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We study the density problem and approximation error of reproducing kernel Hilbert spaces for the purpose of learning theory.
For a Mercer kernel 𝐾 on a compact metric space (𝑋, 𝑑), a characterization for the generated reproducing kernel Hilbert space
(RKHS)H

𝐾
to be dense in𝐶(𝑋) is given. As a corollary, we show that the density is always true for convolution type kernels. Some

estimates for the rate of convergence of interpolation schemes are presented for general Mercer kernels. These are then used to
establish for convolution type kernels quantitative analysis for the approximation error in learning theory. Finally, we show by the
example of Gaussian kernels with varying variances that the approximation error can be improved when we adaptively change the
value of the parameter for the used kernel. This confirms the method of choosing varying parameters which is used often in many
applications of learning theory.

1. Introduction

Learning theory investigates how to find function rela-
tions or data structures from random samples. For the
regression problem, one usually has some experience and
would expect that the (underlying) unknown function
lies in some set of functions H called the hypothesis
space. Then one tries to find a good approximation in H

of the underlying function 𝑓 (under certain metric). The
best approximation in H is called the target function 𝑓H.
However, 𝑓 is unknown. What we have in hand is a set of
random samples {(𝑥

𝑖
, 𝑦

𝑖
)}

ℓ

𝑖=1
. These samples are not given

by 𝑓 exactly (𝑓(𝑥
𝑖
) ̸= 𝑦

𝑖
). They are controlled by this under-

lying function 𝑓 with noise or some other uncertainties
(𝑓(𝑥

𝑖
) ≈ 𝑦

𝑖
). The most important model studied in learning

theory [1] is to assume that the uncertainty is represented by
a Borel probability measure 𝜌 on 𝑋 × 𝑌, and the underlying
function 𝑓 : 𝑋 → 𝑌 is the regression function of 𝜌 given
by

𝑓
𝜌 (𝑥) = ∫

𝑌

𝑦𝑑𝜌 (𝑦 | 𝑥) , 𝑥 ∈ 𝑋. (1)

Here, 𝜌(𝑦 | 𝑥) is the conditional probability measure
at 𝑥. Then, the samples {(𝑥

𝑖
, 𝑦

𝑖
)}

ℓ

𝑖=1
are independent and

identically distributed drawers according to the probability

measure 𝜌. For the classification problem, 𝑌 = {1, −1} and
sign (𝑓

𝜌
) is the optimal classifier.

Based on the samples, one can find a function from
the hypothesis space H that best fits the data z :=

{(𝑥
𝑖
, 𝑦

𝑖
)}

ℓ

𝑖=1
(with respect to certain loss functional). This

function is called the empirical target function 𝑓z. When the
number ℓ of samples is large enough,𝑓z is a good approxima-
tion of the target function 𝑓H with certain confidence. This
problemhas been extensively investigated andwell developed
in the literature of statistical learning theory. See, for example,
[1–4].

What is less understood is the approximation of the
underlying desired function 𝑓 by the target function 𝑓H. For
example, if one takes H to be a polynomial space of some
fixed degree, then 𝑓 can be approximated by functions from
H only when 𝑓 is a polynomial inH.

In kernel machine learning such as support vector
machines, one often uses reproducing kernel Hilbert spaces
or their balls as hypothesis spaces. Here, we take (𝑋, 𝑑(⋅, ⋅)) to
be a compact metric space and 𝑌 = R.

Definition 1. Let 𝐾 : 𝑋×𝑋 → R be continuous, symmetric,
and positive semidefinite; that is, for any finite set of distinct
points {𝑥

1
, . . . , 𝑥

ℓ
} ⊂ 𝑋, thematrix (𝐾(𝑥

𝑖
, 𝑥

𝑗
))

ℓ

𝑖,𝑗=1
is positive

semidefinite. Such a kernel is called aMercer kernel. It is called
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positive definite if thematrix (𝐾(𝑥
𝑖
, 𝑥

𝑗
))

ℓ

𝑖,𝑗=1
is always positive

definite.

The reproducing kernel Hilbert space (RKHS) H
𝐾
asso-

ciated with a Mercer kernel 𝐾 is defined (see [5]) to be the
completion of the linear span of the set of functions {𝐾

𝑥
:=

𝐾(𝑥, ⋅) : 𝑥 ∈ 𝑋} with the inner product ⟨⋅, ⋅⟩H𝐾 = ⟨⋅, ⋅⟩
𝐾

satisfying



ℓ

∑

𝑖=1

𝑐
𝑖
𝐾

𝑥𝑖



2

𝐾

= ⟨

ℓ

∑

𝑖=1

𝑐
𝑖
𝐾

𝑥𝑖
,

ℓ

∑

𝑖=1

𝑐
𝑖
𝐾

𝑥𝑖
⟩

𝐾

=

ℓ

∑

𝑖,𝑗=1

𝑐
𝑖
𝐾(𝑥

𝑖
, 𝑥

𝑗
) 𝑐

𝑗
.

(2)

The reproducing kernel property is given by

⟨𝐾
𝑥
, 𝑔⟩

𝐾
= 𝑔 (𝑥) , ∀𝑥 ∈ 𝑋, 𝑔 ∈ H

𝐾
. (3)

This space can be embedded into 𝐶(𝑋), the space of contin-
uous functions on 𝑋.

In kernel machine learning, one often takes H
𝐾
or its

balls as the hypothesis space. Then, one needs to know
whether the desired function 𝑓 can be approximated by
functions from the RKHS.

The first purpose of this paper is to study the den-
sity of the reproducing kernel Hilbert spaces in 𝐶(𝑋) (or
in 𝐿

2
(𝑋) when 𝑋 is a subset of the Euclidean space R𝑛).This

will be done in Section 2 where some characterizations will
be provided. Let us mention a simple example with detailed
proof given in Section 6.

Example 2. Let 𝑋 = [0, 1] and let𝐾 be aMercer kernel given
by

𝐾(𝑥, 𝑦) =

+∞

∑

𝑗=0

𝑎
𝑗
(𝑥 ⋅ 𝑦)

𝑗
, (4)

where 𝑎
𝑗
≥ 0 for each 𝑗 and ∑

+∞

𝑗=0
𝑎
𝑗
< ∞. Set 𝐽 := {𝑗 ∈ Z

+
:

𝑎
𝑗
> 0}. Then,H

𝐾
is dense in 𝐶(𝑋) if and only if

𝑎
0
> 0, ∑

𝑗∈𝐽\{0}

1

𝑗
= +∞. (5)

When the density holds, we want to study the conver-
gence rate of the approximation by functions from balls of
the RKHS as the radius tends to infinity. The quantity

𝐼 (𝑓, 𝑅) := inf
‖𝑔‖
𝐾
≤𝑅

𝑓 − 𝑔
 (6)

is called the approximation error in learning theory. Some
estimates have been presented by Smale and Zhou [6] for
the 𝐿

2 norm and many kernels. The second purpose of this
paper is to investigate the convergence rate of the approxi-
mation error with the uniform norm as well as the 𝐿

2 norm.
Estimates will be given in Section 4, based on the analysis in
Section 3 for interpolation schemes associated with general
Mercer kernels. With this analysis, we can understand the
approximation error with respect to marginal probability

distribution induced by 𝜌. Let us provide an example of
Gaussian kernels to illustrate the idea. Notice that when
the parameter 𝜎 of the kernel is allowed to change with 𝑅,
the rate of the approximation error may be improved. This
confirms the method of adaptively choosing the parameter of
the kernel, which is used in many applications (see e.g., [7]).

Example 3. Let

𝐾
𝜎
(𝑥, 𝑦) = exp{−

𝑥 − 𝑦


2

𝜎2
} , 𝑥, 𝑦 ∈ 𝑋 = [0, 1]

𝑛
. (7)

There exist positive constants 𝐴 and 𝐵 such that, for each
𝑓 ∈ 𝐻

𝑠
(R𝑛

) and 𝑅 ≥ 𝐴‖𝑓‖
𝐿
2 , there holds

inf
‖𝑔‖
𝐾𝜎

≤𝑅

𝑓 − 𝑔
𝐿2(𝑋)

≤ 𝐵(log𝑅)−𝑠/4

(8)

when 𝜎 is fixed; while when 𝜎may change with𝑅, there holds

inf
‖𝑔‖
𝐾𝜎𝑅

≤𝑅

𝑓 − 𝑔
𝐿2(𝑋)

≤ 𝐵(log𝑅)−𝑠
. (9)

2. Density and Positive Definiteness

The density problem of reproducing kernel Hilbert spaces
in 𝐶(𝑋) was raised to the author by Poggio et al. See [8]. It
can be stated as follows.

Given a Mercer kernel 𝐾 on a compact metric space
(𝑋, 𝑑(⋅, ⋅)), when is the RKHSH

𝐾
dense in 𝐶(𝑋)?

Bymeans of the dual space of 𝐶(𝑋), we can give a general
characterization.This is only a simple observation, but it does
provide us useful information. For example, we will show
that the density is always true for convolution type kernels.
Also, for dot product type kernel, we can give a complete
nice characterization for the density, which will be given in
Section 6.

Recall the Riesz Representation Theorem asserting that
the dual space of 𝐶(𝑋) can be represented by the set of Borel
measures on 𝑋. For a Borel measure 𝜇 on 𝑋, we define the
integral operator 𝐿

𝐾,𝜇
associated with the kernel as

𝐿
𝐾,𝜇

(𝑓) (𝑥) := ∫
𝑋

𝐾(𝑥, 𝑦) 𝑓 (𝑦) 𝑑𝜇 (𝑦) , 𝑥 ∈ 𝑋. (10)

This is a compact operator on𝐿
2

𝜇
(𝑋) if 𝜇 is a positivemeasure.

Theorem 4. Let 𝐾 be a Mercer kernel on a compact metric
space (𝑋, 𝑑). Then, the following statements are equivalent.

(1) H
𝐾
is dense in 𝐶(𝑋).

(2) For any nontrivial positive Borel measure 𝜇, H
𝐾
is

dense in 𝐿
2

𝜇
(𝑋).

(3) For any nontrivial positive Borel measure 𝜇, 𝐿
𝐾,𝜇

has
no eigenvalue zero in 𝐿

2

𝜇
(𝑋).

(4) For any nontrivial Borel measure 𝜇, as a function
in 𝐶(𝑋),

∫
𝑋

𝐾(⋅, 𝑦) 𝑑𝜇 (𝑦) ̸= 0. (11)
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Proof. (1) ⇒ (2). This follows from the fact that 𝐶(𝑋) is
dense in 𝐿

2

𝜇
(𝑋). See, for example, [9].

