
Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2013, Article ID 715456, 6 pages
http://dx.doi.org/10.1155/2013/715456

Research Article
Further Remarks on Fixed-Point Theorems in the Context of
Partial Metric Spaces

Mohamed Jleli,1 Erdal KarapJnar,2 and Bessem Samet1

1 Department of Mathematics, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
2Department of Mathematics, Atilim University, Incek, 06836 Ankara, Turkey

Correspondence should be addressed to Erdal Karapınar; erdalkarapinar@yahoo.com

Received 27 June 2013; Accepted 29 July 2013

Academic Editor: Chi-Ming Chen

Copyright © 2013 Mohamed Jleli et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

New fixed-point theorems on metric spaces are established, and analogous results on partial metric spaces are deduced. This work
can be considered as a continuation of the paper Samet et al. (2013).

1. Introduction

In 1994,Matthews [1] introduced the concept of partialmetric
spaces as a part of the study of denotational semantics of
dataflow networks and showed that the Banach’s contraction
principle can be generalized to the partial metric context for
applications in program verification. Later on, many authors
studied fixed-point theorems on partial metric spaces (see,
e.g., [2–9] and references therein).

We start by recalling some basic definitions and proper-
ties of partial metric spaces (see [1, 5] for more details).

Definition 1. A partial metric on a nonempty set 𝑋 is a
function 𝑝 : 𝑋 × 𝑋 → [0, +∞) such that for all 𝑥, 𝑦, 𝑧 ∈ 𝑋,
we have

(P1) 𝑥 = 𝑦 ⇔ 𝑝(𝑥, 𝑥) = 𝑝(𝑥, 𝑦) = 𝑝(𝑦, 𝑦),
(P2) 𝑝(𝑥, 𝑥) ≤ 𝑝(𝑥, 𝑦),
(P3) 𝑝(𝑥, 𝑦) = 𝑝(𝑦, 𝑥),
(P4) 𝑝(𝑥, 𝑦) ≤ 𝑝(𝑥, 𝑧) + 𝑝(𝑧, 𝑦) − 𝑝(𝑧, 𝑧).

A partial metric space is a pair (𝑋, 𝑝) such that 𝑋 is a
nonempty set and 𝑝 is a partial metric on𝑋.

It is clear that, if 𝑝(𝑥, 𝑦) = 0, then from (P1) and (P2),
𝑥 = 𝑦; but if 𝑥 = 𝑦, 𝑝(𝑥, 𝑦)may not be 0. A basic example of a
partial metric space is the pair ([0, +∞), 𝑝), where 𝑝(𝑥, 𝑦) =

max{𝑥, 𝑦} for all 𝑥, 𝑦 ∈ [0, +∞). Other examples of partial

metric spaces which are interesting from a computational
point of view may be found in [1].

Each partial metric 𝑝 on𝑋 generates a 𝑇
0
topology 𝜏

𝑝
on

𝑋 which has as a base the family of open 𝑝-balls {𝐵
𝑝
(𝑥, 𝜀) :

𝑥 ∈ 𝑋, 𝜀 > 0}, where

𝐵
𝑝 (𝑥, 𝜀) = {𝑦 ∈ 𝑋 : 𝑝 (𝑥, 𝑦) < 𝑝 (𝑥, 𝑥) + 𝜀} , (1)

for all 𝑥 ∈ 𝑋 and 𝜀 > 0.

Definition 2. Let (𝑋, 𝑝) be a partial metric space and {𝑥
𝑛
}

a sequence in 𝑋. Then {𝑥
𝑛
} converges to a point 𝑥 ∈ 𝑋

if and only if 𝑝(𝑥, 𝑥) = lim
𝑛→+∞

𝑝(𝑥, 𝑥
𝑛
). We may write

this as 𝑥
𝑛

→ 𝑥; {𝑥
𝑛
} is called a Cauchy sequence if

lim
𝑛,𝑚→+∞

𝑝(𝑥
𝑛
, 𝑥
𝑚
) exists and is finite; (𝑋, 𝑝) is said to be

complete if every Cauchy sequence {𝑥
𝑛
} in 𝑋 converges,

with respect to 𝜏
𝑝
, to a point 𝑥 ∈ 𝑋, such that 𝑝(𝑥, 𝑥) =

lim
𝑛,𝑚→+∞

𝑝(𝑥
𝑛
, 𝑥
𝑚
).

If 𝑝 is a partial metric on 𝑋, then the function 𝑝
𝑠
: 𝑋 ×

𝑋 → [0, +∞) given by

𝑝
𝑠
(𝑥, 𝑦) = 2𝑝 (𝑥, 𝑦) − 𝑝 (𝑥, 𝑥) − 𝑝 (𝑦, 𝑦) (2)

is a metric on𝑋.

