𝛼
1
𝛼
2
.

On the other hand, it is clear that, in a real Hilbert space
H, 𝑇 : 𝐶 → 𝐶 is 𝜁-strictly pseudocontractive if and only if
there holds the following inequality:

⟨𝑇𝑥 − 𝑇𝑦, 𝑥 − 𝑦⟩ ≤
𝑥 − 𝑦


2

−
1 − 𝜁

2

(𝐼 − 𝑇) 𝑥 − (𝐼 − 𝑇) 𝑦

2

,

∀𝑥, 𝑦 ∈ 𝐶.

(25)

This immediately implies that if 𝑇 is a 𝜁-strictly pseu-
docontractive mapping, then 𝐼 − 𝑇 is (1 − 𝜁)/2-inverse
strongly monotone; for further detail, we refer to [21] and
the references therein. It is well known that the class of strict
pseudocontractions strictly includes the class of nonexpan-
sive mappings. The so-called demiclosedness principle for
strict pseudocontractive mappings in the following lemma
will often be used.

Lemma 7 (see [21, Proposition 2.1]). Let 𝐶 be a nonempty
closed convex subset of a real Hilbert spaceH and 𝑇 : 𝐶 → 𝐶

be a mapping.
(i) If 𝑇 is a 𝜁-strictly pseudocontractive mapping, then 𝑇

satisfies the Lipschitz condition:

𝑇𝑥 − 𝑇𝑦
 ≤

1 + 𝜁

1 − 𝜁

𝑥 − 𝑦
 , ∀𝑥, 𝑦 ∈ 𝐶. (26)

(ii) If 𝑇 is a 𝜁-strictly pseudocontractive mapping, then the
mapping 𝐼 − 𝑇 is semiclosed at 0; that is, if {𝑥

𝑛
} is a

sequence in 𝐶 such that 𝑥
𝑛
⇀ 𝑥 and (𝐼 − 𝑇)𝑥

𝑛
→ 0,

then (𝐼 − 𝑇)𝑥 = 0.
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(iii) If 𝑇 is a 𝜁-(quasi-)strict pseudocontraction, then the
fixed point set Fix(𝑇) of 𝑇 is closed and convex so that
the projection 𝑃Fix(𝑇) is well defined.

The following lemma plays a key role in proving strong
convergence of the sequences generated by our algorithms.

Lemma8 (see [28]). Let {𝑎
𝑛
} be a sequence of nonnegative real

numbers satisfying the property:

𝑎
𝑛+1

≤ (1 − 𝑠
𝑛
) 𝑎
𝑛
+ 𝑠
𝑛
𝑏
𝑛
+ 𝑟
𝑛
, 𝑛 ≥ 0, (27)

where {𝑠
𝑛
} ⊂ (0, 1] and {𝑏

𝑛
} are such that

(i) ∑∞
𝑛=0

𝑠
𝑛
= ∞;

(ii) either lim sup
𝑛→∞

𝑏
𝑛
≤ 0 or ∑∞

𝑛=0
|𝑠
𝑛
𝑏
𝑛
| < ∞;

(iii) ∑∞
𝑛=0

𝑟
𝑛
< ∞ where 𝑟

𝑛
≥ 0, for all 𝑛 ≥ 0.

Then, lim
𝑛→∞

𝑎
𝑛
= 0.

The following lemma is not hard to prove.

Lemma 9 (see [20]). Let𝑉 : 𝐶 → H be a 𝜌-contraction with
𝜌 ∈ [0, 1) and 𝑇 : 𝐶 → 𝐶 be a nonexpansive mapping. Then

(i) 𝐼 − 𝑉 is (1 − 𝜌)-strongly monotone:

⟨(𝐼 − 𝑉) 𝑥 − (𝐼 − 𝑉) 𝑦, 𝑥 − 𝑦⟩ ≥ (1 − 𝜌)
𝑥 − 𝑦


2

,

∀𝑥, 𝑦 ∈ 𝐶;
(28)

(ii) 𝐼 − 𝑇 is monotone:

⟨(𝐼 − 𝑇) 𝑥 − (𝐼 − 𝑇) 𝑦, 𝑥 − 𝑦⟩ ≥ 0, ∀𝑥, 𝑦 ∈ 𝐶. (29)

The following lemma plays an important role in proving
strong convergence of the sequences generated by our algo-
rithm.

Lemma 10 (see [29]). Let 𝐶 be a nonempty closed convex
subset of a real Hilbert spaceH. Let 𝑇 : 𝐶 → 𝐶 be a 𝜁-strictly
pseudo-contractive mapping. Let 𝛾 and 𝛿 be two nonnegative
real numbers such that (𝛾 + 𝛿)𝜁 ≤ 𝛾. Then

𝛾 (𝑥 − 𝑦) + 𝛿 (𝑇𝑥 − 𝑇𝑦)
 ≤ (𝛾 + 𝛿)

𝑥 − 𝑦
 ,

∀𝑥, 𝑦 ∈ 𝐶.
(30)

Lemma 11 (see [30, Lemma 3.1]). Let 𝜆 be a number in (0, 1]

and let 𝜇 > 0. Let 𝐹 : 𝐶 → H be an operator on 𝐶 such
that, for some constants 𝜅, 𝜂 > 0, 𝐹 is 𝜅-Lipschitzian and 𝜂-
strongly monotone, associating with a nonexpansive mapping
𝑇 : 𝐶 → 𝐶, define the mapping 𝑇𝜆 : 𝐶 → H by

𝑇
𝜆

𝑥 := 𝑇𝑥 − 𝜆𝜇𝐹 (𝑇𝑥) , ∀𝑥 ∈ 𝐶. (31)

Then 𝑇
𝜆 is a contraction provided that 𝜇 < 2𝜂/𝜅

2, that is,


𝑇
𝜆

𝑥 − 𝑇
𝜆

𝑦

≤ (1 − 𝜆𝜏)

𝑥 − 𝑦
 , ∀𝑥, 𝑦 ∈ 𝐶, (32)

where 𝜏 = 1 − √1 − 𝜇(2𝜂 − 𝜇𝜅2) ∈ (0, 1]. In particular, if 𝑇 is
the identity mapping 𝐼, then

(𝐼 − 𝜆𝜇𝐹) 𝑥 − (𝐼 − 𝜆𝜇𝐹) 𝑦
 ≤ (1 − 𝜆𝜏)

𝑥 − 𝑦
 ,

∀𝑥, 𝑦 ∈ 𝐶.
(33)

The following lemma appears implicitly in Reineermann
[31].

Lemma 12. LetH be a Hilbert space. Then

𝜆𝑥 + (1 − 𝜆) 𝑦 − 𝑧

2

= 𝜆‖𝑥 − 𝑧‖
2

+ (1 − 𝜆)
𝑦 − 𝑧


2

− 𝜆 (1 − 𝜆)
𝑥 − 𝑦


2

, ∀𝑥, 𝑦, 𝑧 ∈ H,

∀𝜆 ∈ [0, 1] .

(34)

The following lemma is not difficult to prove.

Lemma 13 (see [32]). Let {𝛼
𝑛
} and {𝛽

𝑛
} be a sequence of non-

negative real numbers and a sequence of real numbers, respec-
tively, such that lim sup

𝑛→∞
𝛼
𝑛
< ∞ and lim sup

𝑛→∞
𝛽
𝑛
≤ 0.

Then lim sup
𝑛→∞

𝛼
𝑛
𝛽
𝑛
≤ 0.

A set-valued mapping �̃� : 𝐻 → 2
𝐻 is called monotone

if, for all 𝑥, 𝑦 ∈ 𝐻, 𝑓 ∈ �̃�𝑥, and 𝑔 ∈ �̃�𝑦 imply ⟨𝑥 − 𝑦, 𝑓 −

𝑔⟩ ≥ 0. A monotone mapping �̃� : 𝐻 → 2
𝐻 is maximal if its

graph𝐺(�̃�) is not properly contained in the graph of any other
monotone mapping. It is known that a monotone mapping �̃�
is maximal if and only if, for (𝑥, 𝑓) ∈ 𝐻×𝐻, ⟨𝑥−𝑦, 𝑓−𝑔⟩ ≥ 0

for all (𝑦, 𝑔) ∈ 𝐺(�̃�) implies 𝑓 ∈ �̃�𝑥. Let 𝐴 : 𝐶 → 𝐻 be a
monotone and 𝐿-Lipschitzian mapping, and let 𝑁

𝐶
V be the

normal cone to 𝐶 at V ∈ 𝐶, that is, 𝑁
𝐶
V = {𝑤 ∈ 𝐻 : ⟨V −

𝑢, 𝑤⟩ ≥ 0, for all𝑢 ∈ 𝐶}. Define

�̃�V = {
𝐴V + 𝑁

𝐶
V, if V ∈ 𝐶,

0, if V ∉ 𝐶.
(35)

It is known that in this case �̃� is maximal monotone, and 0 ∈
�̃�V if and only if V ∈ Γ; see [33].

3. Main Results

We are now in a position to present the convergence analysis
of Algorithm I for solving Problem II.

Theorem 14. Let 𝐹 : 𝐶 → H be a 𝜅-Lipschitzian
and 𝜂-strongly monotone operator with constants 𝜅, 𝜂 > 0,
respectively, 𝐴 : 𝐶 → H be a 1/𝐿-inverse strongly monotone
mapping, 𝑉 : 𝐶 → H be a 𝜌-contraction with coefficient
𝜌 ∈ [0, 1), 𝑆 : 𝐶 → 𝐶 be a nonexpansive mapping, and
𝑇 : 𝐶 → 𝐶 be a 𝜁-strictly pseudocontractive mapping.
Let 0 < 𝜇 < 2𝜂/𝜅

2 and 0 < 𝛾 ≤ 𝜏, where 𝜏 = 1 −

√1 − 𝜇(2𝜂 − 𝜇𝜅2). Assume that the solution set Ξ of the HVIP
(9) is nonempty and that the following conditions hold for
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the sequences {𝛼
𝑛
} ⊂ [0,∞), {]

𝑛
} ⊂ (0, 1/𝐿), {𝛾

𝑛
} ⊂ [0, 1) and

{𝛽
𝑛
}, {𝛿
𝑛
}, {𝜎
𝑛
}, {𝜆
𝑛
} ⊂ (0, 1):

(C1) ∑∞
𝑛=0

𝛼
𝑛
< ∞ and lim

𝑛→∞
(𝛼
𝑛
/𝜆
2

𝑛
) = 0;

(C2) 0 < lim inf
𝑛→∞

]
𝑛
≤ lim sup

𝑛→∞
]
𝑛
< 1/L;

(C3) 𝛽
𝑛
+ 𝛾
𝑛
+ 𝜎
𝑛
= 1 and (𝛾

𝑛
+ 𝜎
𝑛
)𝜁 ≤ 𝛾

𝑛
for all 𝑛 ≥ 0;

(C4) 0 < lim inf
𝑛→∞

𝛽
𝑛

≤ lim sup
𝑛→∞

𝛽
𝑛

< 1 and
lim inf

𝑛→∞
𝜎
𝑛
> 0;

(C5) lim
𝑛→∞

𝜆
𝑛
= 0, lim

𝑛→∞
𝛿
𝑛
= 0 and ∑∞

𝑛=0
𝛿
𝑛
𝜆
𝑛
= ∞;

(C6) there are constants k, 𝜃 > 0 satisfying ‖𝑥 − 𝑇𝑥‖ ≥

𝑘[𝑑(𝑥, Fix(𝑇) ∩ Γ)]
𝜃 for each x ∈ C;

(C7) lim
𝑛→∞

(𝜆
1/𝜃

𝑛
/𝛿
𝑛
) = 0.

One has the following.

(a) If {𝑥
𝑛
} is the sequence generated by scheme (11) and

{𝑆𝑥
𝑛
} is bounded, then {𝑥

𝑛
} converges strongly to the

point 𝑥∗ ∈ Fix(𝑇) ∩ Γ which is a unique solution of
Problem II provided that ‖𝑥

𝑛+1
−𝑥
𝑛
‖+‖𝑥
𝑛
−𝑧
𝑛
‖ = 𝑜(𝜆

2

𝑛
).

(b) If {𝑥
𝑛
} is the sequence generated by the scheme (12)

and {𝑆𝑥
𝑛
} is bounded, then {𝑥

𝑛
} converges strongly to

a unique solution 𝑥∗ of the following VIP provided that
‖𝑥
𝑛+1

− 𝑥
𝑛
‖ + ‖𝑥

𝑛
− 𝑧
𝑛
‖ = 𝑜(𝜆

2

𝑛
):

𝑓𝑖𝑛𝑑 𝑥
∗

∈ Ξ 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 ⟨𝐹𝑥
∗

, 𝑥 − 𝑥
∗

⟩ ≥ 0, ∀𝑥 ∈ Ξ.

(36)

Proof. We treat only case (a); that is, the sequence {𝑥
𝑛
} is

generated by the scheme (11). Obviously, from the condition
Ξ ̸= 0 it follows that Fix(𝑇) ∩ Γ ̸= 0. In addition, in terms of
conditions (C2) and (C4), without loss of generality, we may
assume that {]

𝑛
} ⊂ [𝑎, 𝑏] for some 𝑎, 𝑏 ∈ (0, 1/𝐿), {𝛽

𝑛
} ⊂ [𝑐, 𝑑]

for some 𝑐, 𝑑 ∈ (0, 1).
First of all, we observe (see, e.g., [34]) that𝑃

𝐶
(𝐼−](𝛼𝐼+𝐴))

and 𝑃
𝐶
(𝐼 − ]

𝑛
𝐴
𝑛
) are nonexpansive for all 𝑛 ≥ 0.

Next we divide the remainder of the proof into several
steps.

