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We consider an additive group structure in digital images and introduce the commutator in digital images. Then we calculate the
hypercrossed complex pairings which generates a normal subgroup in dimension 2 and in dimension 3 by using 8-adjacency and

26-adjacency.

1. Introduction

In this paper we denote the set of integers by Z. Then Z"
represents the set of lattice points in Euclidean n-dimensional
spaces. A finite subset of Z" with an adjacency relation is
called a digital image.

Definition 1 (see [1, 2]). Consider the following.

(1) Two points p and g in Z are 2-adjacent if [p — g| = 1.

(2) Two points p and q in Z* are 8-adjacent if they are
distinct and differ by at most 1 in each coordinate.

(3) Two points p and g in Z* are 4-adjacent if they are
8-adjacent and differ by exactly one coordinate.

(4) Two points p and q in Z* are 26-adjacent if they are
distinct and differ by at most 1 in each coordinate.

(5) Two points p and q in Z* are 18-adjacent if they are
26-adjacent and differ in at most two coordinates.

(6) Two points p and g in Z* are 6-adjacent if they are
18-adjacent and differ by exactly one coordinate.

Definition 2. Let G be a subset of a digital image. A simplicial
group G in digital images consists of a sequence of groups G
and collections of group homomorphisms d; : G, — G,_,

ands; : G, — G,,;, 0 < i < n, that satisfies the following
axioms:

dd;=d;\d; i<j
dis;j=sjad; i<j
djsj:dj+ls].:id, i=jori=j+1, (1)
disj = dei—l’ i>j+1,

§8;=Sj18 P
Definition 3. Given a simplicial group G with x-adjacency,
the Moore complex (NG, 0) of G is the chain complex defined
by
n—1

NG, = (| Kerd,, 2)

i=0

with 0 : NG, — NG,_, induced from d,, by restriction.
The nth homology group of the Moore complex of G is
N, Kerd;

Z (ﬂ?:o Kerd;)’ )

H,(NG,9) =

2. Hypercrossed Complex Pairings in
Digital Images

First of all we adapt ideas from Carrasco and Cegarra [3-5]
to get the construction in digital images. We define a set P(1)



consisting of pairs of elements (e, ) from S(n) withae N 8 =
@ and f < «, with respect to lexicographic ordering in S(#)

where o = (i}, ...,i;) and S = (j,,1p - - .» J1) € S(n).
Consider the following diagram:
NGn—#oc x NGn—#ﬁ fes NGn
Sq X Sg P
! (4)
G, xG, # G,

{F, g: NG, s X NG, ,5 — NG,: (@, p) € P(n),n > 0}

where

So = Siy St Nan#oc - Gn’

(5)
Sg=8; cvSj NG,H,/; — G,,

and define p : G, — NG, and p(x) = p,_; - po(x) as
pj(z) =z -sdizand j = 0,...,n— 1. Since a digital image
has the additive group structure, define the commutator as

[x, y] = xy - yx. (6)
Thus
u:G,xG, — G,
Fop (%0 yg) = it (50 % 58) (%> yp) )
=p [Saxot’ S;s)’/s] .

The normal subgroup NG, of G,, is generated by the elements
of the form

Fop (%0 ) (8)
where x, € NG,,_,, and yg € NG,_;.

Theorem 4. 2-dimensional normal subgroup N, with 8-adja-
cency is generated by the elements of the form

[so1 = s1261,811] - )
Proof. Let « = (1) and 8 = (0) for n = 2. For x; and y, €
NG, = Kerd,,

Foy,m) (1 71) = P1Po [S0%1> 5101
= piAlsox1> 5101 = sodo [Sox15 5131}
= [SOxl - 51x1’51y1] .

(10)

Thus F) )(x1, y1) = [sox; — s;x1,5,)1] and this is the
element generating N, normal subgroups. O

Proposition 5. 3-dimensional normal subgroup N5 with 26-
adjacency is generated by the elements of the following forms:
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(@) [sy50%1 = SoS1%1> 5275,

(ii) [s380%1 = $281%1, 81 Y5 = 2051
(iii) [sgx; = $1%5 + 5%, 515, 1],
(iv) [s1%; = 5,5, 5,751,

V) [s0%25 520515

(Vi) [Sgx; = $1%5, S V5] + [5:%5, S, 151
Proof. For n = 3 the possible pairings are the following:

(0) Fu0»
(i) Fio00)>
(i) Fio)2,1)>
(iv) Foiy)»
) Foy)»
(vi) Foya)-

Forall x; € NG, and y, € NG, the corresponding generators
of Nj are the following with F, 3 : NG, x NG, — NG; and

for n = 3, p(x) = p,p; po(x):

(i)
Fa,0)2) (1, 32) = P [5150%1, 5,95 ]
= PaP1Po [$150%15 5,05 (11)
= [5150x1 - 5251x1’52)’2] >
(ii)
Foo (x15 2) = P [$:50%1, 5172

= P2P1Po [$250%15 51 15 (12)

= [5350%1 = 5,811,519, = 5,90] -

For all x, € NG, and y; € NG, and considering the map

Fyp: NG, X NG, — NG;, the corresponding generator of

N is

(iii)
Foya) (%22 1) = P [So%20525:01]

= PaP1Po [Sox2r S2511] (13)
= [so%2 = 513 + 5,25, 8,51 71| -

Forall x,, y, € NG, and for F, g : NG, X NG, — NG; the
corresponding generators of N, are

(iv)
Fay) (%2, ¥,) = P [$1%25 5,5
= paP1Po [$1%2: 522] (14)
= [51%, — $,%5, 5,05 »
v)
Foy2) (%2, ¥2) = P [$0%25 5,
= PaP1Po [So%2 $272] (15)

= [Soxz’ 52)’2] >
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(v1)

Foyay (%2 32) = p [s0%2: 5102
= PaP1Po [So%2: 5172] (16)
= [s022 = 5120, 5100 ] + [53%0, 55 02] - O

Theorem 6. Let NG, be a 2-dimensional Moore complex of a
simplicial group G. Then 0,(NG,) = [Kerd,,, Kerd, ] where 0,
is induced from d, by restriction.

Proof. For n = 2, assume that « = (0), = (1), and x;, y; €
NG, = Kerd,. Now calculate d,, F, g.

Since Fg)1)(x1, 1) = [sox; — $1x1,5 )], from
Proposition 5

dZF(O),(l) (xl’Jﬁ) = | dysox; — dysi Xy, dys 0
id id (17)

= [Sodlxl - xl’)ﬁ] .

At first we investigate whether s,d, x; — x; is in Ker d,, or
not.

i),ﬁldlxl —dox, = dyxy; (18)

id =0

therefore syd,x; — x; ¢ Kerd,.

Secondly we examine whether syd; x, — x, is in Ker d, or
not.

Since

dspdx, —dx, =d,x, —d;x, =0, s,d,x, —x, € Kerd,.
15041%1 101 1% 1%1 > Spdp Xy 1 1
id =

(19)

From the assumption y; € Kerd,, we get
Fy ) (%15 1) € [Kerd), Kerd,] . (20)
O

Theorem 7. Let NG; be a 3-dimensional Moore complex of a
simplicial group G with 26-adjacency. Then

0; (NG;) ¢ [Kerd,,Kerd, nKerd, ]
+ [Kerd,,Kerd, N Kerd,]
+ [Kerd, nKerd,, Kerd,]
(21)
+ [Kerd,,Kerd,]
+ [Kerd, nKerd,, Kerd, N Kerd, |
[

+ [Kerd,, Kerd, nKerd, ],

where 05 is induced from d by restriction.

Proof. For n = 3 investigate d,,F, s where x; € NG, and y, €
NG, = Kerd, nKerd,.

From Proposition 5 we have F(; g),)(x, y,) = [s;50%; —
$250X1> S, ;). Then applying dj to F(; o)5)(x}, ¥,), we get the
following:

d3F,0)2) (%15 92) = | d3s18o%1 — d38,80%1,d35, 72
id id
(22)
= [s1d350%; = %15 2]
= [s18od1x1 = Sox15 ¥2] -
Firstly, examine whether s;s,d,x; — sox; is in Ker d;, or not:

dy (5150d1x1 - SOxl) = dys;sod; X1 — dgSox;

= sqdySod X, — dysyx
0oSoh1 X1 ~ doSe*)

2
id id ( 3)

= sod X, — X;.

