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An implementable algorithm for solving a nonsmooth convex optimization problem is proposed by combining Moreau-Yosida
regularization and bundle and quasi-Newton ideas. In contrast with quasi-Newton bundle methods of Mifflin et al. (1998), we only
assume that the values of the objective function and its subgradients are evaluated approximately, which makes the method easier
to implement. Under some reasonable assumptions, the proposed method is shown to have a Q-superlinear rate of convergence.

1. Introduction

In this paper we are concerned with the unconstrained min-
imization of a real-valued, convex function 𝑓 : 𝑅𝑛 → 𝑅,
namely,

min 𝑓 (𝑥)

s.t. 𝑥 ∈ 𝑅𝑛,
(1)

and in general 𝑓 is nondifferentiable. A number of attempts
have been made to obtain convergent algorithms for solving
(1). Fukushima and Qi [1] propose an algorithm for solving
(1) under semismoothness and regularity assumptions. The
proposed algorithm is shown to have a Q-superlinear rate of
convergence. An implementable BFGS method for general
nonsmooth problems is presented by Rauf and Fukushima
[2], and global convergence is obtained based on the assump-
tion of strong convexity. A superlinearly convergent method
for (1) is proposed by Qi and Chen [3], but it requires
the semismoothness condition. He [4] obtains a globally
convergent algorithm for convex constrained minimization
problems under certain regularity and uniform continuity
assumptions. Among methods for nonsmooth optimization
problems, some have superlinear rate of convergence, for
instance, see Mifflin and Sagastizábal [5] and Lemaréchal
et al. [6]. They propose two conceptual algorithms with
superlinear convergence for minimizing a class of convex

functions, and the latter demands that the objective function
𝑓 should be differentiable in a certain space 𝑈 (the subspace
along which 𝜕𝑓(𝑝) has 0 breadth at a given point 𝑝), but
sometimes it is difficult to decompose the space. Besides these
methods mentioned above, there is a quasi-Newton bundle
type method proposed by Mifflin et al. [7] it has superlinear
rate of convergence, but the exact values of the objective
function and its subgradients are required. In this paper, we
present an implementable algorithm by using bundle and
quasi-Newton ideas and Moreau-Yosida regularization, and
the proposed algorithm can be shown to have a superlinear
rate of convergence. An obvious advantage of the proposed
algorithm lies in the fact that we only need the approximate
values of the objective function and its subgradients.

It is well known that (1) can be solved by means of the
Moreau-Yosida regularization 𝐹 : 𝑅𝑛 → 𝑅 of 𝑓, which is
defined by

𝐹 (𝑥) = min
𝑧∈𝑅
𝑛

{𝑓 (𝑧) + (2𝜆)
−1

‖𝑧 − 𝑥‖
2} , (2)

where 𝜆 is a fixed positive parameter and ‖ ⋅ ‖ denotes the
Euclidean norm or its induced matrix norm on 𝑅𝑛×𝑛. The
problem of minimizing 𝐹(𝑥), that is,

min 𝐹 (𝑥)

s.t. 𝑥 ∈ 𝑅𝑛,
(3)
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is equivalent to (1) in the sense that 𝑥 ∈ 𝑅𝑛 solves (1) if and
only if it solves (3), see Hiriart-Urruty and Lemaréchal [8].
The problem (3) has a remarkable feature that the objective
function 𝐹 is a differentiable convex function, even though 𝑓
is nondifferentiable. Moreover 𝐹 has a Lipschitz continuous
gradient

𝐺 (𝑥) = 𝜆−1 (𝑥 − 𝑝 (𝑥)) ∈ 𝜕𝑓 (𝑝 (𝑥)) , (4)

where 𝑝(𝑥) is the unique minimizer of (2) and 𝜕𝑓 is
the subdifferential mapping of 𝑓. Hence, by Rademacher’s
theorem, 𝐺 is differentiable almost everywhere and the set

𝜕
𝐵
𝐺 (𝑥) = {𝐷 ∈ 𝑅𝑛×𝑛 | 𝐷 = lim

𝑥
𝑘
→𝑥

∇𝐺 (𝑥𝑘) ,

where𝐺 is differentiable at 𝑥𝑘}
(5)

is nonempty and bounded for each 𝑥. We say 𝐺 is BD-
regular at 𝑥 if all matrices 𝐷 ∈ 𝜕

𝐵
𝐺(𝑥) are nonsingular. It

is reasonable to pay more attention to the problem (3) since
𝐹 has such good properties. However, because the Moreau-
Yosida regularization itself is defined through aminimization
problem involving 𝑓, the exact values of 𝐹 and its gradient
𝐺 at an arbitrary point 𝑥 are difficult or even impossible
to compute in general. Therefore, we attempt to explore the
possibility of utilizing the approximations of these values.

Several attempts have been made to combine quasi-
Newton idea with Moreau-Yosida regularization to solve (1).
For related works on this subject, see Chen and Fukushima
[9] and Mifflin [10]. In particular, Mifflin et al. [7] consider
using bundle ideas to approximate linearly the values of 𝑓 in
order to approximate𝐹 in which the exact values of𝑓 and one
of its subgradients 𝑔 at some points are needed. In this paper
we assume that for given 𝑥 ∈ 𝑅𝑛 and 𝜀 ≥ 0, we can find some
𝑓 ∈ 𝑅 and 𝑔𝑎(𝑥, 𝜀) ∈ 𝑅𝑛 such that

𝑓 (𝑥) ≥ 𝑓 ≥ 𝑓 (𝑥) − 𝜀,

𝑓 (𝑧) ≥ 𝑓 + ⟨𝑔𝑎 (𝑥, 𝜀) , 𝑧 − 𝑥⟩ , ∀𝑧 ∈ 𝑅𝑛,
(6)

whichmeans that 𝑔𝑎(𝑥, 𝜀) ∈ 𝜕
𝜀
𝑓(𝑥).This setting is realistic in

many applications, see Kiwiel [11]. Let us see some examples.
Assume that 𝑓 is strongly convex with modulus 𝜇 > 0, that
is,

