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Wehave undertaken the fact that the periodic solution of (2+1)DKdV-Burgers equation does not exist.TheSaddle-node heteroclinic
orbit has been obtained. Using the Lie groupmethod, we get two-(1+1)-dimensional PDE, through symmetric reduction; and by the
direct integral method, spread F-expansion method, and (𝐺/𝐺)-expansion method, we obtain exact nontraveling wave solutions,
for the (2+1)D KdV Burgers equation, and find out some new strange phenomenons of sympathetic vibration to evolution of
nontraveling wave.

1. Introduction

We consider the (2+1)-dimensional Korteweg-de Vries Burg-
ers ((2+1)D KdV Burgers) equation

(𝑢
𝑡
+ 𝑢𝑢
𝑥
− 𝛽𝑢
𝑥𝑥
+ 𝛼𝑢
𝑥𝑥𝑥
)
𝑥
+ 𝛾𝑢
𝑦𝑦
= 0, (1)

where 𝑢 : 𝑅
𝑥
×𝑅
𝑦
×𝑅+
𝑡
→ 𝑅, 𝛼, 𝛽, and 𝛾 are real parameters.

Equation (1) is model equation for wide class of nonlinear
wave models in an elastic tube, liquid with small bubbles,
and turbulence [1–3]. Much attention has been put on the
study of their exact solutions by some methods [4], such
as, a complex line soliton by extended tanh method with
symbolic computation [5], exact traveling wave solutions
including solitary wave solutions, periodic wave and shock
wave solutions by extended mapping method, and homotopy
perturbation method [6, 7].

It is well known that the investigation of exact solutions
of nonlinear evolution equations plays an important role in
the study of nonlinear physical phenomena. Many effective
methods have been presented [7–22], such as functional
variable separation method [8, 9], homotopy perturbation
method [12], F-expansion method [7, 13], Lie group method
[14, 15], variational iteration method [16], homoclinic test
method [17–19], Exp-function method [20, 21], and homo-
geneous balance method [22]. Practically, there is no unified
method that can be used to handle all types of nonlinearity.

In this paper, we will discuss the existence of periodic
traveling wave solution and seek the Saddle-Node hetero-
clinic orbit, and further use the Lie group method with the
aid of the symbolic computation system Maple to construct
the non-traveling wave solutions for (1).

2. Existence of Periodic Traveling
Wave Solution of (1)

Introducing traveling wave transformation in this form
𝑢 (𝑥, 𝑦, 𝑡) = 𝑢 (𝜉) , 𝜉 = 𝑝𝑥 + 𝑞𝑦 − 𝑐𝑡 (2)

permits us to convert (1) into an ODE for 𝑢 = 𝑢(𝜉)
𝑝(𝑝𝑢𝑢

𝜉
− 𝛽𝑝
2
𝑢
𝜉𝜉
+ 𝛼𝑝
3
𝑢
𝜉𝜉𝜉
)
𝜉
− 𝑟𝑢
𝜉𝜉
= 0, (3)

where 𝑟 = 𝑝𝑐−𝑞2𝛾, Integrating (3) with respect to 𝜉 twice and
taking integration constant to 𝐴 yields

2𝛼𝑝
4
𝑢
𝜉𝜉
− 2𝛽𝑝

3
𝑢
𝜉
+ 𝑝
2
𝑢
2
− 2𝑟𝑢 = 𝐴. (4)

Letting 𝑢
𝜉
= 𝑣, thus nonlinear ordinary differential equation

(4) is equivalent to the autonomous dynamic system as fol-
lows:

𝑑𝑢

𝑑𝜉
= 𝑣, (5)

𝑑𝑣

𝑑𝜉
=

1

2𝛼𝑝4
(2𝛽𝑝
3
𝑣 − 𝑝
2
𝑢
2
+ 2𝑟𝑢 + 𝐴) . (6)
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The dynamic system (5) has two balance points:

𝑃
1
(𝑢
1
, 𝑣
1
) = (

𝑟 + √𝑟2 + 𝑝2𝐴

𝑝2
, 0) ,

𝑃
2
(𝑢
2
, 𝑣
2
) = (

𝑟 − √𝑟2 + 𝑝2𝐴

𝑝2
, 0) .

