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Inverse problem for the Bessel operator is studied. A set of values of eigenfunctions at some internal point and parts of two spectra
are taken as data. Uniqueness theorems are obtained.The approach that was used in investigation of problems with partially known
potential is employed.

1. Introduction

Inverse spectral analysis involves the problem of restoring a
linear operator from some of its spectral parameters. Cur-
rently, inverse problems are being studied for certain special
classes of ordinary differential operators. The simplest of
these is the Sturm-Liouville operator 𝐿𝑦 = −𝑦


+ 𝑞(𝑥)𝑦. For

the case where it is considered on the whole line or half line,
the Sturm-Liouville operator together with the function 𝑞(𝑥)

has been called a potential. In this direction, Borg [1] gave
important results. He showed that, in general, one spectrum
does not determine a Sturm-Liouville operator, so the result
of Ambarzumyan [2] is an exception to the general rule. In
the same paper, Borg showed that two spectra of a Sturm-
Liouville operator determine it uniquely. Later, Levinson
[3], Levitan [4], and Hochstadt [5] showed that when the
boundary condition and one possible reduced spectrum
are given, then the potential is uniquely determined. Using
spectral data, that is, the spectral function, spectrum, and
norming constant, different methods have been proposed
for obtaining the potential function in a Sturm-Liouville
problem. Such problems were subsequently investigated by
other authors [4–6]. On the other hand, inverse problems
for regular and singular Sturm-Liouville operators have been
extensively studied by [7–15].

The inverse problem for interior spectral data of the
differential operator consists in reconstruction of this oper-
ator from the known eigenvalues and some information
on eigenfunctions at some internal point. Similar problems
for the Sturm-Liouville operator and discontinuous Sturm-
Liouville problem were formulated and studied in [16, 17].

The main goal of the present work is to study the inverse
problem of reconstructing the singular Sturm-Liouville oper-
ator on the basis of spectral data of a kind: one spectrum and
some information on eigenfunctions at the internal point.

Consider the following singular Sturm-Liouville operator
𝐿 satisfying (1)–(3):

𝐿𝑦 = −𝑦

+ [

ℓ (ℓ + 1)

𝑥2
+ 𝑞 (𝑥)] 𝑦 = 𝜆𝑦, 0 < 𝑥 < 1 (1)

with boundary conditions,

𝑦 (0) = 0, (2)

𝑦


(1, 𝜆) + 𝐻𝑦 (1, 𝜆) = 0, (3)

where 𝑞(𝑥) is a real-valued function and 𝑞 ∈ 𝐿
2
(0, 1), 𝜆

spectral parameter, ℓ ∈ N
0
, 𝐻 ∈ R. The operator 𝐿 is self

adjoint on the 𝐿
2
(0, 1) and has a discrete spectrum {𝜆

𝑛
}.
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Let us introduce the second singular Sturm-Liouville op-
erator �̃� satisfying

�̃�𝑦 = −𝑦

+ [

ℓ (ℓ + 1)

𝑥2
+ 𝑞 (𝑥)] 𝑦 = 𝜆𝑦, 0 < 𝑥 < 1, (4)

subject to the same boundary conditions (2), (3), where 𝑞(𝑥)
is a real-valued function and 𝑞 ∈ 𝐿

2
(0, 1). The operator �̃� is

self adjoint on the 𝐿
2
(0, 1) and has a discrete spectrum {�̃�

𝑛
}.

2. Main Results

Before giving some results concerning the Bessel equation,
we should give its physical properties. The total energy of the
particle is given by 𝐸 = 𝑝

2
/2𝑀 = ℎ

2
𝑘
2
/2𝑀 = 𝑘

2, where 𝑝 is
its initial or final momentum, and 𝑘 the corresponding wave
number, ℎ planck constant, 𝑀 particle’s mass, and 𝐸 energy.
The reduced radial Schrödinger equation for the partial wave
of angular momentum ℓ then reads [18]

𝑑
2

𝑑𝑟2
Ψ
1
(𝑘, 𝑟) + (𝑘

2
−
ℓ (ℓ + 1)

𝑟2
)Ψ
1
(𝑘, 𝑟) = 𝑉 (𝑟)Ψ

1
(𝑘, 𝑟) .