Step 1 ({𝑥
𝑛
} is bounded). Indeed, take a fixed 𝑝 ∈ Fix(𝑇) ∩ Γ

arbitrarily. Then, we get 𝑇𝑝 = 𝑝 and 𝑃
𝐶
(𝐼 − ]𝐴)𝑝 = 𝑝 for

] ∈ (0, 2/𝐿). From (11), it follows that

𝑦𝑛 − 𝑝
 =

𝑃𝐶 (𝐼 − ]
𝑛
𝐴
𝑛
) 𝑥
𝑛
− 𝑃
𝐶
(𝐼 − ]

𝑛
𝐴)𝑝



≤
𝑃𝐶 (𝐼 − ]

𝑛
𝐴
𝑛
) 𝑥
𝑛
− 𝑃
𝐶
(𝐼 − ]

𝑛
𝐴
𝑛
) 𝑝



+
𝑃𝐶 (𝐼 − ]

𝑛
𝐴
𝑛
) 𝑝 − 𝑃

𝐶
(𝐼 − ]

𝑛
𝐴)𝑝



≤
𝑥𝑛 − 𝑝

 +
(𝐼 − ]

𝑛
𝐴
𝑛
) 𝑝 − (𝐼 − ]

𝑛
𝐴)𝑝



=
𝑥𝑛 − 𝑝

 + ]
𝑛
𝛼
𝑛

𝑝
 .

(37)

Put 𝑡
𝑛

= 𝑃
𝐶
(𝑥
𝑛
− ]
𝑛
𝐴
𝑛
𝑦
𝑛
) for each 𝑛 ≥ 0. Then, by

Proposition 1 (ii), we have
𝑡𝑛 − 𝑝


2

≤
𝑥𝑛 − ]

𝑛
𝐴
𝑛
𝑦
𝑛
− 𝑝


2

−
𝑥𝑛 − ]

𝑛
𝐴
𝑛
𝑦
𝑛
− 𝑡
𝑛


2

=
𝑥𝑛 − 𝑝


2

−
𝑥𝑛 − 𝑡

𝑛


2

+ 2]
𝑛
⟨𝐴
𝑛
𝑦
𝑛
, 𝑝 − 𝑡

𝑛
⟩

=
𝑥𝑛 − 𝑝


2

−
𝑥𝑛 − 𝑡

𝑛


2

+ 2]
𝑛
(⟨𝐴
𝑛
𝑦
𝑛
− 𝐴
𝑛
𝑝, 𝑝 − 𝑦

𝑛
⟩

+ ⟨𝐴
𝑛
𝑝, 𝑝 − 𝑦

𝑛
⟩ + ⟨𝐴

𝑛
𝑦
𝑛
, 𝑦
𝑛
− 𝑡
𝑛
⟩)

≤
𝑥𝑛 − 𝑝


2

−
𝑥𝑛 − 𝑡

𝑛


2

+ 2]
𝑛
(⟨𝐴
𝑛
𝑝, 𝑝 − 𝑦

𝑛
⟩ + ⟨𝐴

𝑛
𝑦
𝑛
, 𝑦
𝑛
− 𝑡
𝑛
⟩)

=
𝑥𝑛 − 𝑝


2

−
𝑥𝑛 − 𝑡

𝑛


2

+ 2]
𝑛
[⟨(𝛼
𝑛
𝐼 + 𝐴) 𝑝, 𝑝 − 𝑦

𝑛
⟩ + ⟨𝐴

𝑛
𝑦
𝑛
, 𝑦
𝑛
− 𝑡
𝑛
⟩]

≤
𝑥𝑛 − 𝑝


2

−
𝑥𝑛 − 𝑡

𝑛


2

+ 2]
𝑛
[𝛼
𝑛
⟨𝑝, 𝑝 − 𝑦

𝑛
⟩ + ⟨𝐴

𝑛
𝑦
𝑛
, 𝑦
𝑛
− 𝑡
𝑛
⟩]

=
𝑥𝑛 − 𝑝


2

−
𝑥𝑛 − 𝑦

𝑛


2

− 2 ⟨𝑥
𝑛
− 𝑦
𝑛
, 𝑦
𝑛
− 𝑡
𝑛
⟩ −

𝑦𝑛 − 𝑡
𝑛


2

+ 2]
𝑛
[𝛼
𝑛
⟨𝑝, 𝑝 − 𝑦

𝑛
⟩ + ⟨𝐴

𝑛
𝑦
𝑛
, 𝑦
𝑛
− 𝑡
𝑛
⟩]

=
𝑥𝑛 − 𝑝


2

−
𝑥𝑛 − 𝑦

𝑛


2

−
𝑦𝑛 − 𝑡

𝑛


2

+ 2 ⟨𝑥
𝑛
− ]
𝑛
𝐴
𝑛
𝑦
𝑛
− 𝑦
𝑛
, 𝑡
𝑛
− 𝑦
𝑛
⟩

+ 2]
𝑛
𝛼
𝑛
⟨𝑝, 𝑝 − 𝑦

𝑛
⟩ .

(38)

Further, by Proposition 1 (i), we have

⟨𝑥
𝑛
− ]
𝑛
𝐴
𝑛
𝑦
𝑛
− 𝑦
𝑛
, 𝑡
𝑛
− 𝑦
𝑛
⟩

= ⟨𝑥
𝑛
− ]
𝑛
𝐴
𝑛
𝑥
𝑛
− 𝑦
𝑛
, 𝑡
𝑛
− 𝑦
𝑛
⟩

+ ⟨]
𝑛
𝐴
𝑛
𝑥
𝑛
− ]
𝑛
𝐴
𝑛
𝑦
𝑛
, 𝑡
𝑛
− 𝑦
𝑛
⟩

≤ ⟨]
𝑛
𝐴
𝑛
𝑥
𝑛
− ]
𝑛
𝐴
𝑛
𝑦
𝑛
, 𝑡
𝑛
− 𝑦
𝑛
⟩

≤ ]
𝑛

𝐴𝑛𝑥𝑛 − 𝐴
𝑛
𝑦
𝑛


𝑡𝑛 − 𝑦

𝑛



≤ ]
𝑛
(𝛼
𝑛
+ 𝐿)

𝑥𝑛 − 𝑦
𝑛


𝑡𝑛 − 𝑦

𝑛

 .

(39)

So, we obtain
𝑡𝑛 − 𝑝


2

≤
𝑥𝑛 − 𝑝


2

−
𝑥𝑛 − 𝑦

𝑛


2

−
𝑦𝑛 − 𝑡

𝑛


2

+ 2 ⟨𝑥
𝑛
− ]
𝑛
𝐴
𝑛
𝑦
𝑛
− 𝑦
𝑛
, 𝑡
𝑛
− 𝑦
𝑛
⟩

+ 2]
𝑛
𝛼
𝑛
⟨𝑝, 𝑝 − 𝑦

𝑛
⟩

≤
𝑥𝑛 − 𝑝


2

−
𝑥𝑛 − 𝑦

𝑛


2

−
𝑦𝑛 − 𝑡

𝑛


2

+ 2]
𝑛
(𝛼
𝑛
+ 𝐿)

𝑥𝑛 − 𝑦
𝑛


𝑡𝑛 − 𝑦

𝑛



+ 2]
𝑛
𝛼
𝑛

𝑝

𝑝 − 𝑦

𝑛
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≤
𝑥𝑛 − 𝑝


2

−
𝑥𝑛 − 𝑦

𝑛


2

−
𝑦𝑛 − 𝑡

𝑛


2

+ ]
2

𝑛
(𝛼
𝑛
+ 𝐿)
2𝑥𝑛 − 𝑦

𝑛


2

+
𝑦𝑛 − 𝑡

𝑛


2

+ 2]
𝑛
𝛼
𝑛

𝑝

𝑝 − 𝑦

𝑛



=
𝑥𝑛 − 𝑝


2

+ 2]
𝑛
𝛼
𝑛

𝑝

𝑝 − 𝑦

𝑛



+ (]
2

𝑛
(𝛼
𝑛
+ 𝐿)
2

− 1)
𝑥𝑛 − 𝑦

𝑛


2

≤
𝑥𝑛 − 𝑝


2

+ 2]
𝑛
𝛼
𝑛

𝑝

𝑝 − 𝑦

𝑛

 .

(40)

Since (𝛾
𝑛
+ 𝜎
𝑛
)𝜁 ≤ 𝛾

𝑛
, utilizing Lemmas 10 and 12, from (37)

and the last inequality, we conclude that

𝑧𝑛 − 𝑝

2

=
𝛽𝑛𝑥𝑛 + 𝛾

𝑛
𝑡
𝑛
+ 𝜎
𝑛
𝑇𝑡
𝑛
− 𝑝


2

=

𝛽
𝑛
(𝑥
𝑛
− 𝑝) + (𝛾

𝑛
+ 𝜎
𝑛
)

1

𝛾
𝑛
+ 𝜎
𝑛

× [𝛾
𝑛
(𝑡
𝑛
− 𝑝) + 𝜎

𝑛
(𝑇𝑡
𝑛
− 𝑝)]



2

= 𝛽
𝑛

𝑥𝑛 − 𝑝

2

+ (𝛾
𝑛
+ 𝜎
𝑛
)

×


1

𝛾
𝑛
+ 𝜎
𝑛

[𝛾
𝑛
(𝑡
𝑛
− 𝑝) + 𝜎

𝑛
(𝑇𝑡
𝑛
− 𝑝)]



2

− 𝛽
𝑛
(𝛾
𝑛
+ 𝜎
𝑛
)

×


1

𝛾
𝑛
+ 𝜎
𝑛

[𝛾
𝑛
(𝑡
𝑛
− 𝑥
𝑛
) + 𝜎
𝑛
(𝑇𝑡
𝑛
− 𝑥
𝑛
)]


2

≤ 𝛽
𝑛

𝑥𝑛 − 𝑝

2

+ (1 − 𝛽
𝑛
)
𝑡𝑛 − 𝑝


2

−
𝛽
𝑛

1 − 𝛽
𝑛

𝑧𝑛 − 𝑥
𝑛


2

≤ 𝛽
𝑛

𝑥𝑛 − 𝑝

2

+ (1 − 𝛽
𝑛
)

× [
𝑥𝑛 − 𝑝


2

+ 2]
𝑛
𝛼
𝑛

𝑝

𝑝 − 𝑦

𝑛



+ (]
2

𝑛
(𝛼
𝑛
+ 𝐿)
2

− 1)
𝑥𝑛 − 𝑦

𝑛


2

]

−
𝛽
𝑛

1 − 𝛽
𝑛

𝑧𝑛 − 𝑥
𝑛


2

≤
𝑥𝑛 − 𝑝


2

+ 2]
𝑛
𝛼
𝑛

𝑝

𝑝 − 𝑦

𝑛



+ (1 − 𝛽
𝑛
) (]
2

𝑛
(𝛼
𝑛
+ 𝐿)
2

− 1)
𝑥𝑛 − 𝑦

𝑛


2

−
𝛽
𝑛

1 − 𝛽
𝑛

𝑧𝑛 − 𝑥
𝑛


2

≤
𝑥𝑛 − 𝑝


2

+ 2]
𝑛
𝛼
𝑛

𝑝
 (
𝑥𝑛 − 𝑝

 + ]
𝑛
𝛼
𝑛

𝑝
)

+ (1 − 𝛽
𝑛
) (]
2

𝑛
(𝛼
𝑛
+ 𝐿)
2

− 1)
𝑥𝑛 − 𝑦

𝑛


2

−
𝛽
𝑛

1 − 𝛽
𝑛

𝑧𝑛 − 𝑥
𝑛


2

≤
𝑥𝑛 − 𝑝


2

+ 2
𝑥𝑛 − 𝑝

 (
√2]
𝑛
𝛼
𝑛

𝑝
)

+ (√2]
𝑛
𝛼
𝑛

𝑝
)
2

+ (1 − 𝛽
𝑛
) (]
2

𝑛
(𝛼
𝑛
+ 𝐿)
2

− 1)
𝑥𝑛 − 𝑦

𝑛


2

−
𝛽
𝑛

1 − 𝛽
𝑛

𝑧𝑛 − 𝑥
𝑛


2

= (
𝑥𝑛 − 𝑝

 +
√2]
𝑛
𝛼
𝑛

𝑝
)
2

+ (1 − 𝛽
𝑛
) (]
2

𝑛
(𝛼
𝑛
+ 𝐿)
2

− 1)
𝑥𝑛 − 𝑦

𝑛


2

−
𝛽
𝑛

1 − 𝛽
𝑛

𝑧𝑛 − 𝑥
𝑛


2

≤ (
𝑥𝑛 − 𝑝

 +
√2]
𝑛
𝛼
𝑛

𝑝
)
2

.