(7)

The Jacobi matrixes at the balance points for the right-hand
side of (5) are obtained as follows, respectively:

𝐽
1
= (

0 1

−
√𝑟2 + 𝑝2𝐴

𝑝4𝛼

𝛽

𝑝𝛼

) ,

𝐽
2
= (

0 1

√𝑟2 + 𝑝2𝐴

𝑝4𝛼

𝛽

𝑝𝛼

) .

(8)

Their latent equations are expressed, respectively, as,

𝑝
3
𝜆 (𝑝𝛼𝜆 − 𝛽) + √𝑟2 + 𝑝2𝐴 = 0,

𝑝
3
𝜆 (𝑝𝛼𝜆 − 𝛽) − √𝑟2 + 𝑝2𝐴 = 0.

(9)

Relevant latent roots are as follows respectively:

𝜆
1
=

𝑝𝛽 ± √𝑝2𝛽2 − 4𝛼√𝑟2 + 𝑝2𝐴

2𝑝2𝛼
,

𝜆
2
=

𝑝𝛽 ± √𝑝2𝛽2 + 4𝛼√𝑟2 + 𝑝2𝐴

2𝑝2𝛼
.

(10)

Obviously, if 𝑝2𝛽2 > 4𝛼√𝑟2 + 𝑝2𝐴, then 𝜆
1
are two positive

real roots, therefore 𝑃
1
is a nonsteady node point. If 0 <

𝑝2𝛽2 < 4𝛼√𝑟2 + 𝑝2𝐴, then 𝜆
1
are conjugate complex roots

and real part is positive, so 𝑃
1
is a nonsteady focus point. And

𝜆
2
is a positive and minus real root, thus 𝑃

2
is a saddle point.

From (5), we know the phase trajectory on the phase plane
satisfies

𝑑𝑣

𝑑𝑢
=
2𝛽𝑝3𝑣 − 𝑝2𝑢2 + 2𝑟𝑢 + 𝐴

2𝛼𝑝4𝑣
. (11)

Integrating (11), we can obtain

𝐻(𝑢, 𝑣) = 𝐴𝑢 + 𝑟𝑢
2
−
1

3
𝑝
2
𝑢
3
+ 2𝛽𝑝

3
𝑢𝑣 − 𝛼𝑝

4
𝑣
2
, (12)

where𝐻(𝑢, 𝑣) is a total energy or Hamiliton function of sys-
tem (4). Apparently

𝑢
𝜉
̸= −
𝜕𝐻

𝜕𝑣
, 𝑣

𝜉
̸=
𝜕𝐻

𝜕𝑢
. (13)

Consequently, the system expressed in (12) is not a conserva-
tive one, then periodic traveling wave solution of (1) does not
exist.

We conclude the above analysis in the following theorem.

Theorem 1. Under the traveling wave transformation, the
periodic solution of (2+1)-dimensional KdV-Burgers equation
does not exist.

But, saddle-node heteroclinic orbits and nontraveling peri-
odic solution do exist, whichwill be discussed later in this paper.

3. Saddle-Node Heteroclinic Orbits of
KdV-Burgers Equation

First, we assume the solutions of (4) in the form

𝑢 (𝜉) =
𝑟 + √𝑟2 + 𝑝2𝐴

𝑝2
+

𝑏

(1 + 𝑒𝑎𝜉)
2
. (14)

Substituting (14) into (4) yields

2 (4𝛼𝑝
4
𝑎
2
+ √𝑟2 + 𝑝2𝐴 + 2𝛽𝑝

3
𝑎) 𝑒
2𝑎𝜉

− 4 (𝛼𝑝
4
𝑎
2
− √𝑟2 + 𝑝2𝐴 − 𝛽𝑝

3
𝑎) 𝑒
𝑎𝜉

+ 2√𝑟2 + 𝑝2𝐴 + 𝑝
2
𝑏 = 0.

(15)

Then we get

4𝛼𝑝
4
𝑎
2
+ √𝑟2 + 𝑝2𝐴 + 2𝛽𝑝

3
𝑎 = 0,

𝛼𝑝
4
𝑎
2
− √𝑟2 + 𝑝2𝐴 − 𝛽𝑝

3
𝑎 = 0,

2√𝑟2 + 𝑝2𝐴 + 𝑝
2
𝑏 = 0.