(2) ⇒ (3). Suppose that H
𝐾

is dense in 𝐿
2

𝜇
(𝑋), but

𝐿
𝐾,𝜇

has an eigenvalue zero in 𝐿
2

𝜇
(𝑋). Then, there exists a

nontrivial function 𝑓 ∈ 𝐿
2

𝜇
(𝑋) such that 𝐿

𝐾,𝜇
(𝑓) = 0; that

is,

𝐿
𝐾,𝜇

(𝑓) (𝑥) = ∫
𝑋

𝐾(𝑥, 𝑦) 𝑓 (𝑦) 𝑑𝜇 (𝑦)

= ∫
𝑋

𝐾
𝑥
(𝑦) 𝑓 (𝑦) 𝑑𝜇 (𝑦) = 0.

(12)

The identity holds as functions in 𝐿
2

𝜇
(𝑋). If the support

of 𝜇 is 𝑋, then this identity would imply that 𝑓 is orthog-
onal to each 𝐾

𝑥
with 𝑥 ∈ 𝑋. When the support of 𝜇 is

not 𝑋, things are more complicated. Here, the support of 𝜇,
denoted as supp 𝜇, is defined to be the smallest closed
subset 𝐹 of 𝑋 satisfying 𝜇(𝑋 \ 𝐹) = 0.

The property of the RKHS enables us to prove the general
case. As the function 𝐿

𝐾,𝜇
(𝑓) is continuous, we know from

(12) that, for each 𝑥 in supp 𝜇,

∫
supp 𝜇

𝐾
𝑥
(𝑦) 𝑓 (𝑦) 𝑑𝜇 (𝑦) = ∫

𝑋

𝐾
𝑥
(𝑦) 𝑓 (𝑦) 𝑑𝜇 (𝑦) = 0.

(13)

This means for each 𝑥 in supp 𝜇, 𝑓 ⊥ 𝐾
𝑥
in 𝐿

2

𝜇
(supp 𝑋),

where 𝜇 has been restricted onto supp 𝜇. When we
restrict 𝐾 onto supp 𝜇 × supp 𝜇, the new kernel �̃� is
again a Mercer kernel. Moreover, by (1), H

�̃�
= H

𝐾
|supp 𝜇

.
It follows that span{𝐾

𝑥
|supp 𝜇

: 𝑥 ∈ supp 𝜇} is dense
in H

�̃�
= H

𝐾
|supp 𝜇

. The latter is dense in 𝐿
2

𝜇
(supp 𝜇).

Therefore, 𝑓 is orthogonal to 𝐿
2

𝜇
(supp 𝜇); hence, as a

function in 𝐿
2

𝜇
(𝑋), 𝑓 is zero. This is a contradiction.

(3) ⇒ (4). Every nontrivial Borel measure 𝜇 can be
uniquely decomposed as the difference of two mutually sin-
gular positive Borelmeasures: 𝜇 = 𝜇

+
−𝜇

−; that is, there exists
a Borel set 𝐴 ⊂ 𝑋 such that 𝜇+

(𝐴) = 𝜇
+
(𝑋) and 𝜇

−
(𝐴) = 0.

With this decomposition,

∫
𝑋

𝐾(𝑥, 𝑦) 𝑑𝜇 (𝑦) = ∫
𝑋

𝐾(𝑥, 𝑦) {𝜒
𝐴
(𝑦) − 𝜒

𝑋\𝐴
(𝑦)} 𝑑

𝜇


= 𝐿
𝐾,|𝜇|

(𝜒
𝐴
− 𝜒

𝑋\𝐴
) (𝑥) .

(14)

Here, 𝜒
𝐴
is the characteristic function of the set 𝐴, and |𝜇| =

𝜇
+

+ 𝜇
− is the absolute value of 𝜇. As |𝜇| is a nontriv-

ial positive Borel measure and 𝜒
𝐴

− 𝜒
𝑋\𝐴

is a nontrivial
function in 𝐿

2

|𝜇|
(𝑋), statement (3) implies that, as a func-

tion in 𝐿
2

|𝜇|
(𝑋), ∫

𝑋
𝐾(𝑥, 𝑦)𝑑𝜇(𝑦) ̸= 0. Since this function lies

in 𝐶(𝑋), it is nonzero as a function in 𝐶(𝑋).
The last implication (4) ⇒ (1) follows directly from the

Riesz RepresentationTheorem.

The proof of Theorem 4 also yields a characterization for
the density of the RKHS in 𝐿

2

𝜇
(𝑋).

Corollary 5. Let 𝐾 be a Mercer kernel on a compact metric
space (𝑋, 𝑑) and 𝜇 a positive Borel measure on 𝑋. Then,
H

𝐾
is dense in 𝐿

2

𝜇
(𝑋) if and only if 𝐿

𝐾,𝜇
has no eigenvalue

zero in 𝐿
2

𝜇
(𝑋).

Thenecessity has been verified in the proof ofTheorem 4,
while the sufficiency follows from the observation that
an 𝐿

2

𝜇
(𝑋) function 𝑓 lying in the orthogonal complement

of span{𝐾
𝑥

: 𝑥 ∈ 𝑋} gives an eigenfunction of 𝐿
𝐾,𝜇

with
eigenvalue zero:

⟨𝐾
𝑥
, 𝑓⟩

𝐿
2

𝜇
(𝑋)

= ∫
𝑋

𝐾
𝑥
(𝑦) 𝑓 (𝑦) 𝑑𝜇 (𝑦) = 𝐿

𝐾,𝜇
(𝑓) (𝑥) = 0.

(15)

Theorem 4 enables us to conclude that the density
always holds for convolution type kernels 𝐾(𝑥, 𝑦) = 𝑘(𝑥 −

𝑦) with 𝑘 ∈ 𝐿
2
(R𝑛

). The density for some convolution
type kernels has been verified by Steinwart [10]. The author
observed the density as a corollary ofTheorem4when �̂�(𝜉) is
strictly positive. Charlie Micchelli pointed out to the author
that, for a convolution type kernel, the RKHS is always dense
in 𝐶(𝑋). So, the density problem is solved for these kernels.

Corollary 6. Let 𝐾(𝑥, 𝑦) = 𝑘(𝑥 − 𝑦) be a nontrivial
convolution type Mercer kernel on R𝑛 with 𝑘 ∈ 𝐿

2
(R𝑛

). Then,
for any compact subset 𝑋 of R𝑛, H

𝐾
on 𝑋 is dense in 𝐶(𝑋).

Proof. It is well known that 𝐾 is a Mercer kernel if and only
if 𝑘 is continuous and �̂�(𝜉) ≥ 0 almost everywhere. We
apply the equivalent statement (4) ofTheorem 4 to prove our
statement.

Let 𝜇 be a Borel measure on 𝑋 such that

∫
𝑋

𝐾(𝑥, 𝑦) 𝑑𝜇 (𝑦) = 0, ∀𝑥 ∈ 𝑋. (16)

Then, the inverse Fourier transform yields

∫
𝑋

∫
R𝑛

�̂� (𝜉) 𝑒
𝑖𝜉⋅(𝑥−𝑦)

𝑑𝜉𝑑𝜇 (𝑦)

= ∫
R𝑛

�̂� (𝜉) 𝜇 (𝜉) 𝑒
𝑖𝜉⋅𝑥

𝑑𝜉 = 0, ∀𝑥 ∈ 𝑋.

(17)

Here, 𝜇(𝜉) = ∫ 𝑒
−𝑖𝜉⋅𝑦

𝑑𝜇(𝑦) is the Fourier transform of the
Borel measure 𝜇, which is an entire function.

Taking the integral on 𝑋 with respect to the measure 𝜇,
we have

∫
R𝑛

�̂� (𝜉) 𝜇 (𝜉) ∫
𝑋

𝑒
𝑖𝜉⋅𝑥

𝑑𝜇 (𝑥) 𝑑𝜉 = ∫
R𝑛

�̂� (𝜉)
𝜇 (𝜉)



2
𝑑𝜉 = 0.

(18)

For a nontrivial Borel measure 𝜇 supported on 𝑋, 𝜇(𝜉)

vanishes only on a set of measure zero. Hence, �̂�(𝜉) =

0 almost everywhere, which gives 𝑘 = 0. Therefore, we must
have 𝜇 = 0. This proves the density byTheorem 4.

After the first version of the paper was finished, I learned
that Micchelli et al. [11] proved the density for a class of
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convolution type kernels 𝑘(𝑥 − 𝑦) with 𝑘 being the Fourier
transform of a finite Borel measure. Note that a large family
of convolution type reproducing kernels are given by radial
basis functions; see, for example, [12].

Now we can state a trivial fact that the positive definite-
ness is a necessary condition for the density.

Corollary 7. Let 𝐾 be a Mercer kernel on a compact metric
space (𝑋, 𝑑). If H

𝐾
is dense in 𝐶(𝑋), then 𝐾 is positive defi-

nite.

Proof. Suppose to the contrary that H
𝐾
is dense in 𝐶(𝑋),

but there exists a finite set of distinct points {𝑥
𝑖
}
ℓ

𝑖=1
⊂ 𝑋 such

that the matrix 𝐴x := (𝐾(𝑥
𝑖
, 𝑥

𝑗
))

ℓ

𝑖,𝑗=1
is not positive definite.

By the Mercer kernel property, 𝐴x is positive semidefinite.
So it is singular, and we can find a nonzero vector 𝑐 :=

(𝑐
1
, . . . , 𝑐

ℓ
)
𝑇
∈ Rℓ satisfying 𝐴x𝑐 = 0. It follows that 𝑐𝑇𝐴x𝑐 =

0; that is,


ℓ

∑

𝑖=1

𝑐
𝑖
𝐾

𝑥𝑖



2

𝐾

= ⟨

ℓ

∑

𝑖=1

𝑐
𝑖
𝐾

𝑥𝑖
,

ℓ

∑

𝑗=1

𝑐
𝑗
𝐾

𝑥𝑗
⟩

𝐾

=

ℓ

∑

𝑖,𝑗=1

𝑐
𝑖
𝑐
𝑗
𝐾(𝑥

𝑖
, 𝑥

𝑗
) = 0.

