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We prove some best proximity point results for relatively u-continuous mappings in Banach and hyperconvex metric spaces. Our
results generalize and extend some recent results to relatively u-continuous mappings and to general spaces.

1. Introduction

Let A, B be nonempty subsets of a Banach space (M, | - [|). In
[1], Eldred et al. considered the best proximity point problem
for mappings T : AU B — A U Bwith T(A) ¢ Band
T(B) ¢ AorT(A) c Aand T(B) C B, respectively; that is,
they sought conditions on the subsets A, B, the space M, and
the mapping T that assure existence of points x, € A, y, € B
such that

I =T (o)l = |0 = T ()] = dist (A, B), (1)
or
xg=T (xo) >
Yo =T (¥), (2)

o = yo| = dist (A, B),

respectively. In solving this problem they considered a new
class of mappings.

Definition 1 (see [1]). Let A, B be nonempty subsets of a
metric space (M, d). Then a mappingT : AUB — AUB
is said to be relatively nonexpansive if

d(T(x),T(y)) <d(x.y) (3)

The assumption that a mapping is relatively nonexpansive is
weaker than the assumption that it is nonexpansive and does
not even imply continuity [1].

forx € A, y € B.

Introducing a geometric condition for Banach spaces
called proximal normal structure, they obtained the following
result.

Theorem 2 (see [1]). Let (A, B) be a nonempty weakly compact
convex pair in a Banach space (M, | - ). Let T : AUB —
AUB be a relatively nonexpansive mapping such that T(A) ¢ B
and T(B) C A, and suppose that (A, B) has proximal normal
structure. Then there exists (xy, y,) € A X B such that

|0 = T (x0)]| = 170 = T (30)|| = dist (A, B). (4)

With the goal of generalizing relatively nonexpansive
mappings, Eldred et al. [2] introduced the notion of a
relatively u-continuous mapping in Banach spaces, which we
state here for a metric space.

Definition 3 (see [2]). Let A, B be nonempty subsets of a
metric space (M, d). A mappingT : AUB — AUBissaid to
be relatively u-continuous if for each € > 0, there exists § > 0
such that d(T'(x), T(y)) < € + dist(A, B) whenever

d(x,y) <d+dist(A,B), Vxe€A, yeB. (5)

Every relatively nonexpansive mapping is relatively u-
continuous. For an example showing that the converse is not
true see [2, Example 2.1].

Eldred et al. [2] were able to extend some of the results of
[1] to include the class of relatively u-continuous mappings.



Theorem 4 (see [2]). Let A, B be nonempty compact convex
subsets of a strictly convex Banach space X, and let T : AUB —
AU B be a relatively u-continuous mapping such that T(A) C B
and T(B) C A. Then there exists

(%0, ¥0) € Ax B
. (6)
such that ||x, = T (x,)| = |6 = T (3)| = dist (A, B).

In this paper we show that Theorem 4 holds for any
Banach space without the assumption of strict convexity as
follows.

Theorem 5. Let (M, | - ||) be a Banach space, and let A, B be
nonempty compact convex subsets of M. If T : AUB — AUB
is relatively u-continuous such that T(A) ¢ Band T(B) C A,
then there exist points x € A and y € Bsuch that |x —T(x)|| =
ly - Tl = dist(A, B).

Some interesting best proximity point theorems for var-
ious kinds of mappings have been accomplished in [3-8].
Other related results on cyclical mappings can be found in
[9,10].

The aim of this paper is to prove some best proximity
point results for relatively u-continuous mappings in Banach
and hyperconvex metric spaces. Our results generalize and
extend some recent results to relatively u-continuous map-
pings and to general spaces.