So sy8pd 1 x; — spx; ¢ Kerd,,.
Secondly we investigate whether s;s,d;x; — syx; is in
Ker d, or not:

d, (5150d1x1 - SOxl) =d;sy5od %1 — dySox;

=ds;50d X1 — dyS¢X; (24)

id id
= sod Xy — X;.
Therefore s;s,d;x; — syx; ¢ Kerd,.
Finally we check whether s;s,d,x, — syx; is in Kerd, or

not.
Since

d, (5150d1x1 - SOxl) = d,s180d1 %1 — dySo%,
id (25)
= sod;x; — spd;x; =0,

therefore s,s,d,x; — sox; € Kerd,.
We get

Fo10) (x1,y,) € [Kerd,,Kerd, nKerd,], (26)

since y, € Kerd, N Kerd,.
If

Foom) (xp)’z) = [stoxl 55X S1)2 — 52)’2] > (27)
then
d3F0)1) (x1,92)
= d ([5350%1 = $:51%1, 8192 = $:0])
(28)
= isfdzsoxl - isf_zslxpdsle’z - isfdz)’z

id id id

= [Soxl = 51X1,81d,), — )’2] .



At first we check whether syx, — s, x, is in Ker d,,, Ker d;,
and Ker d, or not.

dy (Soxl - Slxl) = dg[;oxl —dos;x; = x; —dys;x;. (29)
1

Thus syx; — s,x, ¢ Kerd,.
Next, since

dy (sox; = 51%1) = dysox; —dys;x%) = % —x; =0,
id id (30)
SoX; — $;x; € Kerd,,
and, finally,
d, (sgx; = $1%1) = dysyxy — dys1xy = sod %, — x, ¢ Kerd,.
id
(31)

Now examine whether s, d, y, -y, isin Ker d, Ker d,, and
Ker d, or not:

dy (Sldz)’z - )’2) =dysidyy, —doy,
= s9dody Y, = doy; (32)

= sod1doy, —doy, = 0.
=0 =0

Therefore s,d, y, — y, € Kerd,. We have the following:

d, (Sldz)’z - )’2) = ﬂﬂdzyz —dy, =d,y, ¢ Kerd,;
id =0

d, (Sldz)’z - )’2) = é&dzyz —dyy,=dyy, —dyy, =0
id

= 5,d,y, — ¥, € Kerd,.

(33)

So F(50)1)(x1> ¥,) = [Kerd,, Kerd, N Kerd,].

Forall x, € NG, and y, € NG, if
Foya,1y (%2, ¥1) = [50%2 = 5123 + 8,5, 518,15 (34)
then
dSF(O)(Z,l) (%2 71)

= dy ([sp2, = $1% + 5,5, 5,5, 1))

(35)

= | dssgxy — das; %, + ds8,%,, ds5,S
350%X2 351%2 35,%2> A35;51))
id id

= [sody %y = $1d,%) + x5, 5, 31] -

Firstly investigate whether syd,x, — s,d,x, + x, is in Ker d,),
Ker d,, and Ker d, or not:

dy (sodyxy = 51dy%, + X)

=dysgdyx, —dys,dyx, +dyx,
=T = (36)

=d,x, — syd,dyx, = d,x,.
2%3 — $pd1G9X, 2%
=0
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Thereby syd,x, — s,d,x, + x, ¢ Kerd,. We have

d, (sydyxy = 51dy%x, + X,)

=d,syd,x, —d,s;d,x, +d,x
15082%X, — 418,0,X; +di X,
— —_ -

7
id id (3 )

=d,x, —d,x, = 0.
For this reason syd,x, — s,d,x, + x, € Kerd,. We also have

dy (sodyx; = 51dy%; + x3)
=d,syd,x, — d,s,;d,x, + d,x,
id
(38)
= sod dyx, — dyx, +dyx,

= sod,d;x, = 0.
=0

Hence syd,x, — s,d,x, + x, € Kerd,.
Later on we research whether s,s, y; is in Ker d,, Kerd,,

and Ker d, or not.
Since dy(s,y,) = sodoy; = 0,81y, € Kerd,,.
0

Since d, (s, y,) = @yl =y, 850 ¢ Kerd,.
id
Since dy(s1y1) = das101 = y1> 5191 ¢ Kerd,.
id
Thus d3F(),1) (%5, y1) € [Kerd, N Kerd,, Kerd,].
For all x,, y, € NG, since F)(x2, ¥2) = [59%2, 5,02
daF(o)(z) (xz’ }’2) =d; ([Soxz’sz)’z])
= [dssoxbisfg}’z] (39)
id
= [sodax, 2]
By using properties of the commutator we have
[sod2, = 51355 + X3, 1]
= [sodyxy + (% = 51435, ), 3]

