
Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2013, Article ID 695816, 7 pages
http://dx.doi.org/10.1155/2013/695816

Research Article
On Exponential Stability of Composite Stochastic
Control Systems

Fakhreddin Abedi and Wah June Leong

Department of Mathematics, Faculty of Science, Universiti Putra Malaysia, UPM, 43400 Serdang,
Selangor, Malaysia

Correspondence should be addressed to Fakhreddin Abedi; f abedi1352@yahoo.com

Received 28 November 2012; Revised 29 January 2013; Accepted 31 January 2013

Academic Editor: Ryan Loxton

Copyright © 2013 F. Abedi and W. J. Leong. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

New results for exponential stability in probability of a composite stochastic control system are established. The main results of
this paper enable us to derive sufficient conditions for exponential stability in 𝑟-th mean and almost sure exponential stability in
probability of composite stochastic control system. Two numerical examples are given to illustrate the results.

1. Introduction

The aim of this paper is to study the exponential stability in
probability in 𝑟-th mean (rESP) and almost sure exponential
stability in probability (asESP) of a composite stochastic
control system (CSCS)

𝑑𝑥 = (𝑓 (𝑥) + 𝑔 (𝑥, 𝜐)𝐷𝜐) 𝑑𝑡 + (ℎ (𝑥) + 𝑞 (𝑥, 𝜐)𝐷𝜐) 𝑑𝑤
𝑡
,

𝑑𝜐 = 𝐹 (𝜐, 𝑢) 𝑑𝑡 + 𝐺 (𝜐, 𝑢) 𝑑𝛽
𝑡
,

(1)

where 𝑥 ∈ 𝑅
𝑛, 𝜐 ∈ 𝑅

𝑟, and 𝑢 is an 𝑅
𝑝-valued measurable

control law.
We consider the composite system (1) and introduce two

subsystems

𝑑𝑥 = 𝑓 (𝑥) 𝑑𝑡 + ℎ (𝑥) 𝑑𝑤
𝑡
,

𝑑𝜐 = 𝐹 (𝜐, 𝑢) 𝑑𝑡 + 𝐺 (𝜐, 𝑢) 𝑑𝛽
𝑡
,

(2)

and we use the converse Lyapunov theorems established
by Khasminiskii [1] and Spiliotis and Tsinias [2] to the
concept of stochastic control Lyapunov function and extend
the stabilization results proved by Spiliotis and Tsinias [2]
for stochastic control systems (SCSs) to the larger class of
CSCS (1) driven by two independent Wiener processes that
have been considered in Florchinger [3], Boulanger [4],

and Rusinek [5]. Sufficient conditions for rESP of stochastic
systems (2) that guarantee rESP of CSCS (1) are derived, and
we also establish sufficient conditions for asESP of CSCS (1).

In recent years, the stablizability of various types of
stochastic systems has been studied for different concepts
of stochastic stability (see, for instance, [1–17]). The global
asymptotic stability in probability of stochastic systems by
means of strict and output feedback laws has been considered
by Krstic and Deng [6] and Deng and Krstic [8], where back-
stepping design procedure is proposed for stochastic systems.
Tsinias [7] extended the input-to-state stability results of
Sontag and Wang [18] in deterministic case and obtained
exponential input-to-state stability in probability for stochas-
tic system and derived sufficient conditions for global sta-
bilization of this system by means of static and dynamic
output feedback. Caraballo and Liu [9] developed some
criteria for the almost sure and mean square exponential
stability in probability of nonlinear stochastic equations of
monotone type. Spiliotis and Tsinias [2] derived control Lya-
punov function and established rESP and asESP of stochastic
differential systems.The asymptotic and exponential stability
of stochastic differential systems (SDSs) has been studied
by Mao [10], Liu and Raffool [11], Lan and Dang [12], Luo
[13], Abedi et al. [14], Abedi and Leong [15], Khasminiskii
[1], and Kushner [16]. Michel [17] established asymptotic
and exponential stability in probability for some classes
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of continuous and discrete-parameter stochastic composite
systems. Later, Florchinger [3] and Boulanger [4] developed
sufficient conditions for asymptotic stability in probability
and exponential stability in mean square for a special case
of our CSCS (1). The sufficient conditions for exponential
stability in probability of nonlinear stochastic systems and
special case of our CSCS (1) have been derived by Rusinek
[5].

The structure of the paper is as follows. In Section 2,
we introduce a class of CSCS and we also recall some basic
definitions and results concerning rESP and asESP property.
In Section 3, we state and prove the main results of the
paper. Finally in Section 4, we give two numerical examples
illustrating our results.

2. Fundamental Definitions and Results

In this section, we introduce the class of stochastic systems
and recall some definitions and results concerning exponen-
tial stability in probability of these systems. For a complete
presentation of exponential stability, we refer the reader to
the book of Khasminiskii [1] and the paper of Spiliotis and
Tsinias [2].

Let (Ω, 𝐹, 𝑃) be a complete probability space and denote
by (𝑤

𝑡
)
𝑡≥0

a standard 𝑅
𝑚-valued Wiener process defined on

this space.
We consider the SDS

𝑑𝑥 = 𝑓 (𝑥) 𝑑𝑡 + ℎ (𝑥) 𝑑𝑤
𝑡
, (3)

where the following conditions hold:

(i) 𝑥 is given in 𝑅
𝑛,

(ii) 𝑓 : 𝑅
𝑛

→ 𝑅
𝑛 and ℎ : 𝑅

𝑛
→ 𝑅
𝑛×𝑚 are Lipschitz

functionals in 𝑅
𝑛 with 𝑓(0) = 0, ℎ(0) = 0, and there

exists a constant𝐶 ≥ 0 such that the following growth
condition holds:

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑥) − 𝑓 (𝑦)

󵄨
󵄨
󵄨
󵄨
+
󵄨
󵄨
󵄨
󵄨
ℎ (𝑥) − ℎ (𝑦)

󵄨
󵄨
󵄨
󵄨
≤ 𝐶

󵄨
󵄨
󵄨
󵄨
𝑥 − 𝑦

󵄨
󵄨
󵄨
󵄨
, (4)

for any 𝑥 ∈ 𝑅
𝑛.

