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We study the slip flow of fluids driven by the combined effect of electrical force and pressure gradient. The underlying boundary
value problem is solved through the use of Fourier series expansion in time and Bessel function in space. The exact solutions and
numerical investigations show that the slip length and electrical field parameters have significant effects on the velocity profile. By
varying these system parameters, one can achieve smooth velocity profiles or wave form profiles with different wave amplitude and
frequency. This opens the way for optimizing the flow by choosing the slip length, the electrical field, and electrolyte solutions.

1. Introduction

Over the past few decades, advances in nanoscience and nan-
otechnology have led to the development of manymicroelec-
tromechanical systems and devices such as heat exchanger
[1], micropump [2], lab-on-a-chip diagnostic devises [3],
drug delivery systems [4], energy conversion, and biological
sensing devices [5].Most of these systems and devices involve
fluid flow in microtubes and microchannels. To control the
microfluidics in microchannels so as to achieve optional
system performance, it is essential to study the fundamental
mechanics of microflows and derive better models and
understanding of the flow mechanism and flow behaviour.

Flow of microfluidics may be driven by pressure gradient
or by electrical forces. For electrical-driven flow, the solid
surface of themicrochannel is electrically charged to generate
a region in the fluid with a distribution of electrical charges
near the channel surface. This region is called the electrical
double layer (EDL). The EDL, on one hand, has the effect
of retarding liquid flow driven by external pressure gradient
to form a streaming potential, whereas, on the other hand,
it can induce fluid flow by applying an external electric
field. In this work, we will study the flow of microfluidics

in microchannels driven by the combination of pressure
gradient and externally applied electric field.

The equations governing the flow of microfluidics in
microchannels include the Navier-Stokes equations, the
incompressible continuity equation, and boundary condi-
tions. Traditionally, the no-slip boundary condition is used
[6, 7]. However, recent molecular dynamic simulations and
experiments in micrometer scale show that the flow of fluids
in micrometer scale is granular and slip occurs between
the fluid and the solid surface [8–12]. Therefore, the no-slip
condition does not work for fluid flow in microchannels.
In this work, the Navier slip boundary condition will be
used; namely, the tangential fluid velocity relative to the solid
surface is proportional to the shear stress on the solid-fluid
interface. The validity of the Navier slip boundary condition
is supported by many experimental results [13–15].

Formany fluid flow problems, under the nonslip assump-
tion, exact and numerical solutions have been obtained
and can be found in the literature [6, 16–18]. Steady state
solutions under slip conditions have also been established
for flows of Newtonian fluids through pipes, channels, and
annulus [19, 20]. More recently, various analytical solutions
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for pressure-driven time-dependent slip flows of Newtonian
fluids through microtubes and microannulus were derived
[16, 18]. Various attempts have also been made to study
the electrically driven fluid flows. Rice and Whitehead [21]
investigated the steady-state liquid flowdue to an electric field
in circular capillaries. Levine et al. [22] analysed the electroki-
netic steady flow in a narrow parallel-plate microchannel.
Yang et al. [23] studied the flow in rectangular microchannels
and Mala et al. [24] in parallel-plate microchannels.

Motivated by the previous work, this work aims to
generalize the result in [25] for the pressure-driven slip flow
to the casewith the combined effect of pressure-driving forces
and electrically driving forces. The rest of the paper is orga-
nized as follows. In Section 2, we present the mathematical
model for the problem, consisting of the governing field
equations and boundary conditions. In Section 3, we derive
the exact solutions for the velocity field through the use of
Bessel functions in space and Fourier series expansion in
time. Based on the velocity solutions, we then establish the
analytical solutions for the stress tensor and flow rate. In
Section 5, we investigate the influence of the electric field and
the surface slippage on the flow behaviour.Then a conclusion
is given in Section 6.

2. Mathematical Model and Formulation

In this paper, we consider the flow of microfludics through
a circular microchannel driven by both pressure gradient
and external electric field. The cylindrical polar coordinate
(𝑟, 𝜃, 𝑧), with the 𝑧-axis being in the axial direction, is
used in the formulation. The governing field equations for
the problem include the Navier-Stokes equations and the
continuity equation. Let V = (V

𝑟
, V
𝜃
, 𝑢) be the velocity vector

with V
𝑟
, V
𝜃
, and 𝑢 being, respectively, the components of

velocity in the radial direction, the transverse direction, and
axial direction.Then the continuity equation and the Navier-
Stokes equation in the 𝑧-direction are
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where 𝑝 is the pressure, 𝜇 is the dynamic viscosity, 𝜌
𝑓
and

𝜌
𝑒
, are respectively, the fluid density and the electric charge

density, and 𝐸


𝑧
is the externally applied electric field.