Lemma 3. Let (𝑋, 𝑝) be a partial metric space. Then

(a) {𝑥
𝑛
} is a Cauchy sequence in (𝑋, 𝑝) if and only if it is a

Cauchy sequence in the metric space (𝑋, 𝑝
𝑠
);
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(b) a partial metric space (𝑋, 𝑝) is complete if and only
if the metric space (𝑋, 𝑝

𝑠
) is complete; furthermore,

lim
𝑛→+∞

𝑝
𝑠
(𝑥
𝑛
, 𝑥) = 0 if and only if

𝑝 (𝑥, 𝑥) = lim
𝑛→+∞

𝑝 (𝑥
𝑛
, 𝑥) = lim

𝑛,𝑚→+∞
𝑝 (𝑥
𝑛
, 𝑥
𝑚
) . (3)

In [1], Matthews extended the Banach contraction prin-
ciple to the setting of partial metric spaces.

Theorem 4 (see [1]). Let (𝑋, 𝑝) be a complete partial metric
space and 𝑇 : 𝑋 → 𝑋 a given mapping. Suppose that there
exists a constant 𝑘 ∈ (0, 1) such that

𝑝 (𝑇𝑥, 𝑇𝑦) ≤ 𝑘𝑝 (𝑥, 𝑦) , ∀𝑥, 𝑦 ∈ 𝑋. (4)

Then 𝑇 has a unique fixed point 𝑧 ∈ 𝑋. Moreover, we have
𝑝(𝑧, 𝑧) = 0.

Very recently, in [10, 11], the authors proved that a
large class of fixed-point theorems in partial metric spaces,
including Matthews result, are immediate consequences of
fixed-point theorems inmetric spaces. More precisely, in [11],
the authors established the following result.

Theorem 5 (see [11]). Let (𝑋, 𝑑) be a complete metric space,
𝑇 : 𝑋 → 𝑋, and 𝜑 : 𝑋 → [0, +∞) a lower semicontinuous
function. Suppose that there exists 𝑘 ∈ (0, 1) such that

𝑑 (𝑇𝑥, 𝑇𝑦) + 𝜑 (𝑇𝑥) + 𝜑 (𝑇𝑦)

≤ 𝑘 (𝑑 (𝑥, 𝑦) + 𝜑 (𝑥) + 𝜑 (𝑦)) ,

(5)

for all 𝑥, 𝑦 ∈ 𝑋. Then 𝑇 has a unique fixed point 𝑧 ∈ 𝑋.
Moreover, one has 𝜑(𝑧) = 0.

Now, taking 𝜑(𝑥) = 𝑝(𝑥, 𝑥) in Theorem 4, we obtain that

𝑝
𝑠
(𝑇𝑥, 𝑇𝑦) + 𝜑 (𝑇𝑥) + 𝜑 (𝑇𝑦)

≤ 𝑘 (𝑝
𝑠
(𝑥, 𝑦) + 𝜑 (𝑥) + 𝜑 (𝑦)) ,

(6)

for all 𝑥, 𝑦 ∈ 𝑋. ApplyingTheorem 5, we obtain immediately
the result of Matthews. Another technique suggested by
Haghi et al. [10] let𝐷 be a metric on𝑋 defined by

𝐷(𝑥, 𝑦) := {
𝑝 (𝑥, 𝑦) if 𝑥 ̸= 𝑦,

0 if 𝑥 = 𝑦.
(7)

It is not difficult to show that if (𝑋, 𝑝) is complete, then (𝑋,𝐷)

is complete. Now, Matthews’ contraction is equivalent to

𝐷(𝑇𝑥, 𝑇𝑦) ≤ 𝑘𝐷 (𝑥, 𝑦) , (8)

for all 𝑥, 𝑦 ∈ 𝑋. So, the result of Matthews can be deduced
immediately from the Banach contraction principle. Observe
that inTheorem 5, if we consider the mapping𝐷

𝜑
: 𝑋×𝑋 →

[0, +∞) defined by

𝐷
𝜑
(𝑥, 𝑦) := {

𝑑 (𝑥, 𝑦) + 𝜑 (𝑥) + 𝜑 (𝑦) if 𝑥 ̸= 𝑦,

0 if 𝑥 = 𝑦,
(9)

then 𝐷
𝜑
is a metric on 𝑋 and (𝑋,𝐷

𝜑
) is a complete metric

space. Moreover, the contractive condition in Theorem 5 is
equivalent to

𝐷
𝜑
(𝑇𝑥, 𝑇𝑦) ≤ 𝑘𝐷

𝜑
(𝑥, 𝑦) , (10)

for all 𝑥, 𝑦 ∈ 𝑋. So, Theorem 5 can also be deduced from the
Banach contraction principle.