(19)

Thus,
ℓ

∑

𝑖=1

𝑐
𝑖
𝐾

𝑥𝑖
= 0. (20)

Now, we define a nontrivial Borel measure 𝜇 supported
on {𝑥

1
, . . . , 𝑥

ℓ
} as

𝜇 ({𝑥
𝑖
}) = 𝑐

𝑖
, 𝑖 = 1, . . . , ℓ. (21)

Then, for 𝑥 ∈ 𝑋,

∫
𝑋

𝐾(𝑥, 𝑦) 𝑑𝜇 (𝑦) =

ℓ

∑

𝑖=1

𝐾(𝑥, 𝑥
𝑖
) 𝑐

𝑖
=

ℓ

∑

𝑖=1

𝑐
𝑖
𝐾

𝑥𝑖
(𝑥) = 0. (22)

This is a contradiction to the equivalent statement (4) in
Theorem 4 of the density.

Because of the necessity given in Corollary 7, one would
expect that the positive definiteness is also sufficient for the
density. Steve Smale convinced the author that this is not the
case in general. This motivates us to present a constructive
example of 𝐶∞ kernel. Denote ‖𝑔‖

𝑊
𝑚

∞

:= ∑
𝑚

𝑗=0
‖𝑔

(𝑗)
‖
𝐿
∞ as the

norm in the Sobolev space 𝑊
𝑚

∞
.

Example 8. Let 𝑋 = [0, 1]. For every 𝑚 ∈ N and every
𝑖 ∈ {0, 1, . . . , 𝑚}, choose a real-valued 𝐶

∞ function 𝜓
𝑖,𝑚

(𝑥)

on [0, 1] such that

𝜓
𝑖,𝑚 (𝑥) = 𝑥

𝑖
, ∀𝑥 ∈ [0, 1] \ (

1

𝑚 + 1
,
1

𝑚
) ,

∫

1

0

𝜓
𝑖,𝑚 (𝑥) 𝑑𝑥 = 0.

(23)

Define 𝐾 on [0, 1] × [0, 1] by

𝐾(𝑥, 𝑦) =

∞

∑

𝑚=1

2
−𝑚

∑
𝑚

𝑖=0
𝜓

𝑖,𝑚 (𝑥) 𝜓𝑖,𝑚
(𝑦)

∑
𝑚

𝑖=0

𝜓𝑖,𝑚



2

𝑊
𝑚

∞

,

𝑥, 𝑦 ∈ [0, 1] .

(24)

Then, 𝐾 is a 𝐶
∞ Mercer kernel on [0, 1]. It is positive

definite, but the constant function 1 is not in the closure
of H

𝐾
in 𝐶(𝑋). Hence,H

𝐾
is not dense in 𝐶(𝑋).

Proof. The series in (24) converges in 𝑊
𝑚

∞
for any 𝑚 ∈ N.

Hence, 𝐾 is 𝐶∞ and is a Mercer kernel on [0, 1].
To prove the positive definiteness, we let {𝑥

𝑖
}
ℓ

𝑖=1
⊂

[0, 1] be a finite set of distinct points and (𝑐
𝑖
)
ℓ

𝑖=1
a nonzero

vector. Choose 𝑚 ∈ N such that

𝑚 ≥ ℓ − 1,
1

𝑚
< min {𝑥

𝑗
: 𝑥

𝑗
> 0, 𝑗 ∈ {1, . . . , ℓ}} .

(25)

Then, for each 𝑗 ∈ {1, . . . , ℓ}, either 𝑥
𝑗
= 0 or 𝑥

𝑗
> 1/𝑚.

Hence,

𝑥
𝑗
∈ [0, 1] \ (

1

𝑚 + 1
,
1

𝑚
) , ∀𝑗 = 1, . . . , ℓ. (26)

By the construction of 𝜓
𝑖,𝑚
, there holds

𝜓
𝑖,𝑚

(𝑥
𝑗
) = 𝑥

𝑖

𝑗
, ∀𝑖 = 0, 1, . . . , 𝑚, 𝑗 = 1, . . . , ℓ. (27)

Then,
ℓ

∑

𝑖,𝑗=1

𝑐
𝑖
𝑐
𝑗
𝐾(𝑥

𝑖
, 𝑥

𝑗
)

≥
2
−𝑚

∑
𝑚

𝑖=0

𝜓𝑖,𝑚



2

𝑊
𝑚

∞

𝑚

∑

𝑖=0

[

[

ℓ

∑

𝑗=1

𝑐
𝑗
𝜓

𝑖,𝑚
(𝑥

𝑗
)]

]

2

≥
2
−𝑚

∑
𝑚

𝑖=0

𝜓𝑖,𝑚



2

𝑊
𝑚

∞

ℓ−1

∑

𝑖=0

[

[

ℓ

∑

𝑗=1

𝑐
𝑗
𝜓

𝑖,𝑚
(𝑥

𝑗
)]

]

2

.

(28)

Now, the determinant of the matrix (𝑥
𝑖

𝑗
)
𝑖=0,1,...,ℓ−1,𝑗=1,...,ℓ

is a
Vandermonde determinant and is nonzero. Since (𝑐

𝑗
)
ℓ

𝑗=1
is

a nonzero vector, we know that ∑ℓ

𝑗=1
𝑐
𝑗
𝑥

𝑖

𝑗
̸= 0 for some 𝑖 ∈

{0, 1, . . . , ℓ − 1}. It follows that ∑ℓ

𝑖,𝑗=1
𝑐
𝑖
𝑐
𝑗
𝐾(𝑥

𝑖
, 𝑥

𝑗
) > 0. Thus,

𝐾 is positive definite.
We now prove that 1, the constant function taking the

value 1 everywhere, is not in the closure of H
𝐾
in 𝐶(𝑋). In

fact, the uniformly convergent series (24) and the vanishing
property of 𝜓

𝑖,𝑚
imply that

∫

1

0

𝐾(𝑥, 𝑦) 𝑑𝑦 = ∫

1

0

𝐾
𝑥
(𝑦) 𝑑𝑦 = 0, ∀𝑥 ∈ 𝑋. (29)

Since span{𝐾
𝑥
: 𝑥 ∈ 𝑋} is dense inH

𝐾
andH

𝐾
is embedded

in 𝐶(𝑋), we know that

∫

1

0

𝑓 (𝑦) 𝑑𝑦 = 0, ∀𝑓 ∈ H
𝐾
. (30)
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If 1 could be uniformly approximated by a sequence {𝑓
𝑚
} in

H
𝐾
, then

1 = ∫

1

0

1 (𝑦) 𝑑𝑦 = lim
𝑚→∞

∫

1

0

𝑓
𝑚
(𝑦) 𝑑𝑦 = 0, (31)

which would be a contradiction. Therefore, H
𝐾
is not dense

in 𝐶(𝑋).

Combining the previous discussion, we know that the
positive definiteness is a nice necessary condition for the
density of the RKHS in 𝐶(𝑋) but is not sufficient.

3. Interpolation Schemes for Reproducing
Kernel Spaces

The study of approximation by reproducing kernel Hilbert
spaces has a long history; see, for example, [13, 14]. Here, we
want to investigate the rate of approximation as the RKHS
norm of the approximant becomes large.

In the following sections, we consider the approximation
error for the purpose of learning theory. The basic tool for
constructing approximants is a set of nodal functions used in
[6, 15, 16].

Definition 9. We say that {𝑢
𝑖
(𝑥) := 𝑢

𝑖,x(𝑥)}
ℓ

𝑖=1
is the set of

nodal functions associated with the nodes x := {𝑥
1
, . . . , 𝑥

ℓ
} ⊂

𝑋 if 𝑢
𝑖
∈ span{𝐾

𝑥𝑗
}
ℓ

𝑗=1
and

𝑢
𝑖
(𝑥

𝑗
) = 𝛿

𝑖𝑗
= {

1, if 𝑗 = 𝑖,

0, otherwise.
(32)

The nodal functions have some nice minimization prop-
erties; see [6, 16].

In [15], we show that the nodal functions {𝑢
𝑖
}
ℓ

𝑖=1
associated

with x exist if and only if the Gramian matrix 𝐴x :=

(𝐾(𝑥
𝑖
, 𝑥

𝑗
))

ℓ

𝑖,𝑗=1
is nonsingular. In this case, the nodal func-

tions are uniquely given by

𝑢
𝑖 (𝑥) =

ℓ

∑

𝑗=1

(𝐴
−1

x )
𝑖,𝑗
𝐾

𝑥𝑗
(𝑥) , 𝑖 = 1, . . . , ℓ. (33)

Remark 10. When the RKHS has finite dimension 𝑚, then,
for any ℓ ≤ 𝑚 we can find nodal functions {𝑢

𝑗
}
ℓ

𝑗=1
associated

with some subset x = {𝑥
1
, . . . , 𝑥

ℓ
} ⊂ 𝑋, while for ℓ > 𝑚,

no such nodal functions exist. When dimH
𝐾
= ∞, then, for

any ℓ ∈ N, we can find a subset x = {𝑥
1
, . . . , 𝑥

ℓ
} ⊂ 𝑋 which

possesses a set of nodal functions.

The nodal functions are used to construct an interpola-
tion scheme:

𝐼x (𝑓) (𝑥) =
ℓ

∑

𝑖=1

𝑓 (𝑥
𝑖
) 𝑢

𝑖,x (𝑥) , 𝑥 ∈ 𝑋, 𝑓 ∈ 𝐶 (𝑋) . (34)

It satisfies 𝐼x(𝑓)(𝑥𝑖
) = 𝑓(𝑥

𝑖
) for 𝑖 = 1, . . . , ℓ. Interpolation

schemes have been applied to the approximation by radial
basis functions in the vast literature; see, for example, [17–20].

The error 𝐼x(𝑓) − 𝑓 for 𝑓 ∈ H
𝐾
will be estimated by

means of a power function.

Definition 11. Let 𝐾 be a Mercer kernel on a compact met-
ric space (𝑋, 𝑑) and x = {𝑥

1
, . . . , 𝑥

ℓ
} ⊂ 𝑋. The power

function 𝜀
𝐾
is defined on x as

𝜀
𝐾 (x) := sup

𝑥∈𝑋

{{

{{

{

inf
𝑤∈Rℓ

{

{

{

𝐾(𝑥, 𝑥) − 2

ℓ

∑

𝑖=1

𝑤
𝑖
𝐾(𝑥, 𝑥

𝑖
)

+

ℓ

∑

𝑖,𝑗=1

𝑤
𝑖
𝐾(𝑥

𝑖
, 𝑥

𝑗
)𝑤

𝑗

}

}

}

1/2

}}

}}

}

.