(5)

When 𝑉 = 0, the above equation reduces to the classical
Bessel equation in the form

𝑑
2

𝑑𝑟2
Ψ
1
(𝑘, 𝑟) + (𝑘

2
−
ℓ (ℓ + 1)

𝑟2
)Ψ
1
(𝑘, 𝑟) = 0. (6)

This equation has the solution 𝐽
ℓ
(𝑟), called the Bessel func-

tion.
Eigenvalues of the problem (1)–(3) are the roots of (3).

This spectral characteristic satisfies the following asymptotic
expression [19, 20]:

𝜆
𝑛
= (𝑛 +

ℓ

2
)

2

𝜋
2
+ ∫

1

0

𝑞 (𝑥) 𝑑𝑥 − 𝑙 (𝑙 + 1) + 𝑎
𝑛
, (7)

where the series ∑∞
𝑛=1

𝑎
2

𝑛
< ∞. Next, we present the main

results in this paper. When 𝑏 = 1/2, we get the following
uniqueness Theorem 1.

Theorem 1. If for every 𝑛 ∈ N one has

𝜆
𝑛
= �̃�
𝑛
,

𝑦


𝑛
(1/2)

𝑦
𝑛
(1/2)

=
𝑦


𝑛
(1/2)

𝑦
𝑛
(1/2)

(8)

then

𝑞 (𝑥) = 𝑞 (𝑥) 𝑎.𝑒 𝑜𝑛 𝑡ℎ𝑒 𝑖𝑛𝑡𝑒𝑟V𝑎𝑙 (0, 1) . (9)

In the case 𝑏 ̸= 1/2, the uniqueness of 𝑞(𝑥) can be proved
if we require the knowledge of a part of the second spectrum.

Let {𝑚(𝑛)}
𝑛∈N be a sequence of natural numbers with a

property

𝑚(𝑛) =
𝑛

𝜎
(1 + 𝜀

𝑛
) , 0 < 𝜎 ≤ 1, 𝜀

𝑛
→ 0. (10)

Lemma 2. Let {𝑚(𝑛)}
𝑛∈N be a sequence of natural numbers

satisfying (10) and 𝑏 ∈ (0, 1/2) are so chosen that 𝜎 > 2𝑏. If for
any 𝑛 ∈ N

𝜆
𝑚(𝑛)

= �̃�
𝑚(𝑛)

,

𝑦


𝑚(𝑛)
(𝑏)

𝑦
𝑚(𝑛)

(𝑏)
=

𝑦


𝑚(𝑛)
(𝑏)

𝑦
𝑚(𝑛)

(𝑏)
(11)

then

𝑞 (𝑥) = 𝑞 (𝑥) 𝑎.𝑒 𝑜𝑛 (0, 𝑏] . (12)

Let {𝑙(𝑛)}
𝑛∈N and {𝑟(𝑛)}

𝑛∈N be a sequence of natural
numbers such that

𝑙 (𝑛) =
𝑛

𝜎
1

(1 + 𝜀
1,𝑛
) , 0 < 𝜎

1
≤ 1, 𝜀

1,𝑛
→ 0, (13)

𝑟 (𝑛) =
𝑛

𝜎
2

(1 + 𝜀
2,𝑛
) , 0 < 𝜎

2
≤ 1, 𝜀

2,𝑛
→ 0 (14)

and let 𝜇
𝑛
be the eigenvalues of (1), (2), and (15) and 𝜇

𝑛
be the

eigenvalues of (4), (2), and (15)

𝑦


(1, 𝜆) + 𝐻
1
𝑦 (1, 𝜆) = 0, 𝐻 ̸=𝐻

1
. (15)

Using Mochizuki and Trooshin’s method from Lemma 2 and
Theorem 1, we will prove that the followingTheorem 3 holds.

