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This paper is devoted to the investigation of random dynamics of the stochastic Boussinesq equations driven by Lévy noise. Some
fundamental properties of a subordinator Lévy process and the stochastic integral with respect to a Lévy process are discussed, and
then the existence, uniqueness, regularity, and the random dynamical system generated by the stochastic Boussinesq equations are
established. Finally, some discussions on the global weak solution of the stochastic Boussinesq equations driven by general Lévy
noise are also presented.

1. Introduction

Dynamical systems driven by non-Gaussian processes, such
as Lévy processes, have attracted a lot of attention recently.
Ordinary differential equations driven by Lévy processes
have been summarized in [1]. Peszat and Zabczyk [2] have
presented a basic framework for partial differential equations
driven by Lévy processes.

The Navier–Stokes fluid equations are often coupled with
other equations, especially, with the scalar transport equa-
tions for fluid density, salinity, or temperature.These coupled
equations model a variety of phenomena arising in environ-
mental, geophysical, and climate systems.The related Boussi-
nesq fluid equations [3–5] under Gaussian fluctuations have
been recently studied, for example, existence and uniqueness
of solutions [6], stochastic flow, dynamical impact under
random dynamical boundary conditions [7, 8], and large
deviation principles [9, 10], among others.

Motivated by a recent work on a simple stochastic
partial differential equation with Lévy noise [11], we study
the stochastic Boussinesq equations driven by some special
Lévy noises, and we consider the random dynamics of
this stochastic system. Specifically, for a given bounded 𝐶

1-
smooth domain 𝐷 ⊂ R2 with sufficient smooth boundary,

we consider the following stochastic Boussinesq equations
driven by subordinator Lévy noise:

𝑑𝑢

𝑑𝑡
= (

1

Re
Δ𝑢 − ∇𝑝 − 𝑢 ⋅ ∇𝑢 −

1

Fr2
𝜃𝑒
2
) + 𝑑𝑌

1
(𝑡) ,

on 𝐷 ×R
+
,

𝑑𝜃

𝑑𝑡
= (

1

RePr
Δ𝜃 − 𝑢 ⋅ ∇𝜃) + 𝑑𝑌

2
(𝑡) , on 𝐷 ×R

+
,

div 𝑢 = 0, on 𝐷 ×R
+
,

𝑢 (0) = 𝑢
0
, 𝜃 (0) = 𝜃

0
,

(1)

where 𝑢 = 𝑢(𝑥, 𝑡) = (𝑢
1
, 𝑢
2
) ∈ R2 is the velocity vector,

𝜃 = 𝜃(𝑡, 𝑥) ∈ R is salinity, 𝑝(𝑡, 𝑥) ∈ R is the pressure term,
𝑥 = (𝜉, 𝜂) ∈ 𝐷 ⊂ R2, Δ denotes the Laplacian operator,
and ∇ denotes the gradient operator. Moreover, Fr is the
Froude number, Re is the Reynolds number, Pr is the Prandtl
number, and 𝑒

2
∈ R2 is a unit vector in the upward vertical

direction. The initial data 𝑢
0
, 𝜃
0
are given. Both 𝑌

1
(𝑡) and

𝑌
2
(𝑡) are subordinator Lévy processes on Hilbert spaces 𝐻

1

and 𝐻
2
, which will be specified later. The present paper is
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devoted to the existence, uniqueness, regularity, and the cocy-
cle property of solution for stochastic Boussinesq equations
(1).

This paper is organized as follows. In Section 2, we
first present some properties of the subordinator Lévy
process 𝑌(𝑡), then review some fundamental properties of
the stochastic integral with respect to Lévy process 𝑌(𝑡).
Section 3 is devoted to the existence, uniqueness, regularity,
and the cocycle property of the stochastic Boussinesq equa-
tions. Finally, some discussions on the global weak solution of
stochastic Boussinesq equations driven by general Lévy noise
are also presented in Section 4.

2. Preliminaries

In this section, we introduce some operators and fraction
spaces and then present some properties of the subordinator
Lévy process 𝑌(𝑡) and the stochastic integral with respect to
Lévy process 𝑌(𝑡).

In order to reformulate the stochastic Boussinesq equa-
tions (1) as an abstract stochastic evolution, we introduce the
following function spaces.

Denote 𝐿2(𝐷) to be the space of functions defined on 𝐷,
which are 𝐿2-integrable with respect to the Lebesguemeasure
𝑑𝑥 = 𝑑𝑥

1
𝑑𝑥
2
, endowed with the usual scalar product and

norm, that is, for 𝑢, 𝑣 ∈ 𝐿
2
(𝐷),

(𝑢, 𝑣) = ∫
𝐷

𝑢 (𝑥) 𝑣 (𝑥) 𝑑𝑥, |𝑢| = {(𝑢, 𝑢)}
1/2

. (2)

For𝑚 ∈ Z+ ∪ {0} and 𝑞 ∈ (1,∞), define

𝐻
𝑚,𝑞

(𝐷)

= {𝑢 ∈ 𝐿
𝑞
(𝐷) : 𝐷

𝛼
𝑢 ∈ 𝐿

𝑞
(𝐷) , 𝛼 ∈ N

2
, 0 ≤ |𝛼| ≤ 𝑚}

(3)

as the usual Soblev space with scalar product

(𝑢, 𝑣)
𝑚

= ∑

0≤|𝛼|≤𝑚

(𝐷
𝛼
𝑢,𝐷

𝛼
𝑣)
𝐿
𝑞
(𝐷) (4)

and the induced norm

|𝑢|𝑚 = ‖𝑢‖𝐻𝑚(𝐷) = ( ∑

0≤|𝛼|≤𝑚

󵄨󵄨󵄨󵄨𝐷
𝛼
𝑢
󵄨󵄨󵄨󵄨

𝑞

𝐿
𝑞
(𝐷)

)

1/2

, (5)

where𝐷𝛼𝑢 is the 𝛼th order weak derivative of 𝑢.
For 𝑠 ∈ R, let 𝐻𝑠,𝑞(𝐷) be defined by the complex inter-

polation method [12] as follows.

