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The study ofmultitask learning algorithms is one of very important issues.This paper proposes a least-square regularized regression
algorithm for multi-task learning with hypothesis space being the union of a sequence of Hilbert spaces. The algorithm consists
of two steps of selecting the optimal Hilbert space and searching for the optimal function. We assume that the distributions of
different tasks are related to a set of transformations under which any Hilbert space in the hypothesis space is norm invariant. We
prove that under the above assumption the optimal prediction function of every task is in the same Hilbert space. Based on this
result, a pivotal error decomposition is founded, which can use samples of related tasks to bound excess error of the target task. We
obtain an upper bound for the sample error of related tasks, and based on this bound, potential faster learning rates are obtained
compared to single-task learning algorithms.

1. Introduction

Multitask learning [1] is a learning paradigm which seeks to
improve the generalization performance of a learning task
with the help of some other related tasks. This learning para-
digm is inspired by human learning activities in that people
often apply the knowledge gained from previous learning
tasks to help learn a new task [2]. Differentmultitask learning
algorithms have been designed, such as multitask support
vector machine (SVM) [3], multitask feature learning [4, 5],
multitask clustering approach [6], multitask structure lear-
ning [7], and multitask gradients learning [8].

Multitask learning can be formulated under two different
settings: symmetric and asymmetric [9].The symmetricmul-
titask learning tries to improve the performance of all tasks
simultaneously, and the objective of asymmetric multitask
learning tries to improve the performance of some target task
using information from related tasks. The asymmetric mul-
titask learning is related to transfer learning [10]. The major
difference is that the source tasks are still learned simu-
ltaneously in asymmetric multitask learning while they are
learned independently in transfer learning [2]. Much exper-
imental work has achieved the target that is improving the

prediction performance of a learning task with the help of
other related tasks [1, 11–15]. However, there has been rela-
tively little progress on theoretical analysis for these results.

Baxter presented a general frame for model selection in
multitask learning environment [16]. They showed that a
hypothesis space that performs well on a sufficiently large
number of training taskswill also performwell when learning
novel tasks in the same environment. They proved that
learningmultiple taskswithin an environment of related tasks
can potentially give much better generalization than learning
a single task. Ando and Zhang considered learning predictive
structures on hypothesis spaces frommultitask learning [17].
They presented a general framework in which the structural
learning problem can be formulated and analyzed theoret-
ically and related it to learning with unlabeled data. Ben-
David and Borbely defined relatedness of tasks on the basis
of similarity between the example generating distributions
for classification [18], and then they gave precise conditions
under which bounds guarantee generalization on the basis of
smaller sample sizes than the standard single-task approach.
Solnon et al. studied multitask regression, using penalization
techniques [19]. They showed that the key element appearing
for an optimal calibration is the covariance matrix of the
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noise between the different tasks. They presented a new
algorithm to estimate this covariance matrix and proved that
this estimator converges towards the covariance matrix.

In this paper, we propose a least-square regularized
regression algorithm for multitask learning with hypothesis
space being the union of a sequence of Hilbert spaces. The
relatedness of tasks is described by distributions that underlie
these tasks and some property of the hypothesis space. We
assume that the distributions are related by a set of transfor-
mations under which the norm of any Hilbert space in the
hypothesis space is invariant. We design a multitask learning
algorithmwith two steps: firstly, samples of other related tasks
are used to select an approximate optimal Hilbert space in the
hypothesis space; secondly, in the optimal Hilbert space, we
use standard least square regularized regression algorithm for
the target task. It is proved that, under the above assumption,
the optimal prediction function of every task is in the same
Hilbert space. For error analysis, we decompose the excess
error of prediction function in target task into regularization
error and sample error in which the difference between error
and empirical error of the prediction function in the target
task is estimated by the average value of those in related
tasks. This leads to a potential faster learning rate than that
of standard regularized regression algorithm in single task.

The rest of the paper is organized as follows. In Section 2,
we introduce some notions and definitions and then propose
the least square regularized regression for multitask learning.
In Section 3, we decompose excess error of target task into
regularization error and sample error in which samples
of other related tasks can be used to estimated difference
between error and empirical error of the prediction function
in target task. The main result is presented in Section 4.
An upper bound for sample error of multiple tasks is given
by Hoeffding’s inequality and an estimation for covering
number in multitask learning, and then, based on the upper
bound, potential faster learning rates compared to single-task
learning algorithms are obtained.

2. Preliminaries

To propose regularized regression algorithm for multitask
learning, we introduce some definitions and notations. Let
(𝑋, 𝑑) be a compact metric space and let 𝑌 = [−𝑀,𝑀]. Let 𝜌
be a probability distribution on 𝑍 := 𝑋 × 𝑌. The regression
function is defined as

𝑓𝜌 (𝑥) = ∫
𝑌

𝑦𝑑𝜌 (𝑦 | 𝑥) , 𝑥 ∈ 𝑋, (1)

where 𝜌(𝑦 | 𝑥) is the conditional probability measure at 𝑥
induced by 𝜌. Knowing a set of samples from the probability
distribution 𝜌, our goal is to find a good approximation of 𝑓𝜌.

For multitask learning, we define the relatedness of
probability distribution of multiple tasks.

Definition 1. For a function 𝑓 : 𝑋 → 𝑋, let 𝑓[𝑃] be the
probability distribution over 𝑋 × 𝑌 defined by 𝑓[𝜌](𝑇) =
𝜌({(𝑓(𝑥), 𝑏) | (𝑥, 𝑏) ∈ 𝑇}), for 𝑇 ⊆ 𝑋 × 𝑌. Let F be a set of
transformations 𝑓 : 𝑋 → 𝑋 and let 𝜌1 and 𝜌2 be probability

distributions over𝑋×𝑌. We say that 𝜌1 and 𝜌2 areF-related
if there exists some𝑓 ∈ F such that 𝜌1 = 𝑓[𝜌2] or 𝜌2 = 𝑓[𝜌1].