Theorem 3. Let {𝑙(𝑛)}
𝑛∈N and {𝑟(𝑛)}

𝑛∈N be a sequence of
natural numbers satisfying (13) and (14), and 1/2 < 𝑏 < 1

are so chosen that 𝜎
1
> 2𝑏 − 1, 𝜎

2
> 2 − 2𝑏. If for any 𝑛 ∈ N

one has

𝜆
𝑛
= �̃�
𝑛
, 𝜇

𝑙(𝑛)
= 𝜇
𝑙(𝑛)

,

𝑦


𝑟(𝑛)
(𝑏)

𝑦
𝑟(𝑛)

(𝑏)
=

𝑦


𝑟(𝑛)
(𝑏)

𝑦
𝑟(𝑛)

(𝑏)
(16)

then

𝑞 (𝑥) = 𝑞 (𝑥) 𝑎.𝑒 𝑜𝑛 (0, 1) . (17)

3. Proof of the Main Results

In this section, we present the proofs of main results in this
paper.

Proof of Theorem 1. Before proving Theorem 1, we will men-
tion some results, whichwill be needed later.We get the initial
value problems

−𝑦

+ [

ℓ (ℓ + 1)

𝑥2
+ 𝑞 (𝑥)] 𝑦 = 𝜆𝑦, 0 < 𝑥 < 1, (18)

𝑦 (0) = 0, (19)

−𝑦

+ [

ℓ (ℓ + 1)

𝑥2
+ 𝑞 (𝑥)] 𝑦 = 𝜆𝑦, 0 < 𝑥 < 1, (20)

𝑦 (0) = 0. (21)

As known from [18], Bessel’s functions of the first kind of
order V = ℓ − 1/2 are

𝐽V (𝑥) =

∞

∑

𝑘=0

(−1)
𝑘
𝑥
V+2𝑘

2V+2𝑘𝑘!Γ (V + 𝑘 + 1)
(22)
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and asymptotic formulas for large argument

𝐽V (𝑥) =
√

2

𝜋𝑥
{cos [𝑥 −

V𝜋

2
−
𝜋

4
] + 𝑂(

1

𝑥
)} ,

𝐽


V (𝑥) = −√
2

𝜋𝑥
{sin [𝑥 −

V𝜋

2
−
𝜋

4
] + 𝑂(

1

𝑥
)} .

(23)

It can be shown [19] that there exists a kernel
𝐻(𝑥, 𝑡)(�̃�(𝑥, 𝑡)) continuous in the triangle 0 ≤ 𝑡 ≤ 𝑥 ≤ 1

such that by using the transformation operator every solution
of (18), (19) and (20), (21) can be expressed in the form [8, 21],

𝑦 (𝑥, 𝜆) =
√𝑥

(√𝜆)
V 𝐽V (

√𝜆𝑥) + ∫

𝑥

0

𝐻(𝑥, 𝑡)
√𝑡

(√𝜆)
V 𝐽V (

√𝜆𝑡) 𝑑𝑡,

(24)

𝑦 (𝑥, 𝜆) =
√𝑥

(√𝜆)
V 𝐽V (

√𝜆𝑥) + ∫

𝑥

0

�̃� (𝑥, 𝑡)
√𝑡

(√𝜆)
V 𝐽V (

√𝜆𝑡) 𝑑𝑡,

(25)

respectively, where the kernel𝐻(𝑥, 𝑡) (�̃�(𝑥, 𝑡)) is the solution
of the equation

𝜕
2
𝐻(𝑥, 𝑡)

𝜕𝑥2
+
ℓ (ℓ + 1)

𝑥2
𝐻(𝑥, 𝑡)

=
𝜕
2
𝐻(𝑥, 𝑡)

𝜕𝑡2
+ (

ℓ (ℓ + 1)

𝑡2
+ 𝑞 (𝑡))𝐻 (𝑥, 𝑡)

(26)

subject to the boundary conditions

2
𝑑𝐻 (𝑥, 𝑥)

𝑑𝑥
= 𝑞 (𝑥) ,

lim
𝑡→0

𝐻(𝑥, 𝑡) 𝑡
V−1/2

= 0, [𝐽


V (𝑡, 𝜆) = 𝑂 (𝑡
V−1/2

)] .