𝐻
𝛽,𝑞

(𝐷) = [𝐻
𝑘,𝑞

(𝐷) ,𝐻
𝑚,𝑞

(𝐷)]
𝜃
, (6)

where 𝑘,𝑚 ∈ N, 𝜃 ∈ (0, 1), and 𝑘 < 𝑚 are chosen to satisfy

𝛽 = (1 − 𝜃) 𝑘 + 𝜃𝑚. (7)

The closure of 𝐶∞
0
(𝐷) in the Banach space 𝐻

𝑠,𝑞
(𝐷), 𝑠 ≥ 0,

𝑞 ∈ (1,∞), will be denoted by𝐻
𝑠,𝑞

0
(𝐷).

The following product spaces are needed:

V = {𝑢 = (𝑢
1
, 𝑢
2
) ∈ (𝐶

∞
(𝐷))

2
× 𝐶

∞
(𝐷) , ∇ ⋅ 𝑢 = 0} ,

L
𝑞
(𝐷) = (𝐿

𝑞
(𝐷))

2

× 𝐿
𝑞
(𝐷) ,

H
𝑠,𝑞

(𝐷) = (𝐻
𝑠,𝑞

(𝐷))
2

× 𝐻
𝑠,𝑞

(𝐷)

= {𝑢 = (𝑢
1
, 𝑢
2
) ∈ (𝐻

𝑠,𝑞
(𝐷))

2

× 𝐻
𝑠,𝑞

(𝐷) ,

∇ ⋅ 𝑢 = 0} ,

V
𝑠,𝑞

(𝐷) = {𝑢 = (𝑢
1
, 𝑢
2
) ∈ H

𝑠,𝑞

0
(𝐷) , ∇ ⋅ 𝑢 = 0} .

(8)

Let H𝑠,𝑞(𝐷) denote the closure of V with respect to the
H𝑠,𝑞-norm, 𝑉𝑠,𝑞(𝐷) denote the closure of V with respect to
the V 𝑠,𝑞-norm, and 𝑉

󸀠 be the dual space of 𝑉𝑠,𝑞(𝐷). In par-
ticular, we denote byH1,2 and 𝑉

1,2
𝐻 and 𝑉, respectively.

Denote

𝐴
1
𝑢 = Δ𝑢 (𝑡) , 𝐴

2
𝜃 = Δ𝜃 (𝑡) ,

𝐵
1
(𝑢
1
, 𝑢
2
) = (𝑢

1
⋅ ∇) 𝑢

2
, 𝐵

2
(𝑢
1
, 𝜃
2
) = (𝑢

1
⋅ ∇) 𝜃

2
,

𝑈
0
= (

𝑢
0

𝜃
0

) ∈ 𝐻, 𝑈 (𝑡) = (
𝑢 (𝑡)

𝜃 (𝑡)
) ∈ 𝑉,

𝑅 (𝑈) = (

−
1

Fr2
𝜃𝑒
2
,

0

) ,

𝑌 (𝑡) = (
𝑌
1
(𝑡)

𝑌
2
(𝑡)

) ∈ 𝐻 = 𝐻
1
× 𝐻

2
,

(9)

where 𝜈 = 1/Re and 𝑘 = 1/Re Pr.
Now, we define the following two operators:

𝐴 : 𝑉 󳨀→ 𝑉
󸀠
: 𝑉 ∋ 𝑈 = (𝑢, 𝜃) 󳨃󳨀→ 𝐴𝑈 = (

𝜈𝐴
1
𝑢

𝑘𝐴
2
𝜃
) ,

𝐵 : 𝑉 × 𝑉 󳨀→ 𝑉
󸀠
: 𝑉 × 𝑉 ∋ (𝑈

1
, 𝑈
2
)

󳨃󳨀→ 𝐵 (𝑈
1
, 𝑈
2
) = (

𝐵
1
(𝑢
1
, 𝑢
2
)

𝐵
2
(𝑢
1
, 𝜃
2
)
) .

(10)

Then, the stochastic Boussinesq system (1) can be rewrit-
ten as the following abstract stochastic evolution equation:

𝑑𝑈 (𝑡) + [𝐴𝑈 (𝑡) + 𝐵 (𝑈 (𝑡) , 𝑈 (𝑡)) + 𝑅 (𝑈 (𝑡))] 𝑑𝑡 = 𝑑𝑌 (𝑡) ,

𝑈 (0) = 𝑈
0
.

(11)

In order to apply the technique of the reproducing Kernel
Hilbert space, it is better to introduce the definition 𝛾-
radonifying.

Definition 1 (see [13]). Let 𝐾 and 𝑋 be Banach spaces, a
bounded linear operator 𝐿 : 𝐾 → 𝑋 is called 𝛾-radonifying
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if and only if 𝐿(𝛾
𝐾
) is 𝜎-additive, where 𝛾

𝐾
is the canonical

cylindrical finitely additive set-valued function (also called a
Gaussian distribution) on 𝐾.

The following is our standing assumption:

Assumption 1. Space 𝐸 ⊂ 𝐻 ∩ L4 is a Hilbert space such that
for some 𝛿 ∈ (0, 1/2),

𝐴
−𝛿

: 𝐸 󳨀→ 𝐻 ∩ L
4 is 𝛾-radonifying. (12)

Remark 2. Under the above assumption, we have the facts
that 𝐸 ⊂ 𝐻 and the Banach space 𝑈 is taken as 𝐻 ∩ L4 (see
[11, 14, 15] for more details and related results). In fact, space
𝐸 is the reproducing kernel Hilbert space of noise 𝑊(𝑡) on
𝐻 ∩ L4.

It is well known that subordinators form the subclass
of increasing Lévy processes, which can be thought of as a
random model of time evolution (see [16]). We will present
some properties of the subordinator Lévy process 𝑌(𝑡), 𝑡 ≥ 0,
then review briefly the stochastic integral with respect to Lévy
process 𝑌(𝑡).