𝑓 (𝑥) + 𝑔(𝑥)
𝑇

(𝑧 − 𝑥) +
𝜇

2
‖𝑧 − 𝑥‖

2 ≤ 𝑓 (𝑧) ,

∀𝑧, 𝑥 ∈ 𝑅𝑛, 𝑔 (𝑥) ∈ 𝜕𝑓 (𝑥) ,

(7)

and that 𝑓(𝑥) = 𝑤(V(𝑥)) with V : 𝑅𝑛 → 𝑅𝑚 continuously
differentiable and 𝑤 : 𝑅𝑚 → 𝑅 convex. By the chain rule
we have 𝜕𝑓(𝑥) = {∑

𝑚

𝑖=1
𝜉
𝑖
∇V
𝑖
(𝑥) | 𝜉 = (𝜉

1
, 𝜉
2
, . . . , 𝜉

𝑛
)𝑇 ∈

𝜕𝑤(V(𝑥))}. Now assume that we have an approximation
∇
ℎ
V(𝑥) of∇V(𝑥) such that ‖∇

ℎ
V(𝑥)−∇V(𝑥)‖≤ 𝜅(ℎ), ℎ > 0. Such

an approximationmay be obtained by using finite differences.

In this case, typically 𝜅(ℎ) → 0 for ℎ → 0. Let 𝑔
ℎ
(𝑥) =

∑
𝑚

𝑖=1
𝜉
𝑖
∇
ℎ
V
𝑖
(𝑥), 𝜉 ∈ 𝜕𝑤(V(𝑥)). Then, we have

𝑓 (𝑥) + 𝑔
ℎ
(𝑥)
𝑇

(𝑧 − 𝑥)

≤ 𝑓 (𝑥) + 𝑔(𝑥)
𝑇

(𝑧 − 𝑥)

+
𝜉

∇ℎV (𝑥) − ∇V (𝑥)

 ‖𝑧 − 𝑥‖

≤ 𝑓 (𝑧) −
𝜇

2
‖𝑧 − 𝑥‖

2 + 𝜅 (ℎ)
𝜉
 ‖𝑧 − 𝑥‖

(8)

for all 𝑥, 𝑧 ∈ 𝑅𝑛 and 𝑔(𝑥) = ∑
𝑚

𝑖=1
𝜉
𝑖
∇V
𝑖
(𝑥) ∈ 𝜕𝑓(𝑥). Some

simple manipulations show that

−
𝜇

2
‖𝑧 − 𝑥‖

2 + 𝜅 (ℎ)
𝜉
 ‖𝑧 − 𝑥‖

≤
1

2𝜇

𝜉

2

𝜅(ℎ)
2 =: 𝜀
ℎ
, ∀𝑥, 𝑧 ∈ 𝑅𝑛.

(9)

By the definition of 𝜉, the bound 𝜀
ℎ
depends on 𝑥, we obtain

𝑓 (𝑥) + 𝑔
ℎ
(𝑥)
𝑇

(𝑧 − 𝑥) ≤ 𝑓 (𝑧) + 𝜀
ℎ
, ∀𝑧 ∈ 𝑅𝑛. (10)

From the local boundedness of 𝜕𝑤(V(𝑥)), we infer that 𝜀
ℎ
> 0

is locally bounded.Thus, 𝑔
ℎ
(𝑥) is an 𝜀

ℎ
-subgradient of 𝑓 at 𝑥,

seeHintermüller [12]. As for the approximate function values,
if 𝑓 is a max-type function of the form

𝑓 (𝑥) = sup {𝜙
𝑢
(𝑥) | 𝑢 ∈ 𝑈} , ∀𝑥 ∈ 𝑅𝑛, (11)

where each 𝜙
𝑢
: 𝑅𝑛 → 𝑅 is convex and 𝑈 is an infinite

set, then it may be impossible to calculate 𝑓(𝑥). However,
for any positive 𝜀 one can usually find in finite time an 𝜀-
solution to themaximization problem (11), that is, an element
𝑢
𝜀

∈ 𝑈 satisfying 𝜙
𝑢
𝜀

≥ 𝑓(𝑥) − 𝜀. Then one may set
𝑓
𝜀
(𝑥) = 𝜙

𝑢
𝜀

(𝑥). On the other hand, in some applications,
calculating 𝑢

𝜀
for a prescribed 𝜀 ≥ 0 may require much

less work than computing 𝑢
0
. This is, for instance, the

case when the maximization problem (11) involves solving
a linear or discrete programming problem by the methods
of Gabasov and Kirilova [13]. Some people have tried to
solve (1) by assuming the values of the objective function,
and its subgradients can only be computed approximately.
For example, Solodov [14] considers the proximal form of a
bundle algorithm for (1), assuming the values of the function
and its subgradients are evaluated approximately, and it is
shown how these approximations should be controlled in
order to satisfy the desired optimality tolerance. Kiwiel [15]
proposes an algorithm for (1), and the algorithm utilizes
the approximation evaluations of the objective function
and its subgradients; global convergence of the method is
obtained. Kiwiel [11] introduces another method for (1); it
requires only the approximate evaluations of 𝑓 and its 𝜀-
subgradients, and this method converges globally. It is in
evidence that bundle methods with superlinear convergence
for solving (1) by using approximate values of the objective
and its subgradients are seldom obtained. Compared with
the methods mentioned above, the method proposed in this
paper is not only implementable but also has a superlinear
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rate of convergence under some additional assumptions, and
it should be noted that we only use the approximate values of
the objective function and its subgradients which makes the
algorithm easier to implement.

Some notations are listed below for presenting the algo-
rithm.

(i) 𝜕𝑓(𝑥) = {𝜉 ∈ 𝑅𝑛 | 𝑓(𝑧) ≥ 𝑓(𝑥) + 𝜉𝑇(𝑧 − 𝑥), ∀𝑧 ∈ 𝑅𝑛},
the subdifferential of 𝑓 at 𝑥, and each such 𝜉 is called
a subgradient of 𝑓 at 𝑥.

(ii) 𝜕
𝜀
𝑓(𝑥) = {𝜂 ∈ 𝑅𝑛 | 𝑓(𝑧) ≥ 𝑓(𝑥) + 𝜂𝑇(𝑧 − 𝑥) − 𝜀}, the

𝜀-subdifferential of𝑓 at 𝑥, and each such 𝜂 is called an
𝜀-subgradient of 𝑓 at 𝑥.