(35)

We know that 𝜀
𝐾
(x) → 0 when 𝑑x :=

max
𝑥∈𝑋

min
𝑖=1,...,ℓ

𝑑(𝑥, 𝑥
𝑖
) → 0. If 𝐾 is Lipschitz 𝑠 on

𝑋:

𝐾 (𝑥, 𝑦) − 𝐾 (𝑥, 𝑡)
 ≤ 𝐶(𝑑 (𝑦, 𝑡))

𝑠
, (36)

then

𝜀
𝐾 (x) ≤ 2𝐶𝑑

𝑠

x. (37)

Moreover, higher order regularity of 𝐾 implies faster conver-
gence of 𝜀

𝐾
(x). For details, see [16].

The error of the interpolation scheme for functions from
RKHS can be estimated as follows.

Theorem 12. Let 𝐾 be a Mercer kernel and 𝐴x nonsingular
for a finite set x = {𝑥

1
, . . . , 𝑥

ℓ
} ⊂ 𝑋. Define the interpolation

scheme associated with x as (34). Then, for 𝑓 ∈ H
𝐾
, there

holds

𝐼x (𝑓) − 𝑓
𝐶(𝑋)

≤
𝑓

𝐾
𝜀
𝐾 (x) , (38)

𝐼x (𝑓)
𝐾

≤
𝑓

𝐾
. (39)

Proof. Let 𝑥 ∈ 𝑋. We apply the reproducing property (3) of
the function 𝑓 in

𝐼x (𝑓) (𝑥) − 𝑓 (𝑥) =

ℓ

∑

𝑖=1

𝑓 (𝑥
𝑖
) 𝑢

𝑖 (𝑥) − 𝑓 (𝑥) . (40)

Then,

𝐼x (𝑓) (𝑥) − 𝑓 (𝑥) =

ℓ

∑

𝑖=1

𝑢
𝑖 (𝑥) ⟨𝐾𝑥𝑖

, 𝑓⟩
𝐾
− ⟨𝐾

𝑥
, 𝑓⟩

𝐾

= ⟨

ℓ

∑

𝑖=1

𝑢
𝑖
(𝑥)𝐾

𝑥𝑖
− 𝐾

𝑥
, 𝑓⟩

𝐾

.

(41)

By the Schwartz inequality in H
𝐾
,

𝐼x (𝑓) (𝑥) − 𝑓 (𝑥)
 ≤



ℓ

∑

𝑖=1

𝑢
𝑖 (𝑥)𝐾𝑥𝑖

− 𝐾
𝑥

𝐾

𝑓
𝐾

. (42)
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As ⟨𝐾
𝑠
, 𝐾

𝑡
⟩
𝐾
= 𝐾(𝑠, 𝑡), we have



ℓ

∑

𝑖=1

𝑢
𝑖 (𝑥)𝐾𝑥𝑖

− 𝐾
𝑥



2

𝐾

= 𝐾 (𝑥, 𝑥) − 2

ℓ

∑

𝑖=1

𝑢
𝑖 (𝑥)𝐾 (𝑥, 𝑥

𝑖
)

+

ℓ

∑

𝑖,𝑗=1

𝑢
𝑖 (𝑥)𝐾 (𝑥

𝑖
, 𝑥

𝑗
) 𝑢

𝑗 (𝑥) .

(43)

However, the quadratic function

𝑄((𝑤
𝑖
)
ℓ

𝑖=1
) := 𝐾 (𝑥, 𝑥) − 2

ℓ

∑

𝑖=1

𝑤
𝑖
𝐾(𝑥, 𝑥

𝑖
)

+

ℓ

∑

𝑖,𝑗=1

𝑤
𝑖
𝐾(𝑥

𝑖
, 𝑥

𝑗
)𝑤

𝑗

(44)

over Rℓ takes its minimum value at (𝑢
𝑖
(𝑥))

ℓ

𝑖=1
. Therefore,



ℓ

∑

𝑖=1

𝑢
𝑖 (𝑥)𝐾𝑥𝑖

− 𝐾
𝑥

𝐾

≤ 𝜀
𝐾 (x) . (45)

It follows that
𝐼x (𝑓) (𝑥) − 𝑓 (𝑥)

 ≤
𝑓

𝐾
𝜀
𝐾 (x) . (46)

This proves (38).
As 𝐼x(𝑓) ∈ H

𝐾
and 𝐼x(𝑓)(𝑥𝑖

) = 𝑓(𝑥
𝑖
) for 𝑖 = 1, . . . , ℓ,

we know that

𝐼x (𝑓) (𝑥𝑖
) − 𝑓 (𝑥

𝑖
) = ⟨𝐾

𝑥𝑖
, 𝐼x (𝑓) − 𝑓⟩

𝐾
= 0, 𝑖 = 1, . . . , ℓ.

(47)

This means that 𝐼x(𝑓) − 𝑓 is orthogonal to span{𝐾
𝑥𝑖
}
ℓ

𝑖=1
.

Hence, 𝐼x(𝑓) is the orthogonal projection of 𝑓 onto
span{𝐾

𝑥𝑖
}
ℓ

𝑖=1
. Thus, ‖𝐼x(𝑓)‖𝐾 ≤ ‖𝑓‖

𝐾
.

The regularity of the kernel in connection with Theo-
rem 12 yields the rate of convergence of the interpolation
scheme. As an example, from the estimate for 𝜀

𝐾
(x) given in

[16, Proposition 2], we have the following.

Corollary 13. Let 𝑋 = [0, 1], 𝑠 ≤ 𝑁 ∈ N, and 𝐾(𝑥, 𝑦) be
a 𝐶

𝑠 Mercer kernel such that 𝐴x is nonsingular for x =

{𝑗/𝑁}
𝑁−1

𝑗=0
. Then, for 𝑓 ∈ H

𝐾
, there holds

𝐼x (𝑓) − 𝑓
𝐶(𝑋)

≤
𝑓

𝐾
{
(4𝑠)

𝑠
(1 + 𝑠2

𝑠
)

(𝑠 − 1)!



𝜕
𝑠

𝜕𝑦𝑠
𝐾

∞

}𝑁
−𝑠
.

(48)

For convolution type kernels, the power function can be
estimated in terms of the Fourier transform of the kernel
function. This is of particular interest when the kernel
function is analytic. Let us provide the details.

Assume that 𝑘 is a symmetric function in 𝐿
2
(R𝑛

) and
�̂�(𝜉) > 0 almost everywhere on R𝑛. Consider the Mercer
kernel

𝐾(𝑥, 𝑦) = 𝑘 (𝑥 − 𝑦) , 𝑥, 𝑦 ∈ [0, 1]
𝑛
. (49)

For 𝑁 ∈ N, we define the following function to measure the
regularity:

𝜆
𝑘 (𝑁) := 𝑛(1 +

1

2𝑁
)

𝑛−1

× max
1≤𝑗≤𝑛

{

{

{

(2𝜋)
−𝑛

∫
𝜉∈[−𝑁/2,𝑁/2]

𝑛

�̂� (𝜉) (


𝜉
𝑗



𝑁
)

𝑁

𝑑𝜉

}

}

}

+ (1 + (𝑁2
𝑁
)
𝑛

)
2

(2𝜋)
−𝑛

∫
𝜉∉[−𝑁/2,𝑁/2]

𝑛

�̂� (𝜉) 𝑑𝜉.

(50)

Remark 14. This function involves two parts. The first part
is 𝜉 ∈ [−𝑁/2,𝑁/2]

𝑛, where (|𝜉
𝑗
|/𝑁)

𝑁
≤ 2

−𝑁; hence, it
decays exponentially fast as 𝑁 becomes large. The second
part is 𝜉 ∉ [−𝑁/2,𝑁/2]

𝑛, where 𝜉 is large. Then, the decay
of �̂� (which is equivalent to the regularity of 𝑘) yields the fast
decay of the second part.

The power function 𝜀
𝐾
(x) can be bounded by 𝜆

𝑘
(𝑁) on

the regular points:

x := (
𝛼

𝑁
)

𝛼∈{0,1,...,𝑁−1}
𝑛

. (51)

Proposition 15. For the convolution type kernel (49) and x
given by (51), one has

𝜀
𝐾 (x) ≤ 𝜆

𝑘 (𝑁) . (52)

In particular, if

�̂� (𝜉) ≤ 𝐶
0
𝑒
−𝜆|𝜉|

, ∀𝜉 ∈ R
𝑛 (53)

for some constants 𝐶
0
> 0 and 𝜆 > 4+2𝑛 ln 4, then there holds

𝜀
𝐾 (x) ≤ 𝜆

𝑘 (𝑁) ≤ 4𝐶
0
(max{ 1

𝑒𝜆
,
4
𝑛

𝑒𝜆/2
})

𝑁/2

. (54)

Proof. Choose {𝑤
𝛼
:= 𝑤

𝛼,x(𝑥)}𝛼∈x as the Lagrange interpola-
tion polynomials on x. It is a vector in R𝑁

𝑛

for each 𝑥 ∈ 𝑋.
Then, 𝜀

𝐾
(x) ≤ sup

𝑥∈𝑋
𝑄

𝑁
(𝑥), where

𝑄
𝑁 (𝑥) := 𝑘 (0) − 2∑

𝛼∈x
𝑤

𝛼,x (𝑥) 𝑘 (𝑥 − 𝛼)

+ ∑

𝛼,𝛽∈x
𝑤

𝛼,x (𝑥) 𝑘 (𝛼 − 𝛽)𝑤
𝛽,x (𝑥) .

(55)

In the proof of Theorem 2 in [16], we showed that 𝑄
𝑁
(𝑥) ≤

𝜆
𝑘
(𝑁) for each 𝑥 ∈ [0, 1]

𝑛. Therefore, 𝜀
𝐾
(x) ≤ 𝜆

𝑘
(𝑁).

The estimate for 𝜆
𝑘
(𝑁) in the second part was verified in

the proof of Theorem 3 in [16].
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For the Gaussian kernels

𝐾(𝑥, 𝑦) = exp{−

𝑥 − 𝑦


2

𝜎2
} , 𝑥, 𝑦 ∈ [0, 1]

𝑛
, (56)

it was proved in [16, Example 4] that, for 𝑁 ≥ 80𝑛 log 2/𝜎2,
there holds

𝜀
𝐾 (x) ≤ 𝜆

𝑘 (𝑁) ≤ 2√𝑒(
1

16𝑛
)

𝑁/2

+
4

𝜎√𝜋
2
−𝑛𝑁

. (57)

4. Approximation Error in Learning Theory

Now, we can estimate the approximation error in learning
theory by means of the interpolation scheme (34).