Definition 3 (see [1, 2, 11]). Let 𝐸 be a Banach space, and let
𝑌 = (𝑌(𝑡), 𝑡 ≥ 0) be an 𝐸-valued stochastic process defined
on a probability space (Ω,F,P). Stochastic process𝑌 is called
a Lévy process if

(L1) 𝑌(0) = 0, a.s.;

(L2) process𝑌has independent and stationary increments;
and

(L3) process 𝑌 is stochastically continuous, that is, for all
𝛿 > 0 and for all 𝑠 ≥ 0,

lim
𝑡→ 𝑠

P (|𝑌 (𝑡) − 𝑌 (𝑠)| > 𝛿) = 0. (13)

A subordinator Lévy process is an increasing one-
dimensional Lévy process.

For 𝑝 > 0, Sub(𝑝) denotes the set of all subordinator Lévy
processes𝑍, whose intensitymeasure 𝜌 satisfies the condition
∫
1

0
𝜂
𝑝/2

𝜌(𝑑𝜂) < ∞.

In the most interesting cases, the space 𝐸 is a subspace of
𝐻, that is, 𝐸 ⊂ 𝐻, and

𝑌 (𝑡) = 𝑊 (𝑍 (𝑡)) , 𝑡 ≥ 0, (14)

where 𝑍 = (𝑍(𝑡))
𝑡≥0

is an independent subordinator process
belonging to class Sub(𝑝), 𝑝 ∈ (1, 2],𝑊 = (𝑊(𝑡))

𝑡≥0
is an𝐻-

valued cylindrical Wiener process defined on some Banach
space 𝑈.

We decompose the 𝐻-valued Lévy process 𝑌(𝑡) into two
parts𝑁

1
(𝑡) and𝑁

2
(𝑡), the first one with small jumps and the

second one with (relatively) large jumps, that is,

𝑌 (𝑡) = 𝑁
1
(𝑡) + 𝑁

2
(𝑡) , 𝑡 ≥ 0, (15)

with 𝜈 being the intensity measure of Lévy process 𝑌, 𝑁
1

being the Lévy process with the intensity measure:

𝜈
1
(Γ) = 𝜈 (Γ ∩ 𝐵

𝑈
(0, 1)) , Γ ∈ B (𝑈) ,

𝐵
𝑈
(0, 1) denotes the unit ball in 𝑈,

(16)

and 𝑁
2
be the Lévy process with the intensity measure 𝜈

2
=

𝜈−𝜈
1
.Then𝑁

2
can be defined as a compoundPoisson process

with the intensity measure 𝜈
2
, and 𝑁

1
, 𝑁

2
can be defined by

the Poisson random measure 𝜋 which is defined as follows:

𝜋 ([0, 1] × Γ) = Σ
𝑠≤𝑡

1
Γ
Δ𝑌 (𝑠) , Γ ∈ B (𝑈) , (17)

where Δ𝑌(𝑠) = 𝑌(𝑠
+
) − 𝑌(𝑠

−
), 𝑠 ≥ 0. Here, the symbol Δ

denotes the increment of 𝑌.
We assume that the process 𝑌 is right-continuous with

left-hand side limits. Thus

Δ𝑌 (𝑠) = 𝑌 (𝑠) − 𝑌 (𝑠
−
) , 𝑠 ≥ 0. (18)

Notice that as 𝜋 is a time homogenous Poisson random
measure, 𝑌 can be expressed as

𝑌 (𝑡) = Σ
𝑠≤𝑡

Δ𝑌 (𝑠) = ∫

𝑡

0

∫
𝑈

𝑢𝜋 (𝑑𝑦, 𝑑𝑠) , 𝑡 ≥ 0. (19)

Hence,

𝑁
1
(𝑡) = Σ

𝑠≤𝑡
1
|Δ𝑌(𝑠)|<1

Δ𝑌 (𝑠) = ∫

𝑡

0

∫
|𝑢|<1

𝑢𝜋 (𝑑𝑦, 𝑑𝑠) ,

𝑁
2
(𝑡) = Σ

𝑠≤𝑡
1
|Δ𝑌(𝑠)|≥1

Δ𝑌 (𝑠) = ∫

𝑡

0

∫
|𝑢|≥1

𝑢𝜋 (𝑑𝑦, 𝑑𝑠) .

(20)

Assume that the operator Ψ(𝑡), 𝑡 ∈ [0, 𝑇], is a strongly
measurable function taking values in the space of all bounded
linear operator from𝑈 to 𝐸. Let 0 < 𝜏

1
< 𝜏

2
< 𝜏

3
< ⋅ ⋅ ⋅ → ∞

be the jump times for 𝑁
2
and Δ𝑁

2
(𝜏
𝑘
) = Δ𝑌(𝜏

𝑘
) = 𝑌(𝜏

𝑘
) −

𝑌(𝜏
𝑘
−), 𝑘 = 1, 2, . . .. Then, the stochastic integral ofΨ(𝑡)with

respect to jump process𝑁
2
(𝑡), 𝑡 ≥ 0, can be defined as

∫

𝑡

0

Ψ (𝑠) 𝑑𝑁
2
(𝑠) = Σ

𝜏𝑘≤𝑡
Ψ (𝜏

𝑘
) Δ𝑁

2
(𝜏
𝑘
) . (21)

Since the operatorΨ is taking values in 𝐸, it follows from
the decomposition of 𝑌 that the sum of sequences is finite.
Hence the stochastic integral of the operator Ψ with respect
to 𝑁

2
is taking values in 𝐸. Moreover, the stochastic integral

of the operator Ψ(𝑡), 𝑡 ∈ [0, 𝑇], with respect to Lévy process
𝑌 can be defined by

∫

𝑡

0

Ψ (𝑠) 𝑑𝑌 (𝑠) = ∫

𝑡

0

Ψ (𝑠) 𝑑𝑁
1
(𝑠) + ∫

𝑡

0

Ψ (𝑠) 𝑑𝑁
2
(𝑠) (22)

and takes values in 𝐸 as well (see [11] for more details).
Next, we recall some basic definitions and properties for

general randomdynamical systems, which are taken from [7].
Let (𝐻, 𝑑) be a complete separablemetric space and (Ω,F,P)

be a probability space.
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Definition 4. (Ω,F,P, (𝜃)
𝑡∈R) is called a metric dynamical

system if the mapping 𝜃 : R × Ω → Ω is (B(R) × F,F)

measurable, 𝜃
0
= 𝐼, 𝜃

𝑠+𝑡
= 𝜃

𝑠
∘ 𝜃
𝑡
for all 𝑡, 𝑠 ∈ 𝑅, and 𝜃

𝑡
P = P

for all 𝑡 ∈ R.