= [sodyxy, y2] + [%5 = $1d3%5, 1] 5

(40)
[sodaxy = $1d5%, + X5, 3] + [¥2, X5 = 515, |
= [Sodzxz’)’z]
= d3Fg)0) (%2, 1) -
Thus
d3F(0)(2) (xz’ J’2)
€ [Kerd, nKerd,, Kerd; NnKerd,] (41)

+ [Kerd, nKerd,,Kerd, N Kerd,].
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If Fiyy ) (%2, 32) = [51%5 = 5%, 5,,], then

d3F(1)(2) (xz’ )’2) =d, ([Slxz = 8%, 32)’2])

= | dss1x, — d35,%5,d35, 9, (42)
id id

[Sld2x2 - xz’)’z] .

Firstly we check whether s,d,x, — x, is in Ker d,,, Ker d,, and
Ker d, or not:

dy (s1dy%; = x3) = dos1dyx; — dox,
=0
= sodyd,x,
(43)
= sod dyx,
=0

=0.
Therefore s,d,x, — x, € Kerd,,. Since
dy (s1dyx; = %) = dysydyx, - dyx,
id =0 (44)
= dyxy,
s;d,x, — x, ¢ Kerd,. We have

dy (s1d,%, = x,) = dy5,d,%, — dyx,
id
=dyx; —dyx; (43)
=0.
Hence s,d,x, — x, € Kerd,.
Because of the case y, € Kerd, N Kerd,,

d3F 1)) (%5, ,) € [Kerd, n Kerd,, Kerd, nKerd, ].
(46)

If Fo)1) (%25 2) = [s9%; = 51%5, 819, + [55%5, 55, ], then

d3F(0)(1) (x2>y2)
= [d350x2 - d351x2,51y2] + |:d352x2,d352y2] (47)
id id
= [sodyxy = $1d5%5,51d5 5] + [, 5] -
Consider the following commutator:
[sodaxy = 51d2%, + X3, 51d2 55 = 1] (48)
and code the terms of this commutator such as

a = sody%,, b=s,dyy

(49)
d=x,,

¢ =s51dyx, €=

in order to simplify the algebraic operations. Thus, by using
the properties and definition of the commutator we obtain
the following:

[a-c+d,b—e]=[a-cb]+[de],
(a-c+d)(b-e)—(b-¢e)(a—-c+d)

(50)
=ab—cb+db-ae+ce—de
—{ba—bc+bd—ea+ec—ed}.
Consider the following cases:
ab—cb-ba+bc=(a-c)b-b(a-c)
=[la-¢b],
(51)
ce—de—ec+ted=(c—d)e—e(c—4d)
=[c-d,e].
And from the remaining terms we get
db—bd - [d,e] =db—bd —de + ed
=db-e)-(b-e)d (52)
=[d,b-e].
Consequently for n = 3 we have
0; (NG;) ¢ [Kerd,, Kerd, nKerd, |
+ [Kerd,,Kerd, N Kerd,]
+ [Kerd, NnKerd,,Kerd,]
(53)
+ [Kerd,,Kerd,]
+ [Kerd, N Kerd,,Kerd, N Kerd, |
+ [Kerd,,Kerd, N Kerd,].
O

Corollary 8. Let NG; be a 3-dimensional Moore complex of a
simplicial group G with 26-adjacency. Then
05 (NG;) ¢ [Kerd,, Kerd, nKerd, |
+ [Kerd,, Kerd, N Kerd,]
+ [Kerd, nKerd,, Kerd,]
(54)

[

[
+ [Kerd,,Kerd,]
+ [Kerd, N Kerd,, Kerd, N Kerd, |
[

+ [Kerd,,Kerd, nKerd,].



Proof. Otherwise inclusion for the previous theorem is ob-
tained from [4, 5]. Therefore

0; (NG;) = [Kerd,,Kerd, n Kerd, |

+ [Kerd,,Kerd, N Kerd,]
+ [Kerd, nKerd,,Kerd,]
(55)
+ [Kerd,,Kerd,]
+ [Kerd, N Kerd,,Kerd, N Kerd, |
+ [Kerd,, Kerd, N Kerd, ] .
U

3. Conclusion

In this paper for dimension 2 and dimension 3, we obtained
the Moore complex of simplicial groups generated by hyper-
crossed complex pairings in digital images.
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