(iii) 𝑝(𝑥) = argmin
𝑧∈𝑅
𝑛{𝑓(𝑧)+(2𝜆)−1 ‖𝑧−𝑥‖2}, the unique

minimizer of (2).
(iv) 𝐺(𝑥) = 𝜆−1(𝑥 − 𝑝(𝑥)), the gradient of 𝐹 at 𝑥.
This paper is organized as follows: in Section 2, to

approximate the unique minimizer 𝑝(𝑥) of (2), we introduce
the bundle idea, which uses approximate values of the objec-
tive function and its subgradients. The approximate quasi-
Newton bundle-type algorithm is presented in Section 3. In
the last section, we prove the global convergence and, under
additional assumptions, Q-superlinear convergence of the
proposed algorithm.

2. The Approximation of 𝑝(𝑥)

Let 𝑥 = 𝑥𝑘 and 𝑠 = 𝑧 − 𝑥𝑘, where 𝑥𝑘 is the current iterate
point of AQNBT algorithm presented in Section 3, then (13)
has the form

𝐹 (𝑥𝑘) = min
𝑠∈𝑅
𝑛

{𝑓 (𝑥𝑘 + 𝑠) + (2𝜆)
−1

‖𝑠‖
2} . (12)

Nowwe consider approximating𝑓(𝑥𝑘+𝑠) by using the bundle
idea. Suppose we have a bundle 𝐽𝑘 generated sequentially
starting from 𝑥𝑘 and possibly a subset of the previous set used
to generate 𝑥𝑘.The bundle includes the data (𝑧𝑖, 𝑓𝑖, 𝑔𝑎(𝑧𝑖, 𝜀

𝑖
)),

𝑖 ∈ 𝐽𝑘, where 𝑧𝑖 ∈ 𝑅𝑛, 𝑓𝑖 ∈ 𝑅, and 𝑔𝑎(𝑧𝑖, 𝜀
𝑖
) ∈ 𝑅𝑛 satisfy

𝑓 (𝑧𝑖) ≥ 𝑓𝑖 ≥ 𝑓 (𝑧𝑖) − 𝜀
𝑖
,

𝑓 (𝑧) ≥ 𝑓𝑖 + ⟨𝑔𝑎 (𝑧𝑖, 𝜀
𝑖
) , 𝑧 − 𝑧𝑖⟩ , ∀𝑧 ∈ 𝑅𝑛.

(13)

Suppose that the elements in 𝐽𝑘 can be arranged according
to the order of their entering the bundle. Without loss of
generality we may suppose 𝐽𝑘 = {1, . . . , 𝑗}. 𝜀

𝑖
is updated by

the rule 𝜀
𝑖+1

= 𝛾𝜀
𝑖
, 0 < 𝛾 < 1, 𝑖 ∈ 𝐽𝑘. The condition (13)

means 𝑔𝑎(𝑧𝑖, 𝜀
𝑖
) ∈ 𝜕
𝜀
𝑖

𝑓(𝑧𝑖), 𝑖 ∈ 𝐽𝑘. By using the data in the
bundle we construct a polyhedral function 𝑓

𝑎
(𝑥𝑘 + 𝑠) defined

by

𝑓
𝑎
(𝑥𝑘 + 𝑠) = max

𝑖∈𝐽
𝑘

{𝑓𝑖 + 𝑔𝑎(𝑧𝑖, 𝜀
𝑖
)
𝑇

(𝑥𝑘 + 𝑠 − 𝑧𝑖)} . (14)

Obviously 𝑓
𝑎
(𝑥𝑘 +𝑠) is a lower approximation of 𝑓(𝑥𝑘 +𝑠), so

𝑓
𝑎
(𝑥𝑘 + 𝑠) ≤ 𝑓(𝑥𝑘 + 𝑠). We define a linearization error by

𝛼 (𝑥𝑘, 𝑧𝑖, 𝜀
𝑖
) = 𝑓𝑥

𝑘

− 𝑓𝑖 − 𝑔𝑎(𝑧𝑖, 𝜀
𝑖
)
𝑇

(𝑥𝑘 − 𝑧𝑖) , (15)

where 𝑓𝑥
𝑘

∈ 𝑅 satisfies

𝑓 (𝑥𝑘) ≥ 𝑓𝑥
𝑘

≥ 𝑓 (𝑥𝑘) − 𝜀
𝑥
𝑘 , for given 𝜀

𝑥
𝑘 ≥ 0. (16)

Then 𝑓
𝑎
(𝑥𝑘 + 𝑠) can be written as

𝑓
𝑎
(𝑥𝑘 + 𝑠) = 𝑓𝑥

𝑘

+max
𝑖∈𝐽
𝑘

{𝑔𝑎(𝑧𝑖, 𝜀
𝑖
)
𝑇

𝑠 − 𝛼 (𝑥𝑘, 𝑧𝑖, 𝜀
𝑖
)} .

(17)

Let

𝐹
𝑎
(𝑥𝑘) = min

𝑠∈𝑅
𝑛

{𝑓
𝑎
(𝑥𝑘 + 𝑠) + (2𝜆)

−1

‖𝑠‖
2}

= 𝑓𝑥
𝑘

+min
𝑠∈𝑅
𝑛

{max
𝑖∈𝐽
𝑘

{𝑔𝑎(𝑧𝑖, 𝜀
𝑖
)
𝑇

𝑠 − 𝛼 (𝑥𝑘, 𝑧𝑖, 𝜀
𝑖
)}

+ (2𝜆)
−1𝑠𝑇𝑠} .

(18)

The problem (18) can be dealt with by solving the following
quadratic programming:

min V + 𝜆(2)
−1𝑠𝑇𝑠,

s.t. 𝑔𝑎(𝑧𝑖, 𝜀
𝑖
)
𝑇

𝑠 − 𝛼 (𝑥𝑘, 𝑧𝑖, 𝜀
𝑖
) ≤ V ∀𝑖 ∈ 𝐽𝑘.