Then, we describe the relatedness of the transformation
setF above and a hypothesis space.

Definition 2. Let F be a set of transformations 𝑓 : 𝑋 → 𝑋

and let H be a set of functions 𝑋 → 𝑌. We say that F acts
as a group overH, if,

(1) for every 𝑓 ∈ F and every ℎ ∈H, there holds ℎ ∘ 𝑓 ∈
H;

(2) for every 𝑓, 𝑔 ∈ F, the inverse transformation 𝑓−1
and the composition 𝑓 ∘ 𝑔 are also members ofF.

Definition 3. LetH𝜎 be a Hilbert space with norm ‖ ⋅ ‖𝜎 and
let F act as a group over H𝜎. We say H𝜎 is norm invariant
underF, if, for any ℎ ∈H𝜎 and any 𝑓 ∈ F, there holds

‖ℎ‖𝜎 =
󵄩󵄩󵄩󵄩ℎ ∘ 𝑓

󵄩󵄩󵄩󵄩𝜎. (2)

To explain the above definitions, we give an example.

Example 4. Let 𝑋 = R2, 𝑌 = [−𝑀,𝑀], Γ = 𝑅, and 𝐾𝜎(𝑥,
𝑥󸀠) = exp{−‖𝑥 − 𝑥󸀠‖2

2
/𝜎2}, for 𝑥, 𝑥󸀠 ∈ 𝑋, and H𝜎 be the clo-

sure of linear span of the set {𝐾𝜎,𝑥 := 𝐾𝜎(𝑥, ⋅) : 𝑥 ∈ 𝑋} with
inner product ⟨𝐾𝜎,𝑥, 𝐾𝜎,𝑥󸀠⟩𝜎 = 𝐾𝜎(𝑥, 𝑥

󸀠), for any 𝜎 ∈ Γ. Let
the norm ‖ ⋅ ‖𝜎 of functions in H𝜎 be induced by the inner
product.

AssumeF is a set of translation and rotation transforma-
tions on {H𝜎, 𝜎 ∈ Γ}: for any 𝑓 ∈ F and ℎ ∈ {H𝜎, 𝜎 ∈ Γ},
there holds (ℎ ∘ 𝑓)(𝑥) := ℎ(𝑥 + 𝑥𝑓), for some 𝑥𝑓 ∈ 𝑋, or
(ℎ ∘ 𝑓)(𝑥) := ℎ(𝐴𝑓𝑥), for

𝐴𝑓 = [
cos 𝜃𝑓 − sin 𝜃𝑓
sin 𝜃𝑓 cos 𝜃𝑓

] , (3)

where 𝜃𝑓 is an angle dependent on 𝑓. We can verify that F
acts as a group overH𝜎 andH𝜎 is norm invariant underF,
for any 𝜎 ∈ Γ.

Now we introduce standard least-square regularized reg-
ression algorithm. We denote error and empirical error of a
function 𝑓 : 𝑋 → 𝑌 with squared loss as follows. For a
distribution 𝜌 on𝑋 × 𝑌, the error of 𝑓 is defined as

𝐸
𝜌
(𝑓) = ∫

𝑍

(𝑓 (𝑥) − 𝑦)
2
𝑑𝜌. (4)

It is well known that the regression function minimizes the
error. Indeed,

󵄩󵄩󵄩󵄩󵄩
𝑓 − 𝑓𝜌

󵄩󵄩󵄩󵄩󵄩

2

𝜌
𝑋

= E (𝑓) −E (𝑓𝜌) , (5)

where 𝜌𝑋 is the marginal distribution of 𝜌 on 𝑋 and ‖𝑓‖2
𝜌
𝑋

=

∫
𝑋
|𝑓(𝑥)|

2
𝑑𝜌𝑋. The above difference is called the excess error

of 𝑓, and for a sample set 𝑆 = {(𝑥𝑖, 𝑦𝑖), 𝑖 = 1, 2, ..., 𝑚}, inde-
pendently drawn according to 𝜌, the empirical error of 𝑓 is
defined as

𝐸
𝑆
(𝑓) =

1

𝑚

𝑚

∑
𝑖=1

(𝑓 (𝑥𝑖) − 𝑦𝑖)
2
. (6)
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In this paper, we consider a sequence of related learning
tasks. The goal is to use information of related tasks to
improve learning performance of one special learning task.
LetF be a transformation set andH𝜎 be aHilbert space with
norm ‖ ⋅ ‖𝜎, for any 𝜎 ∈ Γ, where Γ is an index set. We assume
that there is 𝜅 > 0, such that

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩∞ ≤ 𝜅

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝜎. (7)

Let 𝜌𝑖 denote the probability distribution of the 𝑖th task,
for 𝑖 = 1, . . . , 𝑛. We assume {𝜌𝑖}

𝑛

𝑖=1
is pair-wise F-related, F

acts as a group overH𝜎, andH𝜎 is norm invariant underF,
for any 𝜎 ∈ Γ. Let 𝑆𝑖 = {(𝑥

𝑗

𝑖
, 𝑦
𝑗

𝑖
)}
𝑚

𝑗=1
be samples independently

drawn according to 𝜌𝑖. Since the 𝑛 tasks are related, we try
to use samples z = ∪𝑛

𝑖=1
𝑆𝑖 of all the 𝑛 tasks to improve the

learning performance of the target task.
Standard least-square regularized regression algorithm

associated with {H𝜎 : 𝜎 ∈ Γ} for the 𝑖th single task is defined
as the minimizer

𝑓𝑆
𝑖

= arg min
𝑓∈H
𝜎
, 𝜎∈Γ

{𝐸
𝑆
𝑖 (𝑓) + 𝜆

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩
2

𝜎
} . (8)

In the above optimization, there are two steps; firstly, for any
fixed 𝜎 ∈ Γ, find the optimal function 𝑓𝑆

𝑖
, 𝜎; secondly, find the

global optimal function 𝑓𝑆, for 𝜎 ∈ Γ. Since the 𝑛 tasks are
related, we try to use samples z = ∪𝑛

𝑖=1
𝑆𝑖 of all the 𝑛 tasks to

improve the learning performance of the target task.Without
loss of generality, we choose the first task as the target task.