Under restriction on growth (4), for any 𝑥 ∈ 𝑅
𝑛, that

guarantees existence and uniqueness of solution 𝑥(𝑡) =

𝑥(𝑡, 𝑡
0
, 𝑥
0
) for (3) starting from 𝑥

0
at time 𝑡

0
, we recall the

following definition of exponential stability in mean square
and a converse Lyapunov theorem given by Khasminskii [1]
as follows.

Definition 1. The origin of the SDS (3) is exponentially stable
in probability in mean square if, and only if, there exist
constants 𝑐

1
, 𝑐
2
> 0 such that

𝐸 (
󵄨
󵄨
󵄨
󵄨
𝑥
𝑡
(𝑡, 𝑡
0
, 𝑥)

󵄨
󵄨
󵄨
󵄨

2

) ≤ 𝑐
1
|𝑥|
2
𝑒
−𝑐
2
(𝑡−𝑡
0
)
, (5)

for any 𝑥 ∈ 𝑅
𝑛, and 𝑡 ≥ 𝑡

0
.

Theorem 2. Suppose that the origin 𝑥
𝑡
= 0 of the SDS (3) is

exponentially stable in probability in mean square. Then, there

exists a Lyapunov function Φ defined on 𝑅
𝑛
(Φ ∈ 𝐶

2
(𝑅
𝑛
, 𝑅
+
))

and positive constants 𝑎
𝑖
, 1 ≤ 𝑖 ≤ 5, such that

𝑎
1
|𝑥|
2
≤ Φ (𝑥) ≤ 𝑎

2
|𝑥|
2
,

|∇Φ (𝑥)| ≤ 𝑎
3
|𝑥| ,

󵄨
󵄨
󵄨
󵄨
󵄨
∇
2
Φ (𝑥)

󵄨
󵄨
󵄨
󵄨
󵄨
≤ 𝑎
4
,

DΦ (𝑥) =

𝑛

∑

𝑖=1

𝑓
𝑖
(𝑥)

𝜕Φ (𝑥)

𝜕𝑥
𝑖

+

1

2

𝑛

∑

𝑖,𝑗=1

𝑚

∑

𝑘=1

ℎ
𝑖

𝑘
ℎ
𝑗

𝑘

𝜕
2
Φ (𝑥)

𝜕𝑥
𝑖
𝜕𝑥
𝑗

≤ − 𝑎
5
|𝑥|
2
,

(6)

whereD is the infinitesimal generator for the stochastic process
solution of the SDS (3).

Let us denote by (𝛽
𝑡
)
𝑡≥0

a standard 𝑅
𝑞-valued Wiener

process defined on (Ω, F, 𝑃).
Now, we consider the SCS

𝑑𝜐 = 𝐹 (𝜐, 𝑢) 𝑑𝑡 + 𝐺 (𝜐, 𝑢) 𝑑𝛽
𝑡
, (7)

where
(1) 𝑢 is an 𝑅

𝑝-valued measurable control law,
(2) 𝐹 and 𝐺 are Lipschitz functionals mapping of 𝑅𝑟 ×𝑅

𝑝

into 𝑅
𝑟 and 𝑅

𝑟
× 𝑅
𝑞, respectively, such that 𝐹(0, 0) =

𝐺(0, 0) = 0, and there exists constant 𝐶 ≥ 0 such
that for any 𝜐 ∈ 𝑅

𝑟 and 𝑢 ∈ 𝑅
𝑝 the following growth

condition holds:

|𝐹 (𝜐, 𝑢)| + |𝐺 (𝜐, 𝑢)| ≤ 𝐶 (1 + |𝜐| + |𝑢|) . (8)

Under restriction on growth (8) (see for instance Arnold
[19]), for every input 𝑢 ∈ 𝑅

𝑝
, 𝜐
0
∈ 𝑅
𝑟, and 𝑡

0
∈ 𝑅, there exists

a unique solution𝑉(𝑡, 𝑡
0
, 𝜐
0
, 𝑢) of (7) starting from 𝜐

0
at time

𝑡 = 𝑡
0
which is defined for all 𝑡 ≥ 𝑡

0
and almost all 𝛽 ∈ Ω. For

simplicity let 𝑉(𝑡) = 𝑉(𝑡, 𝑡
0
, 𝜐, 𝑢), and we recall the following

definition of rESP, asESP, and a converse Lyapunov theorem
established by Spiliotis and Tsinias [2] as follows.

Definition 3. The origin of the SCS (7) is rESP for some 𝑟 > 0

if, and only if, there exist constants 𝑐
1
, 𝑐
2
> 0 such that

𝐸 (|𝑉 (𝑡)|
𝑟
) ≤ 𝑐
1
|𝜐|
𝑟
𝑒
−𝑐
2
(𝑡−𝑡
0
)
, (9)

for any 𝜐 ∈ 𝑅
𝑟, and 𝑡 ≥ 𝑡

0
.