Definition 5. A random dynamical system (RDS) with time
𝑇 on (𝐻, 𝑑) over {𝜃

𝑡
} on (Ω,F,P, (𝜃

𝑡
)
𝑡∈𝑅

) is a (B(𝑅
+
) ×F ×

B(𝐻), 𝐵(𝐻))-measurable map:

Π : 𝑇 × 𝐻 × Ω 󳨀→ 𝐻 × Ω, Π (𝑡, 𝑠, 𝜔) = (𝑆 (𝑡, 𝜔) 𝑥, 𝜃
𝑡
𝜔)

(23)

such that
(i) 𝑆(0, 𝜔) = 𝐼𝑑 (identity on𝐻) for any 𝜔 ∈ Ω,
(ii) (Cocycle property) 𝑆(𝑡 + 𝑠, 𝜔) = 𝑆(𝑡, 𝜃

𝑠
𝜔) ∘ 𝑆(𝑠, 𝜔) for

all 𝑠, 𝑡 ∈ 𝑇 and 𝜔 ∈ Ω.

An RDS is said to be continuous or differentiable if for all
𝑡 ∈ 𝑇, and an arbitrary outside outside P-nullset 𝐵 ⊂ Ω, 𝑤 ∈

𝐵 the map 𝑆(𝑡, 𝜔) : 𝐻 → 𝐻 is continuous or differentiable,
respectively.

Assume that the bounded linear operator 𝐴 generates a
𝐶
0
-semigroup 𝑆 = (𝑒

𝑡𝐴
)
𝑡≥0

on aHilbert space𝐸 and𝑌 defined
on a filtered probability space (Ω,F, (F)

𝑡≥0
,P) is a subordi-

nator Lévy process taking values in a Hilbert space 𝑈.
Consider the following stochastic Langevin equation:

𝑑𝑋 (𝑡) = 𝐴𝑋 (𝑡) 𝑑𝑡 + 𝑑𝑌 (𝑡) , 𝑡 ≥ 𝑡
0
,

𝑋 (𝑡
0
) = 𝑥 ∈ 𝐸.

(24)

Definition 6. Let 𝑥 ∈ 𝐸 be a square integrable F
𝑡0
-measur-

able random variable in 𝐸. A predicable process𝑋 : [𝑡
0
,∞)×

Ω → 𝐸 is called a mild solution of the Langevin equation
(24) with initial data (𝑡

0
, 𝑥) if it is an adapted 𝐸-valued

stochastic process and satisfies

𝑋(𝑡) = 𝑆 (𝑡 − 𝑡
0
) 𝑥 + ∫

𝑡

𝑡0

𝑆 (𝑡 − 𝑠) 𝑑𝑌 (𝑠) , 𝑡 ≥ 𝑡
0
. (25)

It is well known that the Ornstein-Uhlenbeck process
𝑋(𝑡), 𝑡 ≥ 0, has some important integrability. Here we need
the Banach space to be of type 𝑝, for 𝑝 ∈ (1, 2]. First we recall
the definition briefly (see [14] for more details).

Definition 7 (see [14]). For 𝑝 ∈ (1, 2], the Banach space 𝐸 is
called as type𝑝, if and only if there exists a constant𝐾

𝑝
(𝐸) > 0

such that for any finite sequence of symmetric independent
identically distribution random variables 𝜀

1
, . . . , 𝜀

𝑛
: Ω →

[−1, 1], 𝑛 ∈ N, and any finite sequence 𝑥
1
, . . . , 𝑥

𝑛
from 𝐸,

satisfying

E

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛

∑

𝑖=1

𝜀
𝑖
𝑥
𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝

≤ 𝐾
𝑝
(𝐸)

𝑛

∑

𝑖=1

󵄨󵄨󵄨󵄨𝑥𝑖
󵄨󵄨󵄨󵄨

𝑝

. (26)

Moreover, if there exists a constant 𝐿
𝑝
(𝐸) > 0 such that

for every 𝐸-valued martingale {𝑀
𝑛
}
𝑁

𝑛=0
,𝑁 ∈ N, satisfying

sup
𝑛

E
󵄨󵄨󵄨󵄨𝑀𝑛

󵄨󵄨󵄨󵄨

𝑝

≤ 𝐿
𝑝
(𝐸)

𝑁

∑

𝑛=0

E
󵄨󵄨󵄨󵄨𝑀𝑛

− 𝑀
𝑛−1

󵄨󵄨󵄨󵄨

𝑝

, 𝑀
−1

= 0,

(27)

the separable Banach space 𝐸 is called a separable martingale
type 𝑝-Banach space.

Lemma 8 (see [11, Corollary 8.1, Proposition 8.4]). Assume
that 𝑝 ∈ (1, 2], 𝑍 is a subordinator Lévy process from the class
Sub(𝑝),𝐸 is a separable type𝑝-Banach,𝑈 is a separableHilbert
space 𝑈, 𝐸 ⊂ 𝑈, and 𝑊 = (𝑊(𝑡))

𝑡≥0
is a 𝑈-valued Wiener

process.
Define the 𝑈-valued Lévy process as

𝑌 (𝑡) = 𝑊 (𝑍 (𝑡)) , 𝑡 ≥ 0, (28)

and define the process as

𝑋 (𝑡) = ∫

𝑡

0

𝑒
(𝑡−𝑠)𝐴

𝑑𝑌 (𝑠) . (29)

Then, with probability 1, for all 𝑇 > 0,

∫

𝑇

0

|𝑋 (𝑡)|
𝑝

𝐸
𝑑𝑡 < ∞,

∫

𝑇

0

|𝑋 (𝑡)|
4

𝐿
4𝑑𝑡 < ∞.