(16)

Solving the system (16) gets

𝑎 = −
𝛽

5𝛼𝑝
, 𝑏 = −

12𝛽2

25𝛼
, √𝑟2 + 𝑝2𝐴 =

6𝑝2𝛽2

25𝛼
.

(17)

Substituting (17) into (14) obtains

𝑢 (𝜉) =
𝑟 + √𝑟2 + 𝑝2𝐴

𝑝2
−
12𝛽
2

25𝛼

1

(1 + 𝑒−(𝛽/5𝛼𝑝)𝜉)
2

= 𝑢
1
−
3𝛽2

25𝛼
(1 + tanh

𝛽

20𝛼
𝜉)

2

.

(18)

Evidently, 𝜉 → −∞ ⇒ 𝑢(𝜉) → 𝑢
1
, 𝜉 → +∞ ⇒ 𝑢(𝜉) →

𝑢
1
− (6𝛽2/25𝛼) = 𝑢

2
. Thus (18) is a saddle-node heteroclinic

orbit through nonsteady node point 𝑃
1
and saddle point 𝑃

2

[23].
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Ecumenic, taking theHamiliton function𝐻(𝑢, 𝑣) = 𝐵, we
obtain
𝑑𝑢

𝑑𝜉
= 𝑣

=
3𝑝𝛽𝑢 ± √3𝑢 [3𝐴𝛼 + 3 (𝑝2𝛽2 + 𝑟𝛼) 𝑢 − 𝑝2𝛼𝑢2] − 9𝐵𝛼

3𝛼𝑝2
,

(19)
where 𝐵 is an arbitrary constant. Integrating (19) with respect
to 𝜉 we have

∫
𝑢(𝜉) 3𝛼𝑝2

3𝑝𝛽𝑠 ± √3𝑠 [3𝐴𝛼 + 3 (𝑝2𝛽2 + 𝑟𝛼) 𝑠 − 𝑝2𝛼𝑠2] − 9𝐵𝛼

𝑑𝑠

= 𝜉 + 𝜉
0
,

(20)

where 𝜉
0
is an arbitrary constant. We can see that (4) has

the general solution (20) and all partial cases as include
above result can be found from the general solution of (20).
Example, take 𝛼√𝑟2 + 𝑝2𝐴 − 𝑝2𝛽2 = 0, 3𝐵𝛼 + 𝐴𝛽2 = 0,
𝑟𝛼 + 𝑝2𝛽2 = 0 in (20), we find a solution of (4) as follows:

𝑢 (𝜉) = −
3𝛽2

4𝛼
[1 + tanh(

𝛽

4𝑝𝛼
𝜉 + 𝜉
0
)]

2

. (21)

It is a heteroclinic orbit too.

4. Li Symmetry of (1)
This section devotes to Li symmetry of (1) [14, 15]. Let

𝜎 = 𝜎 (𝑥, 𝑦, 𝑡, 𝑢, 𝑢
𝑡
, 𝑢
𝑥
, 𝑢
𝑦
, . . .) . (22)

be the Li symmetry of (1). From Lie group theory, 𝜎 satisfies
the following equation
𝜎
𝑥𝑡
+ 2𝑢
𝑥
𝜎
𝑥
+ 𝑢𝜎
𝑥𝑥
+ 𝜎𝑢
𝑥𝑥
− 𝛽𝜎
𝑥
3 + 𝛼𝜎

𝑥
4 + 𝛾𝜎

𝑦𝑦
= 0.

(23)
We take the function 𝜎 in the form

𝜎 = 𝑎
1
𝑢
𝑥
+ 𝑎
2
𝑢
𝑦
+ 𝑎
3
𝑢
𝑡
+ 𝑎
4
𝑢 + 𝑎
5
, (24)

where 𝑎
𝑖
= 𝑎
𝑖
(𝑥, 𝑦, 𝑡) : 𝑅

𝑥
× 𝑅
𝑦
× 𝑅+
𝑡
→ 𝑅 (𝑖 = 1, . . . , 5)

are functions to be determined later. Substituting (3) into (2)
yields

𝑎
1
= −

1

2𝛾
𝑘


2
(𝑡) 𝑦 + 𝑘

1
(𝑡) , 𝑎

2
= 𝑘
2
(𝑡) ,

𝑎
3
= 𝑐, 𝑎

4
= 0, 𝑎

5
=
1

2𝛾
𝑘


2
(𝑡) 𝑦 − 𝑘



1
(𝑡) ,

(25)

where 𝑘
𝑗
(𝑡) (𝑗 = 1, 2) are arbitrary functions of 𝑡, 𝑐 is an

arbitrary constant. Substituting (25) into (24), we obtain the
Li symmetries of (1) as follows:

𝜎 = [−
1

2𝛾
𝑘


2
(𝑡) 𝑦 + 𝑘

1
(𝑡)] 𝑢

𝑥
+ 𝑘
2
(𝑡) 𝑢
𝑦

+ 𝑐𝑢
𝑡
+
1

2𝛾
𝑘


2
(𝑡) 𝑦 − 𝑘



1
(𝑡) .

(26)
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Figure 1:The strange phenomenonwhich is a sympathetic vibration
of periodicity on the 𝑡-axis and paraboloid on 𝑦-axis for 𝑢

1
(𝑥, 𝑦, 𝑡)

as 𝑥 = 1.

5. Symmetry Reduction and Solutions of (1)
Based on the integrability of reduced equation of symmetry
(26), we are to consider the following three cases.

Case 1. Taking 𝑘
2
(𝑡) = 0 and 𝑐 = 0 in (26) yields

𝜎 = 𝑘
1
(𝑡) 𝑢
𝑥
− 𝑘


1
(𝑡) . (27)

The solution of the differential equation 𝜎 = 0 is

𝑢 =
𝑘
1
(𝑡)

𝑘
1
(𝑡)
𝑥 + 𝐹 (𝑦, 𝑡) , 𝐹 (𝑦, 𝑡) : 𝑅

𝑦
× 𝑅
+

𝑡
→ 𝑅. (28)

Substituting (28) into (1) yields the function 𝐹(𝑦, 𝑡) which
satisfies the following linear PDE:

𝑘
1

𝑘
1

+ 𝛾
𝜕2𝐹

𝜕𝑦2
= 0. (29)

By integrating both sides, we find out the following result:

𝐹 (𝑦, 𝑡) = −
𝑘
1

2𝛾𝑘
1

𝑦
2
+ 𝑘
3
(𝑡) 𝑦 + 𝑘

4
(𝑡) , (30)

where 𝑘
3
(𝑡), 𝑘
4
(𝑡) are new arbitrary functions of 𝑡. Substitut-

ing (30) into (28), we can get the solutions of (1) as follows:

𝑢
1
(𝑥, 𝑦, 𝑡) =

𝑘
1
(𝑡)

𝑘
1
(𝑡)
𝑥 −

𝑘
1

2𝛾𝑘
1

𝑦
2
+ 𝑘
3
(𝑡) 𝑦 + 𝑘

4
(𝑡) . (31)

(1) Given 𝑘
𝑖
(𝑡) = cn(𝑡, 0.95) (𝑖 = 1, 3, 4), 𝑥 = 1, 𝛾 = 0.6 in

(31), the local structure of 𝑢
1
is obtained (Figure 1). Where

cn(𝑡, 0.95) is an Jacobian elliptic cosine function.
(2) Given 𝑘

1
(𝑡) = sech(𝑡), 𝑘

3
(𝑡) = sin(𝑡), 𝑘

4
(𝑡) = cn(𝑡,

0.1), 𝑦 = 1, 𝛾 = 0.6 in (31), the local structure of 𝑢
1
is obtained

(Figure 2).

Case 2. Take 𝑘
1
(𝑡) = 𝑡, 𝑘

2
(𝑡) = 1 and 𝑐 = 0 in (26), then

𝜎 = 𝑡𝑢
𝑥
+ 𝑢
𝑦
− 1. (32)
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Figure 2: The periodic solution which is a periodic nontraveling
wave traveling on the 𝑡-axis for 𝑢

1
(𝑥, 𝑦, 𝑡) as 𝑦 = 1.