Define the function 𝐹 : [0, +∞)
3

→ [0, +∞) by

𝐹 (𝑎, 𝑏, 𝑐) := 𝑎 + 𝑏 + 𝑐, ∀𝑎, 𝑏, 𝑐 ≥ 0. (11)

Then, the contractive condition inTheorem 5 is equivalent to

𝐹 (𝑑 (𝑇𝑥, 𝑇𝑦) , 𝜑 (𝑇𝑥) , 𝜑 (𝑇𝑦)) ≤ 𝑘𝐹 (𝑑 (𝑥, 𝑦) , 𝜑 (𝑥) , 𝜑 (𝑦)) ,

(12)

for all 𝑥, 𝑦 ∈ 𝑋. In this paper, we establish new fixed-
point theorems in metric spaces involving a function 𝐹 :

[0, +∞)
3

→ [0, +∞), where the mapping

𝐷
𝜑
(𝑥, 𝑦) := {

𝐹 (𝑑 (𝑥, 𝑦) , 𝜑 (𝑥) , 𝜑 (𝑦)) if 𝑥 ̸= 𝑦,

0 if 𝑥 = 𝑦
(13)

is not a metric on 𝑋. Some fixed-point theorems in partial
metric spaces are deduced from our main results in metric
spaces.

2. Main Result

Wedenote byF the set of functions𝐹 : [0, +∞)
3

→ [0, +∞)

satisfying the following conditions:

(i) max{𝑎, 𝑏} ≤ 𝐹(𝑎, 𝑏, 𝑐) for all 𝑎, 𝑏, 𝑐 ∈ [0, +∞),
(ii) 𝐹(0, 0, 0) = 0,
(iii) 𝐹 is continuous.

As examples, the following functions belong toF:

(a) 𝐹(𝑎, 𝑏, 𝑐) = (𝑎 + 𝑏)(𝑐 + 1),
(b) 𝐹(𝑎, 𝑏, 𝑐) = 𝑎(ln(𝑐 + 1) + 1) + 𝑏(𝑒

𝑐
+ 1),

(c) 𝐹(𝑎, 𝑏, 𝑐) = 𝑎 + 𝑏 + 𝑐,
(d) 𝐹(𝑎, 𝑏, 𝑐) = max{𝑎, 𝑏, 𝑐},
(e) 𝐹(𝑎, 𝑏, 𝑐) = 𝑎 +max{𝑎, 𝑏, 𝑐}.

We denote by Ψ the set of functions 𝜓 : [0, +∞) →

[0, +∞) satisfying the following conditions:

(j) 𝜓 is nondecreasing,
(jj) ∑

𝑛≥1
𝜓
𝑛
(𝑡) < ∞ for each 𝑡 > 0, where 𝜓

𝑛 is the 𝑛th
iterate of 𝜓.

It is not difficult to show that if 𝜓 ∈ Ψ, then 𝜓(𝑡) < 𝑡 for
every 𝑡 > 0. These functions are known in the literature as
(c)-comparison functions.
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Definition 6. Let (𝑋, 𝑑) be a metric space, 𝑇 : 𝑋 → 𝑋, 𝜑 :

𝑋 → [0, +∞), and𝐹 ∈ F.We say that the pair (𝑇, 𝜑) satisfies
an𝐹-generalized𝜓-contraction if there exists𝜓 ∈ Ψ such that

𝐹 (𝑑 (𝑇𝑥, 𝑇𝑦) , 𝜑 (𝑇𝑥) , 𝜑 (𝑇𝑦))

≤ 𝜓 (max {𝐹 (𝑑 (𝑥, 𝑦) , 𝜑 (𝑥) , 𝜑 (𝑦)) ,

(𝐹 (𝑑 (𝑥, 𝑇𝑥) , 𝜑 (𝑇𝑥) , 𝜑 (𝑥))

+𝐹 (𝑑 (𝑦, 𝑇𝑦) , 𝜑 (𝑇𝑦) , 𝜑 (𝑦))) × 2
−1
}) ,

(14)

for every 𝑥, 𝑦 ∈ 𝑋.

Our main result is giving by the following theorem.

Theorem 7. Let (𝑋, 𝑑) be a complete metric space, 𝑇 : 𝑋 →

𝑋, and 𝜑 : 𝑋 → [0, +∞). Suppose that the following
conditions hold:

(1) 𝜑 is lower semicontinuous,
(2) there exist 𝜓 ∈ Ψ and 𝐹 ∈ F such that the pair (𝑇, 𝜑)

satisfies an 𝐹-generalized 𝜓-contraction.

Then 𝑇 has a unique fixed point 𝑧 ∈ 𝑋. Moreover, one has
𝜑(𝑧) = 0.