(27)

After the transformations

𝜉 =
1

4
(𝑥 + 𝑡)

2
, 𝜂 =

1

4
(𝑥 − 𝑡)

2
,

𝐻 (𝑥, 𝑡) = (𝜉 − 𝜂)
−V+1/2

𝑈 (𝜉, 𝜂) ,

(28)

we obtain the following problem:

𝜕
2
𝑈

𝜕𝜉𝜕𝜂
−

1

4 (𝜉 − 𝜂)

𝜕𝑈

𝜕𝜉
+

1

4 (𝜉 − 𝜂)

𝜕𝑈

𝜕𝜂

=
1

4√𝜉𝜂

𝑞 (√𝜉 + √𝜂)𝑈,

𝑈 (𝜉, 𝜉) = 0,

𝜕𝑈

𝜕𝜉
+
𝛼

𝜉
𝑈 =

1

4
𝑞 (√𝜉) 𝜉

V−1
, 𝛼 = −V +

1

2
.

(29)

This problem can be solved by using the Riemannmethod
[21].

Multiplying (18) by 𝑦(𝑥, 𝜆) and (20) by 𝑦(𝑥, 𝜆), subtract-
ing and integrating from 0 to 1/2, we obtain

∫

1/2

0

(𝑞 (𝑥) − 𝑞 (𝑥)) 𝑦 (𝑥, 𝜆) 𝑦 (𝑥, 𝜆) 𝑑𝑥

= [𝑦(𝑥, 𝜆)𝑦

(𝑥, 𝜆) − 𝑦(𝑥, 𝜆)𝑦


(𝑥, 𝜆)]



1/2

0
.

(30)

The functions 𝑦(𝑥, 𝜆) and 𝑦(𝑥, 𝜆) satisfy the same initial
conditions (19) and (21), that is,

𝑦 (0, 𝜆) 𝑦


(0, 𝜆) − 𝑦 (0, 𝜆) 𝑦


(0, 𝜆) = 0. (31)

Let

𝑄 (𝑥) = 𝑞 (𝑥) − 𝑞 (𝑥) , (32)

𝐾 (𝜆) = ∫

1/2

0

𝑄 (𝑥) 𝑦 (𝑥, 𝜆) 𝑦 (𝑥, 𝜆) 𝑑𝑥. (33)

If the properties of 𝑦(𝑥, 𝜆) and 𝑦(𝑥, 𝜆) are considered, the
function𝐾(𝜆) is an entire function.

Therefore the condition of Theorem 1 implies

𝑦(
1

2
, 𝜆
𝑛
)𝑦

(
1

2
, 𝜆
𝑛
) − 𝑦(

1

2
, 𝜆
𝑛
)𝑦

(
1

2
, 𝜆
𝑛
) = 0 (34)

and hence

𝐾(𝜆
𝑛
) = 0, 𝑛 ∈ N. (35)

In addition, using (24) and (33) for 0 < 𝑥 < 1,

|𝐾 (𝜆)| ≤ 𝑀
1

𝜆V
, (36)

where𝑀 is constant.
Introduce the function

𝑊(𝜆) = 𝑦


(1, 𝜆) + 𝐻𝑦 (1, 𝜆) . (37)

By using the asymptotic forms of 𝑦 and 𝑦
, we obtain

𝑊(𝜆) = √𝜆 sin(√𝜆 −
V𝜋

2
−
𝜋

4
) + 𝑂 (1) . (38)