Consider the convolution type kernel (49) on𝑋 = [0, 1]
𝑛.

As in [6], we denote

Λ
𝑘 (𝑟) := { inf

𝜉∈[−𝑟𝜋,𝑟𝜋]
𝑛
�̂� (𝜉)}

−1/2

, 𝑟 > 0. (58)

The approximation error (6) can be realized as follows.

Theorem 16. Let 𝑘 ∈ 𝐿
2
(R𝑛

) be a symmetric function with
�̂�(𝜉) > 0, and let the kernel on 𝑋 = [0, 1]

𝑛 be 𝐾(𝑥, 𝑦) = 𝑘(𝑥 −

𝑦). For 𝑓 ∈ 𝐿
2
(R𝑛

) and𝑀 ≤ 𝑁 ∈ N, we set 𝑓
𝑀

∈ 𝐿
2
(R𝑛

) by

𝑓
𝑀 (𝜉) = {

𝑓 (𝜉) , 𝑖𝑓 𝜉 ∈ [−𝑀𝜋,𝑀𝜋]
𝑛
,

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
(59)

Then, with x = {0, 1/𝑁, . . . , (𝑁 − 1)/𝑁}
𝑛, one has

(i) ‖𝐼x(𝑓𝑀
)‖

𝐾
≤ ‖𝑓‖

𝐿
2Λ 𝑘

(𝑁);
(ii) ‖𝑓

𝑀
− 𝐼x(𝑓𝑀

)‖
𝐶(𝑋)

≤ ‖𝑓‖
𝐿
2Λ 𝑘

(𝑀)𝜀
𝐾
(x) ≤

‖𝑓‖
𝐿
2Λ 𝑘

(𝑀)𝜆
𝑘
(𝑁);

(iii) ‖𝑓 − 𝑓
𝑀
‖
2

𝐿
2
(𝑋)

≤ (2𝜋)
−𝑛

∫
𝜉∉[−𝑀𝜋,𝑀𝜋]

𝑛 |𝑓(𝜉)|
2
𝑑𝜉 →

0 (𝑎𝑠 𝑀 → ∞).

Proof. (i) For 𝑖, 𝑗 ∈ 𝑋
𝑁

:= {0, 1, . . . , 𝑁 − 1}
𝑛 and 𝑥

𝑖
= 𝑖/𝑁,

expression (33) gives

⟨𝑢
𝑖
, 𝑢

𝑗
⟩

𝐾
= ∑

𝑠,𝑡∈𝑋𝑁

(𝐴
−1

x )
𝑖𝑠
(𝐴

−1

x )
𝑗𝑡
⟨𝐾

𝑥𝑠
, 𝐾

𝑥𝑡
⟩

𝐾

= ∑

𝑠,𝑡∈𝑋𝑁

(𝐴
−1

x )
𝑖𝑠
(𝐴

−1

x )
𝑗𝑡
(𝐴x)𝑡𝑠 = (𝐴

−1

x )
𝑖𝑗
.

(60)

Then for 𝑔 ∈ 𝐶(𝑋) we have

𝐼x (𝑔)


2

𝐾
=



∑

𝑖∈𝑋𝑁

𝑔 (𝑥
𝑖
) 𝑢

𝑖 (𝑥)



2

𝐾

= ∑

𝑖,𝑗∈𝑋𝑁

𝑔 (𝑥
𝑖
) 𝑔 (𝑥

𝑗
) ⟨𝑢

𝑖
, 𝑢

𝑗
⟩

𝐾

= (𝑔
x)

𝑇
𝐴

−1

x 𝑔
x,

(61)

where 𝑔|x is the vector (𝑔(𝑥𝑖
))

𝑖∈𝑋𝑁
∈ R𝑁

𝑛

. It follows that

𝐼x (𝑔)


2

𝐾
= ⟨𝑔

x, 𝐴
−1

x 𝑔
x⟩ℓ
2

≤

𝐴

−1

x
2

𝑔
x


2

ℓ
2

=

𝐴

−1

x
2

∑

𝑖∈𝑋𝑁

𝑔 (𝑥
𝑖
)


2
,

(62)

where ‖𝐴−1

x ‖
2
denotes the (operator) norm of the matrix 𝐴−1

x
in (R𝑁

𝑛

, ℓ
2
).

We apply the previous analysis to the function 𝑓
𝑀

satisfying

∑

𝑗∈𝑋𝑁


𝑓

𝑀
(𝑥

𝑗
)


2

= ∑

𝑗∈𝑋𝑁



(2𝜋)
−𝑛

∫
𝜉∈[−𝑁𝜋,𝑁𝜋]

𝑛

𝑓
𝑀 (𝜉) 𝑒

𝑖⋅(𝑗/𝑁)⋅𝜉
𝑑𝜉



2

= ∑

𝑗∈𝑋𝑁



(2𝜋)
−𝑛

∫
𝜉∈[−𝜋,𝜋]

𝑛

𝑓
𝑀 (𝑁𝜉) 𝑒

𝑖𝑗⋅𝜉
𝑁

𝑛
𝑑𝜉



2

≤ (2𝜋)
−𝑛

∫
𝜉∈[−𝜋,𝜋]

𝑛


𝑓

𝑀 (𝑁𝜉)𝑁
𝑛

2

𝑑𝜉

≤ 𝑁
𝑛𝑓



2

𝐿
2 .

(63)

Then,

𝐼x (𝑓𝑀
)


2

𝐾
≤

𝐴

−1

x
2
𝑁

𝑛𝑓


2

𝐿
2 . (64)

Now, we need to estimate the norm ‖𝐴
−1

x ‖
2
. For con-

volution type kernels, such an estimate was given in [15,
Theorem 2] by means of methods from the radial basis
function literature, for example, [17, 21–24]. We have


𝐴

−1

x
2

≤ 𝑁
−𝑛
(Λ

𝑘 (𝑁))
2
. (65)

Therefore,

𝐼x (𝑓𝑀
)
𝐾

≤
𝑓

𝐿2
Λ

𝑘 (𝑁) . (66)

This proves the statement in (i).
(ii) Let 𝑥 ∈ 𝑋. Then

𝑓
𝑀 (𝑥) − 𝐼x (𝑓𝑀

) (𝑥)

= (2𝜋)
−𝑛

∫
𝜉∈[−𝑀𝜋,𝑀𝜋]

𝑛

𝑓 (𝜉)

×

{

{

{

𝑒
𝑖𝑥⋅𝜉

− ∑

𝑗∈𝑋𝑁

𝑢
𝑗,x (𝑥) 𝑒

𝑖𝑥𝑗 ⋅𝜉
}

}

}

𝑑𝜉.

(67)
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By the Schwartz inequality,
𝑓𝑀 (𝑥) − 𝐼x (𝑓𝑀

) (𝑥)


≤

{

{

{

(2𝜋)
−𝑛

∫
𝜉∈[−𝑀𝜋,𝑀𝜋]

𝑛


𝑓 (𝜉)



2

�̂� (𝜉)

𝑑𝜉

}

}

}

1/2

×

{

{

{

(2𝜋)
−𝑛
∫
R𝑛

�̂� (𝜉)



𝑒
𝑖𝑥⋅𝜉

− ∑

𝑗∈𝑋𝑁

𝑢
𝑗,x (𝑥) 𝑒

𝑖𝑥𝑗 ⋅𝜉



2

𝑑𝜉

}

}

}

1/2

.

(68)

The first term is bounded by ‖𝑓‖
𝐿
2Λ 𝑘

(𝑀). The second term
is

{

{

{

𝑘 (0) − 2 ∑

𝑗∈𝑋𝑁

𝑢
𝑗,x (𝑥) 𝑘 (𝑥 − 𝑥

𝑗
)

+ ∑

𝑖,𝑗∈𝑋𝑁

𝑢
𝑖,x (𝑥) 𝑘 (𝑥𝑖

− 𝑥
𝑗
) 𝑢

𝑗,x (𝑥)
}

}

}

1/2
(69)

which can be bounded by 𝜀
𝐾
(x), as shown in the proof of

Theorem 12. Therefore, by (52),
𝑓𝑀

− 𝐼x (𝑓𝑀
)
𝐶(𝑋)

≤
𝑓

𝐿2
Λ

𝑘 (𝑀) 𝜀𝐾 (x)

≤
𝑓

𝐿2
Λ

𝑘 (𝑀) 𝜆𝑘 (𝑁) .

(70)

(iii) By the Plancherel formula,

𝑓 − 𝑓
𝑀



2

𝐿
2
(R𝑛)

= (2𝜋)
−𝑛

∫
𝜉∉[−𝑀𝜋,𝑀𝜋]

𝑛


𝑓 (𝜉)



2

𝑑𝜉. (71)

This proves all the statements inTheorem 16.

Theorem 16 provides quantitative estimates for the
approximation error:

𝑓 − 𝐼x (𝑓𝑀
)
𝐿2(𝑋)

≤ {(2𝜋)
−𝑛

∫
𝜉∉[−𝑀𝜋,𝑀𝜋]

𝑛


𝑓 (𝜉)



2

𝑑𝜉}

1/2

+
𝑓

𝐿2
Λ

𝑘 (𝑀) 𝜆𝑘 (𝑁)

(72)

with
𝐼x (𝑓𝑀

)
𝐾

≤
𝑓

𝐿2
Λ

𝑘 (𝑁) . (73)

Choose 𝑁 = 𝑁(𝑀) ≥ 𝑀 such that Λ
𝑘
(𝑀)𝜆

𝑘
(𝑁) → 0 as

𝑀 → +∞; we have ‖𝑓 − 𝐼x(𝑓𝑀
)‖

𝐿
2
(𝑋)

→ 0 and the RKHS
norm of 𝐼x(𝑓𝑀

) is controlled by the asymptotic behavior of
Λ

𝑘
(𝑁).
Denote by Λ−1

𝑘
the inverse function of Λ

𝑘
:

Λ
−1

𝑘
(𝑅) := max {𝑟 > 0 : Λ

𝑘 (𝑟) ≤ 𝑅}

= max {𝑟 > 0 : �̂� (𝜉) ≥ 𝑅
−2

∀𝜉 ∈ [−𝑟𝜋, 𝑟𝜋]
𝑛
} .

(74)

Then, our estimate for the approximation error can be given
as follows.