(30)

We have the following existence and regularity results,
which have been studied in [2, 11].

Theorem 9. Assume that 𝐸 = 𝑈, 𝑆 = 𝑆(𝑡), 𝑡 ≥ 0 is the 𝐶
0

semigroup generated by the bounded linear operator 𝐴 in the
space 𝐸. Then, if one of the following conditions is satisfied:

(i) 𝑝 ∈ (0, 1] or
(ii) 𝑝 ∈ (1, 2] and the Banach space 𝐸 is of separable

martingale type 𝑝-Banach space,

the Langevin equation (24) admits one mild solution𝑋(𝑡) ∈ 𝐸,
𝑡 > 0. Moreover, if 𝑝 ∈ (1, 2], 𝑆 = 𝑆(𝑡), 𝑡 ≥ 0, is a 𝐶

0
-group

in the separable martingale type 𝑝-Banach space 𝐸, then the
mild solution 𝑋 of the Langevin equation is a cádlág (right-
continuous with left-hand side limits) process.

Proof. As 𝑆 = 𝑆(𝑡), 𝑡 ≥ 0, is a 𝐶
0
-group in the separable

martingale type 𝑝-Banach space 𝐸, the Hilbert space𝐻 is the
reproducing kernel Hilbert space of 𝑊(1), and the embed-
ding operator 𝑖 : 𝐻 󳨅→ 𝐸 satisfies the 𝛾-radonifying property.
The proof of Theorem 9 is just a simple application of
Theorems 4.1 and 4.4 in [11].

3. Cocycle Property of the Stochastic
Boussinesq Equations

In this section, we will show the existence, uniqueness, regu-
larity, and the cocycle property of the stochastic Boussinesq
equations (11).

It is well known that both𝐴
1
and𝐴

2
are positive definite,

self-adjoint operators, and denote𝐷(𝐴
1
) and𝐷(𝐴

2
) to be the

domains of𝐴
1
and𝐴

2
, respectively. Hence, the domain of the

operator 𝐴 can be represented as 𝐷(𝐴) = 𝐷(𝐴
1
) × 𝐷(𝐴

2
).
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It follows from Lemma 2.2 in [7] that there exists positive
numbers 𝜇

1
, 𝜇
2
, such that

(𝐴
1
𝑢, 𝑢) ≥ 𝜇

1‖𝑢‖
2

(𝐿2)
2 ,

(𝐴
2
(𝑢, 𝜃) , (𝑢, 𝜃)) ≥ 𝜇

2‖(𝑢, 𝜃)‖
2
.

(31)

Let 𝜆 = min(𝜇
1
, 𝜇
2
). Then

(𝐴𝑈,𝑈) ≥ 𝜆‖𝑈‖
2
. (32)

For any arbitrary𝑈,𝑉,𝑊 ∈ V , we can define the following
trilinear form 𝑏 : 𝑈 × 𝑉 × 𝑊 → R by

𝑏 (𝑢, 𝑣, 𝑤) = ⟨𝐵 (𝑢, 𝑣) , 𝑤⟩ ,

𝑏 (𝑈, 𝑉,𝑊) = 𝑏
1
(𝑢, 𝑣, 𝑤) + 𝑏

2
(𝑢, 𝑣, 𝑤) ,

𝑏
1
(𝑢, 𝑣, 𝑤) = ∫

𝐷

𝜎
2

𝑖,𝑗
𝑢
𝑖

𝜕𝑣
𝑗

𝜕𝑥
𝑖

𝑤
𝑗
𝑑𝑥,

𝑏
2
(𝑢, 𝑣, 𝑤) = ∫

𝐷

𝜎
2

𝑖
𝑢
𝑖

𝜕𝑣
𝑗

𝜕𝑥
𝑖

𝑤
𝑗
𝑑𝑥.

(33)

We have the following results.

Lemma 10 (see [7, Lemma 2.3]). If 𝑈,𝑉,𝑊 ∈ V , then

𝑏 (𝑈, 𝑉,𝑊) = −𝑏 (𝑈,𝑊,𝑉) ,

(𝐵 (𝑉,𝑈) , 𝑈) = 𝑏 (𝑉,𝑈,𝑈) = 0.

(34)

Lemma 11 (see [7, Lemma 2.4]). There exists a constant 𝑐
𝐵
>

0 such that if 𝑢 ∈ 𝑉
1
, 𝜃, 𝜂 ∈ 𝑉

2
, 𝜙 = (𝑢, 𝜃), then

(1) |𝑏
1
(𝑢, 𝑣, 𝑤)| ≤ 𝑐

𝐵
‖𝑢‖

𝐻
1‖𝑣‖

𝐻
2‖𝑤‖, 𝑢 ∈ 𝑉, 𝑣 ∈ 𝐷(𝐴),

𝑤 ∈ 𝐻,
(2) |𝑏

1
(𝑢, 𝑣, 𝑤)| ≤ 𝑐

𝐵
‖𝑢‖

1/2

𝐿
2 ‖𝑢‖

1/2

𝐻
1 ‖𝑣‖𝐻2‖𝑤‖

1/2
‖𝑤‖

1/2

𝐻
1 , 𝑢 ∈

𝑉, 𝑣 ∈ 𝐷(𝐴), 𝑤 ∈ 𝑉,
(3) |𝑏

1
(𝑢, 𝑣, 𝑢)| ≤ 𝑐

𝐵
‖𝑢‖

𝐻
1‖𝑣‖

𝐻
1‖𝑣‖, 𝑢 ∈ 𝑉, 𝑣 ∈ 𝑉,

(4) |𝑏
2
(𝑢, 𝜃, 𝑤)| ≤ 𝑐

𝐵
‖𝑢‖

1/2
‖𝑢‖

1/2

𝐻
1 ‖𝜃‖𝐻1‖𝑤‖

1/2
‖𝑤‖

1/2

𝐻
1 , 𝑢 ∈

𝑉, 𝜃 ∈ 𝑉, 𝑤 ∈ 𝑉,
(5) |𝑏

2
(𝑢, 𝜃, 𝑤)| ≤ 𝑐

𝐵
‖𝑢‖‖𝜃‖

𝐻
2‖𝑤‖

𝐻
1 , 𝑢 ∈ 𝐻, 𝜃 ∈ 𝐷(𝐴),

𝑤 ∈ 𝑉.