Assuming that the flow is axially symmetric and the radial
and transverse velocity components are negligible, then (1)
admits solution of the form

V
𝑟
= 0, V

𝜃
= 0, 𝑢 = 𝑢 (𝑟, 𝑡) (2)
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Based on [25], the velocity boundary condition for the
problem can be written as

𝜕𝑢

𝜕𝑟

(0, 𝑡) = 0, 𝑢 (𝑅, 𝑡) = −𝑙
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(𝑅, 𝑡) . (4)

In this paper, we study the flow driven by both pressure
gradient 𝜕𝑝/𝜕𝑧 and an externally applied electrical field 𝐸



𝑧
.

Without loss of generality, we express the pressure gradient
by Fourier series; namely,
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which can also be expressed by
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where Re() is to take the real part of the complex quantity. To
determine the free charge density 𝜌

𝑒
, let 𝜓(𝑟) be the electric

potential associatedwith double layer at the equilibrium state.
Then based on [26], we have
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𝜓, (7)
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, 𝜓 (0) is finite, (9)

where 𝜓
𝑠
is the surface potential at the wall 𝑟 = 𝑅. Now

substituting (7) into (3), we have
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Hence the problem is to solve the boundary value problem
(8)-(9) for 𝜓 and then the partial differential equation (10)
subject to boundary conditions (4) for 𝑢, which will be done
in Section 3.

3. Solution for the Transient Velocity Field

Let 𝜅𝑟 = 𝑟; (8) becomes

𝑟
2
𝑑
2

𝜓

𝑑𝑟
2
+ 𝑟

𝑑𝜓

𝑑𝑟

− 𝑟
2

𝜓 = 0 (11)

which gives solution

𝜓 = 𝐴𝐽
0
(𝜅𝑟) + 𝐵𝑌

0
(𝜅𝑟) , (12)

where𝐴 and 𝐵 denote integration constants and 𝐽
0
and𝑌
0
are

the zero-order Bessel functions of the first and second kinds,
respectively. From (12) and boundary condition (9), we obtain
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and (10) becomes
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(14)

which admits solution of the form

𝑢 (𝑟, 𝑡) = 𝑢
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(𝑟, 𝑡) + 𝑢

𝑒
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where 𝑢
𝑝
is the solution corresponding to the first termon the

right hand side and 𝑢
𝑒
is the solution contributed from the

second term of the right hand side. From the superposition
principle, based on the work of [25], we have
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where 𝛽2
𝑛
= 𝑛𝛽
2 with 𝛽

2
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𝜔/𝜇)𝑖. Now, we proceed to find
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For the above equation to hold for any instant of time 𝑡, we
require
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As 𝐶
0
must be bounded at 𝑟 = 0 but ln 𝑟 has singularity at
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Hence, by substituting (16) and (21) into (15), we obtain
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Substituting (22) into boundary condition (4) yields

𝐶 +

𝑎
0

4𝜇

𝑅
2

+ 𝑙

𝑎
0

2𝜇

𝑅 +

1

𝜇

𝜓
𝑠
𝐸


𝑧
− 𝑙

𝜅𝜓
𝑠
𝐸


𝑧

𝜇𝐽
0
(𝜅𝑅)

𝐽
1
(𝜅𝑅)

+ 𝐷
2
𝑡 +

𝜌
𝑓
𝐷
2
𝑅
2

4𝜇

+ 𝑙

𝜌
𝑓
𝐷
2
𝑅

2𝜇

+

∞

∑

𝑛=1

Re[(𝑑
𝑛
𝐽
0
(𝛽𝑅) +

𝑐
𝑛
𝑖

𝜌
𝑓
𝑛𝜔

− 𝑙𝛽
𝑛
𝑑
𝑛
𝐽
1
(𝛽
𝑛
𝑅)) 𝑒

𝑖𝑛𝜔𝑡

]

= 0.