2. Preliminaries

Let A and B be nonempty subsets of a metric space (M, d).
Define

dist(A,B) =inf{d (x,y) : x € A, y € B},
Ay={x€A:d(x,y)=dist(A,B) forsome y € B},

By={y € B:d(x,y) =dist (A, B) for some x € A}.
)

Definition 6. A metric space (M, d) is hyperconvex if given
any family {x,: « € I} of points in M and any family {r,} of
nonnegative real numbers satisfying d(x,, x3) < r, + 14 for
all , B € I, then NB(x,; 1) # 0, where

B(xr)y={yeM:d(x,y)<r}. (8)

Definition 7. The admissible subsets of M are sets of the form
NB(x,;1,), that is, the family of ball intersections in M. For
a subset X of M, N,(X) denotes the closed e-hull of X; that
is, N.(X) = {x € M : dist(x, X) < &}, where dist(x, X) =
inf{d(x, y) : x € X}.

If X is an admissible set, then N (X) is also an admissible
set [11]. For recent progress in hyperconvex metric spaces, we
refer the reader to [12].

Definition 8. Let (M, d) be a metric spaceand F: M — 2M
a multivalued mapping with nonempty values. Then F is said
to be almost lower semicontinuous at a point x € M if for each
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€ > 0 there is an open neighborhood U(x) of x and a point
z € M such that, for y € U(x),

B(z;e)NF(y) #0. 9)

In establishing existence of best proximity points for rel-
atively u-continuous mappings in Banach and hyperconvex
spaces, we apply the following continuous selection and fixed
point theorems.

Theorem 9 (see [13]). Let X be a paracompact space and Y
a normed linear space. Let F : X — 2V be a multivalued
mapping with nonempty closed convex values. Then F is an
almost lower semicontinuous mapping if and only if for each
€ > 0, F has a continuous e-approximate selection; that is,
a function f : X — Y such that for every x € X,
dist(f(x), F(x)) < €.

Theorem 10 (see [14]). Let X be a paracompact topological
space, (M, d) a hyperconvex metric space, and F : X — 2Man
almost lower semicontinuous mapping with admissible values.
Then F has a continuous selection; that is, there is a continuous
mapping f : X — M such that f(x) € F(x) for each x € X.

Theorem 11 (see [15, 16]). Let (M, d) be a compact hypercon-
vex metric space and f : M — M a continuous mapping.
Then f has a fixed point.

3. Best Proximity Points in Banach Spaces

The following theorem extends the best proximity point result
of Eldred et al. [2, Theorem 3.1] for strictly convex Banach
spaces to any Banach space.

Proof of Theorem 5. Since A, B are compact convex subsets,
A, B, are nonempty compact convex subsets. By [2, Propo-
sition 3.1] T(A,) € Byand T(B,) C A,.

By u-continuity of T, for any x € A, y € B such that
lx—yll = dist(A, B) and any positive integer n thereisad,, > 0
and a neighborhood of x in A defined as

U(x,98,)={ueAg:lu-x|<3,}, (10)

such that u € U(x, §,,) implies that

IT W) -T ()| < (%) + dist (A, B). ()

For each positive integer #, define a multivalued mapping

E,: A, — 2% by

n

F,(v) = B (T W) (%) + dist (4, B)) N, (12)
for v € A,. Since T(v) € By, F,(v) is nonempty. As the
intersection of closed convex sets, each F,(v) is also closed
convex.

By (11), T(y) € F,(u) for each u € U(x,$§,), which
implies that the mapping F, is almost lower semicontinuous.
By the approximate selection result of Deutsch et al. [13]
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(see Theorem 9), for any « > 0, F, has a continuous «a-
approximate selection; that is, there is a continuous f, :
A, — A, such that dist(f,(v),F,(v)) < «. Choosing « =
1/n, by the definition of F, the selection f,, satisfies

2\ .
IT ) - £, )] < <;> + dist (A, B), )

for v e A,.

Since the mapping f, is continuous and A is a compact
convex subset of a Banach space, the Schauder fixed point
theorem implies that f, has a fixed point x,; that is, there is a
point x,, € A, such that x,, = f,(x,,).