(41)

Noticing the boundedness of {𝑆𝑥
𝑛
}, we get sup

𝑛≥0
‖𝛾𝑆𝑥
𝑛
−

𝜇𝐹𝑝‖ ≤ 𝑀 for some 𝑀 ≥ 0. Moreover, utilizing Lemma 11
we have from (11)

𝑥𝑛+1 − 𝑝


=
𝑃𝐶 [𝜆𝑛𝛾 (𝛿𝑛𝑉𝑥𝑛 + (1 − 𝛿

𝑛
) 𝑆𝑥
𝑛
)

+ (𝐼 − 𝜆
𝑛
𝜇𝐹) 𝑧
𝑛
] − 𝑃
𝐶
𝑝


≤
𝜆𝑛𝛾 (𝛿𝑛𝑉𝑥𝑛 + (1 − 𝛿

𝑛
) 𝑆𝑥
𝑛
) + (𝐼 − 𝜆

𝑛
𝜇𝐹) 𝑧
𝑛
− 𝑝



=
𝜆𝑛𝛾 (𝛿𝑛𝑉𝑥𝑛 + (1 − 𝛿

𝑛
) 𝑆𝑥
𝑛
)

− 𝜆
𝑛
𝜇𝐹𝑝 + (𝐼 − 𝜆

𝑛
𝜇𝐹) 𝑧
𝑛
− (𝐼 − 𝜆

𝑛
𝜇𝐹) 𝑝



≤
𝜆𝑛𝛾 (𝛿𝑛𝑉𝑥𝑛 + (1 − 𝛿

𝑛
) 𝑆𝑥
𝑛
) − 𝜆
𝑛
𝜇𝐹𝑝



+
(𝐼 − 𝜆

𝑛
𝜇𝐹) 𝑧
𝑛
− (𝐼 − 𝜆

𝑛
𝜇𝐹) 𝑝



= 𝜆
𝑛

𝛿𝑛 (𝛾𝑉𝑥𝑛 − 𝜇𝐹𝑝) + (1 − 𝛿
𝑛
) (𝛾𝑆𝑥

𝑛
− 𝜇𝐹𝑝)



+
(𝐼 − 𝜆

𝑛
𝜇𝐹) 𝑧
𝑛
− (𝐼 − 𝜆

𝑛
𝜇𝐹) 𝑝



≤ 𝜆
𝑛
𝛿
𝑛

𝛾𝑉𝑥𝑛 − 𝜇𝐹𝑝


+ (1 − 𝛿
𝑛
)
𝛾𝑆𝑥𝑛 − 𝜇𝐹𝑝



+ (1 − 𝜆
𝑛
𝜏)

𝑧𝑛 − 𝑝


≤ 𝜆
𝑛
[𝛿
𝑛
(
𝛾𝑉𝑥𝑛 − 𝛾𝑉𝑝

 +
𝛾𝑉𝑝 − 𝜇𝐹𝑝

) + (1 − 𝛿
𝑛
)𝑀]

+ (1 − 𝜆
𝑛
𝜏)

𝑧𝑛 − 𝑝
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≤ 𝜆
𝑛
[𝛿
𝑛
𝛾𝜌

𝑥𝑛 − 𝑝
 + 𝛿
𝑛

𝛾𝑉𝑝 − 𝜇𝐹𝑝
 + (1 − 𝛿

𝑛
)𝑀]

+ (1 − 𝜆
𝑛
𝜏) [

𝑥𝑛 − 𝑝
 +

√2]
𝑛
𝛼
𝑛

𝑝
]

≤ 𝜆
𝑛
[𝛿
𝑛
𝛾𝜌

𝑥𝑛 − 𝑝
 +max {𝑀,

𝛾𝑉𝑝 − 𝜇𝐹𝑝
}]

+ (1 − 𝜆
𝑛
𝜏) [

𝑥𝑛 − 𝑝
 +

√2]
𝑛
𝛼
𝑛

𝑝
]

≤ 𝜆
𝑛
𝛾𝜌

𝑥𝑛 − 𝑝
 + 𝜆
𝑛
max {𝑀,

𝛾𝑉𝑝 − 𝜇𝐹𝑝
}

+ (1 − 𝜆
𝑛
𝜏)

𝑥𝑛 − 𝑝
 +

√2]
𝑛
𝛼
𝑛

𝑝


= [1 − (𝜏 − 𝛾𝜌) 𝜆
𝑛
]
𝑥𝑛 − 𝑝



+ 𝜆
𝑛
max {𝑀,

𝛾𝑉𝑝 − 𝜇𝐹𝑝
} +

√2]
𝑛
𝛼
𝑛

𝑝
 .

(42)

So, calling

�̃� = max{𝑥0 − 𝑝
 ,

𝑀

𝜏 − 𝛾𝜌
,

𝛾𝑉𝑝 − 𝜇𝐹𝑝


𝜏 − 𝛾𝜌
} , (43)

we claim that

𝑥𝑛+1 − 𝑝
 ≤ �̃� +

𝑛

∑
𝑗=0

√2]
𝑗
𝛼
𝑗

𝑝
 , ∀𝑛 ≥ 0. (44)

Indeed, when 𝑛 = 0, it is clear from (42) that (44) is valid, that
is,

𝑥1 − 𝑝
 ≤ �̃� +

0

∑
𝑗=0

√2]
𝑗
𝛼
𝑗

𝑝
 . (45)

Assume that (44) is valid for 𝑛 (≥ 1), that is,

𝑥𝑛 − 𝑝
 ≤ �̃� +

𝑛−1

∑
𝑗=0

√2]
𝑗
𝛼
𝑗

𝑝
 . (46)

Then from (42) and (46) it follows that
𝑥𝑛+1 − 𝑝

 ≤ [1 − (𝜏 − 𝛾𝜌) 𝜆
𝑛
]
𝑥𝑛 − 𝑝



+ 𝜆
𝑛
max {𝑀,

𝛾𝑉𝑝 − 𝜇𝐹𝑝
} +

√2]
𝑛
𝛼
𝑛

𝑝


≤ [1 − (𝜏 − 𝛾𝜌) 𝜆
𝑛
] [

[

�̃� +

𝑛−1

∑
𝑗=0

√2]
𝑗
𝛼
𝑗

𝑝

]

]

+ 𝜆
𝑛
max {𝑀,

𝛾𝑉𝑝 − 𝜇𝐹𝑝
} +

√2]
𝑛
𝛼
𝑛

𝑝


≤ [1 − (𝜏 − 𝛾𝜌) 𝜆
𝑛
] �̃� +

𝑛−1

∑
𝑗=0

√2]
𝑗
𝛼
𝑗

𝑝


+ (𝜏 − 𝛾𝜌) 𝜆
𝑛
max{ 𝑀

𝜏 − 𝛾𝜌
,

𝛾𝑉𝑝 − 𝜇𝐹𝑝


𝜏 − 𝛾𝜌
}

+ √2]
𝑛
𝛼
𝑛

𝑝


≤ �̃� +

𝑛

∑
𝑗=0

√2]
𝑗
𝛼
𝑗

𝑝
 .

(47)

This shows that (44) is also valid for 𝑛+1. Hence, by induction
we derive the claim. Consequently, {𝑥

𝑛
} is bounded (due to

∑
∞

𝑛=0
𝛼
𝑛
< ∞) and so are {𝑦

𝑛
}, {𝑧
𝑛
}, {𝐴𝑥

𝑛
}, and {𝐴𝑦

𝑛
}.

Step 2 (lim
𝑛→∞

‖𝑥
𝑛
−𝑦
𝑛
‖ = lim

𝑛→∞
‖𝑥
𝑛
−𝑡
𝑛
‖ = lim

𝑛→∞
‖𝑡
𝑛
−

𝑇𝑡
𝑛
‖ = 0). Indeed, from (11) and (41), it follows that

𝑥𝑛+1 − 𝑝

2

≤
𝜆𝑛𝛾 (𝛿𝑛𝑉𝑥𝑛 + (1 − 𝛿

𝑛
) 𝑆𝑥
𝑛
) + (𝐼 − 𝜆

𝑛
𝜇𝐹) 𝑧
𝑛
− 𝑝


2

=
𝜆𝑛𝛾 (𝛿𝑛𝑉𝑥𝑛 + (1 − 𝛿

𝑛
) 𝑆𝑥
𝑛
)

−𝜆
𝑛
𝜇𝐹𝑝 + (𝐼 − 𝜆

𝑛
𝜇𝐹) 𝑧
𝑛
− (𝐼 − 𝜆

𝑛
𝜇𝐹) 𝑝


2

≤ {
𝜆𝑛𝛾 (𝛿𝑛𝑉𝑥𝑛 + (1 − 𝛿

𝑛
) 𝑆𝑥
𝑛
) − 𝜆
𝑛
𝜇𝐹𝑝



+
(𝐼 − 𝜆

𝑛
𝜇𝐹) 𝑧
𝑛
− (𝐼 − 𝜆

𝑛
𝜇𝐹) 𝑝

}
2

≤ {𝜆
𝑛

𝛿𝑛 (𝛾𝑉𝑥𝑛 − 𝜇𝐹𝑝) + (1 − 𝛿
𝑛
) (𝛾𝑆𝑥

𝑛
− 𝜇𝐹𝑝)



+ (1 − 𝜆
𝑛
𝜏)

𝑧𝑛 − 𝑝
}
2

≤ 𝜆
𝑛

1

𝜏
[𝛿
𝑛

𝛾𝑉𝑥𝑛 − 𝜇𝐹𝑝
 + (1 − 𝛿

𝑛
)
𝛾𝑆𝑥𝑛 − 𝜇𝐹𝑝

]
2

+ (1 − 𝜆
𝑛
𝜏)

𝑧𝑛 − 𝑝

2

≤ 𝜆
𝑛

1

𝜏
[
𝛾𝑉𝑥𝑛 − 𝜇𝐹𝑝

 +
𝛾𝑆𝑥𝑛 − 𝜇𝐹𝑝

]
2

+
𝑧𝑛 − 𝑝


2

≤ 𝜆
𝑛

1

𝜏
[
𝛾𝑉𝑥𝑛 − 𝜇𝐹𝑝

 +
𝛾𝑆𝑥𝑛 − 𝜇𝐹𝑝

]
2

+ (
𝑥𝑛 − 𝑝

 +
√2]
𝑛
𝛼
𝑛

𝑝
)
2

+ (1 − 𝛽
𝑛
) (]
2

𝑛
(𝛼
𝑛
+ 𝐿)
2

− 1)
𝑥𝑛 − 𝑦

𝑛


2

−
𝛽
𝑛

1 − 𝛽
𝑛

𝑧𝑛 − 𝑥
𝑛


2

≤ (
𝑥𝑛 − 𝑝

 +
√2]
𝑛
𝛼
𝑛

𝑝
)
2

+ 𝜆
𝑛
𝑀
1

+ (1 − 𝛽
𝑛
) (]
2

𝑛
(𝛼
𝑛
+ 𝐿)
2

− 1)
𝑥𝑛 − 𝑦

𝑛


2

−
𝛽
𝑛

1 − 𝛽
𝑛

𝑧𝑛 − 𝑥
𝑛


2

,

(48)

where 𝑀
1
= sup

𝑛≥0
{(1/𝜏)[‖𝛾𝑉𝑥

𝑛
− 𝜇𝐹𝑝‖ + ‖𝛾𝑆𝑥

𝑛
− 𝜇𝐹𝑝‖]

2

}.
This together with {]

𝑛
} ⊂ [𝑎, 𝑏] ⊂ (0, 1/𝐿) and {𝛽

𝑛
} ⊂ [𝑐, 𝑑] ⊂

(0, 1) implies that

(1 − 𝑑) (1 − 𝑏
2

(𝛼
𝑛
+ 𝐿)
2

)
𝑥𝑛 − 𝑦

𝑛


2

+
𝑐

1 − 𝑐

𝑧𝑛 − 𝑥
𝑛


2

≤ (1 − 𝛽
𝑛
) (1 − ]

2

𝑛
(𝛼
𝑛
+ 𝐿)
2

)
𝑥𝑛 − 𝑦

𝑛


2

+
𝛽
𝑛

1 − 𝛽
𝑛

𝑧𝑛 − 𝑥
𝑛


2
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≤ (
𝑥𝑛 − 𝑝

 +
√2]
𝑛
𝛼
𝑛

𝑝
)
2

−
𝑥𝑛+1 − 𝑝


2

+ 𝜆
𝑛
𝑀
1

= [(
𝑥𝑛 − 𝑝

 +
√2]
𝑛
𝛼
𝑛

𝑝
) −

𝑥𝑛+1 − 𝑝
]

× [(
𝑥𝑛 − 𝑝

 +
√2]
𝑛
𝛼
𝑛

𝑝
) +

𝑥𝑛+1 − 𝑝
] + 𝜆

𝑛
𝑀
1

≤ [
𝑥𝑛+1 − 𝑥

𝑛

 +
√2]
𝑛
𝛼
𝑛

𝑝
]

× [
𝑥𝑛 − 𝑝

 +
𝑥𝑛+1 − 𝑝

 +
√2]
𝑛
𝛼
𝑛

𝑝
] + 𝜆

𝑛
𝑀
1

≤ [
𝑥𝑛+1 − 𝑥

𝑛

 +
√2𝑏𝛼

𝑛

𝑝
]

× [
𝑥𝑛 − 𝑝

 +
𝑥𝑛+1 − 𝑝

 +
√2𝑏𝛼

𝑛

𝑝
] + 𝜆

𝑛
𝑀
1
.