Solving the differential equation 𝜎 = 0, we can get

𝑢 = 𝑦 + 𝐹 (𝑡, 𝜉) , 𝜉 = 𝑥 − 𝑡𝑦. (33)

Substituting (33) into (1) and integrating once with respect to
𝜉 yield

𝐹
𝑡
+ 𝐹𝐹
𝜉
+ 𝛾𝑡
2
𝐹
𝜉
− 𝛽𝐹
𝜉𝜉
+ 𝛼𝐹
𝜉𝜉𝜉
= 0. (34)

Again, further using the transformation of dependent vari-
able to (34),

𝐹 (𝑡, 𝜉) = 𝐹 (𝜃) , 𝜃 = 𝑘 (𝑡 −
1

3
𝛾𝑡
3
+ 𝜉) . (35)

Substituting (35) into (34) and integrating once with respect
to 𝜃 yield

2𝑘
2
𝛼𝐹

− 2𝑘𝛽𝐹


+ 𝐹
2
+ 2𝐹 + 𝐴 = 0, (36)

where 𝐴 is an integration constant, 𝐹 = 𝑑𝐹(𝜃)/𝑑𝜃. We
assume that the solution of (36) can be expressed in the form

𝐹 (𝜃) = 𝑎
0
+ 𝑎
1
𝑤 (𝜃) + 𝑎

2
𝑤(𝜃)
2
, (37)

where 𝑎
𝑖
(𝑖 = 0, 1, 2) are constants to be determined later,

𝑤(𝜃) satisfies the following auxiliary equation

𝑤

= 𝑝 + 𝑞𝑤

2
. (38)

Substituting (37) and (38) into (36) and equating the coeffi-
cients of all powers of𝑤 to zero yield a set of algebra equations
for 𝑎
0
, 𝑎
1
, 𝑎
2
, and 𝐴 as follows.

𝑤
4: 𝑎
2
(𝑎
2
+ 12𝛼𝑘

2
𝑞
2
) = 0,

𝑤
3: − 4𝛽𝑘𝑎

2
𝑞 + 2𝑎

1
𝑎
2
+ 4𝛼𝑘

2
𝑎
1
𝑞
2
= 0,

𝑤
2: 𝑎2
1
+ 16𝛼𝑘

2
𝑎
2
𝑞𝑝 − 2𝛽𝑘𝑎

1
𝑞 + 2𝑎

2
+ 2𝑎
2
𝑎
0
= 0,

𝑤
1: 2𝑎
1
𝑎
0
− 4𝛽𝑘𝑎

2
𝑝 + 2𝑎

1
+ 4𝛼𝑘

2
𝑎
1
𝑞𝑝 = 0,

𝑤
0: 2𝑎
0
+ 𝐴 + 4𝛼𝑘

2
𝑎
2
𝑝
2
+ 𝑎
2

0
− 2𝛽𝑘𝑎

1
𝑝 = 0.

(39)

Solving the system of function equations with the aid of
Maple, we obtain

𝑎
0
=
3𝛽2 − 25𝛼

25𝛼
, 𝑎

1
=
6𝛽2𝑞

25𝑠𝛼
, 𝑎

2
=
3𝛽2𝑞

25𝛼𝑝
.

(40)

when 𝑘 = 𝛽/10𝑠𝛼, 𝑝𝑞 < 0, 𝐴 = (625𝛼2 − 36𝛽4)/625𝛼2, where
𝑠 = √−𝑝𝑞.

It is known that solutions of (38) are as follows [24]:

𝑤 (𝜃) = −𝑠 tanh (𝑠𝜃) , 𝑤 (𝜃) = −𝑠 coth (𝑠𝜃) . (41)

Substituting (41), (40), (37), and (35) into (33), we obtain solu-
tions of (1) as follows:

𝑢
2
(𝑥, 𝑦, 𝑡)

=
1

25𝛼
{3𝛽
2
− 25𝛼 − 3𝑞𝛽

2

× [ tanh(
𝛽

10𝑠𝛼
(𝑥 − 𝑡𝑦 + 𝑡 −

𝛾

3
𝑡3))

− 2𝑝𝑞tanh2 (
𝛽

10𝑠𝛼
(𝑥 − 𝑡𝑦 + 𝑡 −

𝛾

3
𝑡
3
))]}

+ 𝑦,

𝑢
3
(𝑥, 𝑦, 𝑡)

=
1

25𝛼
{3𝛽
2
− 25𝛼 − 3𝑞𝛽

2

× [coth(
𝛽

10𝑠𝛼
(𝑥 − 𝑡𝑦 + 𝑡 −

𝛾

3
𝑡
3
))

− 2𝑝𝑞 coth2 (
𝛽

10𝑠𝛼
(𝑥 − 𝑡𝑦 + 𝑡 −

𝛾

3
𝑡
3
))]}

+ 𝑦.

