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This paper is concerned with positive stability analysis and bio-circuits design for nonlinear biochemical networks. A fuzzy
interpolation approach is employed to approximate nonlinear biochemical networks. Based on the Lyapunov stability theory,
sufficient conditions are developed to guarantee the equilibrium points of nonlinear biochemical networks to be positive and
asymptotically stable. In addition, a constrained bio-circuits design with positive control input is also considered. It is shown that
the conditions can be formulated as a solution to a convex optimization problem, which can be easily facilitated by using theMatlab
LMI control toolbox. Finally, a real biochemical networkmodel is provided to illustrate the effectiveness and validity of the obtained
results.

1. Introduction

In the past decades, biochemical networks, such as metabolic
networks [1] and genetic networks [2], have received con-
siderable attention and become a hot research topic [3–5].
A great number of results have been obtained, such as gene
expression data modeling [6–9] and dynamic analysis of
biochemical networks [10, 11].

It is not surprising that dynamical system theory plays
a central role in understanding biological and physiological
processes [4, 12] since it provides a powerful tool to quantita-
tively analyze these biochemical networks from a systematic
viewpoint. In addition, dynamical system theory is important
and useful for the development of synthetic and systems
biology, which has a great potential in gene therapy and drug
design [13].

It is worth noting that dynamical models of many biolog-
ical and physiological processes, such as metabolic systems
and endocrine systems [1], biochemical reactions [12], are
derived from mass and energy balance considerations that
take nonnegative chemical concentrations as dynamic states.
Hence, state trajectories of such biochemical systems remain
in the nonnegative orthant of the state space for arbitrary
nonnegative initial conditions. Such systems are commonly
referred to as nonnegative systems or positive systems in the
literature [14–17]. In this paper, we call them positive systems

for convenience. A subclass of positive dynamical systems
are compartmental systems [18], which involve dynamical
models that are characterized by conservation laws (e.g.,
mass and energy) capturing exchange of materials between
coupled macroscopic subsystems known as compartments.
Each compartment is assumed to be kinetically homoge-
neous. That is, any material entering the compartment is
instantaneously mixed with materials of the compartment.
There have been some studies on this kind of systems with
application to biochemical networks [4, 19].

Recently, there have been some results on stability anal-
ysis of gene networks with some special regulation functions
[20–25]. However, due to nonlinearity and complexity of bio-
chemical networks, there does not exist a systematic approach
to stability analysis of such nonlinear biochemical networks.
It is noted that the fuzzy interpolation approach proposed in
[26] can be seen as a promising way of dealing with nonlinear
complex systems. In [27], the authors firstly used the fuzzy
approximation method to investigate the robust stability of
stochastic biochemical regulatory networks, where, however,
the positive constraint of network states was ignored.

On the other hand, there have been some other results
on bio-circuits design for biochemical networks. In [28],
an external optimal control input was applied to stabilize a
gene regulatory system. In [29], a simple robust circuit has
been designed for the S-system model without considering
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stochastic noises. In [30], a robust engineering principle
was proposed for stochastic biochemical regulatory networks
with parameter uncertainties and disturbances. However,
most of the aforementioned results paid little attention to
the positive constraint of the states of biochemical networks,
not to mention constrained bio-circuits with positive control
input. In many cases, the states of those studied systems
would become negative in simulation, which could be seen
as the main drawbacks of these results.

In this paper, the T-S fuzzy system is employed to
approximate nonlinear biochemical networks by interpolat-
ing several local linear systems. A positive stability condition
and a bio-circuits design procedure will be developed for the
nonlinear biochemical networks. In addition, a constrained
bio-circuits design with positive control input will also be
considered. Finally, a real biochemical network is given to
illustrate the effectiveness of the obtained results.

The rest of the paper is organized as follows. In Section 2,
some useful definitions and lemmas for positive systems are
introduced. In Section 3, by using the fuzzy approximation
approach, a sufficient condition for positive stability will be
derived for nonlinear biochemical networks. In Section 4,
bio-circuits design will be developed from a systematic point
of view. In addition, a constrained bio-circuits design with
positive control input will also be considered. In Section 5, a
real biochemical network is given to illustrate the effective-
ness of the obtained results. Finally, the paper will be closed
with a conclusion.