(23)

For the above equation to hold for any instant of time 𝑡, we
require𝐷

2
= 0 and

𝐶 +

𝑎
0

4𝜇

𝑅
2

+ 𝑙

𝑎
0

2𝜇

𝑅 +

1

𝜇

𝜓
𝑠
𝐸


𝑧

− 𝑙

𝜅

𝜇

𝜓
𝑠
𝐸


𝑧

𝐽
0
(𝜅𝑅)

𝐽
1
(𝜅𝑅) = 0,

𝑑
𝑛
𝐽
0
(𝛽𝑅) +

𝑐
𝑛
𝑖

𝜌
𝑓
𝑛𝜔

− 𝑙𝛽
𝑛
𝑑
𝑛
𝐽
1
(𝛽
𝑛
𝑅) = 0,

(24)

which give

𝐶 = −

𝑎
0
𝑅
2

4𝜇

(1 +

2𝑙

𝑅

) −

1

𝜇

𝜓
𝑠
𝐸


𝑧
+ 𝑙

𝜅

𝜇

𝜓
𝑠
𝐸


𝑧

𝐽
0
(𝜅𝑅)

𝐽
1
(𝜅𝑅) ,

𝑑
𝑛
=

−𝑐
𝑛
𝑖

𝜌
𝑓
𝑛𝜔 [𝐽
0
(𝛽𝑅) − 𝑙𝛽

𝑛
𝐽
1
(𝛽
𝑛
𝑅)]

.

(25)

Hence, by substituting (25) into (22), we obtain
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We should remark that if 𝑙 = 0, solution (26) reduces to the
no-slip solution
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4. Solutions for the Flow Rate and Stresses

From the velocity solution (26), we get the flow rate as follows:
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and hence

∫

𝑅

0

𝑟𝐽
0
(𝛽
𝑛
𝑟) 𝑑𝑟 =

1

𝛽
𝑛

[𝑟𝐽
1
(𝛽
𝑛
𝑟)]
𝑅

0
=

1

𝛽
𝑛

𝑅𝐽
1
(𝛽
𝑛
𝑅) . (31)

Therefore from (28) and the above formula, we get

𝑄 (𝑡) = −

𝑎
0
𝜋𝑅
3

2𝜇

(𝑙 +

𝑅

4

) + 𝑙

𝜋𝑅
2

𝜅

𝜇

𝜓
𝑠
𝐸


𝑧

𝐽
0
(𝜅𝑅)

𝐽
1
(𝜅𝑅)

+

𝑅

𝜇𝜅

𝜓
𝑠
𝐸


𝑧

𝐽
0
(𝜅𝑅)

𝐽
1
(𝜅𝑅) −

2𝜋

𝜌
𝑓
𝜔

× Re[
∞

∑

𝑛=1

𝑐
𝑛
𝑖𝑒
𝑖𝑛𝜔𝑡

𝑛

(

𝑅𝐽
1
(𝛽
𝑛
𝑅)

𝛽
𝑛
𝐽
0
(𝛽
𝑛
𝑅) − 𝑙𝛽

𝑛
𝐽
1
(𝛽
𝑛
𝑅)

−

𝑅
2

2

)] −

𝜋𝑅
2

𝜇

𝜓
𝑠
𝐸


𝑧
.

(32)

The total amount of fluid, flowing through the tube during
the period [0, 𝑇], can then be determined as follows:

𝑄
𝑇
= ∫

𝑇

0

𝑄 (𝑡) 𝑑𝑡

= −

𝑎
0
𝜋𝑅
3

𝑇

2𝜇

(𝑙 +

𝑅

4

) + 𝑙

𝜋𝑅
2

𝜅

𝜇

𝜓
𝑠
𝐸


𝑧
𝑇

𝐽
0
(𝜅𝑅)

𝐽
1
(𝜅𝑅)

+

𝜋𝑅

𝜇𝜅

𝜓
𝑠
𝐸


𝑧
𝑇

𝐽
0
(𝜅𝑅)

𝐽
1
(𝜅𝑅) −

2𝜋

𝜌
𝑓
𝜔
2

× Re[
∞

∑

𝑛=1

𝑐
𝑛
(𝑒
𝑖𝑛𝜔𝑇

− 1)

𝑛
2

×(

𝑅𝐽
1
(𝛽
𝑛
𝑅)

𝛽
𝑛
𝐽
0
(𝛽
𝑛
𝑅) − 𝑙𝛽

𝑛
𝐽
1
(𝛽
𝑛
𝑅)

−

𝑅
2

2

)]

−

𝜋𝑅
2

𝜇

𝜓
𝑠
𝐸


𝑧
𝑇.