(19)

As iterations go along, the number of elements in bundle
𝐽𝑘 increases. When the size of the bundle becomes too
big, it may cause serious computational difficulties in the
form of unbounded storage requirement. To overcome these
difficulties, it is necessary to compress the bundle and clean
the model. Wolfe [16] and Lemaréchal [17], for the first time,
introduce the aggregation strategy, which requires storing
only a limited number of subgradients, see Kiwiel andMifflin
[18–20]. Aggregation strategy is the synthesismechanism that
condenses the essential information of the bundle into one
single couple (𝑔

̃
𝑘

𝜀
, �̂�̃
𝑘
) (defined below). The corresponding

affine function, inserted in the model when there is com-
pression, is called aggregate linearization (defined below).
This function summarizes all the information generated up to
iteration 𝑘. Suppose 𝐽max is the upper bound of the number of
elements in 𝐽𝑘, 𝑘 = 1, 2, . . . . If |𝐽𝑘| reaches the prescribed 𝐽max,
two ormore of those elements are deleted from the bundle 𝐽𝑘;
that is, two or more linear pieces in the constraints of (19)
are discarded (notice that different selections of discarded
linear pieces may result in different speed of convergence),
and introduce the aggregate linearization associated with the
aggregate 𝜀-subgradient and linearization error into bundle.
Define the aggregate linearization as

𝑓
𝑡
(𝑥𝑘 + 𝑠) = 𝑓𝑥

𝑘

+ ⟨𝑔
̃
𝑘

𝜀
, 𝑠⟩ − �̂�̃

𝑘
, (20)

where 𝑔
̃
𝑘

𝜀
= ∑
𝑖∈𝐽
𝑘 𝜇
𝑖
𝑔𝑎(𝑧𝑖, 𝜀

𝑖
), �̂�̃
𝑘

= ∑
𝑖∈𝐽
𝑘 𝜇
𝑖
𝛼(𝑥𝑘, 𝑧𝑖, 𝜀

𝑖
).

Multiplier 𝜇 = (𝜇
𝑖
)
𝑖∈𝐽
𝑘 is the optimal solution of dual problem

for (19), see Solodov [14]. By doing so, the surrogate aggregate
linearization maintains the information of the deleted linear
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pieces and at the same time the problem (19) is manageable
since the number of the elements in 𝐽𝑘 is limited. Suppose
𝑠(𝑥𝑘) solves the problem (19), and let 𝑝𝑎(𝑥𝑘) = 𝑥𝑘 + 𝑠(𝑥𝑘) be
an approximation of 𝑝(𝑥𝑘) and 𝜀

𝑝
𝑎
(𝑥
𝑘
)
= 𝜀
𝑗+1

= 𝛾𝜀
𝑗
. Let

𝐹𝑎 (𝑥𝑘) = 𝑓𝑝
𝑎

(𝑥
𝑘

) + 𝜀
𝑝
𝑎
(𝑥
𝑘
)
+ (2𝜆)

−1𝑠(𝑥𝑘)
𝑇

𝑠 (𝑥𝑘) , (21)

where 𝑓𝑝
𝑎

(𝑥
𝑘

) ∈ 𝑅 is chosen to satisfy

𝑓 (𝑝𝑎 (𝑥𝑘)) ≥ 𝑓𝑝
𝑎

(𝑥
𝑘

) ≥ 𝑓 (𝑝𝑎 (𝑥𝑘)) − 𝜀
𝑝
𝑎
(𝑥
𝑘
)
. (22)

The results stated below are fundamental and useful in the
subsequent discussions.

(P1) 𝐹
𝑎
(𝑥𝑘) ≤ 𝐹(𝑥𝑘) ≤ 𝐹𝑎(𝑥𝑘).

(P2) 𝐹𝑎(𝑥𝑘) = 𝐹(𝑥𝑘) if and only if 𝑝𝑎(𝑥𝑘) = 𝑝(𝑥𝑘) and
𝑓𝑝
𝑎

(𝑥
𝑘

) = 𝑓(𝑝(𝑥𝑘)).

Note that 𝑝(𝑥𝑘) is the unique minimizer of (2) and (P1) and
(P2) can be obtained by the definitions of 𝐹𝑎(𝑥𝑘), 𝐹

𝑎
(𝑥𝑘), and

𝐹(𝑥𝑘).

(P3)
(i) If we define 𝐹

𝑒𝑎
(𝑥𝑘) = min

𝑠∈𝑅
𝑛{max

𝑖∈𝐽
𝑘{𝑓(𝑧𝑖) +

𝑔(𝑧𝑖)𝑇(𝑥𝑘 + 𝑠 − 𝑧𝑖)} + (2𝜆)−1𝑠𝑇𝑠}, where 𝑔(𝑧𝑖) ∈
𝜕𝑓(𝑧𝑖), then 𝐹

𝑎
(𝑥𝑘) → 𝐹

𝑒𝑎
(𝑥𝑘) as the new point

𝑧𝑗+1 = 𝑥𝑘 + 𝑠(𝑥𝑘) is appended into the bundle 𝐽𝑘
infinitely.

(ii) Let 𝜀 = max
𝑖∈𝐽
𝑘{𝜀
𝑖
}. if 𝑔𝑎(𝑧𝑖, 𝜀

𝑖
) = 𝑔(𝑧𝑖) ∈ 𝜕𝑓(𝑧𝑖),

then 𝐹
𝑎
(𝑥𝑘) ≥ 𝐹

𝑒𝑎
(𝑥𝑘) − 𝜀.

Because 𝜀
𝑖
→ 0 by the update rule 𝜀

𝑖+1
= 𝛾𝜀
𝑖
, 0 < 𝛾 < 1, we

have 𝑔𝑎(𝑧𝑖, 𝜀
𝑖
) → 𝑔(𝑧𝑖) and 𝑓𝑖 → 𝑓(𝑧𝑖). Thus 𝑓

𝑎
(𝑥𝑘 + 𝑠) →

max
𝑖∈𝐽
𝑘{𝑓(𝑧𝑖) + 𝑔(𝑧𝑖)𝑇(𝑥𝑘 + 𝑠 − 𝑧𝑖)}, so 𝐹

𝑒𝑎
(𝑥𝑘) → 𝐹

𝑎
(𝑥𝑘). It

is easy to see that 𝑓
𝑎
(𝑥𝑘 + 𝑠) = max

𝑖∈𝐽
𝑘{𝑓𝑖 + 𝑔𝑎(𝑧𝑖, 𝜀

𝑖
)𝑇(𝑥𝑘 +

𝑠 − 𝑧𝑖)} ≥ max
𝑖∈𝐽
𝑘{𝑓(𝑧𝑖) + 𝑔𝑎(𝑧𝑖, 𝜀

𝑖
)𝑇(𝑥𝑘 + 𝑠 − 𝑧𝑖) − 𝜀

𝑖
} ≥

max
𝑖∈𝐽
𝑘{𝑓(𝑧𝑖) + 𝑔(𝑧𝑖)𝑇(𝑥𝑘 + 𝑠 − 𝑧𝑖)} − 𝜀. Therefore, 𝐹

𝑎
(𝑥𝑘) =

min
𝑠∈𝑅
𝑛{𝑓
𝑎
(𝑥𝑘 + 𝑠) + (2𝜆)−1 ‖𝑠‖2} ≥ 𝐹

𝑒𝑎
(𝑥𝑘) − 𝜀.