(49)

Note that lim
𝑛→∞

𝛼
𝑛
= lim

𝑛→∞
𝜆
𝑛
= 0. Hence, taking into

account the boundedness of {𝑥
𝑛
} and lim

𝑛→∞
‖𝑥
𝑛+1

−𝑥
𝑛
‖ = 0,

we deduce from (49) that

lim
𝑛→∞

𝑥𝑛 − 𝑦
𝑛

 = lim
𝑛→∞

𝑧𝑛 − 𝑥
𝑛

 = 0. (50)

Furthermore, we obtain
𝑦𝑛 − 𝑡

𝑛

 =
𝑃𝐶 (𝑥𝑛 − ]

𝑛
𝐴
𝑛
𝑥
𝑛
) − 𝑃
𝐶
(𝑥
𝑛
− ]
𝑛
𝐴
𝑛
𝑦
𝑛
)


≤
(𝑥𝑛 − ]

𝑛
𝐴
𝑛
𝑥
𝑛
) − (𝑥

𝑛
− ]
𝑛
𝐴
𝑛
𝑦
𝑛
)


= ]
𝑛

𝐴𝑛𝑥𝑛 − 𝐴
𝑛
𝑦
𝑛



≤ ]
𝑛
(𝛼
𝑛
+ 𝐿)

𝑥𝑛 − 𝑦
𝑛

 ,

(51)

which together with (50) implies that

lim
𝑛→∞

𝑦𝑛 − 𝑡
𝑛

 = 0, lim
𝑛→∞

𝑥𝑛 − 𝑡
𝑛

 = 0. (52)

So, from (11) we get

𝜎𝑛 (𝑇𝑡𝑛 − 𝑥
𝑛
)
 =

𝑧𝑛 − 𝑥
𝑛
− 𝛾
𝑛
(𝑡
𝑛
− 𝑥
𝑛
)


≤
𝑧𝑛 − 𝑥

𝑛

 + 𝛾
𝑛

𝑡𝑛 − 𝑥
𝑛

 → 0,
(53)

which together with lim inf
𝑛→∞

𝜎
𝑛
> 0 implies that

lim
𝑛→∞

𝑇𝑡𝑛 − 𝑥
𝑛

 = 0. (54)

Note that
𝑡𝑛 − 𝑇𝑡

𝑛

 ≤
𝑡𝑛 − 𝑦

𝑛

 +
𝑦𝑛 − 𝑥

𝑛

 +
𝑥𝑛 − 𝑇𝑡

𝑛

 . (55)

This together with (50)–(54) implies that

lim
𝑛→∞

𝑡𝑛 − 𝑇𝑡
𝑛

 = 0. (56)

Step 3 (𝜔
𝑤
(𝑥
𝑛
) ⊂ Fix(𝑇) ∩ Γ). Indeed, since 𝐴 is 𝐿-Lipschitz

continuous, we have

lim
𝑛→∞

𝐴𝑦𝑛 − 𝐴𝑡
𝑛

 = 0. (57)

As {𝑥
𝑛
} is bounded, there is a subsequence {𝑥

𝑛𝑖
} of {𝑥

𝑛
}

that converges weakly to some 𝑥. By the same argument as

that in [34], we can obtain that 𝑥 ∈ Fix(𝑇) ∩ Γ from which it
follows that

𝜔
𝑤
(𝑥
𝑛
) ⊂ Fix (𝑇) ∩ Γ. (58)

Step 4 (𝜔
𝑤
(𝑥
𝑛
) ⊂ Ξ). Indeed, we first note that 0 < 𝛾 ≤ 𝜏 and

𝜇𝜂 ≥ 𝜏 ⇐⇒ 𝜇𝜂 ≥ 1 − √1 − 𝜇 (2𝜂 − 𝜇𝜅2)

⇐⇒ √1 − 𝜇 (2𝜂 − 𝜇𝜅2) ≥ 1 − 𝜇𝜂

⇐⇒ 1 − 2𝜇𝜂 + 𝜇
2

𝜅
2

≥ 1 − 2𝜇𝜂 + 𝜇
2

𝜂
2

⇐⇒ 𝜅
2

≥ 𝜂
2

⇐⇒ 𝜅 ≥ 𝜂.

(59)

It is clear that

⟨(𝜇𝐹 − 𝛾𝑆) 𝑥 − (𝜇𝐹 − 𝛾𝑆) 𝑦, 𝑥 − 𝑦⟩

≥ (𝜇𝜂 − 𝛾)
𝑥 − 𝑦


2

, ∀𝑥, 𝑦 ∈ 𝐶.

(60)

Hence, it follows from 0 < 𝛾 ≤ 𝜏 ≤ 𝜇𝜂 that 𝜇𝐹 − 𝛾𝑆 is
monotone. Putting

𝑤
𝑛
= 𝜆
𝑛
𝛾 (𝛿
𝑛
𝑉𝑥
𝑛
+ (1 − 𝛿

𝑛
) 𝑆𝑥
𝑛
) + (I − 𝜆

𝑛
𝜇𝐹)𝑇𝑧

𝑛
,

∀𝑛 ≥ 0,
(61)

and noticing from (11)

𝑥
𝑛+1

= 𝑃
𝐶
𝑤
𝑛
− 𝑤
𝑛
+ 𝜆
𝑛
𝛾 (𝛿
𝑛
𝑉𝑥
𝑛
+ (1 − 𝛿

𝑛
) 𝑆𝑥
𝑛
)

+ (𝐼 − 𝜆
𝑛
𝜇𝐹) 𝑧
𝑛
,

(62)

we obtain

𝑥
𝑛
− 𝑥
𝑛+1

= 𝑤
𝑛
− 𝑃
𝐶
𝑤
𝑛
+ 𝛿
𝑛
𝜆
𝑛
(𝜇𝐹 − 𝛾𝑉) 𝑥

𝑛

+ 𝜆
𝑛
(1 − 𝛿

𝑛
) (𝜇𝐹 − 𝛾𝑆) 𝑥

𝑛
+ (𝐼 − 𝜆

𝑛
𝜇𝐹) 𝑥

𝑛

− (𝐼 − 𝜆
𝑛
𝜇𝐹) 𝑧
𝑛
.

(63)

Set

𝑒
𝑛
=

𝑥
𝑛
− 𝑥
𝑛+1

𝜆
𝑛
(1 − 𝛿

𝑛
)
, ∀𝑛 ≥ 0. (64)

It can be easily seen from (63) that

𝑒
𝑛
=

𝑤
𝑛
− 𝑃
𝐶
𝑤
𝑛

𝜆
𝑛
(1 − 𝛿

𝑛
)
+ (𝜇𝐹 − 𝛾𝑆) 𝑥

𝑛

+
𝛿
𝑛

1 − 𝛿
𝑛

(𝜇𝐹 − 𝛾𝑉) 𝑥
𝑛

+
(𝐼 − 𝜆

𝑛
𝜇𝐹) 𝑥

𝑛
− (𝐼 − 𝜆

𝑛
𝜇𝐹) 𝑧
𝑛

𝜆
𝑛
(1 − 𝛿

𝑛
)

.

(65)
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This yields that, for all𝑤 ∈ Fix(𝑇)∩Γ (noticing 𝑥
𝑛
= 𝑃
𝐶
𝑤
𝑛−1

),

⟨𝑒
𝑛
, 𝑥
𝑛
− 𝑤⟩ =

1

𝜆
𝑛
(1 − 𝛿

𝑛
)
⟨𝑤
𝑛
− 𝑃
𝐶
𝑤
𝑛
, 𝑃
𝐶
𝑤
𝑛−1

− 𝑤⟩

+ ⟨(𝜇𝐹 − 𝛾𝑆) 𝑥
𝑛
, 𝑥
𝑛
− 𝑤⟩

+
𝛿
𝑛

1 − 𝛿
𝑛

⟨(𝜇𝐹 − 𝛾𝑉) 𝑥
𝑛
, 𝑥
𝑛
− 𝑤⟩

+
1

𝜆
𝑛
(1 − 𝛿

𝑛
)
⟨(𝐼 − 𝜆

𝑛
𝜇𝐹) 𝑥

𝑛

− (𝐼 − 𝜆
𝑛
𝜇𝐹) 𝑧
𝑛
, 𝑥
𝑛
− 𝑤⟩

=
1

𝜆
𝑛
(1 − 𝛿

𝑛
)
⟨𝑤
𝑛
− 𝑃
𝐶
𝑤
𝑛
, 𝑃
𝐶
𝑤
𝑛
− 𝑤⟩

+
1

𝜆
𝑛
(1 − 𝛿

𝑛
)
⟨𝑤
𝑛
− 𝑃
𝐶
𝑤
𝑛
, 𝑃
𝐶
𝑤
𝑛−1

− 𝑃
𝐶
𝑤
𝑛
⟩

+ ⟨(𝜇𝐹 − 𝛾𝑆)𝑤, 𝑥
𝑛
− 𝑤⟩

+ ⟨(𝜇𝐹 − 𝛾𝑆) 𝑥
𝑛
− (𝜇𝐹 − 𝛾𝑆)𝑤, 𝑥

𝑛
− 𝑤⟩

+
𝛿
𝑛

1 − 𝛿
𝑛

⟨(𝜇𝐹 − 𝛾𝑉) 𝑥
𝑛
, 𝑥
𝑛
− 𝑤⟩

+
1

𝜆
𝑛
(1 − 𝛿

𝑛
)
⟨(𝐼 − 𝜆

𝑛
𝜇𝐹) 𝑥

𝑛

− (𝐼 − 𝜆
𝑛
𝜇𝐹) 𝑧
𝑛
, 𝑥
𝑛
− 𝑤⟩ .

(66)

In (66), the first term is nonnegative due to Proposition 1, and
the fourth term is also nonnegative due to the monotonicity
of 𝜇𝐹 − 𝛾𝑆. We, therefore, deduce from (66) that (noticing
again 𝑥

𝑛+1
= 𝑃
𝐶
𝑤
𝑛
)

⟨𝑒
𝑛
, 𝑥
𝑛
− 𝑤⟩ ≥

1

𝜆
𝑛
(1 − 𝛿

𝑛
)
⟨𝑤
𝑛
− 𝑃
𝐶
𝑤
𝑛
, 𝑃
𝐶
𝑤
𝑛−1

− 𝑃
𝐶
𝑤
𝑛
⟩

+ ⟨(𝜇𝐹 − 𝛾𝑆)𝑤, 𝑥
𝑛
− 𝑤⟩

+
𝛿
𝑛

1 − 𝛿
𝑛

⟨(𝜇𝐹 − 𝛾𝑉) 𝑥
𝑛
, 𝑥
𝑛
− 𝑤⟩

+
1

𝜆
𝑛
(1 − 𝛿

𝑛
)
⟨(𝐼 − 𝜆

𝑛
𝜇𝐹) 𝑥

𝑛

− (𝐼 − 𝜆
𝑛
𝜇𝐹) 𝑧
𝑛
, 𝑥
𝑛
− 𝑤⟩

= ⟨𝑤
𝑛
− 𝑃
𝐶
𝑤
𝑛
, 𝑒
𝑛
⟩ + ⟨(𝜇𝐹 − 𝛾𝑆)𝑤, 𝑥

𝑛
− 𝑤⟩

+
𝛿
𝑛

1 − 𝛿
𝑛

⟨(𝜇𝐹 − 𝛾𝑉) 𝑥
𝑛
, 𝑥
𝑛
− 𝑤⟩

+
1

𝜆
𝑛
(1 − 𝛿

𝑛
)
⟨(𝐼 − 𝜆

𝑛
𝜇𝐹) 𝑥

𝑛

− (𝐼 − 𝜆
𝑛
𝜇𝐹) 𝑧
𝑛
, 𝑥
𝑛
− 𝑤⟩ .

(67)

Note that

(𝐼 − 𝜆
𝑛
𝜇𝐹) 𝑥

𝑛
− (𝐼 − 𝜆

𝑛
𝜇𝐹) 𝑧
𝑛

 ≤ (1 − 𝜆
𝑛
𝜏)

𝑥𝑛 − 𝑧
𝑛

 .

(68)

Hence it follows from ‖𝑥
𝑛
− 𝑧
𝑛
‖ = 𝑜(𝜆

𝑛
) that

(𝐼 − 𝜆
𝑛
𝜇𝐹) 𝑥

𝑛
− (𝐼 − 𝜆

𝑛
𝜇𝐹) 𝑧
𝑛



𝜆
𝑛

→ 0. (69)

Also, since 𝑒
𝑛
→ 0 (due to ‖𝑥

𝑛+1
−𝑥
𝑛
‖ = 𝑜(𝜆

𝑛
)), 𝛿
𝑛
→ 0 and

{𝑥
𝑛
} is bounded by Step 1 which implies that {𝑤

𝑛
} is bounded,

we obtain from (67) that

lim sup
𝑛→∞

⟨(𝜇𝐹 − 𝛾𝑆)𝑤, 𝑥
𝑛
− 𝑤⟩ ≤ 0, ∀𝑤 ∈ Fix (𝑇) ∩ Γ.

(70)

This suffices to guarantee that 𝜔
𝑤
(𝑥
𝑛
) ⊂ Ξ; namely, every

weak limit point of {𝑥
𝑛
} solves the HVIP (9). As a matter of

fact, if 𝑥
𝑛𝑖
⇀ 𝑥 ∈ 𝜔

𝑤
(𝑥
𝑛
) for some subsequence {𝑥

𝑛𝑖
} of {𝑥

𝑛
},

then we deduce from (70) that

⟨(𝜇𝐹 − 𝛾𝑆)𝑤, 𝑥 − 𝑤⟩

≤ lim sup
𝑛→∞

⟨(𝜇𝐹 − 𝛾𝑆)𝑤, 𝑥
𝑛
− 𝑤⟩ ≤ 0,

∀𝑤 ∈ Fix (𝑇) ∩ Γ,

(71)

that is,

⟨(𝜇𝐹 − 𝛾𝑆)𝑤,𝑤 − 𝑥⟩ ≥ 0, ∀𝑤 ∈ Fix (𝑇) ∩ Γ. (72)

In addition, note that 𝜔
𝑤
(𝑥
𝑛
) ⊂ Fix(𝑇) ∩ Γ by Step 3. Since

𝜇𝐹−𝛾𝑆 is monotone and Lipschitz continuous and Fix(𝑇)∩Γ
is nonempty, closed, and convex, by the Minty lemma [1] the
last inequality is equivalent to (9). Thus, we get 𝑥 ∈ Ξ.

Step 5 ({𝑥
𝑛
} converges strongly to a unique solution 𝑥

∗ of
Problem II.) Indeed, we now take a subsequence {𝑥

𝑛𝑖
} of {𝑥

𝑛
}

satisfying

lim sup
𝑛→∞

⟨(𝜇𝐹 − 𝛾𝑉) 𝑥
∗

, 𝑥
𝑛
− 𝑥
∗

⟩

= lim
𝑖→∞

⟨(𝜇𝐹 − 𝛾𝑉) 𝑥
∗

, 𝑥
𝑛𝑖
− 𝑥
∗

⟩ .

