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The Bezier curves method is applied to solve both linear and nonlinear BVPs for fourth-order integrodifferential equations. Also,
the presented method is developed for solving BVPs which arise from the problems in calculus of variation. These BVPs result
from the Euler-Lagrange equations which are the necessary conditions of the extremums of problems in calculus of variation.
Some numerical examples demonstrate the validity and applicability of the technique.

1. Introduction

Recently, there has been much attention devoted to the
search for reliable and more efficient solution methods for
equations modelling physical phenomena in various fields
of engineering (see [1, 2]). One of the methods which
has received much concern is the Adomian decomposition
method (ADM) (see [3, 4]). The ADM has been employed
to solve various scientific models. In [5], Wazwaz’s main
objective was to obtain the exact solutions to two fourth-
order integrodifferential equations. Hashim [4] determined
the accuracy and efficiency of the ADM in solving inte-
grodifferential equations. In the present work, we suggest a
technique similar to the one which was used in [6–8] for
solving both linear and nonlinear boundary value problems
(BVPs) for fourth-order integrodifferential equations.

Now, we consider the following class of two-point BVPs
for fourth-order integrodifferential equations

𝑦
(𝑖V)

(𝑡)

= 𝑓 (𝑡) + 𝛾𝑦 (𝑡)

+ ∫

𝑡

0

(𝑔 (𝑡) 𝑦 (𝑡) + ℎ (𝑡) 𝐹 (𝑦 (𝑡))) 𝑑𝑡, 𝑡 ∈ (𝑡0, 𝑡𝑓) ,

𝑦 (𝑡0) = 𝛼0, 𝑦

(𝑡0) = 𝛼1,

𝑦 (𝑡𝑓) = 𝛽0, 𝑦

(𝑡0) = 𝛽1,

(1)

where 𝐹 is a real nonlinear continuous function, 𝛾, 𝛼0, 𝛼1, 𝛽0,
and 𝛽1 are real constants, and 𝑓, 𝑔, and ℎ are given and can
be approximated by Taylor polynomials. The conditions for
existence and uniqueness of solutions of (1) are given in [9].

The rest of this paper is organized as follows. In Section 2,
we review the Beizer curves method. Several illustrative
examples are provided in Section 3 for confirming the effec-
tiveness of the presented method. Section 4 contains some
conclusions and notations about the future works.

2. The Beizer Curves Method

Consider the problem (1). Divide the interval [𝑡0, 𝑡𝑓] into a
set of grid points such that

𝑡𝑗 = 𝑡0 + 𝑗ℎ, 𝑗 = 0, 1, . . . , 𝑘, (2)
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where ℎ = (𝑡𝑓 − 𝑡0)/𝑘 and 𝑘 is a positive integer. Let 𝑆𝑗 =

[𝑡𝑗−1, 𝑡𝑗] for 𝑗 = 1, 2, . . . , 𝑘. Then, for 𝑡 ∈ 𝑆𝑗, the problem (1)
can be decomposed to the following problems:

𝑦
(𝑖V)
𝑗 (𝑡) = 𝑓 (𝑡) + 𝛾𝑦𝑗 (𝑡)

+ ∫

𝑡𝑗

𝑡𝑗−1

(𝑔 (𝑡) 𝑦𝑗 (𝑡) + ℎ (𝑡) 𝐹 (𝑦𝑗 (𝑡))) 𝑑𝑡,

𝑡 ∈ [𝑡𝑗−1, 𝑡𝑗] ,

𝑦 (𝑡0) = 𝛼0, 𝑦

(𝑡0) = 𝛼1,

𝑦 (𝑡𝑓) = 𝛽0, 𝑦

(𝑡𝑓) = 𝛽1,

(3)

where 𝑦𝑗(𝑡) is considered in 𝑡 ∈ 𝑆𝑗. Let 𝑦(𝑡) = ∑
𝑘

𝑗=1 𝜒
1
𝑗 (𝑡)𝑦𝑗(𝑡)

where 𝜒
1
𝑗 (𝑡) is the characteristic function of 𝑦𝑗(𝑡) for 𝑡 ∈

[𝑡𝑗−1, 𝑡𝑗]. It is trivial that [𝑡0, 𝑡𝑓] = ⋃
𝑘

𝑗=1 𝑆𝑗.
Our strategy is using Bezier curves to approximate the

solutions 𝑦𝑗(𝑡) by V𝑗(𝑡) where V𝑗(𝑡) is given below. Individual
Bezier curves that are defined over the subintervals are
joined together to form the Bezier spline curves. For 𝑗 =