2. Notation and Preliminaries

Notation. R denotes the set of real numbers, R𝑛 stands for
the vector space of all 𝑛-tuples of real numbers, and R𝑛×𝑚 is
the space of 𝑛 × 𝑚 matrices with real entries. For 𝑥 in R𝑛, 𝑥

𝑖

denotes the 𝑖th component of 𝑥. R𝑛×𝑚
+

denotes the sets of all
𝑛 × 𝑚 real matrices with nonnegative entries and R𝑛

+
≜ {𝑥 ∈

R𝑛 : 𝑥 ⪰ 0}. For a real matrix 𝐴, 𝐴 ⪰ 0(≻ 0) means that all
its entries are nonnegative (positive). 𝐴T is the transpose of
𝐴, and𝐴−1 is the inverse of𝐴. The notation 𝑃 > 0means that
𝑃 is symmetric and positive definite. The following notations
of matrices are used throughout this paper: 𝐴

𝑖
= [𝑎
𝑖

𝑘𝑗
], 𝐵
𝑖
=

[𝑏
𝑖

1
; 𝑏
𝑖

2
; . . . ; 𝑏

𝑖

𝑛
].

Consider a general nonlinear system

𝑑𝑥

𝑑𝑡

= 𝑓 (𝑥 (𝑡) , 𝑢 (𝑡)) ,

𝑥 (0) = 𝑥
0
,

(1)

where 𝑥(𝑡) ∈ R𝑛 is the state vector and 𝑢(𝑡) ∈ R𝑚 is the
control input. The nonlinear function 𝑓(𝑥(𝑡), 𝑢(𝑡)) satisfies
𝑓(0, 0) = 0 and 𝑓 ∈ C2; that is, 𝑓 has the second-order
continuous derivative with respect to 𝑥 and 𝑢.

Firstly, some definitions and useful lemmas for positive
nonlinear systems are given as follows.

Definition 1. Given any positive initial condition 𝑥(0) = 𝑥
0
∈

R𝑛
+
, the unforced nonlinear system (1) is said to be positive if

the corresponding trajectory 𝑥(𝑡) ∈ R𝑛
+
for all 𝑡 ≥ 0.

Definition 2. Let 𝑓 = [𝑓
1
, 𝑓
2
, . . . , 𝑓

𝑛
]
T
: D ⊆ R𝑛

+
→ R𝑛 the

nonlinear function f is positive (or essentially nonnegative in
[19]) if 𝑓

𝑖
(𝑥(𝑡)) ≥ 0, for all 𝑖 = 1, 2, . . . , 𝑛 and 𝑥(𝑡) ∈ D ⊆ R𝑛

+
.

Lemma 3 (see [19]). Consider the unforced nonlinear system
(1). If 𝑓 is positive and continuously differentiable in D ⊆ R𝑛

+

and 𝑓(0) = 0, then 𝐴 ≜ 𝜕𝑓/𝜕𝑥|
𝑥=0

is positive (essentially
nonnegative).

Lemma 3 implies that if a nonlinear system is positive,
then its linearization is also positive.

Theorem 4. For the unforced system (1), if the nonlinear
function 𝑓 is positive, and if there exists a Lyapunov function
𝑉(𝑥(𝑡)) > 0 and 𝑉(0) = 0 satisfying the following inequality:

(

𝜕𝑉 (𝑥 (𝑡))

𝜕𝑥

)

T
𝑓 (𝑥 (𝑡)) < 0, (2)

for all nonzero 𝑥(𝑡) ∈ R𝑛
+
, then the equilibrium point 𝑥(𝑡) = 0

of the nonlinear system (1) is asymptotically stable.

As a special case of the nonlinear system (1), the following
linear system is considered

𝑑𝑥

𝑑𝑡

= 𝐴𝑥 (𝑡) + 𝐵𝑢 (𝑡) ,

𝑥 (0) = 𝑥
0
,

(3)

where𝐴 ∈ R𝑛×𝑛 and 𝐵 ∈ R𝑛×𝑚. Some useful results from [14]
are presented as follows.