Let

𝑎 (𝑥𝑘) = 𝐹𝑎 (𝑥𝑘) − 𝐹
𝑎
(𝑥𝑘) . (23)

We accept 𝑝𝑎(𝑥𝑘) as an approximation of 𝑝(𝑥𝑘) based on the
following rule:

𝑎 (𝑥𝑘) < 𝑚 (𝑥𝑘)min {𝜆−2𝑠(𝑥𝑘)
𝑇

𝑠 (𝑥𝑘) , 𝐿} , (24)

where 𝑚(𝑥𝑘) and 𝐿 are given positive numbers and 𝑚(𝑥𝑘) is
fixed during one bundling process; that is,𝑚(𝑥𝑘) depends on
𝑥𝑘, see Step 1 in AQNBT algorithm presented in Section 3.
If (24) is not satisfied, we let 𝑧𝑗+1 = 𝑥𝑘 + 𝑠(𝑥𝑘) and 𝜀

𝑗+1
=

𝛾𝜀
𝑗
, 0 < 𝛾 < 1, and take 𝑓𝑗+1 = 𝑓𝑝

𝑎

(𝑥
𝑘

) and 𝑔𝑎(𝑧𝑗+1, 𝜀
𝑗+1
) ∈

𝑅𝑛 satisfying

𝑓 (𝑧𝑗+1) ≥ 𝑓𝑗+1 ≥ 𝑓 (𝑧𝑗+1) − 𝜀
𝑗+1
,

𝑓 (𝑧) ≥ 𝑓𝑗+1 + ⟨𝑔𝑎 (𝑧𝑗+1, 𝜀
𝑗+1
) , 𝑧 − 𝑧𝑗+1⟩ , ∀𝑧 ∈ 𝑅𝑛,

(25)

and then append a new piece 𝑓𝑗+1 + 𝑔𝑎(𝑧𝑗+1, 𝜀
𝑗+1
)𝑇(𝑥𝑘 + 𝑠 −

𝑧𝑗+1) to (14), replace 𝑗 by 𝑗+1, and solve (19) for finding a new
𝑠(𝑥𝑘) and 𝑎(𝑥𝑘) to be tested in (24). If this bundle process does
not terminate, we have the following conclusion.

(P4) Suppose that 𝑥𝑘 is not the minimizer of 𝑓. If (24) is
never satisfied, then 𝑎(𝑥𝑘) → 0 as the new point 𝑧𝑗+1

is appended into the bundle 𝐽𝑘 infinitely.

Suppose that |𝐽𝑘| = |{1, 2, . . . , 𝑗}| = 𝑗 < 𝐽max. Define the
functions 𝜙 and 𝜑

𝑗+1
, 𝑗 = 1, 2, . . . by

𝜙 (𝑧) = 𝑓 (𝑧) + (2𝜆)
−1
𝑧 − 𝑥

𝑘

2

,

𝜑
𝑗+1

(𝑧) = max
𝑖∈𝐽
𝑘
={1,2,...,𝑗}

{𝑓𝑖 + 𝑔𝑎(𝑧𝑖, 𝜀
𝑖
)
𝑇

(𝑧 − 𝑧𝑖)}

+ (2𝜆)
−1
𝑧 − 𝑥

𝑘

2

.

(26)

Let 𝑧𝑗+1 be the unique minimizer of min
𝑧∈𝑅
𝑛𝜑
𝑗+1
(𝑧), and

let 𝑧𝑗+2 be the unique minimizer of min
𝑧∈𝑅
𝑛𝜑
𝑗+2
(𝑧), where

𝜑
𝑗+2
(𝑧) = max

𝑖∈𝐽
𝑘+1{𝑓𝑖 + 𝑔𝑎(𝑧𝑖, 𝜀

𝑖
)𝑇(𝑧 − 𝑧𝑖)} + (2𝜆)−1 ‖ 𝑧 −

𝑥𝑘‖2. Note that if |{1, 2, . . . , 𝑗 + 1}| = 𝑗 + 1 < 𝐽max, then
let 𝐽𝑘+1 = {1, 2, . . . , 𝑗 + 1}, so 𝜑

𝑗+1
(𝑧𝑗+1) ≤ 𝜑

𝑗+2
(𝑧𝑗+2); if

|{1, 2, . . . , 𝑗 + 1}| = 𝑗 + 1 = 𝐽max, delete at least two elements
from {1, 2, . . . , 𝑗 + 1}, say 𝑞

1
, 𝑞
2
, and 𝑞

1
̸= 𝑗 + 1, 𝑞

2
̸= 𝑗 + 1,

the order of the other elements in {1, 2, . . . , 𝑗 + 1} are left
intact. Introduce an additional index �̃� associated with the
aggregated 𝜀-subgradient and linearization error into 𝐽𝑘+1

and let 𝐽𝑘+1 = {1, 2, . . . , 𝑞
1
−1, 𝑞
1
+1, . . . , 𝑞

2
−1, 𝑞
2
+1, . . . , �̃�, 𝑗+

1}, so |𝐽𝑘+1| = 𝑗 < 𝐽max. By adjusting 𝜆 appropriately,
we can make sure that 𝑧𝑗+1 and 𝑧𝑗+2 are not far away from
𝑥𝑘. According to the proof of Proposition 3, see Fukushima
[21], we find that 𝜙(𝑧𝑗) has limit, say 𝜙∗, and 𝜑