Now, we propose least square regularized regression
algorithm for multitask learning.

Step 1. Use samples of other 𝑛 − 1 tasks to select the appro-
ximate optimalH𝜎 as follows:

𝜎̂ = arg min
𝜎∈Γ,

ℎ
2
,...,ℎ
𝑛
∈H
𝜎

𝑛

∑
𝑖=2

{𝐸
𝑆
𝑖 (ℎ𝑖) + 𝜆

󵄩󵄩󵄩󵄩ℎ𝑖
󵄩󵄩󵄩󵄩
2

𝜎
} . (9)

Step 2. In H𝜎, search for the approximation ℎ̂1 to 𝑓𝜌
1

as
follows:

(ℎ̂1, . . . , ℎ̂𝑛) = arg min
ℎ
1
,...,ℎ
𝑛
∈H
𝜎

𝑛

∑
𝑖=1

{𝐸
𝑆
𝑖 (ℎ𝑖) + 𝜆

󵄩󵄩󵄩󵄩ℎ𝑖
󵄩󵄩󵄩󵄩
2

𝜎
} . (10)

3. Error Decomposition

To estimate the bound of excess error 𝐸𝜌1(ℎ̂1) − 𝐸
𝜌
1(𝑓𝜌
1

), we
introduce some notations. Let 𝜎∗

𝑖
be the optimal 𝜎 ∈ Γ for the

ith task,

(𝜎
∗

𝑖
, ℎ
∗

𝑖
) = arg min

𝜎∈Γ,

ℎ∈H
𝜎

{𝐸
𝑃
𝑖 (ℎ) + 𝜆‖ℎ‖

2

𝜎
} . (11)

Lemma 5. Let 𝜌𝑖 denote the probability distribution of the 𝑖th
task for 𝑖 = 1, . . . , 𝑛, letH𝜎 be a Hilbert space with norm ‖ ⋅ ‖𝜎
for 𝜎 ∈ Γ, and let F be a transformation set. Assume {𝜌𝑖}

𝑛

𝑖=1

is pair-wiseF-related,F acts as a group overH𝜎, andH𝜎 is
norm invariant under F, for any 𝜎 ∈ Γ. Then 𝜎∗

𝑖
defined in

(11) satisfies

𝜎
∗

1
= 𝜎
∗

2
= ⋅ ⋅ ⋅ = 𝜎

∗

𝑛
. (12)

Proof. By the assumption that 𝜌𝑖 and 𝜌𝑗 are F-related, it is
easy to show that

inf
ℎ∈H
𝜎

𝐸
𝜌
𝑖 (ℎ) = inf

ℎ∈H
𝜎

𝐸
𝜌
𝑗 (ℎ) , (13)

for any 𝑖, 𝑗 ∈ {1, . . . , 𝑛} and 𝜎 ∈ Γ. Notice that H𝜎 is norm-
invariant underF for any 𝜎 ∈ Γ. Then, there holds

inf
ℎ∈H
𝜎

{𝐸
𝜌
𝑖 (ℎ) + 𝜆‖ℎ‖

2

𝜎
} = inf
ℎ∈H
𝜎

{𝐸
𝜌
𝑗 (ℎ) + 𝜆‖ℎ‖

2

𝜎
} , (14)

for any 𝜎 ∈ Γ. Then the lemma follows.

To decompose the excess error, we give the following not-
ations. Denote

(ℎ1, . . . , ℎ𝑛) = arg min
ℎ
1
,...,ℎ
𝑛
∈H
𝜎

𝑛

∑
𝑖=1

{𝐸
𝜌
𝑖 (ℎ𝑖) + 𝜆

󵄩󵄩󵄩󵄩ℎ𝑖
󵄩󵄩󵄩󵄩
2

𝜎
} ,

(ℎ̂
∗

1
, . . . , ℎ̂

∗

𝑛
) = arg min

ℎ
1
,...,ℎ
𝑛
∈H
𝜎
∗

𝑛

∑
𝑖=1

{𝐸
𝑆
𝑖 (ℎ𝑖) + 𝜆

󵄩󵄩󵄩󵄩ℎ𝑖
󵄩󵄩󵄩󵄩
2

𝜎∗
} .

(15)

Proposition 6. Let ℎ̂𝑖 be defined in (10). Then under the assu-
mption of Lemma 5, 𝐸𝜌1(ℎ̂1) − 𝐸𝜌1(𝑓𝜌

1

) ≤ 𝐸𝜌1(ℎ̂1) − 𝐸
𝜌
1(𝑓𝜌
1

) +

𝜆‖ℎ̂1‖
2

𝜎
can be bounded by

{𝐸
𝜌
1 (ℎ
∗

1
) − 𝐸
𝜌
1 (𝑓𝜌

1

) + 𝜆
󵄩󵄩󵄩󵄩󵄩󵄩
ℎ
∗

1

󵄩󵄩󵄩󵄩󵄩󵄩

2

𝜎∗
} + {𝐸

𝜌
1 (ℎ̂1) − 𝐸

𝑆
1 (ℎ̂1)}

+ {𝐸
𝑆
1 (ℎ1) − 𝐸

𝜌
1 (ℎ1)} +

1

𝑛 − 1

𝑛

∑
𝑖=2

{𝐸
𝜌
𝑖 (ℎ
∗

𝑖
) − 𝐸
𝑆
𝑖 (ℎ
∗

𝑖
)}

+
1

𝑛 − 1

𝑛

∑
𝑖=2

{𝐸
𝜌
𝑖 (ℎ̂𝑖) − 𝐸

𝑆
𝑖 (ℎ̂𝑖)} .