Definition 5. A real matrix𝑀 is called a Metzler matrix if its
off-diagonal elements are nonnegative, that is

𝑀
𝑖𝑗
≥ 0, 𝑖 ̸= 𝑗. (4)

Lemma6. Theunforced linear system (3) is positive if and only
if 𝐴 is a Metzler matrix.

Lemma 7. Theunforced positive linear system (3) is asymptot-
ically stable if and only if there exists a positive definite diagonal
matrix 𝑃 such that

𝑃𝐴 + 𝐴
T
𝑃 < 0. (5)

Remark 8. It follows from the physical consideration that all
the states of biochemical networks should stay in the positive
orthant. Thus, positive systems are suitable for quantitatively
studying biochemical networks, such as gene microarray
data modeling [6–8] and bio-circuits design for biochemical
networks [3, 4].

3. Positive Stability Analysis of Nonlinear
Biochemical Networks

As pointed out in Introduction, many applications in bio-
chemical processes give rise to nonlinear dynamical systems,
such as genetic networks, metabolic pathways andmembrane
transports, to cite just a few examples. Consider the nonlinear
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system (1) for representation of biochemical networks, which
describes complex interactions betweenmolecules. It is noted
that the states of the system denote the concentrations of the
molecules, the nonlinear function𝑓 is the regulation function
and the control input 𝑢(𝑡) can be seen as the external sources,
such as drugs, proteins, or other chemical complexes.

For a general nonlinear biochemical network (1), it is very
difficult if not impossible to find a suitable Lyapunov function
𝑉 such that the condition (2) is satisfied, especially when the
positive constraint of the states should be also maintained.
However, the T-S fuzzy interpolation approach provides a
way to approximate the nonlinear biochemical network and,
thus, potentially provides a simplified method for positive
stability analysis and bio-circuits design.

Consider a nonlinear biochemical network described by
a T-S fuzzy system

𝑅
𝑖

: IF 𝑧
1
(𝑡) is 𝑀𝑖

1
and ⋅ ⋅ ⋅ 𝑧

𝑟
(𝑡) is 𝑀𝑖

𝑟
,THEN

�̇� (𝑡) = 𝐴
𝑖
𝑥 (𝑡) + 𝐵

𝑖
𝑢 (𝑡) ,

𝑦 (𝑡) = 𝐶
𝑖
𝑥 (𝑡) ,

(6)

where 𝑖 = 1, 2, . . . , 𝐿 and 𝐿 is the number of fuzzy rules;
𝑧
1
(𝑡), 𝑧
2
(𝑡), . . . , 𝑧

𝑟
(𝑡) are the premise variables and 𝑀

𝑖

𝑙
(𝑖 =

1, 2, . . . , 𝐿, 𝑙 = 1, 2, . . . , 𝑟) are the fuzzy sets; 𝑢(𝑡) and 𝑦(𝑡) are
the control input and output, respectively; 𝐴

𝑖
, 𝐵
𝑖
, and 𝐶

𝑖
are

the known matrices of appropriate dimensions.
By using a center average defuzzifier, product inference,

and a singleton fuzzifier, the global dynamics of the T-S fuzzy
system (6) cab be described by

�̇� (𝑡) =

𝐿

∑

𝑖=1

𝛼
𝑖
(𝑧 (𝑡)) (𝐴

𝑖
𝑥 (𝑡) + 𝐵

𝑖
𝑢 (𝑡)) ,

𝑦 (𝑡) =

𝐿

∑

𝑖=1

𝛼
𝑖
(𝑧 (𝑡)) 𝐶

𝑖
𝑥 (𝑡) ,

(7)

where 𝛼
𝑖
(𝑧(𝑡))’s are the so-called normalized activation func-

tions in relation to the 𝑖th submodel such that

𝛼
𝑖
(𝑧 (𝑡)) =

∏
𝑟

𝑙=1
𝑀
𝑖

𝑙
(𝑧
𝑙
(𝑡))

∑
𝐿

𝑖=1
∏
𝑟

𝑙=1
𝑀
𝑖

𝑙
(𝑧
𝑙
(𝑡))

, 0 ≤ 𝛼
𝑖
(𝑧 (𝑡)) ≤ 1. (8)

Now, we are in the position to develop the global positive
stability results for the unforced biochemical network (7);
that is, 𝑢 = 0.