Corollary 17. Let 𝑋 = [0, 1]
𝑛 and 𝑓 ∈ 𝐻

𝑠
(R𝑛

). Then, for
𝑅 > ‖𝑓‖

𝐿
2 ,

inf
‖𝑔‖𝐾≤𝑅

𝑓 − 𝑔
𝐿2(𝑋)

≤ inf
0<𝑀≤𝑁𝑅

{
𝑓

𝐻𝑠(
𝑀𝜋)

−𝑠
+
𝑓

𝐿2
Λ

𝑘 (𝑀) 𝜆𝑘
(𝑁

𝑅
)} ,

(75)

where𝑁
𝑅
:= [Λ

−1

𝑘
(𝑅/‖𝑓‖

𝐿
2)]. If 𝑠 > 𝑛/2, then

inf
‖𝑔‖𝐾≤𝑅

𝑓 − 𝑔
𝐶(𝑋)

≤ inf
0<𝑀≤𝑁𝑅

{

𝑓
𝐻𝑠

√𝑠 − 𝑛/2

𝑀
𝑛/2−𝑠

+
𝑓

𝐿2
Λ

𝑘 (𝑀) 𝜆𝑘
(𝑁

𝑅
) } .

(76)

In particular, when

𝐶
1
exp {−𝜆

1

𝜉


𝑑
} ≤ �̂� (𝜉) ≤ 𝐶

0
exp {−𝜆 𝜉

} , ∀𝜉 ∈ R
𝑛

(77)

for some 𝐶
0
, 𝐶

1
, 𝑑, 𝜆

1
> 0 and 𝜆 > 4 + 2𝑛 log 4, one has

𝐼 (𝑓, 𝑅) = inf
‖𝑔‖𝐾≤𝑅

𝑓 − 𝑔
𝐿2(𝑋)

≤ (2
𝑑(𝑑+1)

𝑛
𝑑/2

𝜋
𝑑
𝜆

1
)
𝑠/𝑑(𝑑+1)

× (𝜋
−𝑠𝑓

𝐻𝑠
+
2
𝑠+2

𝐶
0

√𝐶
1

𝑓
𝐿2

)

×{log𝑅 +
1

2
log𝐶

1
− log 𝑓

𝐿2
}

−𝑠/𝑑(𝑑+1)

(78)

provided that with the function 𝐺(𝑟) := (1/√𝑛𝜋)((2/

𝜆
1
) log(𝑟√𝐶

1
/‖𝑓‖

𝐿
2))

1/𝑑, 𝑅 satisfies

𝐺 (𝑅) ≥ (
16𝜆

1
𝑛

𝑑/2
𝜋

𝑑

− logmax {1/𝑒𝜆, 4𝑛/𝑒𝜆/2}
)

𝑑+1

,

log𝐺 (𝑅)

𝐺 (𝑅)
≤

(− logmax {1/𝑒𝜆, 4𝑛
/𝑒

𝜆/2
}) (𝑑 + 1)

2𝑑+4𝑠
.

(79)

Proof. The first part is a direct consequence of Theorem 16
whenwe choose𝑁 to be𝑁

𝑅
, the integer part ofΛ−1

𝑘
(𝑅/‖𝑓‖

𝐿
2).

To see the second part, we note that (77) in connection
with Proposition 15 implies with Λ := max{1/𝑒𝜆, 4𝑛

/𝑒
𝜆/2

},

𝜆
𝑘 (𝑁) ≤ 4𝐶

0
exp{𝑁

logΛ
2

} ,

Λ
𝑘 (𝑟) ≤ {𝐶

1
exp {−𝜆

1
(√𝑛𝑟𝜋)

𝑑

}}

−1/2

=
1

√𝐶
1

exp{𝜆
1

2
(√𝑛𝜋)

𝑑

𝑟
𝑑
} .

(80)

Then, Λ−1

𝑘
(𝑅/‖𝑓‖

𝐿
2) ≥ 𝐺(𝑅).
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For𝑅 ≥ (‖𝑓‖
𝐿
2/√𝐶

1
) exp{(𝜆

1
/2)(√𝑛𝜋)

𝑑
}, we can choose

𝑀 ∈ N such that
1

2
{𝐺 (𝑅)}

1/(𝑑+1)
≤ 𝑀 ≤ {𝐺 (𝑅)}

1/(𝑑+1)
. (81)

Choose𝑁 ∈ N such that

𝑀
𝑑+1

2
≤ 𝑁 ≤ 𝑀

𝑑+1
. (82)

Then,𝑀 ≤ 𝑁, and byTheorem 16,

𝐼x (𝑓𝑀
)
𝐾

≤

𝑓
𝐿2

√𝐶
1

exp{𝜆
1

2
(√𝑛𝜋)

𝑑

𝑀
𝑑(𝑑+1)

} ≤ 𝑅,

Λ
𝑘 (𝑀) 𝜆𝑘 (𝑁)

≤
4𝐶

0

√𝐶
1

exp
{

{

{

𝑁

logΛ

4
+ 𝑁

× (
logΛ
4

+ 𝜆
1
(√𝑛𝜋)

𝑑

𝑁
−1/(𝑑+1)

)

}

}

}

.

(83)

When

𝑁
1/(𝑑+1)

≥
4𝜆

1
(√𝑛𝜋)

𝑑

− logΛ
,

log𝑁
𝑁

≤
(− logΛ) (𝑑 + 1)

4𝑠
,

(84)

there holds

Λ
𝑘 (𝑀) 𝜆𝑘 (𝑁) ≤

4𝐶
0

√𝐶
1

exp{𝑁
logΛ
4

}

≤
4𝐶

0

√𝐶
1

𝑁
−𝑠/(𝑑+1)

.

(85)

Hence,
𝑓 − 𝐼x (𝑓𝑀

)
𝐿2(𝑋)

≤
𝑓

𝐻𝑠(
𝑀𝜋)

−𝑠
+
𝑓

𝐿2
4𝐶

0

√𝐶
1

(
2

𝑀
)

𝑠

≤ (
𝑓

𝐻𝑠
𝜋

−𝑠
+ 2

𝑠𝑓
𝐿2

4𝐶
0

√𝐶
1

)

× 2
𝑠
(𝐺 (𝑅))

−𝑠/(𝑑+1)
.

(86)

When 𝑅 satisfies (79), we know that

𝑁
1/(𝑑+1)

≥
𝑀

2
≥

1

4
{𝐺(𝑅)

1/𝑑
}
1/(𝑑+1)

≥
4𝜆

1
(√𝑛𝜋)

𝑑

− logΛ
,

log𝑁
𝑁

≤
2 log𝑀𝑑+1

𝑀𝑑+1
≤

2
𝑑+2 log𝐺 (𝑅)

𝐺 (𝑅)
≤

− logΛ (𝑑 + 1)

4𝑠
.

(87)

Hence, (84) holds true. This proves our statements.

For the Gaussian kernels, we have the following.

Proposition 18. Let

𝐾(𝑥, 𝑦) = exp{−

𝑥 − 𝑦


2

𝜎2
} , 𝑥, 𝑦 ∈ 𝑋 = [0, 1]

𝑛
. (88)

Denote 𝐶
𝜎,𝑛

:= 𝜎
2
𝑛𝜋

2
/4min{log(4√𝑛), 𝑛 log 2} and 𝐶

𝜎,𝑛,𝑠
:=

(𝜎√𝑛𝜋)
𝑠/2

(𝐶
𝑠/2

𝜎,𝑛
+ (𝜎√𝜋)

−𝑛/2
(2√𝑒 + 4/𝜎√𝜋)). If 𝑓 ∈ 𝐻

𝑠
(R𝑛

),
then one has

𝐼 (𝑓, 𝑅) ≤ 𝐶
𝜎,𝑛,𝑠

(
𝑓

𝐻𝑠
+
𝑓

𝐿2
)

× {log𝑅 +
𝑛

2
log (𝜎√𝜋) − log 𝑓

𝐿2
}

−𝑠/4 (89)

and when 𝑠 > 𝑛/2,

inf
‖𝑔‖𝐾≤𝑅

𝑓 − 𝑔
𝐶(𝑋)

≤ 𝐶
𝜎,𝑛,𝑠−𝑛/2

(
𝑓

𝐻𝑠
+
𝑓

𝐿2
)

× {log𝑅 +
𝑛

2
log (𝜎√𝜋) − log 𝑓

𝐿2
}

𝑛/8−𝑠/4

(90)

for 𝑅 satisfying

𝑅 >
𝑓

𝐿2
(𝜎√𝜋)

−𝑛/2

× exp
{

{

{

𝜎
2
𝑛𝜋

2
(max {𝐶

𝜎,𝑛
, 80𝑛 log 2/𝜎2

} + 1)
2

8

}

}

}

,

(91)

(
1

32𝐶
𝜎,𝑛

log
(𝜎√𝜋)

𝑛/2
𝑅

𝑓
𝐿2

)

1/2

≥
𝑠

2
(log 2√2

𝜎√𝑛𝜋
+
1

2
log

(𝜎√𝜋)
𝑛/2

𝑅

𝑓
𝐿2

) .

(92)

Proof. The Fourier transform of 𝑘(𝑥) = exp{−|𝑥|2/𝜎2
} is

�̂� (𝜉) = (𝜎√𝜋)
𝑛 exp{−

𝜎
2𝜉



2

4
} . (93)

Then,

Λ
𝑘 (𝑟) = (𝜎√𝜋)

−𝑛/2 exp{𝜎
2
𝑛𝑟

2
𝜋

2

8
} . (94)

For

𝑅 ≥
𝑓

𝐿2
Λ

𝑘
(max{𝐶

𝜎,𝑛
,
80𝑛 log 2

𝜎2
} + 1) , (95)

we can take 𝑁 ∈ N with 𝑁 ≥ max{𝐶
𝜎,𝑛

, 80𝑛 log 2/𝜎2
} such

that

1

2
Λ

−1

𝑘
(

𝑅

𝑓
𝐿2

) ≤ 𝑁 ≤ Λ
−1

𝑘
(

𝑅

𝑓
𝐿2

) . (96)
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Here, Λ−1

𝑘
is the inverse function of Λ

𝑘
:

Λ
−1

𝑘
(𝑟) =

2√2

𝜎√𝑛𝜋
(log {(𝜎√𝜋)

𝑛/2

𝑟})

1/2

. (97)

Then, ‖𝑓‖
𝐿
2Λ 𝑘

(𝑁) ≤ 𝑅. Let 𝑀 ≤ 𝑁. By Theorem 16,
‖𝐼x(𝑓𝑀

)‖
𝐾
≤ 𝑅.