Definition 4. The SCS (7) is said to satisfy the exponential
Lyapunov condition if there exists a Lyapunov function Φ :

𝑅
𝑟
→ 𝑅
+ of class 𝐶2(𝑅𝑟 \ {0}) and positive constants 𝑎

𝑖
, 1 ≤

𝑖 ≤ 5, such that

𝑎
1
|𝜐|
𝑟
≤ Φ (𝜐) ≤ 𝑎

2
|𝜐|
𝑟
, (10)

|∇Φ (𝜐)| ≤ 𝑎
3
|𝜐|
𝑟−1

, 𝜐 ̸= 0, (11)
󵄨
󵄨
󵄨
󵄨
󵄨
∇
2
Φ (𝜐)

󵄨
󵄨
󵄨
󵄨
󵄨
≤ 𝑎
4
|𝜐|
𝑟−2

, 𝜐 ̸= 0, (12)

YΦ (𝜐) =

𝑛

∑

𝑖=1

𝐹 (𝜐, 𝑢)

𝜕Φ (𝜐)

𝜕𝜐
𝑖

+

1

2

𝑛

∑

𝑖,𝑗=1

𝐺 (𝜐, 𝑢) 𝐺(𝜐, 𝑢)
𝑇 𝜕
2
Φ (𝜐)

𝜕𝜐
𝑖
𝜐
𝑗

≤ − 𝑎
5
|𝜐|
𝑟
,

(13)
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where Y is the infinitesimal generator for the stochastic
process solution of the SCS (7).

Theorem 5. Suppose that the origin of the SCS (7) is rESP.
Then, there exists a Lyapunov function Φ : 𝑅

𝑟
→ 𝑅
+ of class

𝐶
2
(𝑅
𝑟
\ {0}) which satisfies all conditions (10)–(13).

Note that Definition 3 and Theorem 5 provided in Spili-
otis and Tsinias [2] are an extension of Definition 1 and
Theorem 2, respectively, established in Khasminskii [1].

Definition 6. Theorigin of the SCS (7) is asESP for some 𝑟 > 0

if, and only if, there exists a constant 𝑐 > 0 and a random
variable 0 ≤ 𝐵

𝜐,𝑢
< ∞, such that

|𝑉 (𝑡)| ≤ 𝐵
𝜐,𝑢

𝑒
−𝑐(𝑡−𝑡

0
)
, (14)

for any 𝜐 ∈ 𝑅
𝑟
, 𝑡 ≥ 𝑡
0
, and for almost all 𝛽.

We now derive the Florchinger’s decomposition [20] of
the functions

𝐹 (𝜐, 𝑦) = 𝑓 (𝜐, 𝑙 (𝜐, 𝑦)) ℎ (𝜐, 𝑦) ,

𝐺 (𝜐, 𝑦) = 𝑔 (𝜐, 𝑦)√ℎ (𝜐, 𝑦),

(15)

and we consider the SCS (7) in the form

𝑑(

𝜐

𝑦
) = (

𝑓 (𝜐, 𝑙 (𝜐, 𝑦)) ℎ (𝜐, 𝑦)

𝑢
) 𝑑𝑡

+ (

𝑔 (𝜐, 𝑦)√ℎ (𝜐, 𝑦)

0

)𝑑𝛽
𝑡
,

(16)

where 𝑙 is a function mapping 𝑅
𝑟
× 𝑅
𝑝 into 𝑅

𝑝 and ℎ is
a nonnegative function mapping 𝑅

𝑟
× 𝑅
𝑝 into 𝑅. In the

following theorem, we use an explicit formula of a feedback
law established in [15, 20] and exhibit the rESP property
for the resulting closed-loop system deduced from (7) or,
equivalently, the resulting closed-loop system deduced from
(16).

Theorem 7. Let𝑉(𝑡) = 𝑉(𝑡, 𝑡
0
, 𝜐, 𝑦). Suppose that the SCS (7)

or, equivalently, the SCS (16) satisfies the exponential Lyapunov
condition, and there exists a 𝐶

∞ function Γ : 𝑅
𝑟
× 𝑅
𝑝

→ 𝑅
𝑝

such that for any (𝜐, 𝑦) ∈ 𝑅
𝑟
× 𝑅
𝑝,

𝛾 (𝜐, 𝑦) = ⟨𝑓 (𝜐, 𝜑 (𝜐)) ,

𝜕𝜙

𝜕𝜐

(𝜐, 𝑦)⟩ℎ (𝜐, 𝑦)

+

1

2

ℎ (𝜐, 𝑦)

𝑚

∑

𝑖,𝑗=1

(𝑔 (𝜐, 𝑦) 𝑔(𝜐, 𝑦)
𝑇

)
𝑖,𝑗

𝜕
2
𝜙 (𝜐, 𝑦)

𝜕𝜐
𝑖
𝜕𝜐
𝑗

+ ⟨Γ (𝜐, 𝑦) ,

𝜕𝜙

𝜕𝑦

(𝜐, 𝑦)⟩ ≤ 0.

(17)Then, the feedback law

𝑘
1
(𝜐, 𝑦) = − 𝑀(𝜐, 𝑦)

𝑇

𝑁(𝜐, 𝑦)
𝑇 𝜕𝑊 (𝑉 (𝑡))

𝜕𝜐

+ Γ (𝜐, 𝑦) −

𝜕𝜙

𝜕𝑦

(𝜐, 𝑦) ,

(18)

where 𝑀(𝜐, 𝑦)(𝜕𝜙/𝜕𝑦)(𝜐, 𝑦) = (𝑙(𝜐, 𝑦) − 𝜑(𝜐))ℎ(𝜐, 𝑦),
𝑁(𝜐, 𝑦) = ∫

1

0
(𝜕𝐹/𝜕𝑢)(𝜐, 𝑡𝑙(𝜐, 𝑦) + (1 − 𝑡)𝜑(𝜐))𝑑𝑡, 𝜙 : 𝑅

𝑟
×

𝑅
𝑝

→ 𝑅 is a smooth and nonnegative function, 𝑊(𝑉(𝑡)) =

Φ(𝜐)+𝜙(𝜐, 𝑦), and 𝜑(𝜐) : 𝑅
𝑟
→ 𝑅
𝑝 is a smooth function that

guarantees the resulting closed-loop system deduced from
(7) or, equivalently, that guarantees the resulting closed-loop
system deduced from (16) is rESP.