Theorem 9. If there exists a diagonal matrix 0 < 𝑃 ∈ R𝑛×𝑛

such that the following LMI conditions

𝐴
T
𝑖
𝑃 + 𝑃𝐴

𝑖
< 0, (9)

𝑎
𝑖

𝑘𝑗
𝑝
𝑗𝑗
≥ 0, 𝑘, 𝑗 = 1, 2, . . . , 𝑛, 𝑘 ̸= 𝑗, (10)

hold for 𝑖 = 1, 2, . . . , 𝐿, then the unforced biochemical network
(7) is positive and asymptotically stable.

Proof. Construct the following quadratic Lyapunov function
candidate for the unforced biochemical network (7)

𝑉 (𝑥 (𝑡)) = 𝑥
T
(𝑡) 𝑃𝑥 (𝑡) , (11)

where the diagonal matrix 𝑃 > 0 is to be determined.

Taking the derivative along the trajectory of (7), one can
readily get

𝑑𝑉 (𝑥 (𝑡))

𝑑𝑡

= �̇�
T
(𝑡) 𝑃𝑥 (𝑡) + 𝑥

T
(𝑡) 𝑃�̇� (𝑡)

= [

𝐿

∑

𝑖=1

𝛼
𝑖
(𝑧(𝑡))𝐴

𝑖
𝑥(𝑡)]

T

𝑃𝑥 (𝑡)

+ 𝑥
T
(𝑡) 𝑃 [

𝐿

∑

𝑖=1

𝛼
𝑖
(𝑧 (𝑡)) 𝐴

𝑖
𝑥 (𝑡)]

=

𝐿

∑

𝑖=1

𝛼
𝑖
(𝑧 (𝑡)) 𝑥

T
(𝑡) [𝐴

T
𝑖
𝑃 + 𝑃𝐴

𝑖
] 𝑥 (𝑡) .

(12)

Then, it follows immediately from condition (9) that

𝑑𝑉 (𝑥 (𝑡))

𝑑𝑡

< 0, (13)

for all nonzero 𝑥(𝑡), and 𝑑𝑉(𝑥(𝑡))/𝑑𝑡 = 0 if and only if
𝑥(𝑡) = 0. Hence, the unforced biochemical network (7) is
asymptotically stable.

Furthermore, since 𝑃 = diag(𝑝
11
, . . . , 𝑝

𝑛𝑛
) is a positive

definite diagonal matrix, that is, 𝑝
𝑖𝑖
> 0, 𝑖 = 1, 2, . . . , 𝑛, it can

be deduced from the LMI condition (10) that matrix 𝐴
𝑖
is a

Metzler matrix for every local linear model of (7). Moreover,
it follows from condition (8) that the membership function
satisfies

𝐿

∑

𝑖=1

𝛼
𝑖
(𝑧 (𝑡)) = 1, 0 ≤ 𝛼

𝑖
≤ 1, (14)

which together with the fact that 𝐴
𝑖
is Metzler can guarantee

the unforced biochemical network (7) to be positive. Hence,
together with condition (13), it can be concluded that the
equilibrium point of the unforced biochemical network (7)
is positive and asymptotically stable. The proof is thus
completed.

Remark 10. It is noted that the obtained sufficient condition
for positive stability is in the formof linearmatrix inequalities
(LMIs), which could be efficiently solved by using the Matlab
LMI control toolbox. Comparedwith the results developed in
[20–25], the regulation function is no longer needed to satisfy
a sector condition; thus, the regulation function considered
here is more general.