𝑗+1
(𝑧𝑗+1) also

converges to 𝜙∗ as 𝑗 → ∞. By the definitions of 𝐹(𝑥𝑘) and
𝐹𝑎(𝑥𝑘) we have 𝐹

𝑎
(𝑥𝑘) → 𝐹(𝑥𝑘) and 𝐹𝑎(𝑥𝑘) → 𝐹(𝑥𝑘) as

𝑗 → ∞, so 𝑎(𝑥𝑘) → 0 as 𝑗 → ∞.
In the next part we give the definition of 𝐺𝑎(𝑥𝑘), which is

the approximation of 𝐺(𝑥𝑘),

𝐺𝑎 (𝑥𝑘) = 𝜆−1 (𝑥𝑘 − 𝑝𝑎 (𝑥𝑘)) = −𝜆−1𝑠 (𝑥𝑘) , (27)

and some properties of 𝐺𝑎(𝑥𝑘) are discussed. It is easy to see
that the approximation of 𝐺(𝑥𝑘) is associated with 𝐹(𝑥𝑘):

(P5) ‖𝐺(𝑥𝑘) − 𝐺𝑎(𝑥𝑘)‖ = ‖𝜆−1(𝑝(𝑥𝑘) − 𝑝𝑎(𝑥𝑘))‖ ≤

√2𝑎(𝑥𝑘)/𝜆.
By the strong convexity of 𝜙(𝑧), we have 𝜙(𝑝𝑎(𝑥𝑘)) ≥

𝜙(𝑝(𝑥𝑘)) + (2𝜆)−1 ‖ 𝑝(𝑥𝑘) − 𝑝𝑎(𝑥𝑘)‖2. From the definitions
of 𝐹𝑎(𝑥𝑘) and 𝑝(𝑥𝑘), we obtain 𝐹𝑎(𝑥𝑘) = 𝑓𝑝

𝑎

(𝑥
𝑘

) + 𝜀
𝑝
𝑎
(𝑥
𝑘
)
+

(2𝜆)−1 ‖𝑝𝑎(𝑥𝑘) − 𝑥𝑘‖2 ≥ 𝑓(𝑝𝑎(𝑥𝑘)) + (2𝜆)−1 ‖𝑝𝑎(𝑥𝑘) − 𝑥𝑘‖2 =

𝜙(𝑝𝑎(𝑥𝑘)) ≥ 𝜙(𝑝(𝑥𝑘)) + (2𝜆)−1 ‖ 𝑝(𝑥𝑘) − 𝑝𝑎(𝑥𝑘)‖2 = 𝐹(𝑥𝑘) +

(2𝜆)−1 ‖𝑝(𝑥𝑘) − 𝑝𝑎(𝑥𝑘)‖2. By (P1), (P5) holds.
By (P4) and (P5), we have the following (P6). In fact,

(P6) says that the bundle subalgorithm for finding 𝑠(𝑥𝑘)
terminates in finite steps.
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(P6) If 𝑥𝑘 does not minimize 𝑓, then we can find one
solution 𝑠(𝑥𝑘) of (18) such that (24) holds.

3. Approximate Quasi-Newton
Bundle-Type Algorithm

For presenting the algorithm, we use the following notations:
𝑎
𝑘
= 𝑎(𝑥𝑘), 𝑠𝑘 = 𝑠(𝑥𝑘), and 𝑚

𝑘
= 𝑚(𝑥𝑘). Given positive

numbers 𝛿, 𝜐, 𝛾, and 𝐿 such that 0 < 𝛿 < 1, 0 < 𝜐 < 1,
0 < 𝛾 < 1, and one symmetric 𝑛 × 𝑛 positive definite matrix
𝑁.
Approximate Quasi-Newton Bundle-Type Algorithm
(AQNBT Alg):

Step 1 (initialization). Let 𝑥1 be a starting point, and let 𝐵
1

be an 𝑛 × 𝑛 symmetric positive definite matrix. Let 𝜀
1
and 𝜆

be positive numbers. Choose a sequence of positive numbers
{𝑚
𝑘
}∞
𝑘=1

such that ∑∞
𝑘=1

𝑚
𝑘
< ∞. Set 𝑘 = 1. Find 𝑠1 ∈ 𝑅𝑛 and

𝑎
1
such that

𝑎
1
≤ 𝑚
1
min {𝜆−2(𝑠1)

𝑇

𝑠1, 𝐿} . (28)

Let 𝐺𝑎(𝑥1) = −𝜆−1𝑠1, 𝑧1 = 𝑥1, 𝑗 = 1, and 𝑗 be the running
index of bundle subalgorithm.

Step 2 (finding a search direction). If ‖𝐺𝑎(𝑥𝑘)‖ = 0, stop with
𝑥𝑘 optimal. Otherwise compute

𝑑𝑘 = −𝐵−1
𝑘
𝐺𝑎 (𝑥𝑘) . (29)

Step 3 (line search). Starting with 𝑢 = 1, let 𝑖
𝑘
be the smallest

nonnegative integer 𝑢 such that

𝐹
𝑎
(𝑥𝑘 + 𝜐𝑢𝑑𝑘) ≤ 𝐹𝑎 (𝑥𝑘) + 𝛿𝜐𝑢(𝑑𝑘)

𝑇

𝐺𝑎 (𝑥𝑘) , (30)

where 𝜀
𝑢+1

= 𝛾𝜀
𝑢
corresponds to the approximations 𝐹

𝑎
(𝑥𝑘 +

𝜐𝑢𝑑𝑘) and 𝐹𝑎(𝑥𝑘 + 𝜐𝑢𝑑𝑘) of 𝐹 at 𝑥𝑘 + 𝜐𝑢𝑑𝑘; 𝐹
𝑎
(𝑥𝑘 + 𝜐𝑢𝑑𝑘)

satisfies

𝐹𝑎 (𝑥𝑘 + 𝜐𝑢𝑑𝑘) − 𝐹
𝑎
(𝑥𝑘 + 𝜐𝑢𝑑𝑘)

≤ 𝑚
𝑘+1

min {𝜆−2𝑠(𝑥𝑘 + 𝜐𝑢𝑑𝑘)
𝑇

𝑠 (𝑥𝑘 + 𝜐𝑢𝑑𝑘) , 𝐿} ,
(31)

and 𝑠(𝑥𝑘+𝜐𝑢𝑑𝑘) is the solution of (19), in which 𝑥𝑘 is replaced
by 𝑥𝑘 + 𝜐𝑢𝑑𝑘, and the expression of 𝐹𝑎(𝑥𝑘 + 𝜐𝑢𝑑𝑘) is similar
to (21), but 𝑥 is replaced by 𝑥𝑘 + 𝜐𝑢𝑑𝑘. Set 𝑡𝑘 = 𝜐𝑖𝑘 and 𝑥𝑘+1 =
𝑥𝑘 + 𝑡𝑘𝑑𝑘.