(16)

Proof. Write the regularization error as

𝐸
𝜌
1 (ℎ̂1) − 𝐸

𝜌
1 (𝑓𝜌

1

) + 𝜆
󵄩󵄩󵄩󵄩󵄩
ℎ̂1
󵄩󵄩󵄩󵄩󵄩

2

𝜎

= {𝐸
𝜌
1 (ℎ̂1) − 𝐸

𝑆
1 (ℎ̂1)}

+ {(𝐸
𝑆
1 (ℎ̂1) + 𝜆

󵄩󵄩󵄩󵄩󵄩
ℎ̂1
󵄩󵄩󵄩󵄩󵄩

2

𝜎
) − (𝐸

𝑆
1 (ℎ1) + 𝜆

󵄩󵄩󵄩󵄩󵄩
ℎ1
󵄩󵄩󵄩󵄩󵄩

2

𝜎
)}

+ {𝐸
𝑆
1 (ℎ1) − 𝐸

𝜌
1 (ℎ1)}

+ {(𝐸
𝜌
1 (ℎ1) + 𝜆

󵄩󵄩󵄩󵄩󵄩
ℎ1
󵄩󵄩󵄩󵄩󵄩

2

𝜎
) − (𝐸

𝜌
1 (ℎ
∗

1
) + 𝜆

󵄩󵄩󵄩󵄩󵄩󵄩
ℎ
∗

1

󵄩󵄩󵄩󵄩󵄩󵄩

2

𝜎∗
)}

+ {𝐸
𝜌
1 (ℎ
∗

1
) − 𝐸
𝜌
1 (𝑓𝜌

1

) + 𝜆
󵄩󵄩󵄩󵄩󵄩󵄩
ℎ
∗

1

󵄩󵄩󵄩󵄩󵄩󵄩

2

𝜎∗
} .

(17)
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By Lemma 5, for any 𝑖, 𝑗 ∈ {1, . . . , 𝑛}, there holds 𝐸𝜌𝑖(ℎ𝑖) +
𝜆‖ℎ𝑖‖
2

𝜎
= 𝐸𝜌𝑗(ℎ𝑗) + 𝜆‖ℎ𝑗‖

2

𝜎
. Then we obtain

𝐸
𝜌
1 (ℎ1) + 𝜆

󵄩󵄩󵄩󵄩󵄩
ℎ1
󵄩󵄩󵄩󵄩󵄩

2

𝜎

=
1

𝑛 − 1

𝑛

∑
𝑖=2

{𝐸
𝜌
𝑖 (ℎ𝑖) + 𝜆

󵄩󵄩󵄩󵄩󵄩
ℎ𝑖
󵄩󵄩󵄩󵄩󵄩

2

𝜎
}

=
1

𝑛 − 1

𝑛

∑
𝑖=2

{(𝐸
𝜌
𝑖 (ℎ𝑖) + 𝜆

󵄩󵄩󵄩󵄩󵄩
ℎ𝑖
󵄩󵄩󵄩󵄩󵄩

2

𝜎
) − (𝐸

𝜌
𝑖 (ℎ̂𝑖) + 𝜆

󵄩󵄩󵄩󵄩󵄩
ℎ̂𝑖
󵄩󵄩󵄩󵄩󵄩

2

𝜎
)}

+
1

𝑛 − 1

𝑛

∑
𝑖=2

{(𝐸
𝜌
𝑖 (ℎ̂𝑖) + 𝜆

󵄩󵄩󵄩󵄩󵄩
ℎ̂𝑖
󵄩󵄩󵄩󵄩󵄩

2

𝜎
) − (𝐸

𝑆
𝑖 (ℎ̂𝑖) + 𝜆

󵄩󵄩󵄩󵄩󵄩
ℎ̂𝑖
󵄩󵄩󵄩󵄩󵄩

2

𝜎
)}

+
1

𝑛 − 1

𝑛

∑
𝑖=2

{𝐸
𝑆
𝑖 (ℎ̂𝑖) + 𝜆

󵄩󵄩󵄩󵄩󵄩
ℎ̂𝑖
󵄩󵄩󵄩󵄩󵄩

2

𝜎
} ,

𝐸
𝜌
1 (ℎ
∗

1
) + 𝜆

󵄩󵄩󵄩󵄩󵄩󵄩
ℎ
∗

1

󵄩󵄩󵄩󵄩󵄩󵄩

2

𝜎∗

=
1

𝑛 − 1

𝑛

∑
𝑖=2

{𝐸
𝜌
𝑖 (ℎ
∗

𝑖
) + 𝜆

󵄩󵄩󵄩󵄩󵄩󵄩
ℎ
∗

𝑖

󵄩󵄩󵄩󵄩󵄩󵄩

2

𝜎∗
}

=
1

𝑛 − 1

𝑛

∑
𝑖=2

{(𝐸
𝜌
𝑖 (ℎ
∗

𝑖
) + 𝜆

󵄩󵄩󵄩󵄩󵄩󵄩
ℎ
∗

𝑖

󵄩󵄩󵄩󵄩󵄩󵄩

2

𝜎∗
)

−(𝐸
𝑆
𝑖 (ℎ
∗

𝑖
) + 𝜆

󵄩󵄩󵄩󵄩󵄩󵄩
ℎ
∗

𝑖

󵄩󵄩󵄩󵄩󵄩󵄩

2

𝜎∗
)}

+
1

𝑛 − 1

𝑛

∑
𝑖=2

{(𝐸
𝑆
𝑖 (ℎ
∗

𝑖
) + 𝜆

󵄩󵄩󵄩󵄩󵄩󵄩
ℎ
∗

𝑖

󵄩󵄩󵄩󵄩󵄩󵄩

2

𝜎∗
)

− (𝐸
𝑆
𝑖 (ℎ̂
∗

𝑖
) + 𝜆

󵄩󵄩󵄩󵄩󵄩
ℎ̂
∗

𝑖

󵄩󵄩󵄩󵄩󵄩

2

𝜎∗
)}

+
1

𝑛 − 1

𝑛

∑
𝑖=2

{𝐸
𝑆
𝑖 (ℎ̂
∗

𝑖
) + 𝜆

󵄩󵄩󵄩󵄩󵄩
ℎ̂
∗

𝑖

󵄩󵄩󵄩󵄩󵄩

2

𝜎∗
} .