4. Bio-Circuits Design for Nonlinear
Biochemical Networks

If the equilibrium point of the unforced nonlinear biochem-
ical network (7) is not stable, bio-circuits design would
become necessary for these complex biological systems to
work properly, which would be useful for drug design and
gene therapy. In this paper, the following smooth controller
is employed to stabilize the biochemical network (7):
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𝑅
𝑖

: IF 𝑧
1
(𝑡) is 𝑀𝑖

1
and ⋅ ⋅ ⋅ , 𝑧

𝑟
(𝑡) is 𝑀𝑖

𝑟
,THEN

𝑢 (𝑡) = 𝐾
𝑖
𝑥 (𝑡) , 𝑖 ∈ {1, 2, . . . , 𝐿} ,

(15)

which can be rewritten as

𝑢 (𝑡) =

𝐿

∑

𝑖=1

𝛼
𝑖
(𝑧 (𝑡)) 𝐾

𝑖
𝑥 (𝑡) , (16)

where 𝐾
𝑖
, 𝑖 = 1, 2, . . . , 𝐿 are the feedback gains of the bio-

circuits to be determined.
The controlled biochemical network (7) can be described

as follows:

�̇� (𝑡) =

𝐿

∑

𝑗=1

𝐿

∑

𝑖=1

𝛼
𝑗
𝛼
𝑖
(𝐴
𝑖
+ 𝐵
𝑖
𝐾
𝑗
) 𝑥 (𝑡) ,

𝑦 (𝑡) =

𝐿

∑

𝑖=1

𝛼
𝑖
(𝑧 (𝑡)) 𝐶

𝑖
𝑥 (𝑡) .

(17)

Then, the following bio-circuits design results would
guarantee the positivity and asymptotic stability of the non-
linear biochemical network (17).

Theorem 11. There exists a smooth control scheme 𝑢(𝑡) =

∑
𝐿

𝑖=1
𝛼
𝑖
(𝑧(𝑡))𝐾

𝑖
𝑥(𝑡) such that the biochemical network (17) is

positive and asymptotically stable, if there exist a diagonal
matrix 0 < 𝑃 ∈ R𝑛×𝑛 and matrices 𝑄

𝑖
, 𝑖 = 1, 2, . . . , 𝐿 such

that the following LMI conditions

𝑃𝐴
T
𝑖
+ 𝑄
𝑗
𝐵
T
𝑖
+ 𝐴
𝑖
𝑃 + 𝐵

𝑖
𝑄
𝑗
< 0, (18)

𝑎
𝑖

𝑘𝑠
𝑝
𝑠𝑠
+

𝑚

∑

𝑡=1

𝑏
𝑖

𝑘𝑡
𝑞
𝑗

𝑡𝑠
≥ 0, 𝑘, 𝑠 = 1, 2, . . . , 𝑛, 𝑘 ̸= 𝑠, (19)

hold for 𝑖, 𝑗 = 1, 2, . . . , 𝐿.

Moreover, the feedback gains can be computed as

𝐾
𝑗
= 𝑄
𝑗
𝑃
−1

, 𝑗 = 1, 2, . . . , 𝐿. (20)

Proof. Construct the following quadratic Lyapunov function
for the biochemical network (17)

𝑉 (𝑥 (𝑡)) = 𝑥
T
(𝑡) 𝑃
−1

𝑥 (𝑡) , (21)

where the diagonal matrix 𝑃 > 0 is to be determined.

Taking the derivative along the trajectory of system (17),
one has

𝑑𝑉 (𝑥 (𝑡))

𝑑𝑡

= �̇�
T
(𝑡) 𝑃
−1

𝑥 (𝑡) + 𝑥
T
(𝑡) 𝑃
−1

�̇� (𝑡)

=
[

[

𝐿

∑

𝑗=1

𝐿

∑

𝑖=1

𝛼
𝑗
𝛼
𝑖
(𝐴
𝑖
+ 𝐵
𝑖
𝐾
𝑗
) 𝑥 (𝑡)

]

]

T

𝑃
−1

𝑥 (𝑡)

+ 𝑥
T
(𝑡) 𝑃
−1
[

[

𝐿

∑

𝑗=1

𝐿

∑

𝑖=1

𝛼
𝑗
𝛼
𝑖
(𝐴
𝑖
+ 𝐵
𝑖
𝐾
𝑗
) 𝑥 (𝑡)

]

]

=

𝐿

∑

𝑗=1

𝐿

∑

𝑖=1

𝛼
𝑗
𝛼
𝑖
𝑥
T
(𝑡)

× [(𝐴
𝑖
+ 𝐵
𝑖
𝐾
𝑗
)

T
𝑃
−1

+ 𝑃
−1

(𝐴
𝑖
+ 𝐵
𝑖
𝐾
𝑗
)] 𝑥 (𝑡) ,

𝑖, 𝑗 = 1, 2, . . . , 𝐿.