Step 4 (computing the approximate gradient). Compute
𝐺𝑎(𝑥𝑘+1) = −𝜆−1𝑠𝑘+1.

Step 5 (updating 𝐵
𝑘
). Let Δ𝑥𝑘 = 𝑥𝑘+1 − 𝑥𝑘 and Δ𝑔𝑘 =

𝐺𝑎(𝑥𝑘+1) − 𝐺𝑎(𝑥𝑘). Set

𝐵
𝑘+1

=
{{
{{
{

𝑁, if (Δ𝑥𝑘)
𝑇

Δ𝑔𝑘 ≤ 0,

(symmetric, positive definite
and satisfies Bk+1Δxk = Δgk) otherwise.

(32)

Set 𝑘 = 𝑘 + 1, and go to Step 2.

End of AQNBT algorithm.

4. Convergence Analysis

In this section we prove the global convergence of the
algorithm described in Section 3, and furthermore under the
assumptions of semismoothness and regularity, we show that
the proposed algorithmhas aQ-superlinear convergence rate.
Following the proof ofTheorem 3, seeMifflin et al. [7], we can
show that, at each iteration 𝑘, 𝑖

𝑘
is well defined, and hence

the stepsize 𝑡𝑘 > 0 can be determined finitely in Step 4. We
assume the proposed algorithm does not terminate in finite
steps, so the sequence {𝑥𝑘}∞

𝑘=1
is an infinite sequence. Since

the sequence {𝑚
𝑘
}∞
𝑘=1

satisfies ∑∞
𝑘=1

𝑚
𝑘
< ∞, there exists a

constant 𝑊 such that ∑∞
𝑘=1

𝑚
𝑘
≤ 𝑊. Let 𝐷

𝑎
= {𝑥 ∈ 𝑅𝑛 |

𝐹(𝑥) ≤ 𝐹(𝑥1) + 2𝐿𝑊}. By making a slight change of the
proof of Lemma 1, see Mifflin et al. [7], we have the following
lemma.

Lemma 1. 𝐹(𝑥𝑘+1) ≤ 𝐹(𝑥𝑘)+𝐿(𝑚
𝑘
+𝑚
𝑘+1

) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑘 ≥ 1 and
𝑥𝑘 ∈ 𝐷

𝑎
.

Theorem 2. Suppose 𝑓 is bounded below and there exists a
constant 𝛽 such that

⟨𝐵
𝑘
𝑑, 𝑑⟩ ≥ 𝛽‖𝑑‖

2, ∀𝑑 ∈ 𝑅𝑛, ∀𝑘. (33)

Then any accumulation point of {𝑥𝑘} is an optimal solution of
problem (1).

Proof. According to the first part of the proof of Theorem 3,
see Mifflin et al., [7], we have lim

𝑘→∞
𝐹(𝑥𝑘) = 𝐹∗. Since

𝑚
𝑘
→ 0, from (P1) we obtain 𝑎

𝑘
→ 0 as 𝑘 → ∞, and

lim
𝑘→∞

𝐹
𝑎
(𝑥𝑘) = lim

𝑘→∞
𝐹𝑎(𝑥𝑘) = 𝐹∗. Thus

lim
𝑘→∞

𝑡𝑘(𝑑𝑘)
𝑇

𝐺𝑎 (𝑥𝑘) = 0. (34)

Let 𝑥 be an arbitrary accumulation point of {𝑥𝑘}, and let
{𝑥𝑘}
𝑘∈𝐾

be a subsequence converging to 𝑥. By (P5) we have

lim
𝑘∈𝐾,𝑘→∞

𝐺𝑎 (𝑥𝑘) = 𝐺 (𝑥) . (35)

Since {𝐵−1
𝑘
} is bounded, we may suppose

lim
𝑘∈𝐾,𝑘→∞

𝑑𝑘 = 𝑑 (36)
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for some 𝑑 ∈ 𝑅𝑛. Moreover we have

lim
𝑘∈𝐾,𝑘→∞

⟨𝐺𝑎 (𝑥𝑘) , 𝑑𝑘⟩ = ⟨𝐺 (𝑥) , 𝑑⟩ ≤ −𝛽
𝑑

2

. (37)

If lim inf
𝑘→∞

𝑡𝑘 > 0, then 𝑑 = 0. Otherwise, if
lim inf

𝑘→∞
𝑡𝑘 = 0, by taking a subsequence if necessary we

may assume 𝑡𝑘 → 0 for 𝑘 ∈ 𝐾. The definition of 𝑖
𝑘
in the line

search rule gives

𝐹
𝑎
(𝑥𝑘 + V

𝑖
𝑘
−1𝑑𝑘) > 𝐹𝑎 (𝑥𝑘) + 𝛿V𝑖𝑘−1(𝑑𝑘)

𝑇

𝐺𝑎 (𝑥𝑘) , (38)

where V𝑖𝑘−1 = 𝑡𝑘/V. So by (P1) we obtain

𝐹 (𝑥𝑘 + 𝜐𝑖𝑘−1𝑑𝑘) − 𝐹 (𝑥𝑘)

𝜐𝑖𝑘−1
> 𝛿(𝑑𝑘)

𝑇

𝐺𝑎 (𝑥𝑘) . (39)

By taking the limit in (39) on the subsequence 𝑘 ∈ 𝐾, we have

𝑑
𝑇

𝐺 (𝑥) ≥ 𝛿𝑑
𝑇

𝐺 (𝑥) . (40)

In view of (37), the last inequality also gives 𝑑 = 0. Since
𝐺𝑎(𝑥) = −𝐵

𝑘
𝑑𝑘 and 𝐵

𝑘
is bounded, it follows from 𝑑 = 0 that

lim
𝑘→∞,𝑘∈𝐾

𝐺𝑎 (𝑥𝑘) = 𝐺 (𝑥) = 0. (41)

Therefore, 𝑥 is an optimal solution of problem (1).