The zeros of 𝑊(𝜆) are the eigenvalues of 𝐿 and hence it
has only simple zeros 𝜆

𝑛
because of the seperated boundary

conditions. From (38), 𝑊(𝜆) is an entire function of order
1/2 of 𝜆. Since the set of zeros of the entire function𝑊(𝜆) is
contained in the set of zeros of𝐾(𝜆), we see that the function

Ψ (𝜆) =
𝐾 (𝜆)

𝑊 (𝜆)
(39)

is an entire function on the parameter 𝜆. From (36), (38), and
(39), we get

|Ψ (𝜆)| = 𝑂(
1

𝜆V+1/2
) . (40)

So, for all 𝜆, from the Liouville theorem,

Ψ (𝜆) = 0, (41)
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or

𝐾 (𝜆) = 0. (42)

It was proved in [19] that there exists absolutely continu-
ous function ̃̃

𝐻(𝑥, 𝜏) such that we have

𝑦 (𝑥, 𝜆) 𝑦 (𝑥, 𝜆) =
1

2
{1 + cos 2 [√𝜆𝑥 −

V𝜋

2
−
𝜋

4
]

+ ∫

𝑥

0

̃̃
𝐻 (𝑥, 𝜏)

× cos 2 [√𝜆𝜏 −
V𝜋

2
−
𝜋

4
] 𝑑𝜏} ,

(43)

where

̃̃
𝐻 (𝑥, 𝑡) = 2 [𝐻 (𝑥, 𝑥 − 2𝜏) + �̃� (𝑥, 𝑥 − 2𝜏)]

+ 2 [∫

𝑥

−𝑥+2𝜏

𝐻(𝑥, 𝑠) �̃� (𝑥, 𝑠 − 2𝜏) 𝑑𝑠

+∫

𝑥−2𝜏

−𝑥

𝐻(𝑥, 𝑠) �̃� (𝑥, 𝑠 + 2𝜏) 𝑑𝑠] .

(44)

We are now going to show that𝑄(𝑥) = 0 a.e. on (0, 1/2]. From
(33), (43) we have

1

2
∫

1/2

0

𝑄 (𝑥) {1 + cos 2 [√𝜆𝑥 −
V𝜋

2
−
𝜋

4
]

+ ∫

𝑥

0

̃̃
𝐻 (𝑥, 𝜏)

× cos 2 [√𝜆𝜏 −
V𝜋

2
−
𝜋

4
] 𝑑𝜏} 𝑑𝑥 = 0.

(45)

This can be written as

∫

1/2

0

𝑄 (𝑥) 𝑑𝑥 + ∫

1/2

0

cos 2 [√𝜆𝜏 −
V𝜋

2
−
𝜋

4
]

× [𝑄 (𝜏) + ∫

1/2

0

𝑄 (𝑥)

×
̃̃
𝐻 (𝑥, 𝜏) 𝑑𝑥] 𝑑𝜏 = 0.

(46)

Let 𝜆 → ∞ along the real axis, by the Riemann-Lebesgue
lemma, one should have

∫

1/2

0

𝑄 (𝑥) 𝑑𝑥 = 0,

∫

1/2

0

cos 2 [√𝜆𝜏 −
V𝜋

2
−
𝜋

4
]

× [𝑄 (𝜏) + ∫

1/2

𝜏

𝑄 (𝑥)
̃̃
𝐻 (𝑥, 𝜏) 𝑑𝑥] 𝑑𝜏 = 0.

(47)

Thus from the completeness of the functions cos, it follows
that

Q (𝜏) + ∫

1/2

𝜏

𝑄 (𝑥)
̃̃
𝐻 (𝑥, 𝜏) 𝑑𝑥 = 0, 0 < 𝑥 <

1

2
. (48)

But this equation is a homogeneous Volterra integral equa-
tion and has only the zero solution. Thus we have obtained

𝑄 (𝑥) = 𝑞 (𝑥) − 𝑞 (𝑥) = 0, (49)

or

𝑞 (𝑥) = 𝑞 (𝑥) (50)

almost everywhere on (0, 1/2]. Therefore Theorem 1 is
proved.