(22)

It is noted that

(𝐴
𝑖
+ 𝐵
𝑖
𝐾
𝑗
)

T
𝑃
−1

+ 𝑃
−1

(𝐴
𝑖
+ 𝐵
𝑖
𝐾
𝑗
) < 0, 𝑖, 𝑗 = 1, 2, . . . , 𝐿,

(23)

which is equivalent to

𝑃(𝐴
𝑖
+ 𝐵
𝑖
𝐾
𝑗
)

T
+ (𝐴
𝑖
+ 𝐵
𝑖
𝐾
𝑗
) 𝑃 < 0, 𝑖, 𝑗 = 1, 2, . . . , 𝐿.

(24)

Therefore, it follows immediately from conditions (18) and
(20) that

𝑑𝑉 (𝑥 (𝑡))

𝑑𝑡

< 0, (25)

for all the nonzero 𝑥(𝑡), and 𝑑𝑉(𝑥(𝑡))/𝑑𝑡 = 0 if and only if
𝑥(𝑡) = 0. Hence, the controlled biochemical network (17) is
asymptotically stable.

On the other hand, since 𝑃 is a positive definite diagonal
matrix, that is, 𝑝

𝑖𝑖
> 0, 𝑖 = 1, 2, . . . , 𝑛, it follows from

conditions (19) and (20) that the off-diagonal elements of
matrix (𝐴

𝑖
+ 𝐵
𝑖
𝐾
𝑗
) are nonnegative; that is,

𝑎
𝑖

𝑘𝑠
+

∑
𝑚

𝑡=1
𝑏
𝑖

𝑘𝑡
𝑞
𝑗

𝑡𝑠

𝑝
𝑠𝑠

= 𝑎
𝑖

𝑘𝑠
+

𝑚

∑

𝑡=1

𝑏
𝑖

𝑘𝑡
𝑘
𝑗

𝑡𝑠
≥ 0,

𝑘, 𝑠 = 1, 2, . . . , 𝑛, 𝑘 ̸= 𝑠, 𝑖, 𝑗 = 1, 2, . . . , 𝐿.

(26)

This implies that for any 𝑖, 𝑗 = 1, 2, . . . , 𝐿, 𝐴
𝑖
+ 𝐵
𝑖
𝐾
𝑗
is a

Metzler matrix for every linear local model. Similar to the
proof ofTheorem 9, from condition (14), it can be concluded
that the controlled biochemical network (17) is positive.
Therefore, together with condition (25), one can conclude
that the controlled biochemical network (17) is positive and
asymptotically stable. The proof is, thus, completed.
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It is worth pointing out that in many practical applica-
tions, drugs or chemical complexes delivered to the human
body are often taken as control inputs to biochemical systems,
and in this case, control signals have to be nonnegative.
Therefore, it is necessary to consider the positive constraints
of control inputs when designing bio-circuits. We have the
following results.

Theorem 12. There exists a positive smooth control scheme
𝑢(𝑡) = ∑

𝐿

𝑖=1
𝛼
𝑖
(𝑧(𝑡))𝐾

𝑖
𝑥(𝑡), that is, 0 ⪯ 𝑢(𝑡), such that the

biochemical network (17) is positive and asymptotically stable,
if there exist a diagonal matrix 0 < 𝑃 ∈ R𝑛×𝑛 and matrices
𝑄
𝑖
, 𝑖 = 1, 2, . . . , 𝐿 such that the following LMI conditions

𝑃𝐴
T
𝑖
+ 𝑄
𝑗
𝐵
T
𝑖
+ 𝐴
𝑖
𝑃 + 𝐵

𝑖
𝑄
𝑗
< 0,

𝑎
𝑖

𝑘𝑠
𝑝
𝑠𝑠
+

𝑚

∑

𝑡=1

𝑏
𝑖

𝑘𝑡
𝑞
𝑗

𝑡𝑠
≥ 0, 𝑘, 𝑠 = 1, 2, . . . , 𝑛, 𝑘 ̸= 𝑠,

𝑞
𝑗

𝑡𝑠
≥ 0, 𝑡 = 1, 2, . . . , 𝑚, 𝑠 = 1, 2, . . . , 𝑛,

(27)

hold for 𝑖, 𝑗 = 1, 2, . . . , 𝐿.