In the next part, we focus our attention on establishing
Q-superlinear convergence of the proposed algorithm.

Theorem 3. Suppose that the conditions of Theorem 2 hold
and𝑥 is an optimal solution of (1). Assume that𝐺 is BD-regular
at 𝑥. Then 𝑥 is the unique optimal solution of (1) and the entire
sequence {𝑥𝑘} converges to 𝑥.

Proof. By the convexity and BD-regularity of 𝐺 at 𝑥, 𝑥 is
the unique optimal solution of (3); for the proof, see Qi and
Womersley [22]. So 𝑥 is also the unique optimal solution
of (1). This implies that both 𝑓 and 𝐹 must have compact
level sets. By Lemma 1 {𝑥𝑘} has at least one accumulation
point, and from Theorem 2 we know this accumulation
point must be 𝑥 since 𝑥 is the unique solution of (1). Next
following the proof of Theorem 5.1, see Fukushima and Qi
[1], we can prove that the entire sequence {𝑥𝑘} converges to
𝑥.

The condition that the Lipschitz continuous gradient 𝐺
of 𝐹 is semismooth at the unique optimal solution of (1) is
required in the next theorem.This condition is identified if 𝑓
is the maximum of several affine functions or 𝑓 satisfies the
constant rank constraint qualification.

Theorem 4. Suppose that the conditions of Theorem 3 hold
and 𝐺 is semismooth at the unique optimal solution 𝑥 of (1).
Suppose further that

(i) 𝑎
𝑘
= 𝑜(‖𝐺(𝑥𝑘)‖

2

),

(ii) lim
𝑘→∞

dist(𝐵
𝑘
, 𝜕
𝐵
𝐺(𝑥𝑘)) = 0,

(iii) 𝑡𝑘 ≡ 1, for all large 𝑘.

Then {𝑥𝑘} converges to 𝑥 Q-superlinearly.

Proof. Firstly we have {𝑥𝑘} converges to𝑥 byTheorem 3.Then
by condition (i) and (P5), we have

𝐺
𝑎 (𝑥𝑘) − 𝐺 (𝑥𝑘)



= 𝑂 (
√𝑎𝑘

) = 𝑜 (
𝐺 (𝑥

𝑘)
) = 𝑜 (

𝑥
𝑘 − 𝑥

) .
(42)

By condition (ii), there is a 𝐵
𝑘
∈ 𝜕
𝐵
𝐺(𝑥𝑘) such that

𝐵𝑘 − 𝐵𝑘
 = 𝑜 (1) . (43)

Since𝐺 is semismooth at 𝑥, we have, according to Qi and Sun
[13],

𝐺 (𝑥
𝑘) − 𝐺 (𝑥) − 𝐵

𝑘
(𝑥𝑘 − 𝑥)

 = 𝑜 (
𝑥
𝑘 − 𝑥

) . (44)

Notice that ‖ 𝐵−1
𝑘
‖= 𝑂(1), (42)–(44) and condition (iii), for

all large 𝑘, we have

𝑥
𝑘+1 − 𝑥



=
𝑥
𝑘 − 𝑥 − 𝐵−1

𝑘
𝐺𝑎 (𝑥𝑘)



=
𝐵
−1

𝑘
[𝐺𝑎 (𝑥𝑘) − 𝐺 (𝑥𝑘) + 𝐺 (𝑥𝑘) − 𝐺 (𝑥)

−𝐵
𝑘
(𝑥𝑘 − 𝑥) + (𝐵

𝑘
− 𝐵
𝑘
) (𝑥𝑘 − 𝑥)]



≥

𝐵
−1

𝑘


[
𝐺
𝑎 (𝑥𝑘) − 𝐺 (𝑥𝑘)



+
𝐺 (𝑥

𝑘) − 𝐺 (𝑥) − 𝐵
𝑘
(𝑥𝑘 − 𝑥)



+
𝐵𝑘 − 𝐵𝑘


𝑥
𝑘 − 𝑥

] .

(45)

This establishes Q-superlinear convergence of {𝑥𝑘} to 𝑥.

Condition (i) can be replaced by a more realistic condi-
tion 𝑎

𝑘
= 𝑜(‖ 𝐺(𝑥𝑘−1)‖2) without impairing the convergence

result since 𝑎
𝑘
is chosen before 𝑥

𝑘
is generated. For condition

(ii), Fukushima and Qi [1] suggest one of possible choices of
𝐵
𝑘
, we may expect 𝐵

𝑘
to provide a reasonable approximation

to an element in 𝜕
𝐵
𝐺(𝑥𝑘), but it may be far from what we

should approximate.There are some approaches to overcome
this phenomenon, see Mifflin [10] and Qi and Chen [3]. For
condition (iii) we can make sure that if the conditions of
Theorem 4, except (iii), hold and 0 < 𝛿 < 1/2, then condition
(iii) holds automatically.
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[17] C. Lemaréchal, “An extension of davidon methods to non
differentiable problems,”Mathematical Programming Study, vol.
3, pp. 95–109, 1975.

[18] K. C. Kiwiel,AVariableMetricMethod of Centres for Nonsmooth
Minimization, International Institute for Applied SystemsAnal-
ysis, Laxemnburg, Austria, 1981.

[19] K. C. Kiwiel, Efficient algorithms for nonsmooth optimization
and their applications [Ph.D. thesis], Department of Electronics,
Technical University of Warsaw, Warsaw, Poland, 1982.

[20] R. Mifflin, “A modification and extension of Lemarechal’s
algorithm for nonsmooth minimization,” Mathematical Pro-
gramming Study, vol. 17, pp. 77–90, 1982.

[21] M. Fukushima, “A descent algorithm for nonsmooth convex
optimization,” Mathematical Programming, vol. 30, no. 2, pp.
163–175, 1984.

[22] L. Q. Qi and R. S. Womersley, “An SQP algorithm for extended
linear-quadratic problems in stochastic programming,” Annals
of Operations Research, vol. 56, pp. 251–285, 1995.