Proof. Let 𝑥
0
∈ 𝑋. Define the sequence {𝑥

𝑛
} ⊂ 𝑋 by 𝑥

𝑛+1
=

𝑇𝑥
𝑛
for all positive integer 𝑛. Let 𝑛 be a positive integer such

that 𝑛 ≥ 1. Using condition (2) with 𝑥 = 𝑥
𝑛
and 𝑦 = 𝑥

𝑛−1
, we

obtain that

𝐹 (𝑑 (𝑥
𝑛+1

, 𝑥
𝑛
) , 𝜑 (𝑥

𝑛+1
) , 𝜑 (𝑥

𝑛
))

≤ 𝜓 (max {𝐹 (𝑑 (𝑥
𝑛
, 𝑥
𝑛−1

) , 𝜑 (𝑥
𝑛
) , 𝜑 (𝑥

𝑛−1
)) ,

𝐹 (𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

) , 𝜑 (𝑥
𝑛+1

) , 𝜑 (𝑥
𝑛
))}) .

(15)

Without restriction of the generality, we can suppose that
𝑥
𝑚+1

̸= 𝑥
𝑚
for every𝑚. Suppose that

max {𝐹 (𝑑 (𝑥
𝑛
, 𝑥
𝑛−1

) , 𝜑 (𝑥
𝑛
) , 𝜑 (𝑥

𝑛−1
)) ,

𝐹 (𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

) , 𝜑 (𝑥
𝑛+1

) , 𝜑 (𝑥
𝑛
))}

= 𝐹 (𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

) , 𝜑 (𝑥
𝑛+1

) , 𝜑 (𝑥
𝑛
)) .

(16)

In this case, we have

𝐹 (𝑑 (𝑥
𝑛+1

, 𝑥
𝑛
) , 𝜑 (𝑥

𝑛+1
) , 𝜑 (𝑥

𝑛
))

≤ 𝜓 (𝐹 (𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

) , 𝜑 (𝑥
𝑛+1

) , 𝜑 (𝑥
𝑛
))) .

(17)

Note that 𝐹(𝑑(𝑥
𝑛
, 𝑥
𝑛+1

), 𝜑(𝑥
𝑛+1

), 𝜑(𝑥
𝑛
)) > 0. Indeed, if

𝐹(𝑑(𝑥
𝑛
, 𝑥
𝑛+1

), 𝜑(𝑥
𝑛+1

), 𝜑(𝑥
𝑛
)) = 0, from condition (i), we

have 𝑑(𝑥
𝑛
, 𝑥
𝑛+1

) ≤ 𝐹(𝑑(𝑥
𝑛
, 𝑥
𝑛+1

), 𝜑(𝑥
𝑛+1

), 𝜑(𝑥
𝑛
)) = 0, which

implies that 𝑥
𝑛

= 𝑥
𝑛+1

, that is a contradiction with the
assumption 𝑥

𝑚+1
̸= 𝑥
𝑚
for every 𝑚. Since 𝜓(𝑡) < 𝑡 for every

𝑡 > 0, we get that

𝐹 (𝑑 (𝑥
𝑛+1

, 𝑥
𝑛
) , 𝜑 (𝑥

𝑛+1
) , 𝜑 (𝑥

𝑛
))

< 𝐹 (𝑑 (𝑥
𝑛+1

, 𝑥
𝑛
) , 𝜑 (𝑥

𝑛+1
) , 𝜑 (𝑥

𝑛
)) ,

(18)

which is a contradiction. Then, we deduce that

𝐹 (𝑑 (𝑥
𝑛+1

, 𝑥
𝑛
) , 𝜑 (𝑥

𝑛+1
) , 𝜑 (𝑥

𝑛
))

≤ 𝜓 (𝐹 (𝑑 (𝑥
𝑛
, 𝑥
𝑛−1

) , 𝜑 (𝑥
𝑛
) , 𝜑 (𝑥

𝑛−1
))) ,

(19)

for every 𝑛 ≥ 1. Using the property (i) of 𝐹 and themonotony
property of 𝜓, we obtain that

max {𝜑 (𝑥
𝑛+1

) , 𝑑 (𝑥
𝑛+1

, 𝑥
𝑛
)}

≤ 𝜓
𝑛
(𝐹 (𝑑 (𝑥

1
, 𝑥
0
) , 𝜑 (𝑥

1
) , 𝜑 (𝑥

0
))) ,

(20)

for every 𝑛 ≥ 1. Fix 𝜀 > 0, and let ℎ = ℎ(𝜀) be a positive integer
(given by (jj)) such that

∑

𝑛≥ℎ

𝜓
𝑛
(𝐹 (𝑑 (𝑥

1
, 𝑥
0
) , 𝜑 (𝑥

1
) , 𝜑 (𝑥

0
))) < 𝜀. (21)

Let 𝑚 > 𝑛 > ℎ; using the triangular inequality and (20), we
obtain

𝑑 (𝑥
𝑛
, 𝑥
𝑚
) ≤

𝑚−1

∑

𝑘=𝑛

𝑑 (𝑥
𝑘
, 𝑥
𝑘+1

)

≤ ∑

𝑛≥ℎ

𝜓
𝑛
(𝐹 (𝑑 (𝑥

1
, 𝑥
0
) , 𝜑 (𝑥

1
) , 𝜑 (𝑥

0
))) < 𝜀.