(73)

Without loss of generality, we may further assume that 𝑥
𝑛𝑖
⇀

𝑥; then 𝑥 ∈ Ξ as we just proved. Since 𝑥∗ is a solution of the
THVIP (8), we get

lim sup
𝑛→∞

⟨(𝜇𝐹 − 𝛾𝑉) 𝑥
∗

, 𝑥
𝑛
− 𝑥
∗

⟩

= ⟨(𝜇𝐹 − 𝛾𝑉) 𝑥
∗

, 𝑥 − 𝑥
∗

⟩ ≥ 0.

(74)
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From (11) and (41), it follows that (noticing that 𝑥
𝑛+1

= 𝑃
𝐶
𝑤
𝑛

and 0 < 𝛾 ≤ 𝜏)

𝑥𝑛+1 − 𝑥
∗
2

= ⟨𝑤
𝑛
− 𝑥
∗

, 𝑥
𝑛+1

− 𝑥
∗

⟩

+ ⟨𝑃
𝐶
𝑤
𝑛
− 𝑤
𝑛
, 𝑃
𝐶
𝑤
𝑛
− 𝑥
∗

⟩

≤ ⟨𝑤
𝑛
− 𝑥
∗

, 𝑥
𝑛+1

− 𝑥
∗

⟩

= ⟨(𝐼 − 𝜆
𝑛
𝜇𝐹) 𝑧
𝑛
− (𝐼 − 𝜆

𝑛
𝜇𝐹) 𝑥

∗

, 𝑥
𝑛+1

− 𝑥
∗

⟩

+ 𝛿
𝑛
𝜆
𝑛
𝛾 ⟨𝑉𝑥

𝑛
− 𝑉𝑥
∗

, 𝑥
𝑛+1

− 𝑥
∗

⟩

+ 𝜆
𝑛
(1 − 𝛿

𝑛
) 𝛾 ⟨𝑆𝑥

𝑛
− 𝑆𝑥
∗

, 𝑥
𝑛+1

− 𝑥
∗

⟩

+ 𝛿
𝑛
𝜆
𝑛
⟨(𝛾𝑉 − 𝜇𝐹) 𝑥

∗

, 𝑥
𝑛+1

− 𝑥
∗

⟩

+ 𝜆
𝑛
(1 − 𝛿

𝑛
) ⟨(𝛾𝑆 − 𝜇𝐹) 𝑥

∗

, 𝑥
𝑛+1

− 𝑥
∗

⟩

≤ (1 − 𝜆
𝑛
𝜏)

𝑧𝑛 − 𝑥
∗

𝑥𝑛+1 − 𝑥
∗

+ [𝛿
𝑛
𝜆
𝑛
𝛾𝜌 + 𝜆

𝑛
(1 − 𝛿

𝑛
) 𝛾]

×
𝑥𝑛 − 𝑥

∗
𝑥𝑛+1 − 𝑥

∗

+ 𝛿
𝑛
𝜆
𝑛
⟨(𝛾𝑉 − 𝜇𝐹) 𝑥

∗

, 𝑥
𝑛+1

− 𝑥
∗

⟩

+ 𝜆
𝑛
(1 − 𝛿

𝑛
) ⟨(𝛾𝑆 − 𝜇𝐹) 𝑥

∗

, 𝑥
𝑛+1

− 𝑥
∗

⟩

≤ (1 − 𝜆
𝑛
𝜏)

1

2
(
𝑧𝑛 − 𝑥

∗
2

+
𝑥𝑛+1 − 𝑥

∗
2

)

+ [𝛿
𝑛
𝜆
𝑛
𝛾𝜌 + 𝜆

𝑛
(1 − 𝛿

𝑛
) 𝛾]

×
1

2
(
𝑥𝑛 − 𝑥

∗
2

+
𝑥𝑛+1 − 𝑥

∗
2

)

+ 𝛿
𝑛
𝜆
𝑛
⟨(𝛾𝑉 − 𝜇𝐹) 𝑥

∗

, 𝑥
𝑛+1

− 𝑥
∗

⟩

+ 𝜆
𝑛
(1 − 𝛿

𝑛
) ⟨(𝛾𝑆 − 𝜇𝐹) 𝑥

∗

, 𝑥
𝑛+1

− 𝑥
∗

⟩

≤ (1 − 𝜆
𝑛
𝜏)

1

2
[(
𝑥𝑛 − 𝑥

∗ +
√2]
𝑛
𝛼
𝑛

𝑥
∗)
2

+
𝑥𝑛+1 − 𝑥

∗
2

]

+ [𝛿
𝑛
𝜆
𝑛
𝛾𝜌 + 𝜆

𝑛
(1 − 𝛿

𝑛
) 𝛾]

×
1

2
(
𝑥𝑛 − 𝑥

∗
2

+
𝑥𝑛+1 − 𝑥

∗
2

)

+ 𝛿
𝑛
𝜆
𝑛
⟨(𝛾𝑉 − 𝜇𝐹) 𝑥

∗

, 𝑥
𝑛+1

− 𝑥
∗

⟩

+ 𝜆
𝑛
(1 − 𝛿

𝑛
) ⟨(𝛾𝑆 − 𝜇𝐹) 𝑥

∗

, 𝑥
𝑛+1

− 𝑥
∗

⟩

≤ (1 − 𝜆
𝑛
𝜏)

1

2
(
𝑥𝑛 − 𝑥

∗
2

+ 𝛼
𝑛
𝑀
2

+
𝑥𝑛+1 − 𝑥

∗
2

)

+ [𝛿
𝑛
𝜆
𝑛
𝛾𝜌 + 𝜆

𝑛
(1 − 𝛿

𝑛
) 𝛾]

×
1

2
(
𝑥𝑛 − 𝑥

∗
2

+
𝑥𝑛+1 − 𝑥

∗
2

)

+ 𝛿
𝑛
𝜆
𝑛
⟨(𝛾𝑉 − 𝜇𝐹) 𝑥

∗

, 𝑥
𝑛+1

− 𝑥
∗

⟩

+ 𝜆
𝑛
(1 − 𝛿

𝑛
) ⟨(𝛾𝑆 − 𝜇𝐹) 𝑥

∗

, 𝑥
𝑛+1

− 𝑥
∗

⟩

≤ [1 − 𝛿
𝑛
𝜆
𝑛
𝛾 (1 − 𝜌)]

×
1

2
(
𝑥𝑛 − 𝑥

∗
2

+
𝑥𝑛+1 − 𝑥

∗
2

)

+ 𝛿
𝑛
𝜆
𝑛
⟨(𝛾𝑉 − 𝜇𝐹) 𝑥

∗

, 𝑥
𝑛+1

− 𝑥
∗

⟩

+ 𝜆
𝑛
(1 − 𝛿

𝑛
) ⟨(𝛾𝑆 − 𝜇𝐹) 𝑥

∗

, 𝑥
𝑛+1

− 𝑥
∗

⟩

+ 𝛼
𝑛
𝑀
2
,

(75)

where𝑀
2
= sup

𝑛≥0
{2]
𝑛
‖𝑥
∗

‖(√2‖𝑥
𝑛
−𝑥
∗

‖+]
𝑛
𝛼
𝑛
‖𝑥
∗

‖)} < ∞.
It turns out that

𝑥𝑛+1 − 𝑥
∗
2

≤
1 − 𝛿
𝑛
𝜆
𝑛
𝛾 (1 − 𝜌)

1 + 𝛿
𝑛
𝜆
𝑛
𝛾 (1 − 𝜌)

𝑥𝑛 − 𝑥
∗
2

+
2

1 + 𝛿
𝑛
𝜆
𝑛
𝛾 (1 − 𝜌)

× [𝛿
𝑛
𝜆
𝑛
⟨(𝛾𝑉 − 𝜇𝐹) 𝑥

∗

, 𝑥
𝑛+1

− 𝑥
∗

⟩

+ 𝜆
𝑛
(1 − 𝛿

𝑛
)

× ⟨(𝛾𝑆 − 𝜇𝐹) 𝑥
∗

, 𝑥
𝑛+1

− 𝑥
∗

⟩ + 𝛼
𝑛
𝑀
2
]

≤ [1 − 𝛿
𝑛
𝜆
𝑛
𝛾 (1 − 𝜌)]

𝑥𝑛 − 𝑥
∗
2

+
2

1 + 𝛿
𝑛
𝜆
𝑛
𝛾 (1 − 𝜌)

× [𝛿
𝑛
𝜆
𝑛
⟨(𝛾𝑉 − 𝜇𝐹) 𝑥

∗

, 𝑥
𝑛+1

− 𝑥
∗

⟩

+ 𝜆
𝑛
(1 − 𝛿

𝑛
)

⟨(𝛾𝑆 − 𝜇𝐹) 𝑥
∗

, 𝑥
𝑛+1

− 𝑥
∗

⟩] + 2𝛼
𝑛
𝑀
2
.

(76)

However, from 𝑥
∗

∈ Ξ and condition (C6) we obtain that

⟨(𝛾𝑆 − 𝜇𝐹) 𝑥
∗

, 𝑥
𝑛+1

− 𝑥
∗

⟩

= ⟨(𝛾𝑆 − 𝜇𝐹) 𝑥
∗

, 𝑥
𝑛+1

− 𝑃Fix(𝑇)∩Γ𝑥𝑛+1⟩

+ ⟨(𝛾𝑆 − 𝜇𝐹) 𝑥
∗

, 𝑃Fix(𝑇)∩Γ𝑥𝑛+1 − 𝑥
∗

⟩

≤ ⟨(𝛾𝑆 − 𝜇𝐹) 𝑥
∗

, 𝑥
𝑛+1

− 𝑃Fix(𝑇)∩Γ𝑥𝑛+1⟩

≤
(𝛾𝑆 − 𝜇𝐹) 𝑥

∗ 𝑑 (𝑥𝑛+1, Fix (𝑇) ∩ Γ)

≤
(𝛾𝑆 − 𝜇𝐹) 𝑥

∗ (
1

𝑘

𝑥𝑛+1 − 𝑇𝑥
𝑛+1

)

1/𝜃

.

(77)
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On the other hand, from (41) we have

𝑧𝑛 − 𝑝

2

≤ (
𝑥𝑛 − 𝑝

 +
√2]
𝑛
𝛼
𝑛

𝑝
)
2

+ (1 − 𝛽
𝑛
) (]
2

𝑛
(𝛼
𝑛
+ 𝐿)
2

− 1)
𝑥𝑛 − 𝑦

𝑛


2

−
𝛽
𝑛

1 − 𝛽
𝑛

𝑧𝑛 − 𝑥
𝑛


2

≤ (
𝑥𝑛 − 𝑝

 +
√2]
𝑛
𝛼
𝑛

𝑝
)
2

+ (1 − 𝛽
𝑛
) (]
2

𝑛
(𝛼
𝑛
+ 𝐿)
2

− 1)
𝑥𝑛 − 𝑦

𝑛


2

,

(78)

which, together with ‖𝑥
𝑛
− 𝑧
𝑛
‖ + 𝛼
𝑛
= o(𝜆2

𝑛
), implies that

(1 − 𝑑) (1 − 𝑏
2

(𝛼
𝑛
+ 𝐿)
2

)

𝑥𝑛 − 𝑦
𝑛


2

𝜆2
𝑛

≤ (1 − 𝛽
𝑛
) (1 − ]

2

𝑛
(𝛼
𝑛
+ 𝐿)
2

)

𝑥𝑛 − 𝑦
𝑛


2

𝜆2
𝑛

≤
(
𝑥𝑛 − 𝑝

 +
√2]
𝑛
𝛼
𝑛

𝑝
)
2

−
𝑧𝑛 − 𝑝


2

𝜆2
𝑛

≤

𝑥𝑛 − 𝑧
𝑛

 +
√2𝑏𝛼

𝑛

𝑝


𝜆2
𝑛

× [
𝑥𝑛 − 𝑝

 +
𝑧𝑛 − 𝑝

 +
√2𝑏𝛼

𝑛

𝑝
] → 0

as 𝑛 → ∞.

(79)

That is, ‖𝑥
𝑛
− 𝑦
𝑛
‖ = 𝑜(𝜆

𝑛
). Observe that

𝑧
𝑛
− 𝑥
𝑛
= 𝛾
𝑛
(𝑡
𝑛
− 𝑥
𝑛
) + 𝜎
𝑛
(𝑇𝑡
𝑛
− 𝑥
𝑛
)

= 𝛾
𝑛
(𝑡
𝑛
− 𝑥
𝑛
) + 𝜎
𝑛
(𝑇𝑡
𝑛
− 𝑇𝑥
𝑛
) + 𝜎
𝑛
(𝑇𝑥
𝑛
− 𝑥
𝑛
) .