Moreover, the feedback gains can be computed as

𝐾
𝑗
= 𝑄
𝑗
𝑃
−1

, 𝑗 = 1, 2, . . . , 𝐿. (28)

Remark 13. It is noted that the positive feedback control law
is only available in some special cases. When 𝐴

𝑖
is a Metzler

matrix and 𝐵
𝑖

⪰ 0, it is impossible to design a positive
feedback bio-circuit.

Remark 14. In many practical applications, the concentra-
tions of some materials should be rigorously kept below or
above a certain level, otherwise they may have side effects on
blood or other chemical complexes. In other words the states
of biochemical networks should be subject to some kinds of
constraints. How to deal with such scenarios is one of our
future research interests.

5. Design Example In Silico for
the Proposed Method

Consider a two-compartment model [31], which describes
the kinetics of a drug in the human body.The drug is injected
into the blood where it exchanges linearly with the tissues;
the drug is irreversibly removed with a nonlinear saturative
characteristic from the blood and with a linear one from the
tissue.Themodel can be expressed by the following nonlinear
differential equations:

�̇�
1
= −(𝑎

11
+

𝑉
𝑀

𝑉
𝑚
+ 𝑥
1

)𝑥
1
+ 𝑎
12
𝑥
2
+ 𝑏
1
𝑢,

�̇�
2
= 𝑎
21
𝑥
1
− (𝑎
02
+ 𝑎
22
) 𝑥
2
,

𝑦 = 𝑐
1
𝑥
1
,

(29)

where 𝑥
1
, 𝑥
2
are the drug masses in blood and tissues,

respectively; 𝑢 is the drug input 𝑦 is the measured drug

output in the blood; 𝑎
11
, 𝑎
12
, 𝑎
21
, 𝑎
22
, and 𝑎

02
are the con-

stant rate parameters; 𝑉
𝑀

and 𝑉
𝑚
are the Michaelis-Menten

parameters; 𝑏
1
and 𝑐
1
are the input and output parameters,

respectively.
Let the premise variable 𝑧

1
(𝑡) = 𝑥

1
(𝑡), then the member-

ship functions can be chosen as

𝑀
1

1
(𝑧
1
(𝑡)) =

𝑉
𝑚

𝑉
𝑚
+ 𝑥
1
(𝑡)

, 𝑀
2

1
(𝑧
1
(𝑡)) =

𝑥
1
(𝑡)

𝑉
𝑚
+ 𝑥
1
(𝑡)

.

(30)

By using 𝑀
1

1
and 𝑀

2

1
, the biochemical network (29) can be

expressed by the following T-S fuzzy model

Plant Rule 1 : IF 𝑧
1
(𝑡) is 𝑀1

1
,THEN

�̇� (𝑡) = 𝐴
1
𝑥 (𝑡) + 𝐵

1
𝑢 (𝑡) ,

𝑦 (𝑡) = 𝐶
1
𝑥 (𝑡) ,

Plant Rule 2 : IF 𝑧
1
(𝑡) is 𝑀2

1
,THEN

�̇� (𝑡) = 𝐴
2
𝑥 (𝑡) + 𝐵

2
𝑢 (𝑡) ,

𝑦 (𝑡) = 𝐶
2
𝑥 (𝑡) ,

(31)

where 𝑥(𝑡) = [𝑥
1
(𝑡), 𝑥
2
(𝑡)]

T and

𝐴
1
= [

− (𝑎
11
+ 𝑉
𝑀
/𝑉
𝑚
) 𝑎

12

𝑎
21

− (𝑎
02
+ 𝑎
22
)
] ,

𝐵
1
= [

𝑏
1

0
] , 𝐶

1
= [𝑐
1
0] ;

𝐴
2
= [

−𝑎
11

𝑎
12

𝑎
21

− (𝑎
02
+ 𝑎
22
)
] ,

𝐵
2
= [

𝑏
1

0
] , 𝐶

2
= [𝑐
1
0] .