(22)

Thus we proved that {𝑥
𝑛
} is a Cauchy sequence in the metric

space (𝑋, 𝑑). Since (𝑋, 𝑑) is complete, there exists some 𝑧 ∈ 𝑋

such that 𝑥
𝑛

→ 𝑧 as 𝑛 → ∞. We shall prove that 𝑧 is a fixed
point of 𝑇. At first, observe that from condition (jj) and (20),
we have

lim
𝑛→+∞

𝜑 (𝑥
𝑛
) = 0, (23)

which implies (since 𝜑 is lower semicontinuous) that

𝜑 (𝑧) = 0. (24)

Using condition (2) with 𝑥 = 𝑧 and 𝑦 = 𝑥
𝑛
, we get that

𝐹 (𝑑 (𝑇𝑧, 𝑥
𝑛+1

) , 𝜑 (𝑇𝑧) , 𝜑 (𝑥
𝑛+1

))

≤ 𝜓 (max {𝐹 (𝑑 (𝑧, 𝑥
𝑛
) , 𝜑 (𝑧) , 𝜑 (𝑥

𝑛
)) ,

(𝐹 (𝑑 (𝑧, 𝑇𝑧) , 𝜑 (𝑇𝑧) , 𝜑 (𝑧))

+ 𝐹 (𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

) , 𝜑 (𝑥
𝑛+1

) , 𝜑 (𝑥
𝑛
))) × 2

−1
}) ,

(25)

for every 𝑛. Suppose that 𝑧 ̸= 𝑇𝑧. Using the continuity of 𝐹,
(23), and (24), we have

lim
𝑛→+∞

max {𝐹 (𝑑 (𝑧, 𝑥
𝑛
) , 𝜑 (𝑧) , 𝜑 (𝑥

𝑛
)) ,

(𝐹 (𝑑 (𝑧, 𝑇𝑧) , 𝜑 (𝑇𝑧) , 𝜑 (𝑧))

+ 𝐹 (𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

) , 𝜑 (𝑥
𝑛+1

) , 𝜑 (𝑥
𝑛
))) × 2

−1
}

=
𝐹 (𝑑 (𝑧, 𝑇𝑧) , 𝜑 (𝑇𝑧) , 0)

2
> 0.

(26)
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Then, there exists a positive integer𝑁 such that

max {𝐹 (𝑑 (𝑧, 𝑥
𝑛
) , 𝜑 (𝑧) , 𝜑 (𝑥

𝑛
)) ,

(𝐹 (𝑑 (𝑧, 𝑇𝑧) , 𝜑 (𝑇𝑧) , 𝜑 (𝑧))

+ 𝐹 (𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

) , 𝜑 (𝑥
𝑛+1

) , 𝜑 (𝑥
𝑛
))) × 2

−1
} > 0,

(27)

for every 𝑛 ≥ 𝑁. Thus, we have

𝐹 (𝑑 (𝑇𝑧, 𝑥
𝑛+1

) , 𝜑 (𝑇𝑧) , 𝜑 (𝑥
𝑛+1

))

< max {𝐹 (𝑑 (𝑧, 𝑥
𝑛
) , 𝜑 (𝑧) , 𝜑 (𝑥

𝑛
)) ,

(𝐹 (𝑑 (𝑧, 𝑇𝑧) , 𝜑 (𝑇𝑧) , 𝜑 (𝑧))

+ 𝐹 (𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

) , 𝜑 (𝑥
𝑛+1

) , 𝜑 (𝑥
𝑛
))) × 2

−1
} .

(28)

Letting 𝑛 → +∞ in the above inequality, we get that

𝐹 (𝑑 (𝑇𝑧, 𝑧) , 𝜑 (𝑇𝑧) , 0) ≤
𝐹 (𝑑 (𝑧, 𝑇𝑧) , 𝜑 (𝑇𝑧) , 0)

2
, (29)

which is a contradiction. Thus, we proved that 𝑇𝑧 = 𝑧. Now,
suppose that 𝑧

󸀠
∈ 𝑋 is another fixed point of 𝑇. We can

observe that

𝜑 (𝑧
󸀠
) = 0. (30)