(33)

Now, we determine the stresses in the fluid. From V =

𝑒
𝑟
0 + 𝑒
𝜃
0 + 𝑒
𝑧
𝑢(𝑟), we get

∇V = (

0 0

𝜕𝑢

𝜕𝑟

0 0 0

𝜕𝑢

𝜕𝑟

0 0

) . (34)

From the above formulae and (26), we obtain

𝑑
𝑟𝜃

= 𝑑
𝜃𝑧

= 𝑑
𝑟𝑟

= 𝑑
𝜃𝜃

= 𝑑
𝑧𝑧
,

𝑑
𝑟𝑧

=

𝑎
0
𝑟

2𝜇

+

∞

∑

𝑛=1

Re[
𝑐
𝑛
𝑖

𝜌
𝑓
𝑛𝜔

(

𝛽
𝑛
𝐽
1
(𝛽
𝑛
𝑟)

𝐽
0
(𝛽
𝑛
𝑅) − 𝑙𝛽

𝑛
𝐽
1
(𝛽
𝑛
𝑅)

) 𝑒
𝑖𝑛𝜔𝑡

]

−

𝜅

𝜇

𝜓
𝑠
𝐸


𝑧

𝐽
0
(𝜅𝑅)

𝐽
1
(𝜅𝑟) .

(35)

Thus from the constitutive equations for Newtonian fluid, we
get

𝜎
𝑟𝑟

= 𝜎
𝜃𝜃

= 𝜎
𝑧𝑧

= −𝑝 = 𝑞 (𝑡) 𝑥 + 𝑝
0
(𝑡) ,

𝜎
𝑟𝜃

= 𝜎
𝜃𝑧

= 0

𝜎
𝑟𝑧

= 𝑎
0
𝑟

+ 2𝜇

∞

∑

𝑛=1

Re[
𝑐
𝑛
𝑖

𝜌
𝑓
𝑛𝜔

(

𝛽
𝑛
𝐽
1
(𝛽
𝑛
𝑟)

𝐽
0
(𝛽
𝑛
𝑅) − 𝑙𝛽

𝑛
𝐽
1
(𝛽
𝑛
𝑅)

) 𝑒
𝑖𝑛𝜔𝑡

]

− 2𝜇𝜅

𝜓
𝑠
𝐸


𝑧

𝐽
0
(𝜅𝑅)

𝐽
1
(𝜅𝑟) ,

(36)

where 𝑝
0
(𝑡) is an arbitrary constant which may be chosen to

meet certain pressure conditions.
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5. Numerical Investigation

In this section, we use the solutions obtained in previous
sections to study the influence of the combined effect of
electrical field and pressure gradient on the velocity profile
and flow rate. As the pressure gradient can be expressed as
a Fourier series, without loss of generality, we consider here
only two cases of pressure gradient, including the constant
pressure gradient and a cosine wave form pressure gradient.

Case 1. Consider

𝑑𝑝

𝑑𝑧

= 𝑎
0
. (37)

In this case, we have 𝑐
𝑛

= 0 for all 𝑛 ≥ 1, and thus, from
(26) and (32), we get the normalized velocity and flow rate as
follows:

𝑢
∗

= −

4𝜇

𝑎
0
𝑅
2
𝑢

= (1 +

2𝑙

𝑅

−

𝑟
2

𝑅
2
)

−

4𝜇

𝑎
0
𝑅
2
[𝑙

𝜅

𝜇

𝐽
1
(𝜅𝑅)

𝐽
0
(𝜅𝑅)

+

1

𝜇

𝐽
0
(𝜅𝑟)

𝐽
0
(𝜅𝑅)

−

1

𝜇

]𝜓
𝑠
𝐸


𝑧
,

𝑄
∗

(𝑡) = −

2𝜇

𝑎
0
𝜋𝑅
3
𝑄 (𝑡)

= (𝑙 +

𝑅

4

) −

2𝜇

𝑎
0
𝜋𝑅
2

× [𝑙

𝜋𝜅𝑅

𝜇

𝐽
1
(𝜅𝑅)

𝐽
0
(𝜅𝑅)

+

1

𝜇𝜅

𝐽
1
(𝜅𝑅)

𝐽
0
(𝜅𝑅)

−

𝜋𝑅

𝜇

]𝜓
𝑠
𝐸


𝑧
.