1, 2, . . . , 𝑘, define the Bezier polynomials V𝑗(𝑡) of degree 𝑛 that
approximate the action of 𝑦𝑗(𝑡) over the interval [𝑡𝑗−1, 𝑡𝑗] as
follows:

V𝑗 (𝑡) =
𝑛

∑

𝑟=0

𝑎
𝑗

𝑟𝐵𝑟,𝑛 (
𝑡 − 𝑡𝑗−1

ℎ
) , (4)

where

𝐵𝑟,𝑛 (
𝑡 − 𝑡𝑗−1

ℎ
) = (

𝑛

𝑟
)

1

ℎ𝑛
(𝑡𝑗 − 𝑡)

𝑛−𝑟
(𝑡 − 𝑡𝑗−1)

𝑟
, (5)

is the Bernstein polynomial of degree 𝑛 over the interval
[𝑡𝑗−1, 𝑡𝑗] and 𝑎

𝑗
𝑟 is the control points (see [7]). By substituting

(4) in (3), one can define 𝑅1,𝑗(𝑡) for 𝑡 ∈ [𝑡𝑗−1, 𝑡𝑗] as

𝑅1,𝑗 (𝑡) = 𝑦
(𝑖V)
𝑗 (𝑡)

− (𝑓 (𝑡) + 𝛾𝑦𝑗 (𝑡)

+ ∫

𝑡𝑗

𝑡𝑗−1

(𝑔 (𝑡) 𝑦𝑗 (𝑡) + ℎ (𝑡) 𝐹 (𝑦𝑗 (𝑡))) 𝑑𝑡) .

(6)

Let V(𝑡) = ∑
𝑘

𝑗=1 𝜒
1
𝑗 (𝑡)k𝑗(𝑡) where 𝜒

1
𝑗 (𝑡) is the characteristic

function of V𝑗(𝑡) for 𝑡 ∈ [𝑡𝑗−1, 𝑡𝑗]. Besides the boundary con-
ditions on V(𝑡), at each node, we need to impose continuity
condition on each successive pair of V𝑗(𝑡) to guarantee the
smoothness. Since the differential equation is of first order,
the continuity of 𝑦 (or V) and its first derivative gives

k(𝑠)𝑗 (𝑡𝑗) = k(𝑠)𝑗+1 (𝑡𝑗) , 𝑠 = 0, 1, 𝑗 = 1, 2, . . . , 𝑘 − 1, (7)

where V(𝑠)
𝑗
(𝑡𝑗) is the 𝑠th derivative V𝑗(𝑡) with respect to 𝑡 at

𝑡 = 𝑡𝑗. Thus, the vector of control points 𝑎𝑗𝑟 (𝑟 = 0, 1, 𝑛 − 1, 𝑛)
must satisfy (see [7])

𝑎
𝑗

𝑛(𝑡𝑗 − 𝑡𝑗−1)
𝑛
= 𝑎
𝑗+1

0 (𝑡𝑗+1 − 𝑡𝑗)
𝑛
,

(𝑎
𝑗

𝑛 − 𝑎
𝑗

𝑛−1) (𝑡𝑗 − 𝑡𝑗−1)
𝑛−1

= (𝑎
𝑗+1

1 − 𝑎
𝑗+1

0 ) (𝑡𝑗+1 − 𝑡𝑗)
𝑛−1

.

(8)

According to the definition of the 𝑡𝑗 = 𝑡0 + 𝑗ℎ, we get that
𝑡𝑗 − 𝑡𝑗−1 = ℎ. Therefore

a𝑗𝑛 = a𝑗+10 ,

(a𝑗𝑛 − a𝑗𝑛−1) = (a𝑗+11 − a𝑗+10 ) .

(9)

Ghomanjani et al. [7] proved the convergence of this method
where ℎ → 0.

Now, the residual function can be defined in 𝑆𝑗 as follows:

𝑅𝑗 = ∫

𝑡𝑗

𝑡𝑗−1


𝑅1,𝑗(𝑡)
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𝑑𝑡, (10)

where ‖ ⋅ ‖ is the Euclidean norm. Our aim is solving the
following problem over 𝑆 = ⋃

𝑘

𝑗=1 𝑆𝑗:

min
𝑘

∑

𝑗=1

𝑅𝑗

s.t. a𝑗𝑛 = a𝑗+10 ,

(a𝑗𝑛 − a𝑗𝑛−1) = (a𝑗+11 − a𝑗+10 ) ,

V1 (𝑡0) = 𝛼0, V1 (𝑡0) = 𝛼1,

V𝑘 (𝑡𝑓) = 𝛽0, V𝑘 (𝑡𝑓) = 𝛽1.