Definition 12. An 𝐻-valued (F
𝑡
)
𝑡≥0

adapted and H4,2(𝐷)-
valued cádlág process 𝑢(𝑡) (𝑡 ≥ 0) is considered as a solution
to (11), if for each 𝑇 > 0,

sup
0≤𝑡≤𝑇

|𝑈 (𝑡)|
2

𝐻
+ ∫

𝑇

0

|𝑈 (𝑡)|
4

L4(𝐷)𝑑𝑡 < ∞, a.s., (35)

and for any 𝜓 ∈ 𝑉 ∩H2,2(𝐷), and for any 𝑡 > 0, P-a.s.,

(𝑈 (𝑡) , 𝜓) − (𝑈
0
, 𝜓) − ∫

𝑡

0

(𝑈 (𝑠) , Δ𝜓) 𝑑𝑠

+ ∫

𝑡

0

(𝐵 (𝑈,𝑈) , 𝜓 (𝑠)) 𝑑𝑠 + ∫

𝑡

0

(𝑅 (𝑈) , 𝜓) 𝑑𝑠 = (𝜓, 𝑌 (𝑡)) .

(36)

Denote

H
1,2

(0, 𝑇) = {the space of all functions 𝑣 ∈ 𝐿
2
(0, 𝑇; 𝑉)

∩H
2,2

(𝐷) satisfying 𝑣
󸀠
∈ 𝐿

2
(0, 𝑇; 𝑉

󸀠
)} .

(37)

Lemma 13. Assume that 𝑧 ∈ 𝐿
4
(0, 𝑇;L4(𝐷)),𝑔 ∈ 𝐿

2
(0, 𝑇, 𝑉

󸀠
),

and 𝑣
0
∈ 𝐻.Then there exists a unique 𝑣 ∈ H1,2

(0, 𝑇) such that

𝑑𝑣

𝑑𝑡
+ 𝐴𝑣 + 𝐵 (𝑣, 𝑧) + 𝐵 (𝑧, 𝑣) + 𝐵 (𝑣, 𝑣) = 𝑔, 𝑡 ≥ 0,

𝑣 (0) = 𝑣
0
.

(38)

Moreover,

sup
𝑡∈[0,𝑇]

|𝑣 (𝑡)|
2
≤ 𝐾

2
𝐿
2
, ∫

𝑇

0

|∇𝑣 (𝑡)|
2
𝑑𝑡 ≤ 𝑀

2
,

∫

𝑇

0

󵄨󵄨󵄨󵄨󵄨
𝑣
󸀠
(𝑡)

󵄨󵄨󵄨󵄨󵄨

2

𝑉
󸀠
𝑑𝑡 ≤ 𝑁

2
, ∫

𝑇

0

|𝑣 (𝑡)|
4

L4(𝐷)𝑑𝑡 ≤ 2𝑇
1/2

𝐾
3
𝐿
3
𝑀,

(39)

where

𝐾
2
= 𝑒

2 ∫
𝑇

0
|𝑧(𝑠)|
4

L4𝑑𝑠, 𝐿
2
=
󵄨󵄨󵄨󵄨𝑣0

󵄨󵄨󵄨󵄨

2

+ 2∫

𝑇

0

󵄨󵄨󵄨󵄨𝑔 (𝑠)
󵄨󵄨󵄨󵄨

2

𝑉
󸀠𝑑𝑠,

𝑀
2
=
󵄨󵄨󵄨󵄨𝑣0

󵄨󵄨󵄨󵄨

2

+ 9𝐾𝐿∫

𝑇

0

|𝑧 (𝑡)|
2

𝐿
4
(0,𝑇,L4(𝐷)) +

𝑇
1/4

√2
𝐾
3/2

𝐿
1/2

,

(40)

and the mapping 𝐿2(0, 𝑇, 𝑉󸀠) ×𝐻 ∋ (𝑔
0
, 𝑣
0
) 󳨃→ 𝑣 ∈ H1,2

(0, 𝑇)

is analytic.

Proof. It can be shown by the same approach as the one in
Proposition 8.7 in [11].

Lemma 14 (see [2, Proposition 10.1]). Let 𝑢 : [0, 𝑇] → 𝐵 be
a continuous function whose left derivative

𝑑
−
𝑢

𝑑𝑡
(𝑡
0
) = lim

𝜖→0,𝜖<0

𝑢 (𝑡
0
+ 𝜖) − 𝑢 (𝑡

0
)

𝜖
(41)

exists at 𝑡
0
∈ [0, 𝑇].Then the function 𝛾(𝑡) = |𝑢(𝑡)|

𝐵
, 𝑡 ∈ [0, 𝑇],

is left differentiable at 𝑡
0
and

𝑑
−
𝛾

𝑑𝑡
(𝑡
0
) = min{⟨𝑥

∗
,
𝑑
−
𝑢

𝑑𝑡
(𝑡
0
)⟩ : 𝑥

∗
∈ 𝜕

󵄨󵄨󵄨󵄨𝑢 (𝑡
0
)
󵄨󵄨󵄨󵄨𝐵} .

(42)

In order to apply the Yosida approximation for the
solution of (11), we need to introduce some definitions of
dissipative mapping (operator) (see [17] for details).

Definition 15. Let (𝐵, | ⋅ |
𝐵
) be a separable Banach space, 𝐵∗ be

the dual space of 𝐵. The subdifferential 𝜕|𝑥|
𝐵
of norm | ⋅ |

𝐵
at

𝑥 ∈ 𝐵 is defined by the formula

𝜕|𝑥|𝐵 := {𝑥
∗
∈ 𝐵

∗
:
󵄨󵄨󵄨󵄨𝑥 + 𝑦

󵄨󵄨󵄨󵄨𝐵 − |𝑥|𝐵 ≥ (𝑥
∗
, 𝑦) , ∀𝑦 ∈ 𝐵} .