(42)

(see Figures 3 and 4).

Remark 2. If we direct assume that the solution of (34) can
be expressed in the form

𝐹 (𝑡, 𝜉) = 𝑎
0
(𝑡) + 𝑎

1
(𝑡) 𝑤 (𝜃) + 𝑎

2
(𝑡) 𝑤(𝜃)

2
, (43)

where 𝜃 = 𝑓(𝑡)𝜉 + 𝑔(𝑡), 𝑓(𝑡), and 𝑔(𝑡) are continuous func-
tions of 𝑡 to be determined later. 𝑤(𝜃) satisfies the auxiliary
equation (38). Substituting (43) and (38) into (34), equating
the coefficients of all powers of 𝑤 to zero yields a set of
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Figure 3: Local structure of 𝑢
2
(𝑥, 𝑦, 𝑡) is shown as 𝑥 = 1, 𝛼 = 1, 𝛽 =

10, 𝑝 = −1, 𝑞 = 1, and 𝛾 = 6.

0
1

2

2
4

6

0

20
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−6−4−2
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−20

t y

u

Figure 4: Local structure of 𝑢
3
(𝑥, 𝑦, 𝑡) is shown as 𝑥 = 1, 𝛼 = 1, 𝛽 =

10, 𝑝 = −1, 𝑞 = 1, 𝛾 = 6.

function equations for 𝑎
0
(𝑡), 𝑎
1
(𝑡), 𝑎
2
(𝑡), 𝑓(𝑡), and 𝑔(𝑡) as

follows:

𝑤
5: 2𝑓𝑎

2
𝑞 (12𝑓

2
𝑞
2
𝛼 + 𝑎
2
) = 0,

𝑤
4: − 3𝑓𝑞 (−2𝑎

1
𝑞
2
𝑓
2
𝛼 + 2𝑞𝑓𝑎

2
𝛽 − 𝑎
1
𝑎
2
) = 0,

𝑤
3: − 2𝛽𝑎

1
𝑓
2
𝑞
2
+ 2𝑎
2

2
𝑓𝑝 + 40𝛼𝑎

2
𝑓
3
𝑞
2
𝑝 + 2𝑎

2
𝑔

𝑞

+ 2𝑎
0
𝑎
2
𝑓𝑞 + 𝑎

2

1
𝑓𝑞 + 2𝑎

2
𝑓

𝜉𝑞 + 2𝛾𝑡

2
𝑎
2
𝑓𝑞 = 0,

𝑤
2: − 8𝛽𝑎

2
𝑓
2
𝑝𝑞 + 𝑎

1
𝑔

𝑞 + 𝑎


2
+ 𝑎
0
𝑎
1
𝑓𝑞 + 𝛾𝑡

2
𝑎
1
𝑓𝑞

+ 8𝛼𝑎
1
𝑓
3
𝑝𝑞
2
+ 𝑎
1
𝑓

𝜉𝑞 + 3𝑎

1
𝑎
2
𝑓𝑞 = 0,

𝑤
1: 𝑎2
1
𝑓𝑝 + 16𝛼𝑎

2
𝑓
3
𝑝
2
𝑞 + 𝑎


1
+ 2𝛾𝑡
2
𝑎
2
𝑓𝑝 + 2𝑎

0
𝑎
2
𝑓𝑝

+ 2𝑎
2
𝑔

𝑝 + 2𝑎

2
𝑓

𝜉𝑝 − 2𝛽𝑎

1
𝑓
2
𝑝𝑞 = 0,

𝑤
0: 𝑎
1
𝑔

𝑝 + 𝑎
1
𝑓

𝜉𝑝 + 𝑎

0
𝑎
1
𝑓𝑝 − 2𝛽𝑎

2
𝑓
2
𝑝
2
+ 𝑎


0

+ 2𝛼𝑎
1
𝑓
3
𝑝
2
𝑞 + 𝛾𝑡

2
𝑎
1
𝑓𝑝 = 0.