(38)

We should address here that the velocity and flow rate are
linearly propositional to the slip length 𝑙.

Case 2. Consider

𝑑𝑝

𝑑𝑧

= 𝑎
1
cos(𝜔𝑡) . (39)

In this case, we have 𝑎
0
= 0, 𝑐

1
= 𝑎
1
∈ 𝑅, 𝑐

𝑛
= 0 for all 𝑛 ≥ 2.

For simplification, we normalize the variables as follows:

𝛽
∗

= 𝛽𝑅, 𝑟
∗

=

𝑟

𝑅

∈ [0, 1] , 𝑙
∗

=

𝑙

𝑅

,

𝑡
∗

=

𝜔𝑡

2𝜋

, 𝑢
∗

= −

𝜌
𝑓
𝜔

𝑎
1

𝑢, 𝐾 = 𝜅𝑅.

(40)

Then from (26), we get

𝑢
∗

= Re((
𝐽
0
(𝛽
∗

𝑟
∗

)

𝐽
0
(𝛽
∗
) − 𝑙
∗
𝛽
∗
𝐽
1
(𝛽
∗
)

− 1) 𝑖𝑒
2𝜋𝑖𝑡
∗

)

−

𝜌
𝑓
𝜔

𝑎
1

[

1

𝜇

𝐽
0
(𝐾𝑟
∗

)

𝐽
0
(𝐾)

+

𝜅𝑅𝑙
∗

𝜇

𝐽
1
(𝐾)

𝐽
0
(𝐾)

−

1

𝜇

]𝜓
𝑠
𝐸


𝑧
.

(41)
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Figure 1: Typical velocity profile of the velocity component due to
pressure gradient under different 𝑙∗ value.

Let

𝑀 = 𝑀(𝑟
∗

) = Re(
𝐽
0
(𝛽
∗

𝑟
∗

)

𝐽
0
(𝛽
∗
) − 𝑙
∗
𝛽
∗
𝐽
1
(𝛽
∗
)

) ,

𝑁 = 𝑁 (𝑟
∗

) = Im(

𝐽
0
(𝛽
∗

𝑟
∗

)

𝐽
0
(𝛽
∗
) − 𝑙
∗
𝛽
∗
𝐽
1
(𝛽
∗
)

) ,

𝐴
1
= −

𝜌
𝑓
𝜔

𝜇𝐽
0
(𝐾)

, 𝐴
2
=

𝜌
𝑓
𝜔𝐾

𝜇𝐽
0
(𝐾)

𝐽
1
(𝐾) 𝑅,

𝐴
3
=

𝜌
𝑓
𝜔

𝜇

,

(42)

then

𝑢
∗

= 𝐴 (𝑟
∗

) cos (2𝜋𝑡∗ − 𝜃)

+ (𝐴
1
𝐽
0
(𝐾𝑟
∗

) + 𝐴
2
𝑙
∗

+ 𝐴
3
)

𝜓
𝑠
𝐸


𝑧

𝑎
1

,

(43)

where

𝐴 = √𝑁
2
+ (1 −𝑀)

2

, 𝜃 = arc tan(

𝑀 − 1

𝑁

) . (44)

As the 𝑀 and 𝑁 defined above are in terms of the com-
plex parameter 𝛽

∗ and the Bessel functions with complex
arguments, the relationship between the velocity and the slip
length 𝑙 needs to be investigated. We first proceed to derive
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Figure 2: Typical profiles of the velocity component due to electric
field for 𝑙∗ = 0.5 under different 𝜓
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𝑧
/𝑎
1
and 𝐾 values.

more explicit formulae relating 𝑢
∗ and 𝑙 in the real domain.