Theorem 4. To prove that 𝑞(𝑥) = 0 on [1/2, 1) almost every-
where, we should repeat the above arguments for the supple-
mentary problem

𝐿𝑦 = −𝑦

+ [

ℓ (ℓ + 1)

(1 − 𝑥)
2
+ 𝑞 (1 − 𝑥)] 𝑦, 0 < 𝑥 < 1 (51)

subject to the boundary conditions

𝑦 (1) = 0,

𝑦


(0, 𝜆) + 𝐻𝑦 (0, 𝜆) = 0.

(52)

Consequently

𝑞 (𝑥) = 𝑞 (𝑥) a.e on the interval (0, 1) . (53)

Next, we show that Lemma 2 holds.

Proof of Lemma 2. As in the proof ofTheorem 1 we can show
that

𝐺 (𝜌) = ∫

𝑏

0

𝑄 (𝑥) 𝑦 (𝑥, 𝜆) 𝑦 (𝑥, 𝜆) 𝑑𝑥

= [𝑦 (𝑥, 𝜆) 𝑦


(𝑥, 𝜆) − 𝑦 (𝑥, 𝜆) 𝑦


(𝑥, 𝜆)]
𝑥=𝑏

,

(54)

where 𝜌 = √𝜆 = 𝑟𝑒
𝑖𝜃 and 𝑄(𝑥) = 𝑞(𝑥) − 𝑞(𝑥). From the

assumption

𝑦


𝑚(𝑛)
(𝑏)

𝑦
𝑚(𝑛)

(𝑏)
=

𝑦


𝑚(𝑛)
(𝑏)

𝑦
𝑚(𝑛)

(𝑏)
(55)

together with the initial condition at 0 it follows that,

𝐺 (𝜌
𝑚(𝑛)

) = 0, 𝑛 ∈ N. (56)

Next, we will show that 𝐺(𝜌) = 0 on the whole 𝜌 plane.
The asymptotics (23) imply that the entire function 𝐺(𝜌) is
a function of exponential type ≤ 2𝑏.

Define the indicator of function 𝐺(𝜌) by

ℎ (𝜃) = lim
𝑟→∞

sup
ln 

𝐺 (𝑟𝑒
𝑖𝜃
)


𝑟
. (57)
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Since | Im√𝜆| = 𝑟| sin 𝜃|, 𝜃 = arg√𝜆 from (23) it follows that

ℎ (𝜃) ≤ 2𝑏 |sin 𝜃| . (58)

Let us denote by 𝑛(𝑟) the number of zeros of 𝐺(𝜌) in the
disk {|𝜌| ≤ 𝑟}. According to [22] set of zeros of every entire
function of the exponential type, not identically zero, satisfies
the inequality

lim
𝑟→∞

inf 𝑛 (𝑟)
𝑟

≤
1

2𝜋
∫

2𝜋

0

ℎ (𝜃) 𝑑𝜃, (59)

where 𝑛(𝑟) is the number of zeros of 𝐺(𝜌) in the disk |𝜌| ≤ 𝑟.
By (58),

1

2𝜋
∫

2𝜋

0

ℎ (𝜃) 𝑑𝜃 ≤
𝑏

𝜋
∫

2𝜋

0

|sin 𝜃| 𝑑𝜃 =
4𝑏

𝜋
. (60)

From the assumption and the known asymptotic expression
(7) of the eigenvalues√𝜆

𝑛
we obtain

𝑛 (𝑟) ≥ 2 ∑

(𝜋𝑛/𝜎)[1+𝑂(1/𝑛)]<𝑟

1 =
2

𝜋
𝜎𝑟 (1 + 𝑜 (1)) , 𝑟 → ∞.