Indeed, applying (14) with 𝑥 = 𝑦 = 𝑧
󸀠, we get that

𝐹 (0, 𝜑 (𝑧
󸀠
) , 𝜑 (𝑧

󸀠
)) ≤ 𝜓 (𝐹 (0, 𝜑 (𝑧

󸀠
) , 𝜑 (𝑧

󸀠
))) , (31)

which implies (30). Now, applying (14) with 𝑥 = 𝑧 and 𝑦 = 𝑧
󸀠,

we obtain

𝐹 (𝑑 (𝑧, 𝑧
󸀠
) , 𝜑 (𝑧) , 𝜑 (𝑧

󸀠
))

≤ 𝜓(max{𝐹 (𝑑 (𝑧, 𝑧
󸀠
) , 𝜑 (𝑧) , 𝜑 (𝑧

󸀠
)) ,

𝐹 (0, 𝜑 (𝑧) , 𝜑 (𝑧)) + 𝐹 (0, 𝜑 (𝑧
󸀠
) , 𝜑 (𝑧

󸀠
))

2
}) .

(32)

Using (24) and (30), we obtain

𝐹 (𝑑 (𝑧, 𝑧
󸀠
) , 0, 0) ≤ 𝜓 (𝐹 (𝑑 (𝑧, 𝑧

󸀠
) , 0, 0)) , (33)

which implies that 𝑑(𝑧, 𝑧
󸀠
) = 0; that is, 𝑧 = 𝑧

󸀠. Thus, we
proved that 𝑇 has a unique fixed point 𝑧 ∈ 𝑋 with 𝜑(𝑧) =

0.

Example 8. Let 𝑇 : [0, 1] → [0, 1] be the mapping defined
by

𝑇𝑥 =

{{{

{{{

{

𝑥

4
if 0 ≤ 𝑥 < 1,

1

2
if 𝑥 = 1.

(34)

We endow𝑋 = [0, 1] with the standard metric 𝑑(𝑥, 𝑦) = |𝑥 −

𝑦|. Let 𝜑(𝑥) = 𝑥 for all 𝑥 ∈ 𝑋, 𝜓(𝑡) = (3/4)𝑡 for all 𝑡 ≥ 0, and
𝐹(𝑎, 𝑏, 𝑐) = 𝑎+𝑏+𝑐 for all 𝑎, 𝑏, 𝑐 ≥ 0. Clearly, 𝜑 is continuous,
𝜓 ∈ Ψ, and 𝐹 ∈ F. Moreover, we have

𝐹 (𝑑 (𝑇𝑥, 𝑇𝑦) , 𝜑 (𝑇𝑥) , 𝜑 (𝑇𝑦))

≤ 𝜓 (𝐹 (𝑑 (𝑥, 𝑦) , 𝜑 (𝑥) , 𝜑 (𝑦))) ,

(35)

for all 𝑥, 𝑦 ∈ 𝑋. ByTheorem 7, 𝑇 has a unique fixed point 𝑧 ∈

𝑋 (𝑧 = 0)with𝜑(𝑧) = 0. Note that in this example, the Banach
contraction principle cannot be used since the mapping 𝑇 is
not continuous.

3. Particular Cases

In this section, new fixed point results are deduced from our
main result given byTheorem 7.

Corollary 9. Let (𝑋, 𝑑) be a complete metric space, 𝑇 : 𝑋 →

𝑋, and 𝜑 : 𝑋 → [0, +∞). Suppose that the following
conditions hold:

(1) 𝜑 is lower semicontinuous,
(2) there exists 𝜓 ∈ Ψ such that

𝑑 (𝑇𝑥, 𝑇𝑦) ≤ (𝜓 ((𝑑 (𝑥, 𝑦) + 𝜑 (𝑥)) (𝜑 (𝑦) + 1))

− 𝜑 (𝑇𝑥) (𝜑 (𝑇𝑦) + 1) )

× (𝜑 (𝑇𝑦) + 1)
−1
,

(36)

for all 𝑥, 𝑦 ∈ 𝑋.

Then𝑇 has a unique fixed point 𝑧 ∈ 𝑋. Moreover, we have
𝜑(𝑧) = 0.

Proof. It follows fromTheorem 7 with 𝐹(𝑎, 𝑏, 𝑐) = (𝑎 + 𝑏)(𝑐 +

1).

Corollary 10. Let (𝑋, 𝑑) be a complete metric space, 𝑇 : 𝑋 →

𝑋, and 𝜑 : 𝑋 → [0, +∞). Suppose that the following
conditions hold:

(1) 𝜑 is lower semicontinuous,
(2) there exists 𝜓 ∈ Ψ such that

𝑑 (𝑇𝑥, 𝑇𝑦)

≤ (𝜓(
(𝑑 (𝑥, 𝑇𝑥) + 𝜑 (𝑇𝑥)) (𝜑 (𝑥) + 1)

2
)

− 𝜑 (𝑇𝑥) (𝜑 (𝑇𝑦) + 1))

× (𝜑(𝑇𝑦) + 1)
−1
,

(37)

for all 𝑥, 𝑦 ∈ 𝑋.