As 𝛽2 = −(𝜌𝜔/𝜇)𝑖 = −(𝜌𝜔/𝜇)𝑒
−𝜋/2, we get

𝛽 = √

𝜌𝜔

2𝜇

(1 − 𝑖) =

𝛽

𝑅

(1 − 𝑖) ,

1

𝛽

=

𝑅

2𝛽

(1 + 𝑖) , 𝛽
∗

= 𝛽 (1 − 𝑖) ,

(45)

where 𝛽 = 𝑅√𝜌𝜔/2𝜇. For ‖𝑦‖ ≪ 1, then we have
the following asymptotic formulae for approximating Bessel
functions [12]:

𝐽
𝑛
(𝑥 + 𝑦𝑖) ≈ 𝐽

𝑛
(𝑥) −

𝑖𝑦

2

[𝐽
𝑛+1

(𝑥) − 𝐽
𝑛−1

(𝑥)] ,

𝐽
𝑛
(𝑦) ≃

1

𝑛!

(

𝑦

2

)

2

.

(46)

Thus, for 𝛽 ≪ 1, we have

𝐽
0
(𝛽
∗

) = 𝐽
0
(𝛽 − 𝛽𝑖) ≈ 𝐽

0
(𝛽) + 𝑖𝛽𝐽

1
(𝛽) ≈ 1 +

𝛽

2

2

𝑖,

𝐽
1
(𝛽
∗

) = 𝐽
1
(𝛽 − 𝛽𝑖) ≈

𝛽

2

−

𝛽

2

[

[

1 −

𝛽

2

8

]

]

𝑖,
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Figure 3: Typical velocity profile for various different values of slip
length 𝑙

∗ at a typical time 𝑡∗ = 𝜃/2𝜋, obtained with 𝜓
𝑠
𝐸


𝑧
/𝑎
1
= 10
−4,

𝐾 = 200.

𝐽
0
(𝛽
∗

𝑟
∗

) ≈ 1 +

𝛽

2

𝑟
∗2

2

𝑖,

𝐽
1
(𝛽
∗

𝑟
∗

) =

𝛽𝑟
∗

2

−

𝛽𝑟
∗

2

[

[

1 −

(𝛽𝑟
∗

)

2

8

]

]

𝑖.

(47)

Substituting the above into (48) yields

𝑀 ≈

1 − 𝛽

4

𝑙
∗

(1 − 8𝑟
∗2

) /16

1 + 𝛽

4

𝑙
∗
((7/8) + 𝑙

∗
)

,

𝑁 ≈ −

𝛽

2

(1 − 𝑟
∗2

+ 2𝑙
∗

)

2 [1 + 𝛽

4

𝑙
∗
((7/8) + 𝑙

∗
)]

.

(48)

Hence we have
𝐴 = 𝐴 (𝑟

∗

)

=

𝛽

2

2 [1 + 𝛽

4

𝑙
∗
((7/8) + 𝑙

∗
)]

×
√
(1 − 𝑟

∗2
+ 2𝑙
∗
)
2

+

𝛽

4

𝑙
∗2

64

(15 − 8𝑟
2
+ 16𝑙
∗
)
2

,

𝑢
∗

= 𝐴 (𝑟
∗

) cos (2𝜋𝑡∗ − 𝜃)

+

[𝐴
1
𝐽
0
(𝐾𝑟
∗

) + 𝐴
2
𝑙
∗

+ 𝐴
3
] 𝜓
𝑠
𝐸


𝑧

𝑎
1

.

(49)

Thus, it can be concluded that the velocity consists of a
time-dependent part in terms of a trigonometric function and
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Figure 4: Typical velocity profile for themixed pressure and electric
driven flow at various instants of time 𝑡∗, obtained with slip length
𝑙
∗

= 1, 𝜓
𝑠
𝐸


𝑧
/𝑎
1
= 10
−6, and 𝐾 = 1500.

a time-independent part in terms of a Bessel function of the
first kind of order zero.

To demonstrate the velocity profile of themixed pressure-
driving and electrical-driving flow and the influence of the
slip parameter and electric field on the flow, we carry out
numerical investigation under various conditions.The typical
values chosen for the model parameters 𝑅, 𝜌

𝑓
, 𝜔, 𝜇 are 𝑅 =

20mm, 𝜌
𝑓

= 1000 km/m3, 𝜔 = 1/2𝜋, 𝜇 = 0.86Ns/m2.
Based on [27–29], the 𝐾 value varies from one electrolyte
solution to another; thus in this work we use a wide range of
values to demonstrate the influence of𝐾 on the flow.The slip
length 𝑙 is related to the smoothness of the surface of the tubes
and is controllable within certain range; hence we also use a
wide range of 𝑙 values in the investigation to demonstrate the
influence of 𝑙 on the flow profile and flow rate. The 𝜓

𝑠
𝐸


𝑧
is

set to 0.05V in all experiments except for the experiment in
which the influence of the intensity of electric field relative to
the pressure-driving force is to be investigated.