(18)

By the definition, we have that

1

𝑛 − 1

𝑛

∑
𝑖=2

{(𝐸
𝜌
𝑖 (ℎ𝑖) + 𝜆

󵄩󵄩󵄩󵄩󵄩
ℎ𝑖
󵄩󵄩󵄩󵄩󵄩

2

𝜎
) − (𝐸

𝜌
𝑖 (ℎ̂𝑖) + 𝜆

󵄩󵄩󵄩󵄩󵄩
ℎ̂𝑖
󵄩󵄩󵄩󵄩󵄩

2

𝜎
)} ≤ 0,

1

𝑛 − 1

𝑛

∑
𝑖=2

{(𝐸
𝑆
𝑖 (ℎ
∗

𝑖
) + 𝜆

󵄩󵄩󵄩󵄩󵄩󵄩
ℎ
∗

𝑖

󵄩󵄩󵄩󵄩󵄩󵄩

2

𝜎∗
) − (𝐸

𝑆
𝑖 (ℎ̂
∗

𝑖
) + 𝜆

󵄩󵄩󵄩󵄩󵄩
ℎ̂
∗

𝑖

󵄩󵄩󵄩󵄩󵄩

2

𝜎∗
)}

≥ 0,

1

𝑛 − 1

𝑛

∑
𝑖=2

{𝐸
𝑆
𝑖 (ℎ̂𝑖) + 𝜆

󵄩󵄩󵄩󵄩󵄩
ℎ̂𝑖
󵄩󵄩󵄩󵄩󵄩

2

𝜎
}

≤
1

𝑛 − 1

𝑛

∑
𝑖=2

{𝐸
𝑆
𝑖 (ℎ̂
∗

𝑖
) + 𝜆

󵄩󵄩󵄩󵄩󵄩
ℎ̂
∗

𝑖

󵄩󵄩󵄩󵄩󵄩

2

𝜎∗
} .

(19)

Therefore, we have

(𝐸
𝜌
1 (ℎ1) + 𝜆

󵄩󵄩󵄩󵄩󵄩
ℎ1
󵄩󵄩󵄩󵄩󵄩

2

𝜎
) − (𝐸

𝜌
1 (ℎ
∗

1
) + 𝜆

󵄩󵄩󵄩󵄩󵄩󵄩
ℎ
∗

1

󵄩󵄩󵄩󵄩󵄩󵄩

2

𝜎∗
)

≤
1

𝑛 − 1

𝑛

∑
𝑖=2

{(𝐸
𝜌
𝑖 (ℎ̂𝑖) + 𝜆

󵄩󵄩󵄩󵄩󵄩
ℎ̂𝑖
󵄩󵄩󵄩󵄩󵄩

2

𝜎
) − (𝐸

𝑆
𝑖 (ℎ̂𝑖) + 𝜆

󵄩󵄩󵄩󵄩󵄩
ℎ̂𝑖
󵄩󵄩󵄩󵄩󵄩

2

𝜎
)}

+
1

𝑛 − 1

𝑛

∑
𝑖=2

{(𝐸
𝜌
𝑖 (ℎ
∗

𝑖
) + 𝜆

󵄩󵄩󵄩󵄩󵄩󵄩
ℎ
∗

𝑖

󵄩󵄩󵄩󵄩󵄩󵄩

2

𝜎∗
)

−(𝐸
𝑆
𝑖 (ℎ
∗

𝑖
) + 𝜆

󵄩󵄩󵄩󵄩󵄩󵄩
ℎ
∗

𝑖

󵄩󵄩󵄩󵄩󵄩󵄩

2

𝜎∗
)} .

(20)

Then, the proposition follows.

In (16), there are 5 terms. The first term is called regular-
ization error which depends on the approximation ability of
hypothesis space to 𝑓𝜌

1

. The estimation of this term has been
discussed in [20] for reproducing kernel Hilbert space with
Gaussian kernel with flexible variances.

Theother four terms are called sample error. In the second
and third terms, ℎ̂1 and ℎ1 are selected from H𝜎 which is
dependent on 𝑆𝑖, for 𝑖 = 2, . . . , 𝑛, and is independent of 𝑆1.
Therefore, when we take expectation of 𝑆1,H𝜎 can be seen as
a fixed function space. Consequently, these two terms can be
estimated with the same method in the proof of Propositions
2.1 and 3.1 in [21]. In the fourth term, ℎ

∗

𝑖
is a fixed function,

for 𝑖 = 1, . . . , 𝑛. Therefore, this term can also be estimated
as in the proof of Proposition 2.1 in [21]. The last term is
more difficult to deal with because ℎ̂𝑖, for 𝑖 = 2, . . . , 𝑛, can
not be considered in H𝜎, for any fixed 𝜎 ∈ Γ. Consequently,
when sample number 𝑚 → ∞, the convergence rate of
the sample error depends on that of the last term. Therefore,
in the following section, we focus on the estimation for the
bound of the last term in (16).

4. Error Analysis

In this section, we estimate the bound of the last term in (16).
To bound this term, we have to estimate capacity of {H𝜎 : 𝜎 ∈
Γ}. Here, the capacity is measured by the covering number.