(43)
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A mapping 𝐹 : 𝐷(𝐹) ⊂ 𝐵 → 𝐵 is said to be dissipative, if
for any 𝑥, 𝑦 ∈ 𝐷(𝐹), there exists 𝑧∗ ∈ 𝜕|𝑥 − 𝑦|

𝐵
such that

⟨𝑧
∗
, 𝐹 (𝑥) − 𝐹 (𝑦)⟩ ≤ 0. (44)

A dissipative mapping 𝐹 : 𝐷(𝐹) ⊂ 𝐵 → 𝐵 is called an
𝑚-dissipative mapping or maximal dissipative if the image of
𝐼 −𝜆𝐹 is equal to the whole space 𝐵 for some 𝜆 > 0 (and then
for any 𝜆 > 0), that is,

range (𝐼 − 𝜆𝐴) = 𝐵, for some 𝜆 > 0. (45)

Assume that 𝐹 is an 𝑚-dissipative mapping. Then its
resolvent 𝐽

𝛼
and respectively the Yosida approximations 𝐹

𝛼
,

𝛼 > 0, are defined by

𝐽
𝛼
𝑥 = (𝐼 − 𝛼𝐹)

−1
𝑥 ∈ dom𝐹,

𝐹
𝛼
𝑥 =

1

𝛼
(𝐽
𝛼
𝑥 − 𝑥) , ∀𝑥 ∈ dom 𝐽

𝛼
= range (𝐼 − 𝛼𝐹) .

(46)

Lemma 16 (see [2, Proposition 10.2]). Let 𝐹 : 𝐷(𝐹) → 𝐵 be
an𝑚-dissipative mapping on 𝐵. Then

(1) for all 𝛼 > 0 and 𝑥, 𝑦 ∈ 𝐵, |𝐽
𝛼
(𝑥) − 𝐽

𝛼
(𝑦)|

𝐵
≤ |𝑥 − 𝑦|

𝐵
;

(2) the mapping 𝐹
𝛼
, 𝛼 > 0, are dissipative and Lipschitz

continuous:
󵄨󵄨󵄨󵄨𝐹𝛼 (𝑥) − 𝐹

𝛼
(𝑦)

󵄨󵄨󵄨󵄨𝐵 ≤
2

𝛼

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨𝐵, ∀𝑥, 𝑦 ∈ 𝐵. (47)

Moreover, |𝐹
𝛼
(𝑥)|

𝐵
≤ |𝐹(𝑥)|

𝐵
, for all 𝑥 ∈ 𝐷(𝐹); and

(3) lim
𝛼→0

𝐹
𝛼
(𝑥) = 𝑥, for all 𝑥 ∈ 𝐷(𝐹).

The following theorem is one of the main results of this
paper, which will be proved by applying the well-known
Yosida approach.

Theorem 17. For every 𝑢
0

∈ 𝐻, under Assumption 1, the
stochastic Boussinesq system (11) admits a unique cádlág mild
solution 𝑢(𝑡).

Proof. Denote 𝑍
𝐴
(𝜔) to be the stationary solution of

Langevin equation (24). Let 𝑉 = 𝑈 − 𝑍
𝐴
. Then (11) is con-

verted into the following evolution equation with random
coefficients:
𝑑𝑉 = [𝐴𝑉 + 𝐵 (𝑉 + 𝑍

𝐴
, 𝑉 + 𝑍

𝐴
) + 𝑅 (𝑉 + 𝑍

𝐴
)] 𝑑𝑡, 𝑡 ≥ 0,

𝑉 (0) = 𝑈
0
,

(48)

where (𝐴,𝐷(𝐴)) generates an analytic 𝐶
0
-semigroup 𝑆 (see

Section 2.2 in [2]). It follows from the proof of Theorem 10.1
in [2] that, for 𝛼 > 0, 𝛽 > 0, and sufficiently small 𝜂, the
mappings𝐴+𝜂 and 𝐵(⋅, ⋅) +𝑅(⋅)+𝜂 are𝑚-dissipative. Hence,
the Yosida approximations of the𝑚-dissipativemappings𝐴+

𝜂 and 𝐵(⋅, ⋅) + 𝑅(⋅) + 𝜂 can be respectively denoted by

(𝐴 + 𝜂)
𝛽
=

1

𝛽
((𝐼 − 𝛽 (𝐴 + 𝜂))

−1

− 𝐼) ,

((𝐵 + 𝑅) + 𝜂)
𝛼
=

1

𝛼
((𝐼 − 𝛼 ((𝐵 + 𝑅) + 𝜂))

−1

− 𝐼) .

(49)

Now consider the following random approximate equa-
tion:

𝑑
−

𝑑𝑡
𝑌
𝛼,𝛽

(𝑡) = (𝐴 + 𝜂)
𝛽
𝑌
𝛼,𝛽

+ (𝐵 + 𝑅 + 𝜂)
𝛼
(𝑌
𝛼,𝛽

+ 𝑍
𝐴
(𝑡−))

− 2𝜂𝑌
𝛼,𝛽

− 𝜂𝑍
𝐴
(𝑡−) ,

𝑌
𝛼,𝛽

(0) = 𝑈
0
.

(50)

It is easy to verify that ((𝐴+𝜂)
𝛽
, 𝐷((𝐴+𝜂)

𝛽
)) generates an ana-

lytic 𝐶
0
-semigroup 𝑆

𝛽
. Notice that the Yosida approximate

operators are Lipschitz. Therefore the random approximation
equation (50) has a unique continuous solution 𝑌

𝛼,𝛽
.

Next we will show that

lim
𝛼→0

[ lim
𝛽→0

𝑌
𝛼,𝛽

(𝑡)] = 𝑌 (𝑡) , 𝑡 ≥ 0, (51)

in𝐻, and this limit is actually the mild solution of stochastic
Boussinesq equation (48).