As the velocity profile consists of two parts due, respec-
tively, to pressure gradient and electrical field, we first show
the profile of these two velocity components in Figures 1 and
2 under different electric fields 𝜓

𝑠
𝐸


𝑧
/𝑎
1
and 𝐾 values. From

the figure, it is clear that it is possible to control the velocity
profile in an optimalmanner based on the need of application
for the mixed driving flow by finding proper combination of
the pressure field and electrical field. Figures 3 and 4 show
typical velocity profile for mixed driving flows.

To demonstrate the influence of the slip length on the
velocity, we vary the value of 𝑙∗ from 0 to 100 while maintain-
ing other parameter values unchanged. Figure 5 shows the
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Figure 5:The influence of slip length on the slip velocity on the wall
at a typical time 𝑡∗ = 𝜃/2𝜋, obtained with 𝜓

𝑠
𝐸


𝑧
/𝑎
1
= 10
−3, 𝑙∗ = 1.

effect of slip length on the velocity on the wall at a typical time
step 𝑡

∗

= 𝜃/2𝜋, obtained with 𝜓
𝑠
𝐸


𝑧
/𝑎
1
= 10
−6, 𝐾 = 3000,

and 𝐾 = 2000. It is clear that the relationship between the
slip parameter and the velocity is nonlinear and there is an
optimal value for which the slip velocity takes the maximum
value.

As the 𝐾 value changes across different electrolyte solu-
tions, we investigate the influence of𝐾 on the velocity profile.
Figure 6 shows the velocity profiles for different 𝐾 values for
𝜓
𝑠
𝐸


𝑧
/𝑎
1
= 10
−3 and under the same pressure gradient and

slip length 𝑙
∗

= 1. It is clear from the result that the 𝐾

value influences the velocity profile significantly. For lower
𝐾, the velocity profile is smooth, while under high 𝐾 values,
the velocity shows wave form profile and the frequency of
the waves increases as 𝐾 increases. It is also noted that
the amplitude of the waves increases as the 𝜓

𝑠
𝐸


𝑧
/𝑎
1
value

increases. The magnitude of the velocity is also affected
significantly by the 𝜓

𝑠
𝐸


𝑧
/𝑎
1
value as shown in Figure 7. As

𝜓
𝑠
𝐸


𝑧
/𝑎
1
increases, the magnitude of the velocity increases.

6. Conclusions

In this paper, an exact solution for the transient flow of
an incompressible Newtonian fluid in microtubes is derived
taking into account the electrokinetic effect and the boundary
slip. We have shown that both boundary slip and electroki-
netic field have significant effect on the flow. The results are
summarized as follows.

(i) Both the pressure-gradient driving force and
electrical-driving force influence the velocity profile signif-
icantly, and it is possible to construct an optimal control



8 Abstract and Applied Analysis

0 0.2 0.4 0.6 0.8 1
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4  

K = 1600

K = 400

K = 3

Normalized radial distance r∗

N
or

m
al

iz
ed

 v
el

oc
ity

u
∗

Figure 6: Influence of 𝐾 value on the velocity profile at a typical
time 𝑡∗ = 𝜃/2𝜋, obtained with 𝜓
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𝐸


𝑧
/𝑎
1
= 10
−3

, 𝑙
∗

= 1.

problem to achieve the desired velocity profile based on the
need of the application.

(ii) For the case of constant pressure gradient, the
relationship between the slip parameter and the velocity is
linear. However, for the pressure gradient in wave form, the
influence of the slip parameter on the velocity magnitude
is nonlinear and there exists a critical slip length where the
magnitude and consequently the transient flow rate attain
maximumvalues, which indicates that there exists an optimal
slip length in terms of themagnitude of velocity and flow rate.

(iii)The𝐾 value of the electrolyte solution has significant
influence on the velocity profile on the cross-section of
the tube. At low 𝐾 value, no wave form profile exists.
However, as 𝐾 increases, the cross-section velocity exhibits
wave form profile, and the frequency of the wave increases as
𝐾 increases.