Definition 7. For a subset F of a metric space (𝑋, 𝑑) and
𝜂 > 0, the covering number N(F, 𝜂, 𝑑) is defined to be the
minimal integer 𝑙 ∈ N such that there exist 𝑙 disks with radius
𝜂 coveringF.

For 𝑛 ∈ N andH𝜎,𝑅 = {𝑓 ∈H𝜎, ‖𝑓‖𝜎 ≤ 𝑅}, define

H
𝑛

𝜎,𝑅
= {𝑓 = (𝑓1, . . . , 𝑓𝑛) : 𝑓𝑖 ∈H𝜎,𝑅, 𝑖 = 1, . . . , 𝑛} . (21)

For 𝑓 ∈H𝑛
𝜎
1
,𝑅
and 𝑔 ∈H𝑛

𝜎
2
,𝑅
, define

𝑙∞,𝑛 (𝑓, 𝑔) =
1

𝑛

𝑛

∑
𝑖=1

󵄩󵄩󵄩󵄩𝑓𝑖 − 𝑔𝑖
󵄩󵄩󵄩󵄩∞,

𝑑∞ (𝑓,H
𝑛

𝜎
2
,𝑅
) = inf
𝑔∈H𝑛
𝜎2,𝑅

𝑙∞,𝑛 (𝑓, 𝑔) .

(22)
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Then, define the distance fromH𝑛
𝜎
1
,𝑅
toH𝑛
𝜎
2
,𝑅
as

𝑑∞ (H
𝑛

𝜎
1
,𝑅
,H
𝑛

𝜎
2
,𝑅
) = sup
𝑓∈H𝑛
𝜎1,𝑅

𝑑∞ (𝑓,H
𝑛

𝜎
2
,𝑅
) . (23)

LetN𝑅(𝜀, Γ, 𝑑∞) denote the minimal integer 𝑙 ∈ N such that
there exist 𝑙 parameters 𝜎1, . . . , 𝜎𝑙 ∈ Γ, such that

sup
𝜎∈Γ

min
𝑖∈{1,...,𝑙}

𝑑∞ (H
𝑛

𝜎,𝑅
,H
𝑛

𝜎
𝑖
,𝑅
) ≤ 𝜀. (24)

Then, for H𝑛
Γ,𝑅

= {𝑓 = (𝑓1, . . . , 𝑓𝑛) : 𝑓𝑖 ∈ H𝜎,𝑅, 𝑖 = 1, . . . ,
𝑛, 𝜎 ∈ Γ}, we have the following lemma.

Lemma 8. Consider the following:

N (2𝜀,H
𝑛

Γ,𝑅
, 𝑙∞,𝑛)

≤N𝑅 (𝜀, Γ, 𝑑∞) ⋅ (sup
𝜎∈Γ

N (𝜀,H𝜎,𝑅, 𝑙∞,1))

𝑛

.

(25)

Proof. For any 𝑓 ∈ H𝑛
Γ,𝑅

, there is 𝜎 ∈ Γ such that 𝑓 ∈

H𝑛
𝜎,𝑅

. By the definition of N𝑅(𝜀, Γ, 𝑑∞), there is 𝜎 ∈ {𝜎1, 𝜎2,
. . . , 𝜎

N
𝑅
(𝜀,Γ,𝑑

∞
)
} such that 𝑑∞(H

𝑛

𝜎,𝑅
,H𝑛
𝜎,𝑅
) ≤ 𝜀. Then, by the

definition of 𝑑∞, we have 𝑑∞(𝑓,H
𝑛

𝜎,𝑅
) ≤ 𝜀. And by the

definition of 𝑑∞, there is 𝑓 ∈H𝑛
𝜎,𝑅

satisfying 𝑙∞,𝑛(𝑓, 𝑓) ≤ 𝜀.
By the definition of N(𝜀,H𝑛

𝜎,𝑅
, 𝑙∞,𝑛), there is 𝑓 ∈

{𝑓1
𝜎
, . . . , 𝑓

N(𝜀,H𝑛
𝜎,𝑅
,𝑙
∞,𝑛
)

𝜎
} ⊆ H𝑛

𝜎,𝑅
such that 𝑙∞,𝑛(𝑓, 𝑓) ≤ 𝜀.

Therefore, we can obtain

N (2𝜀,H
𝑛

Γ,𝑅
, 𝑙∞,𝑛) ≤N𝑅 (𝜀, Γ, 𝑑∞) ⋅ sup

𝜎∈Γ

N (𝜀,H
𝑛

𝜎,𝑅
, 𝑙∞,𝑛) .

(26)

Note that, for any 𝜎 ∈ Γ, there holds N(𝜀,H𝑛
𝜎,𝑅
, 𝑙∞,𝑛) ≤

(N(𝜀,H𝜎,𝑅, 𝑙∞,1))
𝑛. Then the lemma follows.

Proposition 9. For 𝑅 = 𝑀/√𝜆 and ℎ̂𝑖, for 𝑖 = 2, . . . , 𝑛,
defined in (10), there holds

𝑃{
1

𝑛 − 1

𝑛

∑
𝑖=2

{𝐸
𝜌
𝑖 (ℎ̂𝑖) − 𝐸

𝑆
𝑖 (ℎ̂𝑖)} ≥ 𝜀1}

≤N(
𝜀1

16 (𝜅𝑅 +𝑀)
, Γ, 𝑑∞)

⋅ (sup
𝜎∈Γ

N(
𝜀1

16 (𝜅𝑅 +𝑀)
,H𝜎,𝑅, 𝑙∞,1))

𝑛−1

⋅ exp{−
(𝑛 − 1)𝑚𝜀

2

1

8(𝜅𝑅 +𝑀)
2
} .