(80)

Since (𝛾
𝑛
+ 𝜎
𝑛
)𝜁 ≤ 𝛾

𝑛
, utilizing Lemma 10 we get

𝜎𝑛 (𝑇𝑥𝑛 − 𝑥
𝑛
)


𝜆
𝑛

=

𝑧𝑛 − 𝑥
𝑛
− [𝛾
𝑛
(𝑡
𝑛
− 𝑥
𝑛
) + 𝜎
𝑛
(𝑇𝑡
𝑛
− 𝑇𝑥
𝑛
)]


𝜆
𝑛

≤

𝑧𝑛 − 𝑥
𝑛

 +
𝛾𝑛 (𝑡𝑛 − 𝑥

𝑛
) + 𝜎
𝑛
(𝑇𝑡
𝑛
− 𝑇𝑥
𝑛
)


𝜆
𝑛

≤

𝑧𝑛 − 𝑥
𝑛

 +
𝑡𝑛 − 𝑥

𝑛



𝜆
𝑛

≤

𝑧𝑛 − 𝑥
𝑛

 +
𝑡𝑛 − 𝑦

𝑛

 +
𝑦𝑛 − 𝑥

𝑛



𝜆
𝑛

=

𝑧𝑛 − 𝑥
𝑛

 +
𝑃𝐶 (𝑥𝑛 − ]

𝑛
𝐴
𝑛
𝑦
𝑛
) − 𝑃
𝐶
(𝑥
𝑛
− ]
𝑛
𝐴
𝑛
𝑥
𝑛
)


𝜆
𝑛

+

𝑦𝑛 − 𝑥
𝑛



𝜆
𝑛

≤

𝑧𝑛 − 𝑥
𝑛

 +
]𝑛𝐴𝑛𝑦𝑛 − ]

𝑛
𝐴
𝑛
𝑥
𝑛

 +
𝑦𝑛 − 𝑥

𝑛



𝜆
𝑛

≤

𝑧𝑛 − 𝑥
𝑛

 + ]
𝑛
(𝛼
𝑛
+ 𝐿)

𝑦𝑛 − 𝑥
𝑛

 +
𝑦𝑛 − 𝑥

𝑛



𝜆
𝑛

≤

𝑧𝑛 − 𝑥
𝑛

 + 2
𝑦𝑛 − 𝑥

𝑛



𝜆
𝑛

→ 0 as 𝑛 → ∞.

(81)

That is, ‖𝜎
𝑛
(𝑇𝑥
𝑛
− 𝑥
𝑛
)‖ = 𝑜(𝜆

𝑛
). Taking into account

lim inf
𝑛→∞

𝜎
𝑛
> 0, we have ‖𝑥

𝑛
−𝑇𝑥
𝑛
‖ = 𝑜(𝜆

𝑛
). Furthermore,

utilizing Lemma 7 (i), we have

𝑥𝑛+1 − 𝑇𝑥
𝑛+1



≤
𝑥𝑛+1 − 𝑇𝑥

𝑛

 +
𝑇𝑥𝑛 − 𝑇𝑥

𝑛+1



≤
1 + 𝜁

1 − 𝜁

𝑥𝑛 − 𝑥
𝑛+1



+
𝜆𝑛𝛾 (𝛿𝑛𝑉𝑥𝑛 + (1 − 𝛿

𝑛
) 𝑆𝑥
𝑛
) + (𝐼 − 𝜆

𝑛
𝜇𝐹) 𝑧
𝑛
− 𝑇𝑥
𝑛



≤
1 + 𝜁

1 − 𝜁

𝑥𝑛 − 𝑥
𝑛+1



+
𝑧𝑛 − 𝑇𝑥

𝑛

 + 𝜆
𝑛

𝛾 (𝛿𝑛𝑉𝑥𝑛 + (1 − 𝛿
𝑛
) 𝑆𝑥
𝑛
) − 𝜇𝐹𝑧

𝑛



≤
1 + 𝜁

1 − 𝜁

𝑥𝑛 − 𝑥
𝑛+1



+
𝑧𝑛 − 𝑥

𝑛

 +
𝑥𝑛 − 𝑇𝑥

𝑛



+ 𝜆
𝑛

𝛾𝛿𝑛 (𝑉𝑥𝑛 − 𝑆𝑥
𝑛
) + 𝛾𝑆𝑥

𝑛
− 𝜇𝐹𝑧

𝑛



≤
1 + 𝜁

1 − 𝜁

𝑥𝑛 − 𝑥
𝑛+1



+
𝑧𝑛 − 𝑥

𝑛

 +
𝑥𝑛 − 𝑇𝑥

𝑛

 + 𝜆
𝑛
𝑀
0
,

(82)

where 𝑀
0
= sup

𝑛≥0
‖𝛾𝛿
𝑛
(𝑉𝑥
𝑛
− 𝑆𝑥
𝑛
) + 𝛾𝑆𝑥

𝑛
− 𝜇𝐹𝑧

𝑛
‖ < ∞.

Hence, for a big enough constant 𝑘
1
> 0, from (77), we have

⟨(𝛾𝑆 − 𝜇𝐹) 𝑥
∗

, 𝑥
𝑛+1

− 𝑥
∗

⟩

≤ 𝑘
1
(𝜆
𝑛
+
𝑥𝑛 − 𝑥

𝑛+1



+
𝑧𝑛 − 𝑥

𝑛

 +
𝑥𝑛 − 𝑇𝑥

𝑛

)
1/𝜃

≤ 𝑘
1
𝜆
1/𝜃

𝑛
(1 +

𝑥𝑛 − 𝑥
𝑛+1

 +
𝑧𝑛 − 𝑥

𝑛

 +
𝑥𝑛 − 𝑇𝑥

𝑛



𝜆
𝑛

)

1/𝜃

.

(83)



Abstract and Applied Analysis 13

Combining (76)–(83), we get
𝑥𝑛+1 − 𝑥

∗
2

≤ [1 − 𝛿
𝑛
𝜆
𝑛
𝛾 (1 − 𝜌)]

𝑥𝑛 − 𝑥
∗
2

+
2

1 + 𝛿
𝑛
𝜆
𝑛
𝛾 (1 − 𝜌)

× [𝛿
𝑛
𝜆
𝑛
⟨(𝛾𝑉 − 𝜇𝐹) 𝑥

∗

, 𝑥
𝑛+1

− 𝑥
∗

⟩

+ 𝜆
𝑛
(1 − 𝛿

𝑛
) ⟨(𝛾𝑆 − 𝜇𝐹) 𝑥

∗

, 𝑥
𝑛+1

− 𝑥
∗

⟩]

+ 2𝛼
𝑛
𝑀
2

≤ [1 − 𝛿
𝑛
𝜆
𝑛
𝛾 (1 − 𝜌)]

𝑥𝑛 − 𝑥
∗
2

+
2𝛿
𝑛
𝜆
𝑛

1 + 𝛿
𝑛
𝜆
𝑛
𝛾 (1 − 𝜌)

× [ ⟨(𝛾𝑉 − 𝜇𝐹) 𝑥
∗

, 𝑥
𝑛+1

− 𝑥
∗

⟩

+
𝑘
1
𝜆
1/𝜃

𝑛

𝛿
𝑛

×(1 +

𝑥𝑛 − 𝑥
𝑛+1

+
𝑧𝑛 − 𝑥

𝑛

+
𝑥𝑛 − 𝑇𝑥

𝑛



𝜆
𝑛

)

1/𝜃

]

+ 2𝛼
𝑛
𝑀
2

= (1 − 𝑠
𝑛
)
𝑥𝑛 − 𝑥

∗
2

+ 𝜇
𝑛
+ 2𝛼
𝑛
𝑀
2
,

(84)

where 𝑠
𝑛
= 𝛿
𝑛
𝜆
𝑛
𝛾(1 − 𝜌) and

𝜇
𝑛
=

2𝛿
𝑛
𝜆
𝑛

1 + 𝛿
𝑛
𝜆
𝑛
𝛾 (1 − 𝜌)

× [ ⟨(𝛾𝑉 − 𝜇𝐹) 𝑥
∗

, 𝑥
𝑛+1

− 𝑥
∗

⟩

+
𝑘
1
𝜆
1/𝜃

𝑛

𝛿
𝑛

×(1 +

𝑥𝑛 − 𝑥
𝑛+1

 +
𝑧𝑛 − 𝑥

𝑛

 +
𝑥𝑛 − 𝑇𝑥

𝑛



𝜆
𝑛

)

1/𝜃

] .

(85)

Now condition (C5) implies that ∑∞
𝑛=0

𝑠
𝑛
= ∞. Moreover,

since ‖𝑥
𝑛+1

−𝑥
𝑛
‖+ ‖𝑧
𝑛
−𝑥
𝑛
‖+ ‖𝑥

𝑛
−𝑇𝑥
𝑛
‖ = 𝑜(𝜆

𝑛
), conditions

(C7) and (74) imply that

lim sup
𝑛→∞

𝜇
𝑛

𝑠
𝑛

≤ 0. (86)

Therefore, we can apply Lemma 8 to (84) to conclude that
𝑥
𝑛
→ 𝑥
∗. The proof of part (a) is complete. It is easy to see

that part (b) now becomes a straightforward consequence of
part (a) since, if 𝑉 = 0, THVIP (8) reduces to the VIP in part
(b). This completes the proof.

Next we consider a special case of Problem II. In Problem
II, put 𝜇 = 2, 𝐹 = (1/2)𝐼 and 𝛾 = 𝜏 = 1. In this case, the
objective is to find 𝑥∗ ∈ Ξ such that

⟨(𝐼 − 𝑉) 𝑥
∗

, 𝑥 − 𝑥
∗

⟩ ≥ 0, ∀𝑥 ∈ Ξ, (87)

where Ξ denotes the solution set of the following hierarchical
variational inequality problem (HVIP) of finding 𝑧

∗

∈

Fix(𝑇) ∩ Γ such that

⟨(𝐼 − 𝑆) 𝑧
∗

, 𝑧 − 𝑧
∗

⟩ ≥ 0, ∀𝑧 ∈ Fix (𝑇) ∩ Γ. (88)

Corollary 15. Let𝐴 be a 1/L-inverse strongly monotone map-
ping,𝑉 : 𝐶 → H be a𝜌-contractionwith coefficient𝜌 ∈ [0, 1),
𝑆 : 𝐶 → 𝐶 be a nonexpansive mapping, and 𝑇 : 𝐶 → 𝐶 be a
𝜁-strictly pseudocontractive mapping. Assume that the solution
set Ξ of the HVIP (88) is nonempty and that the following
conditions hold for the sequences {𝛼

𝑛
} ⊂ [0,∞), {]

𝑛
} ⊂

(0, 1/L), {𝛾
𝑛
} ⊂ [0, 1), and {𝛽

𝑛
}, {𝛿
𝑛
}, {𝜎
𝑛
}, {𝜆
𝑛
} ⊂ (0, 1):

(C1) ∑∞
𝑛=0

𝛼
𝑛
< ∞ and lim

𝑛→∞
(𝛼
𝑛
/𝜆
2

𝑛
) = 0;

(C2) 0 < lim inf
𝑛→∞

]
𝑛
≤ lim sup

𝑛→∞
]
𝑛
< 1/𝐿;

(C3) 𝛽
𝑛
+ 𝛾
𝑛
+ 𝜎
𝑛
= 1 and (𝛾

𝑛
+ 𝜎
𝑛
)𝜁 ≤ 𝛾

𝑛
for all 𝑛 ≥ 0;

(C4) 0 < lim inf
𝑛→∞

𝛽
𝑛

≤ lim sup
𝑛→∞

𝛽
𝑛

< 1 and
lim inf

𝑛→∞
𝜎
𝑛
> 0;

(C5) lim
𝑛→∞

𝜆
𝑛
= 0, lim

𝑛→∞
𝛿
𝑛
= 0 and ∑∞

𝑛=0
𝛿
𝑛
𝜆
𝑛
= ∞;

(C6) there are constants 𝑘, 𝜃 > 0 satisfying ‖𝑥 − 𝑇𝑥‖ ≥

𝑘[𝑑(𝑥, Fix(𝑇) ∩ Γ)]
𝜃 for each 𝑥 ∈ C;

(C7) lim
𝑛→∞

(𝜆
1/𝜃

𝑛
/𝛿
𝑛
) = 0.

One has

(a) If {𝑥
𝑛
} is the sequence generated by the iterative scheme

𝑥
0
= 𝑥 ∈ 𝐶 𝑐ℎ𝑜𝑠𝑒𝑛 𝑎𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑖𝑙𝑦,

𝑦
𝑛
= 𝑃
𝐶
(𝑥
𝑛
− ]
𝑛
𝐴
𝑛
𝑥
𝑛
) ,

𝑧
𝑛
= 𝛽
𝑛
𝑥
𝑛
+ 𝛾
𝑛
𝑃
𝐶
(𝑥
𝑛
− ]
𝑛
𝐴
𝑛
𝑦
𝑛
) + 𝜎
𝑛
𝑇𝑃
𝐶
(𝑥
𝑛
− ]
𝑛
𝐴
𝑛
𝑦
𝑛
) ,

𝑥
𝑛+1

= 𝑃
𝐶
[𝜆
𝑛
(𝛿
𝑛
𝑉𝑥
𝑛
+ (1 − 𝛿

𝑛
) 𝑆𝑥
𝑛
)

+ (1 − 𝜆
𝑛
) 𝑧
𝑛
] , ∀𝑛 ≥ 0

(89)

and {𝑆𝑥
𝑛
} is bounded, then {𝑥

𝑛
} converges strongly to

the point 𝑥∗ ∈ Fix(𝑇) ∩ Γ which is a unique solution of
THVIP (87) provided that ‖𝑥

𝑛+1
− 𝑥
𝑛
‖ + ‖𝑥

𝑛
− 𝑧
𝑛
‖ =

𝑜(𝜆
2

𝑛
).