By Corollary 17 and (57),

𝑓 − 𝐼x (𝑓𝑀
)
𝐿2(𝑋)

≤
𝑓

𝐻𝑠(
𝑀𝜋)

−𝑠

+
𝑓

𝐿2
Λ

𝑘 (𝑀)(2√𝑒 +
4

𝜎√𝜋
) exp {−𝑁𝐶

0
} ,

(98)

where𝐶
0
:= min{log(4√𝑛), 𝑛 log 2}. Choose𝑀 ∈ N such that

1

2
√

𝑁

𝐶
𝜎,𝑛

≤ 𝑀 ≤ √
𝑁

𝐶
𝜎,𝑛

. (99)

With this choice, 𝜎2
𝑛𝑀

2
𝜋

2
/8 ≤ 𝐶

0
𝑁/2. Therefore,

𝑓 − 𝐼x (𝑓𝑀
)
𝐿2(𝑋)

≤
𝑓

𝐻𝑠
(
4𝐶

𝜎,𝑛

𝜋2𝑁
)

𝑠/2

+
𝑓

𝐿2
(𝜎√𝜋)

−𝑛/2

× (2√𝑒 +
4

𝜎√𝜋
) exp {−

𝐶
0

2
𝑁}

≤ 𝐶


𝜎,𝑛,𝑠
(
𝑓

𝐻𝑠
+
𝑓

𝐿2
)

×max{(
𝑅

𝑓
𝐿2

)

−𝑠/2

, exp{−
𝐶

0

4
Λ

−1

𝑘
(

𝑅

𝑓
𝐿2

)}} ,

(100)

where

𝐶


𝜎,𝑛,𝑠
= 𝐶

𝑠/2

𝜎,𝑛
+ (𝜎√𝜋)

−𝑛/2

(2√𝑒 +
4

𝜎√𝜋
) . (101)

When

𝐶
0

4
Λ

−1

𝑘
(

𝑅

𝑓
𝐿2

) ≥
𝑠

2
logΛ−1

𝑘
(

𝑅

𝑓
𝐿2

) , (102)

there holds

𝑓 − 𝐼x (𝑓𝑀
)
𝐿2(𝑋)

≤ 𝐶


𝜎,𝑛,𝑠
(
𝑓

𝐻𝑠
+
𝑓

𝐿2
)

× {Λ
−1

𝑘
(

𝑅

𝑓
𝐿2

)}

−𝑠/2

.

(103)

This yields the first estimate.
When 𝑠 > 𝑛/2, the same method gives the error with the

uniform norm.

5. Learning with Varying Kernels

Proposition 18 in the last section shows that, for a fixed
Gaussian kernel, the approximation error 𝐼(𝑓, 𝑅) behaves as

𝐼 (𝑓, 𝑅) ≤ 𝐶(log𝑅)−𝑠/4 (104)

for functions 𝑓 in𝐻
𝑠.

In this section, we consider the learning with varying
kernels. Such a method is used in many applications where
we have to choose suitable parameters for the reproducing
kernel. For example, in [7] Gaussian kernels with different
parameters in different directions are considered. Here, we
study the case when the variance parameter keeps the same
in all directions. Our analysis shows that the approximation
error may be improved when the kernel changes with the
RKHS norm 𝑅 of the empirical target function.

Proposition 19. Let

𝐾
𝜎
(𝑥, 𝑦) = exp{−

𝑥 − 𝑦


2

𝜎2
} , 𝑥, 𝑦 ∈ 𝑋 = [0, 1]

𝑛
. (105)

There exist positive constants 𝐴
𝑛,𝑠

and 𝐵
𝑛,𝑠
, depending only on

𝑛 and 𝑠, such that for each 𝑓 ∈ 𝐻
𝑠
(R𝑛

) and 𝑅 ≥ 𝐴
𝑛,𝑠
‖𝑓‖

𝐿
2 ,

one can find some 𝜎 = 𝜎
𝑅
satisfying

inf
‖𝑔‖𝐾𝜎𝑅

≤𝑅

𝑓 − 𝑔
𝐿2(𝑋)

≤ 𝐵
𝑛,𝑠
(log𝑅)−𝑠

. (106)

Proof. Take

𝜎 = (
80𝑛 log 2

𝑁
)

1/2

,

𝑁

4𝑛𝜋
(
1

5
min{2 +

log 𝑛
2 log 2

, 𝑛})

1/2

≤ 𝑀 ≤
𝑁

2𝑛𝜋
(
1

5
min{2 +

log 𝑛
2 log 2

, 𝑛})

1/2

,

(107)

where 𝑁 depends on 𝑅. Denote 𝐶
𝑛
:= 𝑛𝜋

2
/4min{log(4√𝑛),

𝑛 log 2}. As in the proof of Proposition 18, we have
𝑓 − 𝐼x (𝑓𝑀

)
𝐿2(𝑋)

≤ (𝑁𝜋)
−𝑠𝑓

𝐻𝑠
(320𝑛𝐶

𝑛
log 2)𝑠/2

+
𝑁

𝑛/2𝑓
𝐿2

(80𝑛 log 2)𝑛/4

× (2√𝑒 +
4√𝑁

√80𝑛𝜋 log 2
) exp {−

𝐶
0

2
𝑁} .

(108)

When𝑁 is large enough, with a constant 𝐶

𝑛,𝑠
depending

on 𝑛 and 𝑠, this yields

𝑓 − 𝐼x (𝑓𝑀
)
𝐿2(𝑋)

≤ 𝐶


𝑛,𝑠
(
𝑓

𝐻𝑠
+
𝑓

𝐿2
)𝑁

−𝑠
. (109)
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Finally, we determine𝑁 by requiring
𝑓

𝐿2
Λ

𝑘 (𝑁)

=
𝑓

𝐿2
𝑁

𝑛/4
(80𝑛𝜋 log 2)−𝑛/4 exp {10𝑛2

𝜋
2
𝑁 log 2}

≤ 𝑅 ≤
𝑓

𝐿2
Λ

𝑘 (𝑁 + 1) .

(110)

There is a constant 𝐴
𝑛,𝑠

> 0 depending only on 𝑛 and 𝑠

such that, for 𝑅 ≥ 𝐴
𝑛,𝑠
‖𝑓‖

𝐿
2 , an integer 𝑁 satisfying all the

previous requirements and

(𝑁 + 1)
𝑛/4

≤ exp {10𝑛2
𝜋

2
(𝑁 + 1) log 2} (111)

exists. This makes all the estimates valid. It follows that
𝑅 ≤

𝑓
𝐿2

Λ
𝑘 (𝑁 + 1)

≤
𝑓

𝐿2
(80𝑛𝜋 log 2)−𝑛/4 exp {20𝑛2

𝜋
2
(𝑁 + 1) log 2} .

(112)

Hence,

𝑁 + 1 ≥
1

20𝑛2𝜋2 log 2
log{ 𝑅

𝑓
𝐿2

(80𝑛𝜋 log 2)𝑛/4} . (113)

Therefore, there holds ‖𝐼x(𝑓𝑀
)‖

𝐾𝜎
≤ 𝑅 and

𝑓 − 𝐼x (𝑓𝑀
)
𝐿2(𝑋)

≤ 2
𝑠
𝐶



𝑛,𝑠
(
𝑓

𝐻𝑠
+
𝑓

𝐿2
) (20𝑛

2
𝜋

2 log 2)
𝑠

×{log𝑅 +
𝑛

4
log (80𝑛𝜋 log 2) − log 𝑓

𝐿2
}

−𝑠

.

(114)

This verifies our claim for the approximation error in 𝐿
2
(𝑋).

Let us mention the following problem concerning learn-
ing with Gaussian kernels with changing variances.

Problem 20. What is the optimal rate of convergence of

sup
‖𝑓‖
𝐻
𝑠=1

inf {𝑓 − 𝑔
𝐿2(𝑋)

:
𝑔

𝐾𝜎
≤ 𝑅 for some 𝜎 > 0}

(115)

as 𝑅 tends to infinity?

6. Dot Product Kernels

In this section, we illustrate our results by the family of dot
product type kernels. These kernels take the form

𝐾(𝑥, 𝑦) =

+∞

∑

𝑗=0

𝑎
𝑗
(𝑥 ⋅ 𝑦)

𝑗
, 𝑥, 𝑦 ∈ R

𝑛
. (116)

When ∑
+∞

𝑗=0
|𝑎

𝑗
|𝑅

2𝑗
< ∞ for some 𝑅 > 0, the kernel 𝐾 is a

Mercer kernel on 𝑋 := {𝑥 ∈ R𝑛
: |𝑥| ≤ 𝑅} if and only if

𝑎
𝑗
≥ 0 for each 𝑗 ≥ 0. See [25–28]. Here, we will characterize

the density for this family as [29]. Denote 𝑥𝛼
:= Π

𝑛

𝑖=1
𝑥

𝛼𝑖

𝑖
and

( |𝛼|

𝛼
) := (𝛼

1
+ ⋅ ⋅ ⋅ 𝛼

𝑛
)!/(Π

𝑛

𝑖=1
𝛼

𝑗
!) for 𝑥 = (𝑥

1
, . . . , 𝑥

𝑛
) ∈ R𝑛 and

𝛼 = (𝛼
1
, . . . , 𝛼

𝑛
) ∈ Z𝑛

+
.

Corollary 21. Let 𝑅 > 0, 𝑋 := [0, 𝑅]
𝑛, and the kernel 𝐾 be

given by (116), where 𝑎
𝑗
≥ 0 for each 𝑗 ∈ Z

+
and ∑

+∞

𝑗=0
𝑎
𝑗
𝑅

2𝑗
<

∞. Set 𝐽 := {𝛼 ∈ Z𝑛

+
: 𝑎

|𝛼|
> 0}. Then,H

𝐾
is dense in 𝐶(𝑋) if

and only if span{𝑥𝛼
: 𝛼 ∈ 𝐽} is dense in𝐶(𝑋). Thus, the density

depends only on the location of positive coefficients in (116). In
particular, when 𝑛 = 1,H

𝐾
is dense in 𝐶[0, 𝑅] if and only if

𝑎
0
> 0, ∑

𝑗∈𝐽\{0}

1

𝑗
= +∞. (117)

Proof. Note that

𝐾
𝑥
(𝑦) = 𝐾 (𝑥, 𝑦)

= 𝑎
0
+

+∞

∑

𝑗=1

𝑎
𝑗
∑

|𝛼|=𝑗

(
|𝛼|

𝛼
) 𝑥

𝛼
𝑦

𝛼

= ∑

𝛼∈𝐽

𝑎
|𝛼|

(
|𝛼|

𝛼
) 𝑥

𝛼
𝑦

𝛼
.