(61)

For the case 𝜎 > 2𝑏,

lim
𝑟→∞

𝑛 (𝑟)

𝑟
≥

2

𝜋
𝜎 >

4𝑏

𝜋
= 2𝑏∫

2𝜋

0

|sin 𝜃| 𝑑𝜃 ≥
1

2𝜋
∫

2𝜋

0

ℎ (𝜃) 𝑑𝜃.

(62)

The inequalities (59) and (62) imply that 𝐺(𝜌) = 0 on the
whole 𝜌 plane.

Similar to the proof of Theorem 1, we have

𝑞 (𝑥) = 𝑞 (𝑥) a.e on the interval (0, 𝑏] . (63)

This completes the proof of Lemma 2.

Now we prove that Theorem 3 is valid.

Proof of Theorem 3. From

𝜆
𝑟(𝑛)

= �̃�
𝑟(𝑛)

,

𝑦


𝑟(𝑛)
(𝑏)

𝑦
𝑟(𝑛)

(𝑏)
=

𝑦


𝑟(𝑛)
(𝑏)

𝑦
𝑟(𝑛)

(𝑏)
, (64)

where {𝑟(𝑛)}
𝑛∈N satisfies (14) and 𝜎

2
> 2 − 2𝑏. Similar to the

proof of Lemma 2, we get

𝑞 (𝑥) = 𝑞 (𝑥) a.e on [𝑏, 1) . (65)

Thus, it needs to be proved that 𝑞(𝑥) = 𝑞(𝑥) a.e on (0, 𝑏].
The eigenfunctions 𝑦

𝑛
(𝑥, 𝜆
𝑛
) and 𝑦

𝑛
(𝑥, 𝜆
𝑛
) satisfy the same

boundary condition at 1. It means that

𝑦
𝑛
(𝑥, 𝜆
𝑛
) = 𝜉
𝑛
𝑦
𝑛
(𝑥, 𝜆
𝑛
) (66)

on [𝑏, 1] for any 𝑛 ∈ N where 𝜉
𝑛
are constants.

Let 𝜌
𝑛
= √𝜆
𝑛
, 𝑠
𝑛
= √𝜇
𝑛
. From (54) and (66) we obtain

𝐺 (𝜌
𝑛
) = 0, 𝑛 ∈ N,

𝐺 (𝑠
𝑙
𝑛

) = 0, 𝑛 ∈ N.
(67)

We are going to show that inequality (59) fails and con-
sequently, the entire function of exponential type 𝐺(𝜌)

vanishes on the whole 𝜌-plane. The 𝜌
𝑛
and 𝑠
𝑛
have the same

asymptotics (7). Counting the number of 𝜌
𝑛
and 𝑠
𝑛
located

inside the disc of radius 𝑟, we have

1 +
2

𝜋
𝑟 [1 + 𝑂(

1

𝑛
)] (68)

of 𝜌
𝑛
’s and

1 +
2

𝜋
𝑟𝜎
1
[1 + 𝑂(

1

𝑛
)] . (69)

of 𝑠
𝑛
’s.
This means that

𝑛 (𝑟) = 2 +
2

𝜋
[𝑟 (𝜎
1
+ 1) + 𝑂(

1

𝑛
)] ,

lim
𝑟→∞

𝑛 (𝑟)

𝑟
=

2

𝜋
(𝜎
1
+ 1) .

(70)

Repeating the last part of the proof of Lemma 2, and
considering the condition 𝜎

1
> 2𝑏 − 1, we can show that

𝐺(𝜌) = 0 identically on the whole 𝜌-plane which implies that

𝑞 (𝑥) = 𝑞 (𝑥) a.e on (0, 𝑏] (71)

and consequently

𝑞 (𝑥) = 𝑞 (𝑥) a.e on (0, 1) . (72)

Hence the proof of Theorem 3 is completed.
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