Proof. Suppose that there exists a positive function 𝑊(𝑉(𝑡))

such that the SCS (7) or, equivalently, the SCS (16) satisfies the
exponential Lyapunov condition. Then from (13) we have

𝑑

𝑑𝑡

𝐸𝑊 (𝑉 (𝑡)) = 𝐸 (Y
1
𝑊(𝑉 (𝑡)))

= 𝐸[D
0
Φ (𝜐) ℎ (𝜐, 𝑦) + 𝛾 (𝜐, 𝑦)

−

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝜕𝜙

𝜕𝑦

(𝜐, 𝑦)

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

2

]

≤ − 𝑎
5
𝐸 (|𝑉 (𝑡)|

𝑟
) ,

(19)

where D
0
is the infinitesimal generator of the resulting

closed-loop system deduced from (7) and Y
1
is the infinites-

imal generator for the stochastic process solution of the
resulting closed-loop system deduced from (16) as follows:

Y
1
𝑊(𝑉 (𝑡))

= ( ⟨𝑓 (𝜐, 𝜑 (𝜐)) , ∇Φ (𝜐)⟩ 𝑘

+

1

2

𝑚

∑

𝑖,𝑗=1

(𝑔 (𝜐, 𝑦) 𝑔(𝜐, 𝑦)
𝑇

)
𝑖,𝑗

𝜕
2
Φ (𝜐)

𝜕𝜐
𝑖
𝜕𝑥
𝑗

)

× ℎ (𝜐, 𝑦) + ⟨𝑓 (𝜐, 𝜑 (𝜐)) ,

𝜕𝜙

𝜕𝜐

(𝜐, 𝑦)⟩ℎ (𝜐, 𝑦)

+

1

2

ℎ (𝜐, 𝑦)

𝑚

∑

𝑖,𝑗=1

(𝑔 (𝜐, 𝑦) 𝑔(𝜐, 𝑦)
𝑇

)
𝑖,𝑗

𝜕
2
𝜙 (𝜐, 𝑦)

𝜕𝜐
𝑖
𝜕𝜐
𝑗

+ ⟨Γ (𝜐, 𝑦) ,

𝜕𝜙

𝜕𝑦

(𝜐, 𝑦)⟩ −

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝜕𝜙

𝜕𝑦

(𝜐, 𝑦)

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

2

.

(20)

The desired condition (9) is a direct consequence of inequal-
ity (10) and (19). Therefore, the resulting closed-loop system
deduced from SCS (16) satisfies in rESP property at the
origin.

We will now turn the attention to a general composite
stochastic system and provide some results related to the rESP
of this system.

Let {𝛽
𝑡
, 𝑡 ∈ 𝑅

+
} be a standard 𝑅

𝑞-valued Wiener process
defined on the space (Ω, F, 𝑃) independent of the Wiener
process {𝑤

𝑡
, 𝑡 ∈ 𝑅

+
}.
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Consider the pair of stochastic processes solution
(𝑥
𝑡
, 𝜐
𝑡
) ∈ 𝑅
𝑛
× 𝑅
𝑟 of the CSCS

𝑑𝑥 = (𝑓 (𝑥) + 𝑔 (𝑥, 𝜐)𝐷𝜐) 𝑑𝑡 + (ℎ (𝑥) + 𝑞 (𝑥, 𝜐)𝐷𝜐) 𝑑𝑤
𝑡
,

𝑑𝜐 = 𝐹 (𝜐, 𝑢) 𝑑𝑡 + 𝐺 (𝜐, 𝑢) 𝑑𝛽
𝑡
,

(21)

where
(1) 𝑥 ∈ 𝑅

𝑛, 𝜐 ∈ 𝑅
𝑟, and𝐷 is a matrix function with value

in𝑀
𝑟×𝑟

(𝑅),
(2) 𝑓 and ℎ are functionals in 𝐶

2
(𝑅
𝑛
, 𝑅
𝑛
) and

𝐶
2
(𝑅
𝑛
, 𝑅
𝑛×𝑚

), respectively, such that 𝑓(0) = 0

and ℎ(0) = 0,
(3) 𝑔 : 𝑅

𝑛
× 𝑅
𝑟

→ 𝑅
𝑛×𝑟 and 𝑞 : 𝑅

𝑛
× 𝑅
𝑟

→ 𝑅
𝑛×𝑚 are

Lipschitz functionals mapping such that there exists a
nondecreasing scalar function 𝛼(|𝜐|) ≥ 0 bounded for
all 𝜐 such that

󵄨
󵄨
󵄨
󵄨
𝑔 (𝑥, 𝜐)

󵄨
󵄨
󵄨
󵄨
+
󵄨
󵄨
󵄨
󵄨
𝑞 (𝑥, 𝜐)

󵄨
󵄨
󵄨
󵄨
≤ 𝛼 (|𝜐|) |𝑥| ,

∀ (𝑥, 𝜐) ∈ 𝑅
𝑛
× 𝑅
𝑟
,

(22)

(4) 𝑢 is an 𝑅
𝑝-valued measurable control law,

(5) 𝐹 : 𝑅
𝑟
× 𝑅
𝑝

→ 𝑅
𝑟 and 𝐺 : 𝑅

𝑟
× 𝑅
𝑝

→ 𝑅
𝑟×𝑞

are Lipschitz functionals mapping vanishing at the
origin, and there exists a constant 𝐶 ≥ 0 such that
the following growth condition holds:

|𝐹 (𝜐, 𝑢)| + |𝐺 (𝜐, 𝑢)| ≤ 𝐶 (1 + |𝜐| + |𝑢|) , (23)

for any (𝜐, 𝑢) ∈ 𝑅
𝑟
× 𝑅
𝑝.