(27)

Proof. By the definition of ℎ̂𝑖, we have ‖ℎ̂𝑖‖𝜎 ≤ 𝑅, for 𝑖 =
1, 2, . . . , 𝑛. Then, there holds

𝑃{
1

𝑛 − 1

𝑛

∑
𝑖=2

{𝐸
𝜌
𝑖 (ℎ̂𝑖) − 𝐸

𝑆
𝑖 (ℎ̂𝑖)} ≥ 𝜀1}

≤ 𝑃
{

{

{

sup
[𝑓
2
,...,𝑓
𝑛
]∈H𝑛−1
Γ,𝑅

1

𝑛 − 1

𝑛

∑
𝑖=2

{𝐸
𝜌
𝑖 (𝑓𝑖) − 𝐸

𝑆
𝑖 (𝑓𝑖)} ≥ 𝜀1

}

}

}

.

(28)

For 𝑓 = [𝑓2, . . . , 𝑓𝑛] ∈ H𝑛−1
Γ,𝑅

, denote 𝐿z(𝑓) = (1/(𝑛 − 1))

∑
𝑛

𝑖=2
{𝐸𝜌𝑖(𝑓) − 𝐸𝑆𝑖(𝑓)}. Note that, for 𝑓, 𝑔 ∈H𝑛−1

Γ,𝑅
, there holds

󵄨󵄨󵄨󵄨𝐿z (𝑓) − 𝐿z (𝑔)
󵄨󵄨󵄨󵄨

=
1

𝑛 − 1

𝑛

∑
𝑖=2

{𝐸
𝜌
𝑖 (𝑓) − 𝐸

𝑆
𝑖 (𝑓)}

−
1

𝑛 − 1

𝑛

∑
𝑖=2

{𝐸
𝜌
𝑖 (𝑔) − 𝐸

𝑆
𝑖 (𝑔)}

=
1

𝑛 − 1

𝑛

∑
𝑖=2

{∫
𝑍

(𝑓𝑖 (𝑥) − 𝑦)
2
𝑑𝜌𝑖 − ∫

𝑍

(𝑔𝑖 (𝑥) − 𝑦)
2
𝑑𝜌𝑖}

−
1

𝑛 − 1

𝑛

∑
𝑖=2

{

{

{

1

𝑚

𝑚

∑
𝑗=1

(𝑓𝑖 (𝑥
𝑖

𝑗
) − 𝑦
𝑖

𝑗
)
2

−
1

𝑚

𝑚

∑
𝑗=1

(𝑔𝑖 (𝑥
𝑖

𝑗
) − 𝑦
𝑖

𝑗
)
2}

}

}

≤ 4 (𝜅𝑅 +𝑀) ⋅ 𝑙∞,𝑛−1 (𝑓, 𝑔) .

(29)

Therefore, we can find that N = N(𝜀1/8(𝜅𝑅 + 𝑀),H
𝑛−1

Γ,𝑅
,

𝑙∞,𝑛−1) balls {H
𝑛−1

𝑘,𝑅
}
N
𝑘=1

such that the center 𝑓𝑘 of each ball
and point 𝑓𝑘 in this ball satisfies |𝐿z(𝑓

𝑘) − 𝐿z(𝑓
𝑘)| ≤

𝜀/2. Therefore, the probability in (28) can be bounded by
following expression:

𝑃

{{

{{

{

sup
[𝑓2 ,...,𝑓𝑛]∈⋃

N(𝜀1/8(𝜅𝑅+𝑀),H
𝑛−1

Γ,𝑅
,𝑙∞,𝑛)

𝑘 = 1
H𝑛−1
𝑘,𝑅

𝐿z (𝑓) ≥ 𝜀1

}}

}}

}

≤N(
𝜀1

8 (𝜅𝑅 +𝑀)
,H
𝑛−1

Γ,𝑅
, 𝑙∞,𝑛)

⋅ max
𝑘∈1,...,N

𝑃
{

{

{

sup
[𝑓2 ,...,𝑓𝑛]∈H𝑛−1𝑘,𝑅

𝐿z (𝑓) ≥ 𝜀1
}

}

}

≤N(
𝜀1

8 (𝜅𝑅 +𝑀)
,H
𝑛−1

Γ,𝑅
, 𝑙∞,𝑛)

⋅ max
𝑘∈1,...,N

𝑃{𝐿z (𝑓
𝑘
) ≥

𝜀1

2
} .

(30)
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For the covering number N, by Lemma 8, we have the
estimate

N(
𝜀1

8 (𝜅𝑅 +𝑀)
,H
𝑛−1

Γ,𝑅
, 𝑙∞,𝑛)

≤N(
𝜀1

16 (𝜅𝑅 +𝑀)
, Γ, 𝑑∞)

⋅ (sup
𝜎∈Γ

N(
𝜀1

16 (𝜅𝑅 +𝑀)
,H𝜎,𝑅, 𝑙∞,1))

𝑛−1

.

(31)

Using Hoeffding inequality, for any fixed 𝑓𝑘, we have

𝑃{𝐿z (𝑓
𝑘
) ≥

𝜀1

2
}

= 𝑃{
1

(𝑛 − 1)𝑚

×

𝑛

∑
𝑖=2

𝑚

∑
𝑗=1

{∫
𝑍

(𝑓
𝑘

𝑖
(𝑥) − 𝑦)

2

𝑑𝜌𝑖

−(𝑓
𝑘

𝑖
(𝑥
𝑖

𝑗
) − 𝑦
𝑖

𝑗
)
2

} ≥
𝜀1

2
}

≤ exp{−
(𝑛 − 1)𝑚𝜀

2

1

8(𝜅𝑅 +𝑀)
2
} .

(32)

Then, the proposition follows.

Finally, we can obtain a bound for the last term of (16) by
Proposition 9.