Then𝑇 has a unique fixed point 𝑧 ∈ 𝑋. Moreover, we have
𝜑(𝑧) = 0.



Abstract and Applied Analysis 5

Proof. It follows fromTheorem 7 with 𝐹(𝑎, 𝑏, 𝑐) = (𝑎 + 𝑏)(𝑐 +

1).

Corollary 11. Let (𝑋, 𝑑) be a complete metric space, 𝑇 : 𝑋 →

𝑋, and 𝜑 : 𝑋 → [0, +∞). Suppose that the following
conditions hold:

(1) 𝜑 is lower semicontinuous,

(2) there exists 𝜓 ∈ Ψ such that

𝑑 (𝑇𝑥, 𝑇𝑦)

≤ (𝜓(
(𝑑 (𝑦, 𝑇𝑦) + 𝜑 (𝑇𝑦)) (𝜑 (𝑦) + 1)

2
)

−𝜑 (𝑇𝑥) (𝜑 (𝑇𝑦) + 1))

× (𝜑(𝑇𝑦) + 1)
−1
,

(38)

for all 𝑥, 𝑦 ∈ 𝑋.

Then𝑇 has a unique fixed point 𝑧 ∈ 𝑋. Moreover, we have
𝜑(𝑧) = 0.

Proof. It follows fromTheorem 7 with 𝐹(𝑎, 𝑏, 𝑐) = (𝑎 + 𝑏)(𝑐 +

1).

Corollary 12. Let (𝑋, 𝑑) be a complete metric space, 𝑇 : 𝑋 →

𝑋, and 𝜑 : 𝑋 → [0, +∞). Suppose that the following
conditions hold:

(1) 𝜑 is lower semicontinuous,

(2) there exists 𝜓 ∈ Ψ such that

𝑑 (𝑇𝑥, 𝑇𝑦)

≤ (𝜓 (𝑑 (𝑥, 𝑦) [ln (𝜑 (𝑦) + 1) + 1] + 𝜑 (𝑥) (𝑒
𝜑(𝑦)

+ 1))

− 𝜑 (𝑇𝑥) (𝑒
𝜑(𝑇𝑦)

+ 1))

× (ln (𝜑(𝑇𝑦) + 1) + 1)
−1
,

(39)

for all 𝑥, 𝑦 ∈ 𝑋.

Then𝑇 has a unique fixed point 𝑧 ∈ 𝑋. Moreover, we have
𝜑(𝑧) = 0.

Proof. It follows from Theorem 7 with 𝐹(𝑎, 𝑏, 𝑐) = 𝑎(ln(𝑐 +

1) + 1) + 𝑏(𝑒
𝑐
+ 1).

Corollary 13. Let (𝑋, 𝑑) be a complete metric space, 𝑇 : 𝑋 →

𝑋, and 𝜑 : 𝑋 → [0, +∞). Suppose that the following
conditions hold:

(1) 𝜑 is lower semicontinuous,

(2) there exists 𝜓 ∈ Ψ such that

𝑑 (𝑇𝑥, 𝑇𝑦)

≤ (𝜓(

𝑑 (𝑥, 𝑇𝑥) [ln (𝜑 (𝑥) + 1) + 1] + 𝜑 (𝑇𝑥) (𝑒
𝜑(𝑥)

+ 1)

2
)

− 𝜑 (𝑇𝑥) (𝑒
𝜑(𝑇𝑦)

+ 1))

× (ln (𝜑(𝑇𝑦) + 1) + 1)
−1
,

(40)

for all 𝑥, 𝑦 ∈ 𝑋.

Then𝑇 has a unique fixed point 𝑧 ∈ 𝑋. Moreover, we have
𝜑(𝑧) = 0.

Proof. It follows from Theorem 7 with 𝐹(𝑎, 𝑏, 𝑐) = 𝑎(ln(𝑐 +

1) + 1) + 𝑏(𝑒
𝑐
+ 1).

Corollary 14. Let (𝑋, 𝑑) be a complete metric space, 𝑇 : 𝑋 →

𝑋, and 𝜑 : 𝑋 → [0, +∞). Suppose that the following
conditions hold:

(1) 𝜑 is lower semicontinuous,

(2) there exists 𝜓 ∈ Ψ such that

𝑑 (𝑇𝑥, 𝑇𝑦)

≤ (𝜓(

𝑑 (𝑦, 𝑇𝑦) [ln (𝜑 (𝑦) + 1) + 1] + 𝜑 (𝑇𝑦) (𝑒
𝜑(𝑦)

+ 1)

2
)

− 𝜑 (𝑇𝑥) (𝑒
𝜑(𝑇𝑦)

+ 1))

× (ln (𝜑(𝑇𝑦) + 1) + 1)
−1
,

(41)

for all 𝑥, 𝑦 ∈ 𝑋.