Definition 8. We say that an input measurable function 𝑢 :

𝑅
𝑛
× 𝑅
𝑟

→ 𝑅
𝑝
, 𝑢(0, 0) = 0 is a stabilizing feedback law for

the CSCS (21) if, and only if, the origin of the resulting closed-
loop system

𝑑𝑥 = (𝑓 (𝑥) + 𝑔 (𝑥, 𝜐)𝐷𝜐) 𝑑𝑡 + (ℎ (𝑥) + 𝑞 (𝑥, 𝜐)𝐷𝜐) 𝑑𝑤
𝑡
,

𝑑𝜐 = 𝐹 (𝜐, 𝑢 (𝑥, 𝜐)) 𝑑𝑡 + 𝐺 (𝜐, 𝑢 (𝑥, 𝜐)) 𝑑𝛽
𝑡
,

(24)

is rESP.

Suppose that there exists functionals 𝐹
1
: 𝑅
𝑟
→ 𝑅
𝑟, 𝐹
2
:

𝑅
𝑟
→ 𝑅
𝑟×𝑝, 𝐺

1
: 𝑅
𝑟
→ 𝑅
𝑟×𝑞, and 𝐺

2
: 𝑅
𝑟
→ 𝑅
𝑟×𝑝×𝑞 such

that

𝐹 (𝜐, 𝑢) = 𝐹
1
(𝜐) + 𝐹

2
(𝜐) 𝑢, 𝐺 (𝜐, 𝑢) = 𝐺

1
(𝜐) + 𝐺

2
(𝜐) 𝑢,

(25)

𝑑𝜐 = (𝐹
1
(𝜐) + 𝐹

2
(𝜐) 𝑢) 𝑑𝑡 + (𝐺

1
(𝜐) + 𝐺

2
(𝜐) 𝑢) 𝑑𝛽

𝑡
, (26)

for any (𝜐, 𝑢) ∈ 𝑅
𝑟
×𝑅
𝑝. Asmentioned above, we can consider

the general SCS (7) into the form of (16). This form of (16) is
the same as (26), which is a special case of (7). By taking into
account (7), (16), and (26), the CSCS (21) is rewritten as

𝑑𝑥 = (𝑓 (𝑥) + 𝑔 (𝑥, 𝜐)𝐷𝜐) 𝑑𝑡 + (ℎ (𝑥) + 𝑞 (𝑥, 𝜐)𝐷𝜐) 𝑑𝑤
𝑡
,

𝑑𝜐 = (𝐹
1
(𝜐) + 𝐹

2
(𝜐) 𝑢) 𝑑𝑡 + (𝐺

1
(𝜐) + 𝐺

2
(𝜐) 𝑢) 𝑑𝛽

𝑡
.

(27)

In the next section, we will establish a state feedback law that
guarantees the satisfaction of rESP and asESP property for
CSCS (27).

3. Exponential Stability of Composite Systems

Our aims of this section are twofold. On one hand, we study
the problem of finding state feedback law that guarantees that
the CSCS (27) satisfies rESP property. We derive sufficient
conditions for rESP of this system. On the other hand, we
establish sufficient conditions for asESP of the CSCS (27).

In the following theorem, we suppose that the function
𝑔 and 𝑞 are bounded on 𝑅

𝑛
× 𝑅
𝑝 and 𝑈 is the set of

admissible control and establish a sufficient conditions for
rESP property of CSCS (27). Theorem 9 is a stochastic
extension of Proposition 3.1, Theorem 5.1, and Theorem
4.1 stated in Spiliotis and Tsinias [2], Florchinger [3], and
Boulanger [4], respectively, to a general composite stochastic
system. Both the results and the proof used in this theorem,
however, are different from those in [2–4]. Furthermore, we
can consider the exponential stability in mean square results
of Florchinger [3] and Boulanger [4] as a special case of our
rESP results (Theorem 9) where 𝑟 = 2.

Theorem 9. Let 𝑉(𝑡) = 𝑉(𝑡, 𝑡
0
, 𝑥, 𝜐). Suppose that the SDS

𝑑𝑥 = 𝑓 (𝑥) 𝑑𝑡 + ℎ (𝑥) 𝑑𝑤
𝑡

(28)
satisfies rESP property, and there exists a state control law 𝑘

1
:

𝑅
𝑛
× 𝑅
𝑟
→ 𝑅
𝑝,

𝑘
1
(𝑥, 𝜐) = − 𝑀(𝑥, 𝜐)

𝑇
𝑁(𝑥, 𝜐)

𝑇 𝜕𝑊 (𝑉 (𝑡))