(b) If {𝑥
𝑛
} is the sequence generated by the iterative scheme

𝑥
0
= 𝑥 ∈ 𝐶 𝑐ℎ𝑜𝑠𝑒𝑛 𝑎𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑖𝑙𝑦,

𝑦
𝑛
= 𝑃
𝐶
(𝑥
𝑛
− ]
𝑛
𝐴
𝑛
𝑥
𝑛
) ,

𝑧
𝑛
= 𝛽
𝑛
𝑥
𝑛
+ 𝛾
𝑛
𝑃
𝐶
(𝑥
𝑛
− ]
𝑛
𝐴
𝑛
𝑦
𝑛
)

+ 𝜎
𝑛
𝑇𝑃
𝐶
(𝑥
𝑛
− ]
𝑛
𝐴
𝑛
𝑦
𝑛
) ,

𝑥
𝑛+1

= 𝑃
𝐶
[𝜆
𝑛
(1 − 𝛿

𝑛
) 𝑆𝑥
𝑛
+ (1 − 𝜆

𝑛
) 𝑧
𝑛
] , ∀𝑛 ≥ 0

(90)
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and {𝑆𝑥
𝑛
} is bounded, then {𝑥

𝑛
} converges strongly to a unique

solution 𝑥
∗ of the following VIP provided that ‖𝑥

𝑛+1
− 𝑥
𝑛
‖ +

‖𝑥
𝑛
− 𝑧
𝑛
‖ = 𝑜(𝜆

2

𝑛
):

𝑓𝑖𝑛𝑑 𝑥
∗

∈ Ξ 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 ⟨𝑥
∗

, 𝑥 − 𝑥
∗

⟩ ≥ 0, ∀𝑥 ∈ Ξ; (91)

that is, 𝑥∗ is the minimum-norm solution of HVIP (88).

Furthermore, applying Theorem 14 to Problem I, we get
the result as below.

Corollary 16. Let 𝐹 : 𝐶 → H be a 𝜅-Lipschitzian
and 𝜂-strongly monotone operator with constants 𝜅, 𝜂 > 0,
respectively, 𝑉 : 𝐶 → H be a 𝜌-contraction with coefficient
𝜌 ∈ [0, 1), 𝑆 : 𝐶 → 𝐶 be a nonexpansive mapping, and 𝑇

𝑖
:

𝐶 → 𝐶 be a 𝜁
𝑖
-strictly pseudocontractive mapping for 𝑖 = 1, 2.

Let 0 < 𝜇 < 2𝜂/𝜅
2 and 0 < 𝛾 ≤ 𝜏, where 𝜏 = 1 −

√1 − 𝜇(2𝜂 − 𝜇𝜅2). Assume that the solution set Ξ of the HVIP
in Problem I is nonempty and that the following conditions
hold for the sequences {]

𝑛
} ⊂ (0, (1 − 𝜁

2
)/2), {𝛾

𝑛
} ⊂ [0, 1) and

{𝛽
𝑛
}, {𝛿
𝑛
}, {𝜎
𝑛
}, {𝜆
𝑛
} ⊂ (0, 1):

(C1) 0 < lim inf
𝑛→∞

]
𝑛
≤ lim sup

𝑛→∞
]n < (1 − 𝜁

2
)/2;

(C2) 𝛽
𝑛
+ 𝛾
𝑛
+ 𝜎
𝑛
= 1 and (𝛾

𝑛
+ 𝜎
𝑛
)𝜁 ≤ 𝛾

𝑛
for all 𝑛 ≥ 0;

(C3) 0 < lim inf
𝑛→∞

𝛽
𝑛

≤ lim sup
𝑛→∞

𝛽
𝑛

< 1 and
lim inf

𝑛→∞
𝜎
𝑛
> 0;

(C4) lim
𝑛→∞

𝜆
𝑛
= 0, lim

𝑛→∞
𝛿
𝑛
= 0 and ∑∞

𝑛=0
𝛿
𝑛
𝜆
𝑛
= ∞;

(C5) there are constants 𝑘, 𝜃 > 0 satisfying ‖𝑥 − 𝑇
1
𝑥‖ ≥

𝑘[𝑑(𝑥, Fix(𝑇
1
) ∩ Fix(𝑇

2
))]
𝜃 for each 𝑥 ∈ C;

(C6) lim
𝑛→∞

(𝜆
1/𝜃

𝑛
/𝛿
𝑛
) = 0.

One has the following.

(a) If {𝑥
𝑛
} is the sequence generated by

𝑥
0
= 𝑥 ∈ 𝐶 𝑐ℎ𝑜𝑠𝑒𝑛 𝑎𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑖𝑙𝑦,

𝑦
𝑛
= 𝑥
𝑛
− ]
𝑛
(𝐼 − 𝑇

2
) 𝑥
𝑛
,

𝑧
𝑛
= 𝛽
𝑛
𝑥
𝑛
+ 𝛾
𝑛
𝑃
𝐶
(𝑥
𝑛
− ]
𝑛
(𝐼 − 𝑇

2
) 𝑦
𝑛
)

+ 𝜎
𝑛
𝑇𝑃
𝐶
(𝑥
𝑛
− ]
𝑛
(𝐼 − 𝑇

2
) 𝑦
𝑛
) ,

𝑥
𝑛+1

= 𝑃
𝐶
[𝜆
𝑛
𝛾 (𝛿
𝑛
𝑉𝑥
𝑛
+ (1 − 𝛿

𝑛
) 𝑆𝑥
𝑛
)

+ (𝐼 − 𝜆
𝑛
𝜇𝐹) 𝑧
𝑛
] , ∀𝑛 ≥ 0,

(92)

such that {𝑆𝑥
𝑛
} is bounded, then {𝑥

𝑛
} converges strongly

to the point 𝑥∗ ∈ Fix(𝑇
1
) ∩ Fix(𝑇

2
) which is a unique

solution of Problem I provided that ‖𝑥
𝑛+1

−𝑥
𝑛
‖ + ‖𝑥

𝑛
−

𝑧
𝑛
‖ = 𝑜(𝜆

2

𝑛
).

(b) If {𝑥
𝑛
} is the sequence generated by

𝑥
0
= 𝑥 ∈ 𝐶 𝑐ℎ𝑜𝑠𝑒𝑛 𝑎𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑖𝑙𝑦,

𝑦
𝑛
= 𝑥
𝑛
− ]
𝑛
(𝐼 − 𝑇

2
) 𝑥
𝑛
,

𝑧
𝑛
= 𝛽
𝑛
𝑥
𝑛
+ 𝛾
𝑛
𝑃
𝐶
(𝑥
𝑛
− ]
𝑛
(𝐼 − 𝑇

2
) 𝑦
𝑛
)

+ 𝜎
𝑛
𝑇𝑃
𝐶
(𝑥
𝑛
− ]
𝑛
(𝐼 − 𝑇

2
) 𝑦
𝑛
) ,

𝑥
𝑛+1

= 𝑃
𝐶
(𝜆
𝑛
(1 − 𝛿

𝑛
) 𝛾𝑆𝑥
𝑛

+ (𝐼 − 𝜆
𝑛
𝜇𝐹) 𝑧
𝑛
] , ∀𝑛 ≥ 0,

(93)

such that {𝑆𝑥
𝑛
} is bounded, then {𝑥

𝑛
} converges strongly to a

unique solution x∗ of the following VIP provided that ‖𝑥
𝑛+1

−

𝑥
𝑛
‖ + ‖𝑥

𝑛
− 𝑧
𝑛
‖ = 𝑜(𝜆

2

𝑛
):

𝑓𝑖𝑛𝑑 𝑥
∗

∈ Ξ 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 ⟨F𝑥∗, 𝑥 − 𝑥
∗

⟩ ≥ 0, ∀𝑥 ∈ Ξ.

(94)

Proof. In Theorem 14, we put 𝑇 = 𝑇
1
and 𝐴 = 𝐼 − 𝑇

2
where

𝑇
𝑖
: 𝐶 → 𝐶 is 𝜁

𝑖
-strictly pseudocontractive for 𝑖 = 1, 2.

Taking 𝐿 = 2/(1 − 𝜁
2
) and 𝛼

𝑛
= 0 for all 𝑛 ≥ 0, we know that

𝐴 : 𝐶 → H is a 1/𝐿-inverse strongly monotone mapping
such that Γ = Fix(𝑇

2
). In the scheme (11), we have

𝑦
𝑛
= 𝑃
𝐶
(𝑥
𝑛
− ]
𝑛
𝐴
𝑛
𝑥
𝑛
) = 𝑃
𝐶
((1 − ]

𝑛
) 𝑥
𝑛
+ ]
𝑛
𝑇
2
𝑥
𝑛
)

= 𝑥
𝑛
− ]
𝑛
(𝐼 − 𝑇

2
) 𝑥
𝑛
.

(95)

UtilizingTheorem 14, we obtain desired result.

On the other hand, we also derive the following strong
convergence result of Algorithm I for finding a unique
solution of Problem III.

Theorem 17. Let 𝐹 : 𝐶 → H be a 𝜅-Lipschitzian
and 𝜂-strongly monotone operator with constants 𝜅, 𝜂 > 0,
respectively, A be a 1/𝐿-inverse strongly monotone mapping,
𝑉 : 𝐶 → H be a 𝜌-contraction with coefficient 𝜌 ∈ [0, 1),
𝑆 : 𝐶 → 𝐶 be a nonexpansive mapping, and 𝑇 : 𝐶 → 𝐶

be a 𝜁-strictly pseudocontractive mapping. Let 0 < 𝜇 < 2𝜂/𝜅
2

and 0 < 𝛾 ≤ 𝜏, where 𝜏 = 1 − √1 − 𝜇(2𝜂 − 𝜇𝜅2). Assume that
Problem III has a solution and that the following conditions
hold for the sequences {𝛼

𝑛
} ⊂ (0,∞), {]

𝑛
} ⊂ (0, 1/𝐿), {𝛾

𝑛
} ⊂

[0, 1) and {𝛽
𝑛
}, {𝛿
𝑛
}, {𝜎
𝑛
}, {𝜆
𝑛
} ⊂ (0, 1):

(C1) ∑∞
𝑛=0

𝛼
𝑛
< ∞;

(C2) 0 < lim inf
𝑛→∞

]n ≤ lim sup
𝑛→∞

]
𝑛
< 1/L;

(C3) 𝛽
𝑛
+ 𝛾
𝑛
+ 𝜎
𝑛
= 1 and (𝛾

𝑛
+ 𝜎
𝑛
)𝜁 ≤ 𝛾

𝑛
for all 𝑛 ≥ 0;

(C4) 0 < lim inf
𝑛→∞

𝛽
𝑛

≤ lim sup
𝑛→∞

𝛽n < 1 and
lim inf

𝑛→∞
𝜎
𝑛
> 0;

(C5) 0 < lim inf
𝑛→∞

𝛿
𝑛
≤ lim sup

𝑛→∞
𝛿
𝑛
< 1;

(C6) lim
𝑛→∞

𝜆
𝑛
= 0 and ∑∞

𝑛=0
𝜆
𝑛
= ∞.

One has the following.
(a) If {𝑥

𝑛
} is the sequence generated by the scheme (11)

and {𝑆𝑥
𝑛
} is bounded, then {𝑥

𝑛
} converges strongly

to a unique solution of Problem III provided that
lim
𝑛→∞

‖𝑥
𝑛+1

− 𝑥
𝑛
‖ = 0.
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(b) If {𝑥
𝑛
} is the sequence generated by the scheme (12)

and {𝑆𝑥
𝑛
} is bounded, then {𝑥

𝑛
} converges strongly

to a unique solution 𝑥
∗

∈ Fix(𝑇) ∩ Γ of the
following system of variational inequalities provided
that lim

𝑛→∞
‖𝑥
𝑛+1

− 𝑥
𝑛
‖ = 0:

⟨𝐹𝑥
∗

, 𝑥 − 𝑥
∗

⟩ ≥ 0, ∀𝑥 ∈ Fix (𝑇) ∩ Γ,

⟨(𝜇𝐹 − 𝛾𝑆) 𝑥
∗

, 𝑦 − 𝑥
∗

⟩ ≥ 0, ∀𝑦 ∈ Fix (𝑇) ∩ Γ.
(96)

Proof. We treat only case (a); that is, the sequence {𝑥
𝑛
} is

generated by scheme (11). First of all, it is seen easily that
0 < 𝛾 ≤ 𝜏 and 𝜅 ≥ 𝜂 ⇔ 𝜇𝜂 ≥ 𝜏. Hence it follows from
the 𝜌-contractiveness of𝑉 and 𝛾𝜌 < 𝛾 ≤ 𝜏 ≤ 𝜇𝜂 that 𝜇𝐹− 𝛾𝑉

is (𝜇𝜂−𝛾𝜌)-strongly monotone and Lipschitz continuous. So,
there exists a unique solution 𝑥

∗ of the following VIP:

find 𝑥
∗

∈ Fix (𝑇) ∩ Γ such that ⟨(𝜇𝐹 − 𝛾𝑉) 𝑥
∗

, 𝑥 − 𝑥
∗

⟩ ≥ 0,

∀𝑥 ∈ Fix (𝑇) ∩ Γ.

(97)

Consequently, it is easy to see that Problem III has a unique
solution 𝑥

∗

∈ Fix(𝑇) ∩ Γ. In addition, taking into account
condition (C5), without loss of generality wemay assume that
{𝛿
𝑛
} ⊂ [𝑎, 𝑏] for some 𝑎, 𝑏 ∈ (0, 1).
Next we divide the rest of the proof into several steps.

Step 1 ({𝑥
𝑛
} is bounded). Indeed, repeating the same argu-

ment as in Step 1 of the proof of Theorem 14 we can derive
the claim.

Step 2 (lim
𝑛→∞

‖𝑥
𝑛
−𝑦
𝑛
‖ = lim

𝑛→∞
‖𝑥
𝑛
−𝑡
𝑛
‖ = lim

𝑛→∞
‖𝑡
𝑛
−

𝑇𝑡
𝑛
‖ = 0). Indeed, repeating the same argument as in Step 2

of the proof of Theorem 14 we can derive the claim.

Step 3 (𝜔
𝑤
(𝑥
𝑛
) ⊂ Fix(𝑇) ∩ Γ). Indeed, repeating the same

argument as in Step 3 of the proof of Theorem 14 we can
derive the claim.