Then𝑇 has a unique fixed point 𝑧 ∈ 𝑋. Moreover, we have
𝜑(𝑧) = 0.

Proof. It follows from Theorem 7 with 𝐹(𝑎, 𝑏, 𝑐) = 𝑎(ln(𝑐 +

1) + 1) + 𝑏(𝑒
𝑐
+ 1).

Many other results can be deduced from Theorem 7 by
considering different choices of 𝐹.

4. Applications to Partial Metric Spaces

Wewill show that the following fixed-point theorem in partial
metric spaces can be deduced fromTheorem 7.



6 Abstract and Applied Analysis

Corollary 15. Let (𝑋, 𝑝) be a complete partial metric space,
and let 𝑇 : 𝑋 → 𝑋. Suppose that there exists 𝜓 ∈ Ψ such that

𝑝 (𝑇𝑥, 𝑇𝑦) ≤ 𝜓(max{𝑝 (𝑥, 𝑦) ,
𝑝 (𝑥, 𝑇𝑥) + 𝑝 (𝑦, 𝑇𝑦)

2
}) ,

(42)

for all 𝑥, 𝑦 ∈ 𝑋. Then 𝑇 has a unique fixed point 𝑧 ∈ 𝑋.
Moreover, one has 𝑝(𝑧, 𝑧) = 0.

Proof. Let 𝑑(𝑥, 𝑦) := 𝑝
𝑠
(𝑥, 𝑦)/2 for all 𝑥, 𝑦 ∈ 𝑋 and 𝜑(𝑥) =

𝑝(𝑥, 𝑥)/2 for all 𝑥 ∈ 𝑋. We have

𝑝 (𝑥, 𝑦) = 𝐹 (𝑑 (𝑥, 𝑦) , 𝜑 (𝑥) , 𝜑 (𝑦)) , ∀𝑥, 𝑦 ∈ 𝑋, (43)

where

𝐹 (𝑎, 𝑏, 𝑐) = 𝑎 + 𝑏 + 𝑐, ∀𝑎, 𝑏, 𝑐 ≥ 0. (44)

Now, inequality (42) is equivalent to

𝐹 (𝑑 (𝑇𝑥, 𝑇𝑦) , 𝜑 (𝑇𝑥) , 𝜑 (𝑇𝑦))

≤ 𝜓 (max {𝐹 (𝑑 (𝑥, 𝑦) , 𝜑 (𝑥) , 𝜑 (𝑦)) ,

(𝐹 (𝑑 (𝑥, 𝑇𝑥) , 𝜑 (𝑇𝑥) , 𝜑 (𝑥))

+𝐹 (𝑑 (𝑦, 𝑇𝑦) , 𝜑 (𝑇𝑦) , 𝜑 (𝑦))) × 2
−1
}) ,

(45)

for every 𝑥, 𝑦 ∈ 𝑋. ApplyingTheorem 7, we obtain that 𝑇 has
a unique fixed point 𝑧 ∈ 𝑋 with 𝜑(𝑧) = 0; that is, 𝑝(𝑧, 𝑧) =

0.

The following results follow immediately from
Corollary 15.

Corollary 16. Let (𝑋, 𝑝) be a complete partial metric space,
and let 𝑇 : 𝑋 → 𝑋. Suppose that there exists 𝜓 ∈ Ψ such that

𝑝 (𝑇𝑥, 𝑇𝑦) ≤ 𝜓 (𝑝 (𝑥, 𝑦)) , (46)

for all 𝑥, 𝑦 ∈ 𝑋. Then 𝑇 has a unique fixed point 𝑧 ∈ 𝑋.
Moreover, one has 𝑝(𝑧, 𝑧) = 0.

Corollary 17. Let (𝑋, 𝑝) be a complete partial metric space,
and let 𝑇 : 𝑋 → 𝑋. Suppose that there exists 𝜓 ∈ Ψ such that

𝑝 (𝑇𝑥, 𝑇𝑦) ≤ 𝜓(
𝑝 (𝑥, 𝑇𝑥) + 𝑝 (𝑦, 𝑇𝑦)

2
) , (47)

for all 𝑥, 𝑦 ∈ 𝑋. Then 𝑇 has a unique fixed point 𝑧 ∈ 𝑋.
Moreover, one has 𝑝(𝑧, 𝑧) = 0.

Note that Matthews result (see Theorem 4) follows from
Corollary 16 by taking 𝜓(𝑡) = 𝑘𝑡, where 𝑘 ∈ (0, 1).
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