(iv) The magnitude of the intensity of electric field
relative to the pressure gradient, measured by 𝜓

𝑠
𝐸


𝑧
/𝑎
1
, also

has very significant influence on the velocity profile. As
𝜓
𝑠
𝐸


𝑧
/𝑎
1
increases, the velocity component increases and the

amplitude of the wave in the waved form velocity profile also
increases.
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[14] R. Pit, H. Hervet, and L. Léger, “Direct experimental evidence
of slip in hexadecane: solid interfaces,” Physical Review Letters,
vol. 85, no. 5, pp. 980–983, 2000.

[15] Y. Christophe, B. Catherine, and C. B. Ccile, “Joseph pierre,
achieving large slip with superhydrophobic surfaces:scaling
laws for generic geometries,” Physics of Fluids, vol. 19, pp. 123–
130, 2007.

[16] B. Wiwatanapataphee, D. Poltem, Y. H. Wu, and Y. Lenbury,
“Simulation of pulsatile flow of blood in stenosed coronary
artery bypass with graft,” Mathematical Biosciences and Engi-
neering, vol. 3, no. 2, pp. 371–383, 2006.

[17] B. Wiwatanapataphee, Y. H. Wu, J. Archapitak, and P. F. Siew,
“A numerical study of the turbulent flow of molten steel in a
domain with a phase-change boundary,” Journal of Computa-
tional and Applied Mathematics, vol. 166, no. 1, pp. 307–309,
2004.

[18] Y. H. Wu and B. Wiwatanapataphee, “Modelling of turbulent
flow and multi-phase heat transfer under electromagnetic
force,”Discrete and Continuous Dynamical Systems B, vol. 8, no.
3, pp. 695–706, 2007.

[19] M. T. Matthews and J. M. Hill, “Newtonian flow with nonlinear
navier boundary condition,” Acta Mechanica, vol. 191, no. 3, pp.
195–217, 2007.

[20] S.-P. Yang and K.-Q. Zhu, “Analytical solutions for squeeze flow
of Bingham fluid with Navier slip condition,” Journal of Non-
Newtonian Fluid Mechanics, vol. 138, no. 2-3, pp. 173–180, 2006.

[21] C. L. Rice and R. Whitehead, “Electrokinetic flow in a narrow
cylindrical capillary,” Journal of Physical Chemistry, vol. 69, no.
11, pp. 4017–4024, 1965.

[22] S. Levine, J. R. Marriott, and K. Robinson, “Theory of electroki-
netic flow in a narrow parallel-plate channel,” Journal of the
Chemical Society, vol. 71, pp. 1–11, 1975.

[23] C. Yang, D. Li, and J. H. Masliyah, “Modeling forced liquid
convection in rectangular microchannels with electrokinetic
effects,” International Journal of Heat and Mass Transfer, vol. 41,
no. 24, pp. 4229–4249, 1998.

[24] G. M. Mala, D. Q. Li, and J. D. Dale, “Heat transfer and fluid
flow in microchannels,” International Journal of Heat and Mass
Transfer, vol. 40, pp. 3079–3088, 1997.

[25] Y. H. Wu, B. Wiwatanapataphee, and M. Hu, “Pressure-driven
transient flows of Newtonian fluids through microtubes with
slip boundary,” Physica A, vol. 387, no. 24, pp. 5979–5990, 2008.

[26] J. Yang andD.Y.Kwok, “Analytical treatment of flow in infinitely
extended circular microchannels and the effect of slippage
to increase flow efficiency,” Journal of Micromechanics and
Microengineering, vol. 13, no. 1, pp. 115–123, 2003.

[27] P. C. H. Li and J. D. Harrison, “Transport manipulation and
reaction of biological cells on chip using electrokinetic effects,”
Analytical Chemistry, vol. 69, no. 8, pp. 1564–1568, 1997.

[28] Z. H. Fan and D. J. Harrison, “Micromachining of capillary
electrophoresis injectors and separators on glass chips and eval-
uation of flow at capillary intersections,” Analytical Chemistry,
vol. 66, no. 1, pp. 177–184, 1994.

[29] G. Ocvirk, M. Munroe, T. Tang, R. Oleschuk, K. Westra, and
D. J. Harrison, “Electrokinetic control of fluid flow in native
poly(dimethylsiloxane) capillary electrophoresis devices,” Elec-
trophoresis, vol. 21, no. 1, pp. 107–115, 2000.