By (13), |T(x,) — x,| — dist(A, B), and by compactness
of A, and By, we can assume thatx,, — x € AjandT(x,) —
p € B,. Therefore, ||x — pll = dist(A, B), and by u-continuity
of T, |T(x,) — T(p)ll — dist(A, B). It follows that

dist(A,B) < |p- T (p)|

< ”P =T (xn)" + "T (xn) -T (P)" (14)
—> dist (A, B),

which implies that || p — T(p)| = dist(A, B). O

The following proposition follows by a slight change in
the proof in [2, Proposition 3.1].

Proposition 12. Let A, B be nonempty subsets of a normed
linear space M, and let T : AUB — AU B be a relatively u-
continuous mapping such that T(A) ¢ A and T(B) C B. Then
T(A,) c Ay and T(B,) C B,.

Proposition 13 (see [17]). Let (M, || - ||) be a strictly convex
Banach space, A a nonempty compact convex subset of M, and
B a nonempty closed convex subset of M. Let {x,,} be a sequence
inAand y € B. If
|x, = y| — dist(A,B), then x, — P,(y).  (15)
In [1] a best proximity result was given for relatively
nonexpansive mappings in a uniformly convex space. The
following result is a version of that result for relatively u-
continuous mappings in a strictly convex space.

Theorem 14. Let (M, | - ||) be a strictly convex Banach space,
and let A, B be compact convex subsets of M. IfT : AUB —
AUB is relatively u-continuous such that T(A) ¢ AandT(B)
B, then there exist points x, € A and y, € B such that x, =
T(x0), yo = T(y,) and llxy — y,ll = dist(A, B).

Proof. Since A, B are compact convex sets, A, and B,
are nonempty compact convex sets, and by Proposition 12,
T(A,) c Ayand T'(B,) C B,.

By u-continuity of T, for any positive integer n there is a
d,, > 0 such that

|x - y| <6, + dist (A, B) (16)

implies that | T'(x) - T ()|l < (1/n) +dist(A, B), for x € Aand
y € B.Forx € AjdefineU(x,6,) ={uecAy: |lu-x| <35,
and let y = Pg(x). Then u € U(x, §,,) implies that

lu—y| < llu—xl+|x - y| <6, +dist(A,B),  (17)

and therefore, by u-continuity of T,
ITw)-T(y)| < (l> + dist (A, B). (18)
n

For each positive integer 7, define a map F, : A, — 2%
by

F,0)=B(Tws(5)+ditaB)nB, (9
for v € A,. As the intersection of closed convex sets, F, (v) is
also closed convex. By (18), T(y) € F,(u) for u € U(x,9,,),
which implies that F, (1) is nonempty and also that F, is an
almost lower semicontinuous mapping.

Since M is a normed linear space, by Theorem9 for
any « > 0, F, has a continuous a-approximate selection;
that is, there is a continuous f, : A, — B, such that
dist(f,(v), E,(v)) < a, for v € A,. Choosing &« = 1/n, by
the definition of F, the selection f, satisfies

IHOEFAG] IS (%) + dist (4, B), (20)
forve A,.

Consider the metric projection operator P, : M — A.
Since f,(A,) ¢ By and P,(B,) C A, the map P, 0 f, sends
A, into A,. Since P, o f, is continuous and A is compact
and convex, by the Schauder fixed point theorem there is a
fixed point x,, = P,o f,(x,) € A,. Let y, = f,(x,) € B,
and assume by compactness that x,,, y,, converge to x, € A,
¥, € By, respectively. By continuity of P4, x5 = P,(y,).

By definition of the map f,, [T(x,) — vl < (2/n) +
dist(A, B), and since y, — y, we have

IT () = ol

(1)
£ "T (xn) - yn” + "yn - yO“ — dist (A, B).
Therefore, by Proposition 13,
T (x,) — Pa(3)- (22)

By u-continuity of T, for any € > 0 thereisa § > 0 such
that

IT () =T ()

< € +dist (A, B) provided |x, — y,| < & + dist (A, B).
(23)

Since x,, — x,, choose n sufficiently large that | x,, — x| < 6.
Then

%, = yoll
(24)
< ||xn - x0|| + ||xO - y0|| < 6 +dist (A, B),



which implies that

dist (A, B)
(25)
<|T(x,) =T (yp)| < € +dist(A, B).
Since € is arbitrary,
IT (x,) = T (3o)|| — dist (A, B). (26)

Therefore, by Proposition 13,

T (x,) — Pa(T (%)) (27)

By the relations (22) and (27), T(x,,) converges to both
P,(y,) and P,(T(y,)). Therefore, x, = P4(y,) = Po(T(¥,))-
Since y,, T(yy) € By, lxg = yoll = llxg — T(yo)ll = dist(A, B),
and by strict convexity of M, y, = T'(y,).