(118)

Sufficiency. Suppose that span{𝑥𝛼
: 𝛼 ∈ 𝐽} is dense in 𝐶(𝑋),

butH
𝐾
is not dense in𝐶(𝑋).Then, byTheorem 4 there exists

a nontrivial Borel measure 𝜇 on𝑋 such that

∫
𝑋

𝐾(𝑥, 𝑦) 𝑑𝜇 (𝑦) = 0, ∀𝑥 ∈ 𝑋. (119)

Taking the integral with respect to 𝜇 and using (118), we have

0 = ∬
𝑋

𝐾(𝑥, 𝑦) 𝑑𝜇 (𝑥) 𝑑𝜇 (𝑦)

= ∑

𝛼∈𝐽

𝑎
|𝑔𝑎|

(
|𝛼|

𝛼
) [∫

𝑋

𝑥
𝛼
𝑑𝜇 (𝑥)]

2

.

(120)

Since 𝑎
|𝛼|

> 0 for each 𝛼 ∈ 𝐽, there holds

∫
𝑋

𝑥
𝛼
𝑑𝜇 (𝑥) = 0, ∀𝛼 ∈ 𝐽. (121)

That is, 𝜇 annihilates each 𝑥𝛼 for𝛼 ∈ 𝐽. But span{𝑥𝛼
: 𝛼 ∈ 𝐽} is

dense in𝐶(𝑋); 𝜇 also annihilates all functions in𝐶(𝑋), which
is a contradiction.

Necessity. If span{𝑥𝛼
: 𝛼 ∈ 𝐽} is not dense in 𝐶(𝑋), then there

exists a nontrivial Borel measure 𝜇 annihilating each 𝑥
𝛼; that

is, ∫
𝑋
𝑥

𝛼
𝑑𝜇(𝑥) = 0 for each 𝛼 ∈ 𝐽. Then, (118) tells us that, for

each 𝑥 ∈ 𝑋,

∫
𝑋

𝐾(𝑥, 𝑦) 𝑑𝜇 (𝑦) = ∑

𝛼∈𝐽

𝑎
|𝑔𝑎|

(
|𝛼|

𝛼
) 𝑥

𝛼
∫
𝑋

𝑦
𝛼
𝑑𝜇 (𝑦) = 0.

(122)

This in connection with Theorem 4 implies that H
𝐾
is not

dense in𝐶(𝑋).This proves the first statement of Corollary 21.
The second statement follows from the classical Muntz

Theorem in approximation theory (see [30]): for a strictly
increasing sequence of nonnegative numbers 𝜆

0
< 𝜆

1
, . . .,

span{𝑥𝜆𝑗 : 𝑗 ∈ Z
+
} is dense in 𝐶[0, 𝑅] if and only if 𝜆

0
= 0

and ∑
+∞

𝑗=1
1/𝜆

𝑗
= +∞.
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The conclusion in Example 2 follows directly fromCorol-
lary 21.

By Corollary 21, we can provide more examples of dot
product positive definite kernels whose corresponding RKHS
is not dense. The following is such an example. However,
compared with Example 8, it is not constructive, in the sense
that no function outside the closure ofH

𝐾
is explicitly given.

Example 22. Let𝑋 = [0, 1] and define

𝐾(𝑥, 𝑦) = 1 +

+∞

∑

𝑘=1

2
−𝑘

𝑘−1

∑

𝑚=0

(𝑥 ⋅ 𝑦)
2
𝑘
+𝑚

. (123)

Then, 𝐾 is a positive definite Mercer kernel on 𝑋, but H
𝐾
is

not dense in 𝐶(𝑋).

Proof. Observe that the assumption in Corollary 21 holds for
𝐾, 𝑎

0
= 1 > 0 and

𝐽 \ {0} =

+∞

⋃

𝑘=1

{2
𝑘
, 2

𝑘
+ 1, . . . , 2

𝑘
+ 𝑘 − 1} . (124)

Since ∑
𝑗∈𝐽\{0}

(1/𝑗) = ∑
+∞

𝑘=1
∑

𝑘−1

𝑖=0
(1/(2

𝑘
+ 𝑖)) ≤ ∑

+∞

𝑘=1
(𝑘/2

𝑘
) <

+∞, Corollary 21 tells us thatH
𝐾
is not dense in 𝐶(𝑋).

What is left is to show that theMercer kernel𝐾 is positive
definite. Suppose to the contrary that there exist a finite set of
distinct points 𝐼 ⊂ 𝑋 and a nonzero vector 𝑐 = (𝑐

𝑠
)
𝑠∈𝐼

such
that

∑

𝑠,𝑡∈𝐼

𝑐
𝑠
𝑐
𝑡
𝐾 (𝑠, 𝑡) = 0. (125)

Denote

�̃� (𝑥, 𝑦) =

+∞

∑

𝑘=1

2
−𝑘

𝑘−1

∑

𝑚=0

(𝑥 ⋅ 𝑦)
2
𝑘
+𝑚

. (126)

Then,

∑

𝑠,𝑡∈𝐼

𝑐
𝑠
𝑐
𝑡
𝐾 (𝑠, 𝑡) = (∑

𝑠∈𝐼

𝑐
𝑠
)

2

+ ∑

𝑠,𝑡∈𝐼\{0}

𝑐
𝑠
𝑐
𝑡
�̃� (𝑠, 𝑡) = 0. (127)

Hence,∑
𝑠∈𝐼

𝑐
𝑠
= 0 which implies that 𝐼 \ {0} ̸= 0 and (𝑐

𝑠
)
𝑠∈𝐼\{0}

is a nonzero vector. Also,

0 = ∑

𝑠,𝑡∈𝐼\{0}

𝑐
𝑠
𝑐
𝑡
�̃� (𝑠, 𝑡)

=

+∞

∑

𝑘=0

2
−𝑘

𝑘−1

∑

𝑚=0

( ∑

𝑠∈𝐼\{0}

𝑠
2
𝑘
+𝑚

𝑐
𝑠
)

2

.

(128)

It follows that

∑

𝑠∈𝐼\{0}

𝑠
2
𝑘
+𝑚

𝑐
𝑠
= 0, ∀𝑘 ∈ N, 𝑚 = 0, 1, . . . , 𝑘 − 1. (129)

Choose an integer 𝑘 which is not less than #(𝐼 \ {0}), the
number of elements in the set 𝐼 \ {0}. Then, we know that
the linear system

∑

𝑠∈𝐼\{0}

𝑠
2
𝑘
+𝑚

𝑥
𝑠
= 0, 𝑚 = 0, 1, . . . , # (𝐼 \ {0}) (130)

has a nonzero solution (𝑐
𝑠
)
𝑠∈𝐼\{0}

. Hence, the matrix
(𝑠

2
𝑘
+𝑚

)
𝑠∈𝐼\{0},𝑚=0,1,...,#(𝐼\{0}) is singular. So, there exists a

nonzero vector (𝑑
𝑚
)
#(𝐼\{0})
𝑚=0

such that
#(𝐼\{0})
∑

𝑚=0

𝑠
2
𝑘
+𝑚

𝑑
𝑚
= 0, ∀𝑠 ∈ 𝐼 \ {0} . (131)

As each element 𝑠 in 𝐼 \ {0} is nonzero, we have
#(𝐼\{0})
∑

𝑚=0

𝑠
𝑚
𝑑

𝑚
= 0, ∀𝑠 ∈ 𝐼 \ {0} . (132)

However, the determinant of the matrix
(𝑠

𝑚
)
𝑠∈𝐼\{0},𝑚=0,1,...,#(𝐼\{0}) is a Vandermonde determinant

and is nonzero. This is a contradiction, as the linear
system having this matrix as the coefficient matrix has a
nonzero solution. Therefore, the Mercer kernel 𝐾 is positive
definite.

An alternative simpler proof for the positive definiteness
of the kernel in Example 22 can be given by means of the
recent results in [25, 26].

After characterizing the density, we can then apply our
analysis in Section 3 and provide some estimates for the
convergence rate of the approximation error under the
assumption that all the coefficients 𝑎

𝑗
in (116) are strictly

positive. We will not provide details here, but only show the
application of the interpolation scheme (34) to polynomials.

If 𝑓(𝑥) = ∑
|𝛼|≤𝑀

𝑐
𝛼
(

|𝛼|

𝛼
) 𝑥

𝛼, then

𝐼x (𝑓) (𝑥) − 𝑓 (𝑥)

= ∑

|𝛼|≤𝑀

𝑐
𝛼
(
|𝛼|

𝛼
)

{

{

{

ℓ

∑

𝑗=1

𝑢
𝑗 (𝑥) 𝑥

𝛼

𝑗
− 𝑥

𝛼
}

}

}

.

(133)

It follows from the Schwartz inequality that
𝐼x (𝑓) (𝑥) − 𝑓 (𝑥)



2

≤ { ∑

|𝛼|≤𝑀

𝑐𝛼


2
(

|𝛼|

𝛼
)

𝑎
|𝛼|

}

×

{

{

{

∑

|𝛼|≤𝑀

𝑎
|𝛼|

(
|𝛼|

𝛼
)



ℓ

∑

𝑗=1

𝑢
𝑗 (𝑥) 𝑥

𝛼

𝑗
− 𝑥

𝛼



2

}

}

}

.

(134)

The first term can be bounded by

{ ∑

|𝛼|≤𝑀

(
|𝛼|

𝛼
)
𝑐𝛼



2
}( min

𝑗=0,1,...,𝑀

𝑎
𝑗
)

−1

(135)

while the second is bounded by

∑

𝛼∈Z𝑛
+

𝑎
|𝛼|

(
|𝛼|

𝛼
)

{

{

{

ℓ

∑

𝑖,𝑗=1

𝑢
𝑖 (𝑥) 𝑢𝑗 (𝑥) 𝑥

𝛼

𝑖
𝑥

𝛼

𝑗

−2

ℓ

∑

𝑗=1

𝑢
𝑗 (𝑥) 𝑥

𝛼

𝑗
𝑥

𝛼
+ 𝑥

𝛼
⋅ 𝑥

𝛼
}

}

}

= 𝜀
𝐾 (x) .

(136)
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Thus, the approximation error can be given in terms of the
regularity of the kernel𝐾.The regularity of the approximated
function yields the rate of approximation by polynomials𝑓 =

𝑓
𝑀

while the asymptotic behavior of the coefficients 𝑎
𝑗
in

(116) provides the control of the RKHS norm of 𝐼x(𝑓𝑀
).
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