(44)

Solving the system of function equations, we obtain

𝑎
0
(𝑡) =

3𝛽2

25𝛼
, 𝑎

1
(𝑡) = ±

6𝛽2𝑞

25𝑠𝛼
,

𝑎
2
(𝑡) =

3𝛽2𝑞

25𝛼𝑝
, 𝑓 (𝑡) = ±

𝛽

10𝑠𝛼
, 𝑔 (𝑡) = ∓

𝛽𝛾

30𝑠𝛼
𝑡
3
.

(45)

This result indicate the idea is equivalent to idea of Case 2
above.

Case 3. Take 𝑘
2
(𝑡) = 0 and 𝑐 = 1 in (26), then

𝜎 = 𝑘
1
(𝑡) 𝑢
𝑥
+ 𝑢
𝑡
− 𝑘
1
(𝑡) . (46)

Solving the differential equation 𝜎 = 0, we obtain

𝑢 = 𝑘
1
(𝑡) + 𝐹 (𝜉, 𝑦) , 𝜉 = 𝑥 − ∫𝑘

1
(𝑡) 𝑑𝑡. (47)

Substituting (47) into (1) yield

𝛼𝐹
𝜉𝜉𝜉𝜉

− 𝛽𝐹
𝜉𝜉𝜉
+ 𝐹𝐹
𝜉𝜉
+ 𝐹
2

𝜉
+ 𝛾𝐹
𝑦𝑦
= 0. (48)

Using the transformation 𝐹(𝜉, 𝑦) = 𝐹(𝜂), 𝜂 = 𝑘𝜉 − 𝑐𝑦 and
integrating the resulting equation with respect to 𝜂 we have

𝑘
2
𝐹
2
+ 2𝛾𝑐
2
𝐹 + 2𝑘

4
𝛼𝐹

− 2𝑘
3
𝛽𝐹

+ 𝐴 = 0, (49)

where 𝐴 is an arbitrary constant, 𝐹 = 𝑑𝐹/𝑑𝜂. Suppose that
the solution of ODE (49) can be expressed by a polynomial in
(𝐺
/𝐺) as follows:

𝐹 (𝜂) = 𝑏
𝑛
(
𝐺

𝐺
)

𝑛

+ ⋅ ⋅ ⋅ , (50)

where 𝐺 = 𝐺(𝜂) satisfies the second-order LODE in the form
[25]

𝐺

+ 𝜆𝐺

+ 𝜇𝐺 = 0. (51)

Balancing 𝐹 with 𝐹2 in (49) gives 𝑛 = 2. So that

𝐹 (𝜂) = 𝑏
2
(
𝐺

𝐺
)

2

+ 𝑏
1
(
𝐺

𝐺
) + 𝑏
0
, 𝑏
2
̸= 0, (52)

where 𝑏
𝑖
(𝑖 = 0, 1, 2) and 𝜇 are constants to be determined

later. Substituting (52) and (51) into (49). Setting these coeffi-
cients of the 𝐺/𝐺 to zero, yields a set of algebraic equations
as follows:
𝑘
2
𝑏
2
(12𝛼𝑘

2
+ 𝑏
2
) = 0,

2𝑘
2
(10𝛼𝑘

2
𝑏
2
𝜆 + 𝑏
1
𝑏
2
+ 2𝛼𝑘

2
𝑏
1
+ 2𝛽𝑘𝑏

2
) = 0,

8𝛼𝑘
4
𝑏
2
𝜆
2
+ 2𝛽𝑘

3
𝑏
1
+ 𝑘
2
𝑏
2

1
+ 16𝛼𝑘

4
𝑏
2
𝜇 + 2𝑘

2
𝑏
2
𝑏
0

+ 6𝛼𝑘
4
𝑏
1
𝜆 + 4𝛽𝑘

3
𝑏
2
𝜆 + 2𝛾𝑐

2
𝑏
2
= 0,

2𝑘
2
𝑏
1
𝑏
0
+ 4𝛽𝑘

3
𝑏
2
𝜇 + 4𝛼𝑘

4
𝑏
1
𝜇 + 2𝛾𝑐

2
𝑏
1
+ 2𝛼𝑘

4
𝑏
1
𝜆
2

+ 2𝛽𝑘
3
𝑏
1
𝜆 + 12𝛼𝑘

4
𝑏
2
𝜆𝜇 = 0,

2𝛾𝑐
2
𝑏
0
+ 2𝛼𝑘

4
𝑏
1
𝜆𝜇 + 𝐴 + 2𝛽𝑘

3
𝑏
1
𝜇 + 4𝛼𝑘

4
𝑏
2
𝜇
2
+ 𝑘
2
𝑏
2

0
= 0.