Proposition 10. Let ℎ̂𝑖, for 𝑖 = 2, . . . , 𝑛, be defined in (10).
Assume, for all 𝜎 ∈ Γ and for all 𝑠 > 0, there holds

lnN (𝜂,H𝜎,1, 𝑙∞,1) ≤ 𝐶0(
1

𝜂
)

𝑠

. (33)

Then with confidence at least 1 − 𝛿, there holds

1

𝑛 − 1

𝑛

∑
𝑖=2

{𝐸
𝜌
𝑖 (ℎ̂𝑖) − 𝐸

𝑆
𝑖 (ℎ̂𝑖)} ≤ 𝜀0, (34)

where 𝜀0 is the solution of the following equation:

𝜀
2+𝑠

0
−
8 (ln (1/𝛿)) (𝜅𝑅 +𝑀)2

(𝑛 − 1)𝑚
𝜀
𝑠

0
−
8(𝜅𝑅 +𝑀)

2

𝑚

× 𝐶0(16 (𝜅𝑅
2
+𝑀𝑅))

𝑠

−
8(𝜅𝑅 +𝑀)

2

(𝑛 − 1)𝑚
lnN𝑅 (

𝜀0

16 (𝜅𝑅 +𝑀)
, Γ, 𝑑∞) = 0.

(35)

Proof. Let

𝛿 =N𝑅 (
𝜀1

16 (𝜅𝑅 +𝑀)
, Γ, 𝑑∞)

⋅ (sup
𝜎∈Γ

N(
𝜀1

16 (𝜅𝑅 +𝑀)
,H𝜎,𝑅, 𝑙

1

∞
))

𝑛−1

⋅ exp{−
(𝑛 − 1)𝑚𝜀

2

1

8(𝜅𝑅 +𝑀)
2
} .

(36)

By condition on lnN(𝜂,H𝜎,1, 𝑙∞,1) ≤ 𝐶0(1/𝜂)
𝑠, we have

lnN(
𝜀1

16 (𝜅𝑅 +𝑀)
,H𝜎,𝑅, 𝑙∞,1) ≤ 𝐶0(

16(𝜅𝑅2 +𝑀𝑅)

𝜀1
)

𝑠

.

(37)

Then, 𝜀1 is not larger than 𝜀0 in the following equation:

ln 𝛿 = lnN𝑅 (
𝜀0

16 (𝜅𝑅 +𝑀)
, Γ, 𝑑∞)

+ (𝑛 − 1) 𝐶0(
16(𝜅𝑅2 +𝑀𝑅)

𝜀0
)

𝑠

−
(𝑛 − 1)𝑚

8(𝜅𝑅 +𝑀)
2
𝜀
2

0
.

(38)

Then by Proposition 9, the proposition follows.

Remark 11. Compare multitask learning with multiple Hil-
bert spaces to single task learningwithmultipleHilbert space.

Recall that the least square regularized regression in {H𝜎,
𝜎 ∈ Γ} for single task is defined as

(𝜎̂1, ℎ̂1) = arg min
ℎ
1
∈H
𝜎
,𝜎∈Γ

{𝐸
𝑆
1 (ℎ1) + 𝜆

󵄩󵄩󵄩󵄩ℎ1
󵄩󵄩󵄩󵄩
2

𝜎
} . (39)

𝐸𝜌1(ℎ̂1) − 𝐸
𝜌
1(𝑓𝜌
1

) can be bounded by the sum of regula-
rization error and sample error with similar method in
Proposition 6. In the sample error, the term most difficult
to estimated will be 𝐸𝑆1(ℎ̂1) − 𝐸

𝜌
1(ℎ̂1), because function ℎ̂1

changed with the 𝑆1 runs over function set {H𝜎, 𝜎 ∈ Γ}. By
the same method in Proposition 10, with confidence 1 − 𝛿,
this term can be bounded by the solution 𝜀0 of the following
equation:

𝜀
2+𝑠

0
−
8 (ln (1/𝛿)) (𝜅𝑅 +𝑀)2

𝑚
𝜀
𝑠

0
−
8(𝜅𝑅 +𝑀)

2

𝑚

× 𝐶0(16 (𝜅𝑅
2
+𝑀𝑅))

𝑠

−
8(𝜅𝑅 +𝑀)

2

𝑚
lnN𝑅 (

𝜀0

16 (𝜅𝑅 +𝑀)
, Γ, 𝑑∞) = 0.

(40)

Obviously, we have 𝜀0 < 𝜀0. Therefore, multitask learning
algorithm has potential faster learning rate.

Remark 12. Comparingmultitask learning withmultiple Hil-
bert spaces to single task learning with single Hilbert space.

In this paper, we set the hypothesis space as a set ofHilbert
spaces. It is well known that hypothesis space with more
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functions has stronger approximation ability and bigger com-
plexity.Therefore, the regularization errormay be smaller and
sample error may be larger than that of algorithms with a
single Hilbert space being the hypothesis space.

For least square regularized regression with a single
Hilbert space H𝜎 for single task, with confidence 1 − 𝛿, the
largest term in sample error can be bounded by the solution
𝜀0 of the following equation:

𝜀
2+𝑠

0
−
8 (ln (1/𝛿)) (𝜅𝑅 +𝑀)2

𝑚
𝜀
𝑠

0

−
8(𝜅𝑅 +𝑀)

2

𝑚
𝐶0(16(𝜅𝑅

2
+𝑀𝑅))

𝑠

= 0.

(41)

If we assume 𝑛 = O(𝑚𝜁) with some 𝜁 > 0 large eno-
ugh, (8(𝜅𝑅 + 𝑀)2/(𝑛 − 1)𝑚) lnN𝑅(𝜀0/16(𝜅𝑅 + 𝑀), Γ, 𝑑∞)
in Proposition 10 can converge to 0 fast. Then, we can
obtain 𝜀0 ≈ 𝜀0, while the regularization error of multitask
learning with multiple Hilbert spaces is smaller. Trading off
the regularization error and sample error, we can obtain pote-
ntial faster learning rate than that of single task learning.
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