Since [|x, — y,ll = dist(A, B), we have by u-continuity
of T that [|T(x,) — T(yy)ll = dist(A, B). Therefore, T(x,) =
P,(T(y,)), and since x, = P,(T(y,)), this implies that x, =
T(xg). O

4. Best Proximity Points in
Hyperconvex Spaces

The following is a best proximity point result for relatively
u-continuous mappings in hyperconvex metric spaces. Best
proximity point/pair results were obtained in the setting of
hyperconvex spaces by some authors in [18-21].

Theorem 15. Let A, B be admissible subsets of a hyperconvex
metric space (M, d), let A, be a compact subset of M and let
T:AUB — AUB be a relatively u-continuous mapping such
that T(A) C B, and T(B) C A. Then there is an x, € A, such
that d(x,, T(x,)) = dist(A, B).

Proof. By a result of Kirk et al. [18], the sets A, and By, are
nonempty and hyperconvex. For x € A, choose y € B, such
that d(x, y) = dist(A, B). Then, by u-continuity of T, for any
€ > 0thereisad > 0 such thatforu € A, v € B,
d (u,v) < 6 + dist (A, B)
(28)
implies that d (T (u),T (v)) < € + dist (A, B).

It follows that d(T'(x), T(y)) = dist(A, B). This implies that
T(x) € By for x € A,,.
Define an open neighborhood of x in A, by U(x) = {u ¢
Ay d(u,x) < 8}
Then u € U(x) implies that
d(u,y) <d(u,x)+d(x,y) <8+dist (A B), (29)
and therefore, by u-continuity of T,
d(T (u),T(y)) < e+dist(A,B). (30)
Define a multivalued F: A, — 2% by

F(v) = B(T (v);dist (A, B)) N A, (31)
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forv € A,. Since T(v) € B, for v € A, F(v) is a nonempty
subset of A, and since A is admissible, F(v) is also admissible.

We show that F is almost lower semicontinuous by
establishing that B(T'(y); &) N F(u) # 0 for u € U(x). By (30)
and the hyperconvexity of M, for u € U(x),

B(T (y);€) N B(T (u);dist (A, B)) #0. (32)
Since T'(u) € By, we have
B(T (u);dist (A, B)) N A+0. (33)

Any point pin the intersection (33) isin A since d(p, T'(u)) =
dist(A, B). Therefore,

B(T (u);dist (A, B)) N A c A,. (34)

By (32), (33), and the fact that T(y) € A, the sets B(T'(y); €),
B(T'(u); dist(A, B)), and A have pairwise nonempty inter-
section. Since all of these sets are ball intersections, the
hyperconvexity of the space M implies that

B(T (y);€) N B(T (u);dist(A,B)) N A#0.  (35)

Further, by (34), the intersection in (35) is contained in A, It
follows from (35) that B(T'(y); &) N F(u) + 0 for u € U(x). This
implies that the mapping F is almost lower semicontinuous.

By the selection theorem in Markin [14] (see Theorem 10),
an almost lower semicontinuous mapping on a hyperconvex
space with nonempty admissible values has a continuous
selection; that is, there isa continuous f: A, — A suchthat
f(x) € F(x) for x € A,. By Theorem 11, a continuous self-
mapping on a compact hyperconvex space has a fixed point.
Therefore, there isa w € A such that w = f(w) € F(w). By
the definition of F,

d(w,T (w)) = dist (A, B). (36)
O
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