(53)
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Solving the algebraic equations above yields

𝑏
0
=
15𝑘3𝜆𝛼 (5𝑘𝜆𝛼 + 2𝛽) − 3𝑘2𝛽2 + 25𝑐2𝛼𝛾

25𝑘2𝛼
,

𝑏
1
= −

12𝑘 (5𝑘𝛼𝜆 + 𝛽)

5
, 𝑏

2
= −12𝑘

2
𝛼.

(54)

when 25𝑘2𝛼2(4𝜇 − 𝜆2) + 𝛽2 = 0 and 625𝛼2(𝐴𝑘2 − 𝑐2𝛾2) +
36𝑘4𝛽4 = 0. Consequently, we obtain the following solution
of (1) for 𝜆2 − 4𝜇 > 0:

𝑢
4
(𝑥, 𝑦, 𝑡) = −12𝑘

2
𝛼𝜏
2

× [(𝐶
1
sinh 𝜏 (𝑘 (𝑥 − ∫𝑘

1
(𝑡) 𝑑𝑡) − 𝑐𝑦)

+𝐶
2
cosh 𝜏 (𝑘 (𝑥 − ∫𝑘

1
(𝑡) 𝑑𝑡) − 𝑐𝑦))

× (𝐶
1
cosh 𝜏 (𝑘 (𝑥 − ∫𝑘

1
(𝑡) 𝑑𝑡) − 𝑐𝑦)

+ 𝐶
2
sinh 𝜏

× (𝑘 (𝑥 − ∫𝑘
1
(𝑡) 𝑑𝑡) − 𝑐𝑦))

−1

]

2

+ (12𝑘
2
𝜆𝛼𝜏 −

12𝑘 (5𝑘𝛼𝜆 + 𝛽)

5
)

× [(𝐶
1
sinh 𝜏 (𝑘 (𝑥 − ∫𝑘

1
(𝑡) 𝑑𝑡) − 𝑐𝑦)

+𝐶
2
cosh 𝜏 (𝑘 (𝑥 − ∫𝑘

1
(𝑡) 𝑑𝑡) − 𝑐𝑦))

× (𝐶
1
cosh 𝜏 (𝑘 (𝑥 − ∫𝑘

1
(𝑡) 𝑑𝑡) − 𝑐𝑦)

+ 𝐶
2
sinh 𝜏

× (𝑘 (𝑥 − ∫𝑘
1
(𝑡) 𝑑𝑡) − 𝑐𝑦))

−1

]

2

+
15𝑘3𝜆𝛼 (5𝑘𝜆𝛼 + 2𝛽) − 3𝑘2𝛽2 + 25𝑐2𝛼𝛾

25𝑘2𝛼

+
𝜆
2

4
,

(55)

where 𝜏 = (1/2)√𝜆2 − 4𝜇.

6. Conclusions

Based on the fact that the periodic solution of (2+1)D KdV-
Burgers equation does not exist, we have obtained Saddle-
node Heteroclinic Orbits. By applying the Lie group method,
we reduce the (2+1)D KdV Burgers equation to (1+1)-dimen-
sional equations including the (1+1)-dimensional linear par-
tial differential equation with constants coefficients (29), (48)

and (1+1)-dimensional nonlinear partial differential equation
with variable coefficients (34). By solving the equations (29),
(34), and (48), we obtain some new exact solutions and
discover the strange phenomenon of sympathetic vibration
to evolution of nontraveling wave soliton for the (2+1)D KdV
Burgers equation. Our results show that the unite of Lie group
methodwith others is effective to search simultaneously exact
solutions for nonlinear evolution equations. Other structures
of solutions with symmetry (26) are to be further studied.
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