𝜕𝑥

+ Γ (𝑥, 𝜐) −

𝜕𝜙

𝜕𝜐

(𝑥, 𝜐) ,

(29)

where 𝑊(𝑉(𝑡)) = Φ
2
(𝑥) + 𝜙(𝑥, 𝜐), that guarantees that the

resulting closed-loop system
𝑑𝜐 = (𝐹

1
(𝜐) + 𝐹

2
(𝜐) 𝑘
1
(𝑥, 𝜐)) 𝑑𝑡

+ (𝐺
1
(𝜐) + 𝐺

2
(𝜐) 𝑘
1
(𝑥, 𝜐)) 𝑑𝛽

𝑡

(30)

satisfies the rESP property. Furthermore, assume that

𝐷𝜐 = 𝐹
2
(𝜐)
𝑇
∇Φ
2
(𝜐) + ∇Φ

2
(𝜐) 𝐺
2
(𝜐)
𝑇
. (31)

Then, the state control law

𝑘 (𝑥, 𝜐) = 𝑘
1
(𝑥, 𝜐) − 𝑔(𝑥, 𝜐)

𝑇
∇Φ
1
(𝑥) − 𝑞(𝑥, 𝜐)

𝑇
∇Φ
1
(𝑥) ,

(32)
where Φ

1
is a smooth Lyapunov function corresponding to the

SCS (28), guarantees that the CSCS (27) satisfies rESP.

Proof. Suppose that the origin of the stochastic system (28)
satisfies the rESP property. Then by the converse Lyapunov
Theorem 5, there exists a Lyapunov function Φ

1
(𝑥) and

positive constants 𝑎
𝑖
, 1 ≤ 𝑖 ≤ 5, such that (10)–(12) hold and

DΦ
1
(𝑥) =

𝑛

∑

𝑖=1

𝑓
𝑖
(𝑥)

𝜕Φ
1
(𝑥)

𝜕𝑥
𝑖

+

1

2

𝑛

∑

𝑖,𝑗=1

𝑚

∑

𝑘=1

ℎ
𝑖

𝑘
ℎ
𝑗

𝑘

𝜕
2
Φ
1
(𝑥)

𝜕𝑥
𝑖
𝜕𝑥
𝑗

≤ − 𝑎
5
|𝑥|
𝑟
.

(33)



Abstract and Applied Analysis 5

On the other hand, since the origin is a rESP for the closed-
loop system (30), then by converse Lyapunov Theorem 5,
there exists a Lyapunov functionΦ

2
(𝜐) and positive constants

𝑎
󸀠

𝑖
, 1 ≤ 𝑖 ≤ 5, such that the following conditions hold:

𝑎
󸀠

1
|𝜐|
𝑟
≤ Φ
2
(𝜐) ≤ 𝑎

󸀠

2
|𝜐|
𝑟
, (34)

󵄨
󵄨
󵄨
󵄨
∇Φ
2
(𝜐)

󵄨
󵄨
󵄨
󵄨
≤ 𝑎
󸀠

3
|𝜐|
𝑟−1

, 𝜐 ̸= 0, (35)
󵄨
󵄨
󵄨
󵄨
󵄨
∇
2
Φ
2
(𝜐)

󵄨
󵄨
󵄨
󵄨
󵄨
≤ 𝑎
󸀠

4
|𝜐|
𝑟−2

, 𝜐 ̸= 0, (36)

Y
2
Φ
2
(𝜐, 𝑢) =

𝑛

∑

𝑖=1

𝐹 (𝜐, 𝑢)

𝜕Φ (𝜐)

𝜕𝜐
𝑖

+

1

2

𝑛

∑

𝑖,𝑗=1

𝐺 (𝜐, 𝑢) 𝐺(𝜐, 𝑢)
𝑇 𝜕
2
Φ (𝜐)

𝜕𝜐
𝑖
𝜐
𝑗

≤ −𝑎
󸀠

5
|𝜐|
𝑟
,

(37)

where Y
2
is the infinitesimal generator for the stochastic

process solution of the resulting closed-loop system (30).
Consider the composite function

Φ (𝑉 (𝑡)) = Φ
1
(𝑥) + Φ

2
(𝜐) , (38)

for any (𝑥, 𝜐) ∈ 𝑅
𝑛

× 𝑅
𝑟. Obviously, Φ(𝑉(𝑡)) is a Lya-

punov function. We will show that Φ(𝑉(𝑡)) satisfies in
the exponential Lyapunov condition. A simple calculation
shows that conditions (10)–(12) are satisfied. It remains to
establish condition (13). Substituting 𝑘(𝑥, 𝜐) into the closed-
loop system deduced from CSCS (27), we have

𝑑𝑥 = (𝑓 (𝑥) + 𝑔 (𝑥, 𝜐)𝐷𝜐) 𝑑𝑡 + (ℎ (𝑥) + 𝑞 (𝑥, 𝜐)𝐷𝜐) 𝑑𝑤
𝑡
,

𝑑𝜐 = (𝐹
1
(𝜐) + 𝐹

2
(𝜐) 𝑘
1
(𝜐)

− 𝐹
2
(𝜐) 𝑔(𝑥, 𝜐)

𝑇
∇Φ
1
(𝑥)

− 𝐹
2
(𝜐) 𝑞(𝑥, 𝜐)

𝑇
∇Φ
1
(𝑥)) 𝑑𝑡

+ (𝐺
1
(𝜐) + 𝐺

2
(𝜐) 𝑘
1
(𝜐)

− 𝐺
2
(𝜐) 𝑔(𝑥, 𝜐)

𝑇
∇Φ
1
(𝑥)

− 𝐺
2
(𝜐) 𝑞(𝑥, 𝜐)

𝑇
∇Φ
1
(𝑥)) 𝑑𝛽

𝑡
.