(32)

Let 𝑎
11

= 0.1, 𝑎
21

= 2, 𝑎
12

= 0.5, 𝑎
22

= 0.1, 𝑎
02

=

0.6, 𝑉
𝑀

= 1, 𝑉
𝑚

= 0.5, and 𝑏
1
= −1; Figure 1 shows that the

state trajectories of biochemical network (29) are divergent
under 𝑢 = 0 with the initial condition 𝑥(0) = [0.1, 4]

T.
For convenience, we use the same initial conditions in the
following simulations.

5.1. Bio-Circuits Design without Constraints. In this case
study, we will consider the bio-circuits design for the bio-
chemical network (31) without constraints. Solving the LMI
conditions (18)-(19) leads to the feasible solutions as follows:

𝑃 = [

8.5971 0

0 39.6566
] ,

𝑄
1
= 𝑄
2
= [34.1204 −10.3198] .

(33)

Then the feedback gains can be calculated as 𝐾
1
= 𝐾
2
=

[3.9688, −0.2602], which could guarantee the controlled bio-
chemical network (31) to be positive and asymptotically
stable. The dynamic response of the controlled biochemical
network can be seen in Figure 2, and the evolution of the
control input can be seen in Figure 3. It can be observed that
the control input is negative in some stage.
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Figure 1: Time response of the biochemical network under 𝑢 = 0.
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Figure 2: Time response of the controlled biochemical network.

5.2. Bio-Circuits Design with Positive Control Constraints.
In most situations, the control input 𝑢(𝑡) is the drug or the
mixture of some biochemical complexes, which should be
constrained to be positive. From Theorem 12, the elements
of nonsymmetric matrixes 𝑄

1
, 𝑄
2
should satisfy conditions

(27). By using the constrained LMI algorithm, the following
feasible solutions are obtained:

𝑃 = [

1.1517 0

0 9.6618
] ,

𝑄
1
= 𝑄
2
= [5.3937 3.7805] .

(34)
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Figure 3: Evolution of the control input without constraints.
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Figure 4: Time response of the biochemical network under positive
control.

Then, the feedback gains can be calculated as 𝐾
1
= 𝐾
2
=

[4.6831, 0.3913]. The state response of the biochemical net-
work under this constrained control can be seen in Figure 4,
and the evolution of the positive control input𝑢(𝑡) can be seen
in Figure 5, where the control signal remains to be positive all
the time.

Remark 15. By using the fuzzy interpolation approach, bio-
circuits can be easily implemented for the nonlinear bio-
chemical network (29), which could guarantee it to be
positive and asymptotically stable. Although the stability
conditions for this biochemical network can also be derived
by the method proposed in [29], the positivity of the states
cannot be guaranteed. This would greatly reduce the signifi-
cance of those results in real application such as drug delivery.
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6. Discussion

In this paper, the fuzzy interpolation approach has been
employed to approximate nonlinear biochemical networks
for positive stability analysis and bio-circuits design. A few
results on sufficient conditions for positivity and asymptotic
stability of the network have been obtained in terms of
a number of linear matrix inequalities. In addition, the
positive constraint on control input is also considered for
bio-circuits design. Finally, a real biochemical networkmodel
was provided to illustrate the effectiveness and validity of the
obtained results.

Due to the transcription, translation, diffusion, and
translocation processes of genes, time delays are inevitable
in describing the dynamics of biochemical networks [7]. In
addition, biochemical networks are often subject to intrinsic
and extrinsic perturbations such as gene expression noises,
mutation and disturbance from uncertain environment, and
the fractal and chaotic features of systems [32]. Therefore,
how to design constrained robust bio-circuits for such bio-
chemical networkswill be an interesting and challenging task.
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