Step 4 ({𝑥
𝑛
} converges strongly to a unique solution 𝑥

∗ of
Problem III). Indeed, according to ‖𝑥

𝑛+1
− 𝑥
𝑛
‖ → 0, we can

take a subsequence {𝑥
𝑛𝑖
} of {𝑥

𝑛
} satisfying

lim sup
𝑛→∞

⟨(𝛾𝑉 − 𝜇𝐹) 𝑥
∗

, 𝑥
𝑛+1

− 𝑥
∗

⟩

= lim sup
𝑛→∞

⟨(𝛾𝑉 − 𝜇𝐹) 𝑥
∗

, 𝑥
𝑛
− 𝑥
∗

⟩

= lim
𝑖→∞

⟨(𝛾𝑉 − 𝜇𝐹) 𝑥
∗

, 𝑥
𝑛𝑖
− 𝑥
∗

⟩ .

(98)

Without loss of generality, we may further assume that 𝑥
𝑛𝑖
⇀

𝑥; then 𝑥 ∈ Fix(𝑇) ∩ Γ due to Step 3. Since 𝑥∗ is a solution of
Problem III, we get

lim sup
𝑛→∞

⟨(𝛾𝑉 − 𝜇𝐹) 𝑥
∗

, 𝑥
𝑛+1

− 𝑥
∗

⟩

= ⟨(𝛾𝑉 − 𝜇𝐹) 𝑥
∗

, 𝑥 − 𝑥
∗

⟩ ≤ 0.

(99)

Repeating the same argument as that of (99), we have

lim sup
𝑛→∞

⟨(𝛾𝑆 − 𝜇𝐹) 𝑥
∗

, 𝑥
𝑛+1

− 𝑥
∗

⟩ ≤ 0. (100)

Repeating the same argument as that of (76) in the proof of
Theorem 14, we obtain

𝑥𝑛+1 − 𝑥
∗
2

≤ [1 − 𝛿
𝑛
𝜆
𝑛
𝛾 (1 − 𝜌)]

𝑥𝑛 − 𝑥
∗
2

+
2

1 + 𝛿
𝑛
𝜆
𝑛
𝛾 (1 − 𝜌)

× [𝛿
𝑛
𝜆
𝑛
⟨(𝛾𝑉 − 𝜇𝐹) 𝑥

∗

, 𝑥
𝑛+1

− 𝑥
∗

⟩

+𝜆
𝑛
(1 − 𝛿

𝑛
) ⟨(𝛾𝑆 − 𝜇𝐹) 𝑥

∗

, 𝑥
𝑛+1

− 𝑥
∗

⟩]

+ 2𝛼
𝑛
𝑀
2
.

(101)

Put 𝑟
𝑛
= 2𝛼
𝑛
𝑀
2
, 𝑠
𝑛
= 𝛿
𝑛
𝜆
𝑛
𝛾(1 − 𝜌) and

𝑏
𝑛
=

2

𝛾 (1 − 𝜌) [1 + 𝛿
𝑛
𝜆
𝑛
𝛾 (1 − 𝜌)]

× ⟨(𝛾𝑉 − 𝜇𝐹) 𝑥
∗

, 𝑥
𝑛+1

− 𝑥
∗

⟩

+
2 (1 − 𝛿

𝑛
)

𝛿
𝑛
𝛾 (1 − 𝜌) [1 + 𝛿

𝑛
𝜆
𝑛
𝛾 (1 − 𝜌)]

× ⟨(𝛾𝑆 − 𝜇𝐹) 𝑥
∗

, 𝑥
𝑛+1

− 𝑥
∗

⟩ .

(102)

Then (101) is rewritten as
𝑥𝑛+1 − 𝑥

∗
2

≤ (1 − 𝑠
𝑛
)
𝑥𝑛 − 𝑥

∗
2

+ 𝑠
𝑛
𝑏
𝑛
+ 𝑟
𝑛
. (103)

In terms of conditions (C5) and (C6), we conclude from 0 <

1 − 𝜌 ≤ 1 that

{𝑠
𝑛
} ⊂ (0, 1] ,

∞

∑
𝑛=0

𝑠
𝑛
= ∞. (104)

Note that
2

𝛾 (1 − 𝜌) [1 + 𝛿
𝑛
𝜆
𝑛
𝛾 (1 − 𝜌)]

≤
2

𝛾 (1 − 𝜌)
,

2 (1 − 𝛿
𝑛
)

𝛿
𝑛
𝛾 (1 − 𝜌) [1 + 𝛿

𝑛
𝜆
𝑛
𝛾 (1 − 𝜌)]

≤
2

𝑎𝛾 (1 − 𝜌)
.

(105)

Consequently, utilizing Lemma 13 we obtain that

lim sup
𝑛→∞

𝑏
𝑛
≤ lim sup
𝑛→∞

2

𝛾 (1 − 𝜌) [1 + 𝛿
𝑛
𝜆
𝑛
𝛾 (1 − 𝜌)]

× ⟨(𝛾𝑉 − 𝜇𝐹) 𝑥
∗

, 𝑥
𝑛+1

− 𝑥
∗

⟩

+ lim sup
𝑛→∞

2 (1 − 𝛿
𝑛
)

𝛿
𝑛
𝛾 (1 − 𝜌) [1 + 𝛿

𝑛
𝜆
𝑛
𝛾 (1 − 𝜌)]

× ⟨(𝛾𝑆 − 𝜇𝐹) 𝑥
∗

, 𝑥
𝑛+1

− 𝑥
∗

⟩

≤ 0.

(106)

So, this togetherwith Lemma 8 leads to lim
𝑛→∞

‖𝑥
𝑛
−𝑥
∗

‖ = 0.
The proof is complete.
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UtilizingTheorem 17we immediately derive the following
result.

Corollary 18. Let 𝐹 : 𝐶 → H be a 𝜅-Lipschitzian
and 𝜂-strongly monotone operator with constants 𝜅, 𝜂 > 0,
respectively, A be a 1/L-inverse strongly monotone mapping,
𝑉 : 𝐶 → H be a 𝜌-contraction with coefficient 𝜌 ∈ [0, 1), and
𝑇 : 𝐶 → 𝐶 be a 𝜁-strictly pseudocontractive mapping such
that Fix(𝑇) ∩ Γ ̸= 0. Let 0 < 𝜇 < 2𝜂/𝜅

2 and 0 < 𝛾 ≤ 𝜏, where
𝜏 = 1−√1 − 𝜇(2𝜂 − 𝜇𝜅2). Assume that the following conditions
hold for the sequences {𝛼

𝑛
} ⊂ (0,∞), {]

𝑛
} ⊂ (0, 1/L), {𝛾

𝑛
} ⊂

[0, 1) and {𝛽
𝑛
}, {𝜎
𝑛
}, {𝜆
𝑛
} ⊂ (0, 1):

(C1) ∑∞
𝑛=0

𝛼
𝑛
< ∞;

(C2) 0 < lim inf
𝑛→∞

]
𝑛
≤ lim sup

𝑛→∞
]
𝑛
< 1/𝐿;

(C3) 𝛽
𝑛
+ 𝛾
𝑛
+ 𝜎
𝑛
= 1 and (𝛾

𝑛
+ 𝜎
𝑛
)𝜁 ≤ 𝛾

𝑛
for all 𝑛 ≥ 0;

(C4) 0 < lim inf
𝑛→∞

𝛽
𝑛

≤ lim sup
𝑛→∞

𝛽
𝑛

< 1 and
lim inf

𝑛→∞
𝜎n > 0;

(C5) lim
𝑛→∞

𝜆
𝑛
= 0 and ∑∞

𝑛=0
𝜆
𝑛
= ∞.

One has the following.

(a) If {𝑥
𝑛
} is the sequence generated by the scheme (13)

and {𝑉𝑥
𝑛
} is bounded, then {𝑥

𝑛
} converges strongly to

a unique solution of the following VIP provided that
lim
𝑛→∞

‖𝑥
𝑛+1

− 𝑥
𝑛
‖ = 0:

𝑓𝑖𝑛𝑑 𝑥
∗

∈ Fix (𝑇) ∩ Γ 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 ⟨(𝜇𝐹 − 𝛾𝑉) 𝑥
∗

, 𝑥 − 𝑥
∗

⟩ ≥ 0,

∀𝑥 ∈ Fix (𝑇) ∩ Γ.

(107)

(b) If {𝑥
𝑛
} is the sequence generated by the scheme (14),

then {𝑥
𝑛
} converges strongly to a unique solution of the

following VIP provided that lim
𝑛→∞

‖𝑥
𝑛+1

− 𝑥
𝑛
‖ = 0:

𝑓𝑖𝑛𝑑 𝑥
∗

∈ Fix (𝑇) ∩ Γ 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 ⟨𝐹𝑥
∗

, 𝑥 − 𝑥
∗

⟩ ≥ 0,

∀𝑥 ∈ Fix (𝑇) ∩ Γ.
(108)

Proof. In Theorem 17, putting 𝑆 = 𝑉, we know that the
iterative scheme (11) reduces to (13) since there holds for any
{𝛿
𝑛
} ⊂ (0, 1)

𝑥
𝑛+1

= 𝑃
𝐶
[𝜆
𝑛
𝛾 (𝛿
𝑛
𝑉𝑥
𝑛
+ (1 − 𝛿

𝑛
) 𝑆𝑥
𝑛
) + (𝐼 − 𝜆

𝑛
𝜇𝐹) 𝑧
𝑛
]

= 𝑃
𝐶
[𝜆
𝑛
𝛾 (𝛿
𝑛
𝑉𝑥
𝑛
+ (1 − 𝛿

𝑛
) 𝑉𝑥
𝑛
) + (𝐼 − 𝜆

𝑛
𝜇𝐹) 𝑧
𝑛
]

= 𝑃
𝐶
[𝜆
𝑛
𝛾𝑉𝑥
𝑛
+ (𝐼 − 𝜆

𝑛
𝜇𝐹) 𝑧
𝑛
] .

(109)

In this case, the SVI (15) with VIP constraint is equivalent
to the VIP (107). Thus, utilizing Theorem 17 (a) we obtain
the desired conclusion (a). As for the conclusion (b), we
immediately derive it from 𝑆 = 𝑉 ≡ 0 and Theorem 17
(b).

In addition, applying Theorem 17 to Problem IV, we
derive the result as below.

Corollary 19. Let 𝐹 : 𝐶 → H be a 𝜅-Lipschitzian
and 𝜂-strongly monotone operator with constants 𝜅, 𝜂 > 0,
respectively, 𝑉 : 𝐶 → H be a 𝜌-contraction with coefficient
𝜌 ∈ [0, 1), 𝑆 : 𝐶 → 𝐶 be a nonexpansive mapping, and
𝑇
𝑖
: 𝐶 → 𝐶 be a 𝜁

𝑖
-strictly pseudocontractive mapping for

𝑖 = 1, 2. Let 0 < 𝜇 < 2𝜂/𝜅
2 and 0 < 𝛾 ≤ 𝜏, where 𝜏 =

1 − √1 − 𝜇(2𝜂 − 𝜇𝜅2). Assume that Problem IV has a solution
and that the following conditions hold for the sequences {]

𝑛
} ⊂

(0, (1 − 𝜁
2
)/2), {𝛾

𝑛
} ⊂ [0, 1) and {𝛽

𝑛
}, {𝛿
𝑛
}, {𝜎
𝑛
}, {𝜆
𝑛
} ⊂ (0, 1):

(C1) 0 < lim inf
𝑛→∞

]
𝑛
≤ lim sup

𝑛→∞
]
𝑛
< (1 − 𝜁

2
)/2;

(C2) 𝛽
𝑛
+ 𝛾
𝑛
+ 𝜎
𝑛
= 1 and (𝛾

𝑛
+ 𝜎
𝑛
)𝜁 ≤ 𝛾

𝑛
for all 𝑛 ≥ 0;

(C3) 0 < lim inf
𝑛→∞

𝛽
𝑛

≤ lim sup
𝑛→∞

𝛽
𝑛

< 1 and
lim inf

𝑛→∞
𝜎
𝑛
> 0;

(C4) 0 < lim inf
𝑛→∞

𝛿
𝑛
≤ lim sup

𝑛→∞
𝛿
𝑛
< 1;

(C5) lim
𝑛→∞

𝜆
𝑛
= 0 and ∑∞

𝑛=0
𝜆
𝑛
= ∞.

One has the following.

(a) If {𝑥
𝑛
} is the sequence generated by the scheme in

Corollary 16 (a) such that {𝑆𝑥
𝑛
} is bounded, then {𝑥

𝑛
}

converges strongly to a unique solution of Problem IV
provided that lim

𝑛→∞
‖𝑥
𝑛+1

− 𝑥
𝑛
‖ = 0.

(b) If {𝑥
𝑛
} is the sequence generated by the scheme in

Corollary 16 (b) such that {𝑆𝑥
𝑛
} is bounded, then

{𝑥
𝑛
} converges strongly to a unique solution 𝑥

∗

∈

Fix(𝑇
1
) ∩ Fix(𝑇

2
) of the following system of variational

inequalities provided that lim
𝑛→∞

‖𝑥
𝑛+1

− 𝑥
𝑛
‖ = 0:

⟨𝐹𝑥
∗

, 𝑥 − 𝑥
∗

⟩ ≥ 0, ∀𝑥 ∈ Fix (𝑇
1
) ∩ Fix (𝑇

2
) ,

⟨(𝜇𝐹 − 𝛾𝑆) 𝑥
∗

, 𝑦 − 𝑥
∗

⟩ ≥ 0, ∀𝑦 ∈ Fix (𝑇
1
) ∩ Fix (𝑇

2
) .

(110)
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