(11)

The mathematical programming problem (11) can be solved
bymany subroutine algorithms. Here,Maple 12 can solve this
optimization problem.

Remark 1. Consider the following functional (see [10]):

𝐽 [𝑦1 (𝑡) , 𝑦2 (𝑡) , . . . , 𝑦𝑁 (𝑡)]

= ∫

1

0

𝐺(𝑥, 𝑦1 (𝑡) , . . . , 𝑦𝑁 (𝑡) , 𝑦


1 (𝑡) , . . . , 𝑦


𝑁 (𝑡)) 𝑑𝑡,

(12)

to find the extreme value of 𝐽, the boundary points of the
admissible curves are known as

𝑦𝑖 (0) = 𝜃𝑖, 𝑖 = 1, 2, . . . , 𝑁,

𝑦𝑖 (1) = 𝛿𝑖, 𝑖 = 1, 2, . . . , 𝑁.

(13)

To extremize the necessary condition, 𝐽[𝑦1(𝑡), 𝑦2(𝑡), . . .,
𝑦𝑁(𝑡)] is that it should satisfy the Euler-Lagrange equations

𝜕𝐺

𝜕𝑦𝑖

−
𝑑

𝑑𝑡
(

𝜕𝐺

𝜕𝑦
𝑖

) = 0, 𝑖 = 1, 2, . . . , 𝑁, (14)
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with boundary conditions given in (13). The system of BVPs
(14) does not always have a solution, and if the solution exists,
it cannot be unique. Note that in many variational problems,
the existence of a solution is obvious from the geometrical or
physical meaning of the problem, and if the solution of the
Euler equation satisfies the boundary conditions, it is unique.
Also this unique extremal will be the solution of the given
variational problem. Thus, another approach for solving the
variational problem (12) is finding the solution of the system
of ordinary differential equations (ODEs) (14) which satisfies
the boundary conditions in (13) which were called systems of
BVPs. The simplest form of the variational problem (12) is

𝐽 [𝑦 (𝑡)] = ∫

1

0

𝐺(𝑡, 𝑦 (𝑡) , 𝑦

(𝑡)) 𝑑𝑡, (15)

with the given boundary conditions

𝑦 (0) = 𝜃, 𝑦 (1) = 𝛿. (16)

For the extremum of the functional (15), the necessary
condition is to satisfy the following second-order differential
equation:

𝜕𝐺

𝜕𝑦
−

𝑑

𝑑𝑡
(
𝜕𝐺

𝜕𝑦
) = 0, 𝑖 = 1, 2, . . . , 𝑁, (17)

with boundary conditions given in (16).
One can emphasize that ourmethod is to solve BVPs such

as (14) and (17).

3. Numerical Results and Discussion

To demonstrate the accuracy of the decomposition method,
we consider some examples with known exact solutions.

Example 1. First, we consider the linear fourth-order inte-
grodifferential equation as in (1) with 𝑓(𝑡) = 𝑡(1 + 𝑒

𝑡
) + 3𝑒

𝑡,
𝛾 = 1, 𝑔(𝑡) = −1, and ℎ(𝑡) = 0; that is,

𝑦
(𝑖V)

(𝑡) = 𝑡 (1 + 𝑒
𝑡
) + 3𝑒

𝑡
+ 𝑦 (𝑡)

− ∫

𝑡

0

𝑦 (𝑡) 𝑑𝑡, 0 < 𝑡 < 1,

𝑦 (0) = 1, 𝑦

(0) = 2,

𝑦 (1) = 1 + 𝑒, 𝑦

(1) = 3𝑒,

(18)

where the exact solution is

𝑦 (𝑡) = 1 + 𝑡𝑒
𝑡
, (19)
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Figure 1: Graphs of the exact and computed solution of the problem
for Example 1.

with 𝑛 = 3 and 𝑘 = 3, and one can find the following
approximated solution

𝑦 (𝑡)

=

{{{{{{{{{{{{

{{{{{{{{{{{{

{

0.9999999997 + 1.004858451𝑡

+0.9327855932𝑡
2
+ 0.7033912400𝑡

3
, 𝑡 ∈ [0,

1

3
] ,

0.9935111555 + 1.063258052𝑡

+0.7575867804𝑡
2
+ 0.8785900700𝑡

3
, 𝑡 ∈ [

1

3
,
2

3
] ,

0.7908249981 + 1.975345738𝑡

−0.6105447271𝑡
2
+ 1.562655820𝑡

3
, 𝑡 ∈ [

2

3
, 1] ,

(20)

where the maximum absolute errors in [4] and presented
method are, respectively, 0.008 and 0.0009. The graphs of
approximated and exact solution are shown in Figure 1.