(39)

Denoting D
𝜐
as the infinitesimal generator of the stochastic

process solution of the resulting closed-loop system (39)
yields

D
𝜐
Φ (𝑉 (𝑡))

= DΦ
1
(𝑥) + ∇Φ

1
(𝑥)
𝑇
𝑔 (𝑥, 𝜐)𝐷𝜐

+ ∇Φ
1
(𝑥)
𝑇
𝑞 (𝑥, 𝜐)𝐷𝜐 + Y

2
Φ
2
(𝜐)

− ∇Φ
1
(𝜐)
𝑇
𝐹
2
(𝜐) 𝑔(𝑥, 𝜐)

𝑇
∇Φ
1
(𝑥)

− ∇Φ
2
(𝜐)
𝑇
𝐹
2
(𝜐) 𝑞(𝑥, 𝜐)

𝑇
∇Φ
1
(𝑥)

− ∇Φ
2
(𝜐)
𝑇
𝐺
2
(𝜐) 𝑔(𝑥, 𝜐)

𝑇
∇Φ
1
(𝑥)

− ∇Φ
2
(𝜐)
𝑇
𝐺
2
(𝜐) 𝑞(𝑥, 𝜐)

𝑇
∇Φ
1
(𝑥) ,

(40)

for any (𝑥, 𝜐) ∈ 𝑅
𝑛
× 𝑅
𝑟. Substituting (31) into (40), we get

D
𝜐
Φ (𝑉 (𝑡)) = DΦ

1
(𝑥) + Y

2
Φ
2
(𝜐) . (41)

Thus, we obtain by taking into account (33) and (37) that

D
𝜐
Φ (𝑉 (𝑡)) = DΦ

1
(𝑥) + Y

2
Φ
2
(𝜐)

≤ − 𝑎
5
|𝑥|
𝑟
− 𝑎
󸀠

5
|𝜐|
𝑟
.

(42)

From (42) and the above results, we have the Laypunov func-
tion Φ(𝑉(𝑡)) satisfies in exponential Lyapunov condition.
Then, according to the Lyapounov theorem established in
Spiliotis and Tsinias [2, Proposition 3.2], the origin of the
CSCS (27) satisfies rESP property.

In the following theorem, we show that existence of
a Lyapunov function satisfying the exponential Lyapunov
condition implies rESP and asESP of the CSCS (27).

Theorem 10. Assume that there exists a 𝐶
2
(𝑅
𝑟
\ {0}) function

Φ satisfying the exponential Lyapunov condition. Then,

(i) the origin of the CSCS (27) is rESP,
(ii) the origin of the CSCS (27) is asESP.

Proof. Part (i) Assume that there exists a positive function
Φ(𝑉(𝑡)) such that the CSCS (27) or equivalently the CSCS
(39) satisfies the exponential Lyapunov condition.Then from
(13) we have

𝑑

𝑑𝑡

𝐸Φ (𝑉 (𝑡)) = 𝐸 (D
𝜐
Φ (𝑉 (𝑡)))

= 𝐸 (DΦ
1
(𝑥) + Y

2
Φ
2
(𝜐))

≤ − 𝑎
5
𝐸 (|𝑥|

𝑟
) − 𝑎
󸀠

5
𝐸 (|𝜐|
𝑟
) ,

(43)

where Φ
1
and Φ

2
are Lyapunov functions corresponding

to the SDS (28) and SCS (30), respectively, and 𝐷
𝜐
is the

infinitesimal generator of the stochastic process solution of
the resulting closed-loop system (39). The desired condition
(9) is a direct consequence of inequality (10) and (43).
Therefore, CSCS (27) satisfies in rESP property at the origin.
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Part (ii) Suppose that there exists a positive composite
function

Φ (𝑉 (𝑡)) = Φ
1
(𝑥) exp((𝑎5/𝑎2)𝑡) + Φ

2
(𝜐) exp((𝑎

󸀠

5
/𝑎
󸀠

2
)𝑡)
, (44)

where Φ
1
and Φ

2
are Lyapunov functions corresponding to

the SDS (28) and SCS (30), respectively, such that the CSCS
(27) satisfies the exponential Lyapunov condition. Then, by
taking into account (10)–(13), (40), (31), and (44), we obtain

D
𝜐
Φ (𝑉 (𝑡)) = DΦ

1
(𝑥) exp((𝑎5/𝑎2)𝑡) + Y

2
Φ
2
(𝜐) exp((𝑎

󸀠

5
/𝑎
󸀠

2
)𝑡)

≤ 0.

(45)

From (44) and (45) andΦ(𝑉(𝑡)) ≥ 0, we haveΦ
𝑡
= Φ(𝑉(𝑡)) is

a supermartingale. Therefore, for some random 𝐵
𝑥,𝜐
, it yields

lim
𝑡→∞

Φ (𝑉 (𝑡)) ≤ 𝐵
𝑥,𝜐

< ∞. a.s. (46)

From (46), we have Φ(𝑉(𝑡)) ≤ 𝐾
𝑥,𝜐

< ∞ for all 𝑡 ≥ 0, almost
surely, for some random𝐾

𝑥,𝜐
≥ 𝐵
𝑥,𝜐
.The latter in conjunction

with (10), (43), and (44) implies (14).Thus, CSCS (27) satisfies
in asESP property at the origin.

Remark 11. Comparing the existing results in [2–8] we can
make the following summaries.

(i) Theorem 9 is a stochastic extension of Proposition
3.1, Theorem 5.1, and Theorem 4.1 stated in Spiliotis
and Tsinias [2], Florchinger [3], and Boulanger [4],
respectively, to a general composite stochastic system.
Both the results and the proof used in this theorem,
however, are different from those in [2–4]. Further-
more, we can consider the exponential stability in
mean square results of Florchinger [3] and Boulanger
[4] as a special case of our rESP results (Theorem 9)
where 𝑟 = 2.