Example 2. Now, consider the nonlinear fourth-order BVP
(1) with 𝑓(𝑡) = 1, 𝛾 = 0, 𝑔(𝑡) = 0, and ℎ(𝑡) = 𝑒

−𝑡, and 𝐹(𝑡) =

𝑦
2
(𝑡),

𝑦
(𝑖V)

(𝑡) = 1 + ∫

𝑡

0

𝑒
−𝑡
𝑦
2
(𝑡) 𝑑𝑡, 0 < 𝑡 < 1,

𝑦 (0) = 1, 𝑦

(0) = 1,

𝑦 (1) = 𝑒, 𝑦

(1) = 𝑒,

(21)

where the exact solution is

𝑦 (𝑡) = 𝑒
𝑡
, (22)
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Table 1: Legendre polynomials, presented method, exact, and absolute error of 𝑦(𝑡) for Example 3.

t Legendre polynomials Presented method Exact Absolute error
0.0 0.0000080 0.00000000000 0.00000000000 0.0
0.1 0.0419474 0.04195072854 0.04195072872 1.773458002 × 10

−10

0.2 0.0793162 0.07931714637 0.07931714637 2.0180492 × 10
−12

0.3 0.1124756 0.1124732287 0.1124732286 6.880859813 × 10
−11

0.4 0.1417531 0.1417508127 0.1417508127 1.025976216 × 10
−11

0.5 0.1674426 0.1674429185 0.1417508127 1.12222848 × 10
−11

0.6 0.1898041 0.1898066812 0.1898066813 6.434997580 × 10
−11

0.7 0.2090640 0.2090659248 0.2090659250 2.239963759 × 10
−10

0.8 0.2254149 0.2254134028 0.2254134028 2.503659231 × 10
−11

0.9 0.2390158 0.2390127258 0.2390127256 2.308402409 × 10
−10

1.0 0.2499920 0.2500000000 0.2500000000 0.0

with 𝑛 = 3 and 𝑘 = 3, and one can find the following
approximated solution:

𝑦 (𝑡)

=

{{{{{{{{{{{{

{{{{{{{{{{{{

{

0.9999999997 + 1.001035251𝑡

+0.4854296266𝑡
2
+ 0.2130969500𝑡

3
, 𝑡 ∈ [0,

1

3
] ,

0.9983270381 + 1.016091895𝑡

+0.4402597035𝑡
2
+ 0.2582668700𝑡

3
, 𝑡 ∈ [

1

3
,
2

3
] ,

0.9556365363 + 1.208199192𝑡

+0.1520987099𝑡
2
+ 0.4023473900𝑡

3
, 𝑡 ∈ [

2

3
, 1] ,

(23)

where the maximum absolute errors in [4] and presented
method are, respectively, 0.001 and 0.00018. The graphs of
approximated and exact solution are shown in Figure 2.

Example 3. Consider the problem of finding theminimumof
the integral

min∫

1

0

((𝑦

(𝑡))
2
+ 𝑡𝑦

(𝑡) + (𝑦 (𝑡))

2
) 𝑑𝑡, (24)

with the boundary conditions

𝑦 (0) = 0, 𝑦 (1) =
1

4
, (25)

where the exact solution is

𝑦 (𝑡) =
(𝑒
−𝑡

− 1) (𝑒 − 2𝑒
2
− 2𝑒
𝑡
+ 𝑒
𝑡+1

)

4 (𝑒2 − 1)
. (26)

According to (17), the associated Euler-Lagrange equation is
as follows:

𝑦 (𝑡) − 𝑦

(𝑡) −

1

2
= 0, (27)

with 𝑛 = 3 and 𝑘 = 10, and the computational results are
shown in Table 1, where the computed values are compared
with the values obtained from the analytical solution and
Legendre polynomials in [11].
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t

Approximate
Exact

Figure 2: Graphs of the exact and computed solution of the problem
for Example 2.

4. Conclusions

In this sequel, the Bezier curves method was employed to
solve linear and nonlinear BVPs for fourth-order integrodif-
ferential equations.Thepresented algorithmproduced results
which are of reasonable accuracy. Numerical examples show
that the proposed method is efficient and very easy to use.
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