(ii) The rESP and asESP results for stochastic system
proved in Spiliotis and Tsinias [2] are a special case of
our rESP and asESP results for CSCS (21). In addition,
the existing exponential stability results established in
[2–8] do not permit us to make a conclusion about
rESP and asESP for the broader class of CSCS (21) at
the origin, whereas the results of this paper are still
valid.

4. Applications

This section illustrates applicability of our results by design-
ing the following two numerical examples.

Example 12. Consider the SDS

𝑑𝑥 = −2𝑥𝑑𝑡 + 𝑥𝑑𝑤
𝑡
, (47)

where (𝑤
𝑡
)
𝑡≥0

is a standard real-valued Wiener process and
𝑥 ∈ 𝑅. Assume thatΦ(𝑥) = 𝑥

2 is a smooth Lyapunov function
corresponding to the SDS (47). Then, a simple calculation
shows that the SDS (47) satisfies rESP.

Next, consider the SCS

𝑑𝜐 = 2𝜐
2
𝑢𝑑𝑡 +

1

2

𝜐𝑢𝑑𝛽
𝑡
, (48)

where (𝛽
𝑡
)
𝑡≥0

is a standard real-valuedWiener process, 𝜐 ∈ 𝑅,
and 𝑢 is a real-valued measurable control law. Obviously,

𝑘
1
(𝑥, 𝜐) = − 𝑀(𝑥, 𝜐)

𝑇
𝑁(𝑥, 𝜐)

𝑇 𝜕𝑊 (𝑉 (𝑡))

𝜕𝑥

+ Γ (𝑥, 𝜐) −

𝜕𝜙

𝜕𝜐

(𝑥, 𝜐)

= − 10𝑥
3
− 4𝑥
2
𝜐 − 𝜐,

(49)

where 𝜙(𝑥, 𝜐) = (1/2)(2𝜐+𝑥)
2, 𝑙(𝑥, 𝜐) = 𝜐, ℎ(𝑥, 𝜐) = 1, 𝜑(𝑥) =

−2𝑥, Γ(𝑥, 𝜐) = 2𝑥,𝑀(𝑥, 𝜐) = 1,𝑁(𝑥, 𝜐) = 2𝑥
2, and

𝑊(𝑉 (𝑡)) =

{
{

{
{

{

1

2

[𝜐
2
+ (𝑥 + 2𝜐)

2
] , (𝑥, 𝜐) ̸= 0,

0, (𝑥, 𝜐) = 0,

(50)

renders the resulting closed-loop system

𝑑𝜐 = 2𝜐
2
𝑘
1
(𝑥, 𝜐) 𝑑𝑡 +

1

2

𝜐𝑘
1
(𝑥, 𝜐) 𝑑𝛽

𝑡
, (51)

satisfies the rESP property. Thus, according to Theorem 9,
there exists the state control law

𝑘 (𝑥, 𝜐) = 𝑘
1
(𝑥, 𝜐) − 𝑔(𝑥, 𝜐)

𝑇
∇Φ (𝑥) − 𝑞(𝑥, 𝜐)

𝑇
∇Φ (𝑥)

= − 10𝑥
3
− 4𝑥
2
𝜐 − 𝜐 − 4𝑥

(52)

that guarantees the CSCS

𝑑𝑥 = (−2𝑥 + 𝜐) 𝑑𝑡 + (𝑥 + 𝜐) 𝑑𝑤
𝑡
,

𝑑𝜐 = 2𝜐
2
𝑢𝑑𝑡 +

1

2

𝜐𝑢𝑑𝛽
𝑡
,

(53)

where 𝑔(𝑥, 𝜐) = 𝑞(𝑥, 𝜐) = 1 and 𝐷 = 𝐼 is the identity matrix
in𝑀
𝑟×𝑟

(𝑅) satisfies rESP property.

Example 13. Consider the CSCS

𝑑𝑥 = (−2𝑥 + 𝜐) 𝑑𝑡 + (𝑥 + 𝜐) 𝑑𝑤
𝑡
,

𝑑𝜐 = 𝜐𝑑𝑡 + (5𝜐 − 5𝜐𝑢) 𝑑𝛽
𝑡
,

(54)

where 𝑥, 𝜐 ∈ 𝑅 and 𝑢 ∈ [−(1/2), (1/2)]. Consider the
Lyapunov function candidate Φ(𝑉(𝑡)) = |𝑥|

𝑟
+ |𝜐|
𝑟, 0 <

𝑟 < 1/5. A simple calculation shows that Φ(𝑉(𝑡)) satisfies
the exponential Lyapunov condition. Then, according to
Theorem 10, the origin is rESP and asESP.

5. Conclusions

In this paper, we have provided the new results for rESP and
asESP of the CSCS

𝑑𝑥 = (𝑓 (𝑥) + 𝑔 (𝑥, 𝜐) 𝜐) 𝑑𝑡 + (ℎ (𝑥) + 𝑞 (𝑥, 𝜐) 𝜐) 𝑑𝑤
𝑡
,

𝑑𝜐 = 𝐹 (𝜐, 𝑢) 𝑑𝑡 + 𝐺 (𝜐, 𝑢) 𝑑𝛽
𝑡
.

(55)



Abstract and Applied Analysis 7

We have used the converse Lyapunov theorems established by
Khasminiskii [1] and Spiliotis and Tsinias [2] to the concept
of stochastic control Lyapunov function and extended the
stabilization results proved by Spiliotis andTsinias [2] for SCS
to the larger class of CSCS (55) driven by two independent
Wiener processes that have been considered in Florchinger
[3], Boulanger [4], and Rusinek [5]. We have also derived
sufficient conditions for rESP and asESP of CSCS (55).
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