For the sake of simplification, we just present the esti-
mations when 𝜂 = 0, and the remaining estimates can be
obtained by the similar arguments for 𝜂 ̸= 0.

Let 𝑌
𝛼
be the solution of the integral equation:

𝑌
𝛼
(𝑡) = 𝑆 (𝑡) 𝑈

0
+ ∫

𝑡

0

𝑆 (𝑡 − 𝑠)

×(𝐵 (𝑌
𝛼
(𝑠)+𝑍

𝐴
(𝑠−) , 𝑌

𝛼
(𝑠)+𝑍

𝐴
(𝑠−))

+𝑅 (𝑌
𝛼
(𝑠) + 𝑍

𝐴
(𝑠−)))

𝛼
𝑑𝑠.

(52)

Notice that the operator (𝐵(⋅, ⋅)+𝑅(⋅))
𝛼
is Lipschitz continuous

and 𝑍
𝐴
is cádlág. Hence, there exists a solution of random

approximate equation (50), which is continuous in𝐻.
For 𝛼 > 0 and 𝛽 > 0, direct computation implies

𝑌
𝛼
− 𝑌

𝛼,𝛽
= 𝑆 (𝑡) 𝑈

0
− 𝑆

𝛽
(𝑡)

+ ∫

𝑡

0

[𝑆 (𝑡 − 𝑠) − 𝑆
𝛽
(𝑡 − 𝑠)]

× [𝐵 (𝑌
𝛼
(𝑠) + 𝑍

𝐴
(𝑠−) , 𝑌

𝛼
(𝑠) + 𝑍

𝐴
(𝑠−))

+𝑅 (𝑌
𝛼
(𝑠) + 𝑍

𝐴
(𝑠−))]

𝛼
𝑑𝑠

+ ∫

𝑡

0

[𝑆
𝛽
(𝑡 − 𝑠)]

× [ [𝐵 (𝑌
𝛼
(𝑠) + 𝑍

𝐴
(𝑠−) , 𝑌

𝛼
(𝑠) + 𝑍

𝐴
(𝑠−))

+𝑅 (𝑌
𝛼
(𝑠) + 𝑍

𝐴
(𝑠−))]

𝛼

− [𝐵 (𝑌
𝛼,𝛽

(𝑠) + 𝑍
𝐴
(𝑠−) ,

𝑌
𝛼,𝛽

(𝑠) + 𝑍
𝐴
(𝑠−) )

+𝑅 (𝑌
𝛼,𝛽

(𝑠) + 𝑍
𝐴
(𝑠−))]

𝛼
] 𝑑𝑠.

(53)
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Since both 𝐴 and 𝐵 + 𝑅 are 𝑚-dissipative. Therefore, there
exists constant𝑀,𝜔, and𝐶

𝛼
such that for all 𝑡 ≥ 0,𝑉,𝑊 ∈ 𝐻,

󵄩󵄩󵄩󵄩󵄩
𝑆
𝛽
(𝑡)

󵄩󵄩󵄩󵄩󵄩𝐿(𝐻,𝐻)
≤ 𝑀𝑒

𝜔𝑡
,

󵄨󵄨󵄨󵄨[𝐵 (𝑉) + 𝑅 (𝑉)]
𝛼
− [𝐵 (𝑈) + 𝑅 (𝑈)]

𝛼

󵄨󵄨󵄨󵄨 ≤ 𝐶
𝛼|𝑉 − 𝑈|𝐻.

(54)

Then

󵄨󵄨󵄨󵄨󵄨
𝑌
𝛼
(𝑡) − 𝑌

𝛼,𝛽
(𝑡)

󵄨󵄨󵄨󵄨󵄨

≤
󵄨󵄨󵄨󵄨󵄨
𝑆 (𝑡) 𝑈

0
−𝑆
𝛽
(𝑡) 𝑈

0

󵄨󵄨󵄨󵄨󵄨
+ 𝑀𝐶

𝛼
∫

𝑡

0

𝑒
𝜔(𝑡−𝑠) 󵄨󵄨󵄨󵄨󵄨

𝑌
𝛼
(𝑠)−𝑌

𝛼,𝛽
(𝑠)

󵄨󵄨󵄨󵄨󵄨
𝑑𝑠

+ ∫

𝑡

0

󵄨󵄨󵄨󵄨󵄨
[𝑆
𝛽
(𝑡 − 𝑠) − 𝑆 (𝑡 − 𝑠)]

× [𝐵 (𝑌
𝛼,𝛽

(𝑠) + 𝑍
𝐴
(𝑠−) , 𝑌

𝛼,𝛽
(𝑠) + 𝑍

𝐴
(𝑠−))

+𝑅 (𝑌
𝛼,𝛽

(𝑠) + 𝑍
𝐴
(𝑠−))]

𝛼

󵄨󵄨󵄨󵄨󵄨
𝑑𝑠.

(55)

By the Hille-Yosida theorem, it follows that

𝑆
𝛽
(𝑡) 𝑈

0
󳨀→ 𝑆 (𝑡) 𝑈

0
, as 𝛽 󳨀→ 0 (56)

uniformly in 𝑡 on compact subsets 𝑈
0
of𝐻.

Hence, it follows that

󵄨󵄨󵄨󵄨󵄨
𝑌
𝛼
(𝑡) − 𝑌

𝛼,𝛽
(𝑡)

󵄨󵄨󵄨󵄨󵄨
≤ 𝑀𝐶

𝛼
∫

𝑡

0

󵄨󵄨󵄨󵄨󵄨
𝑌
𝛼
(𝑠) − 𝑌

𝛼,𝛽
(𝑠)

󵄨󵄨󵄨󵄨󵄨
𝑑𝑠 (57)

uniformly on bounded intervals as 𝛽 → 0.
By Gronwall inequality, we have

lim
𝛽→0

sup
𝑡≤𝑇

󵄨󵄨󵄨󵄨󵄨
𝑌
𝛼
(𝑡) − 𝑌

𝛼,𝛽
(𝑡)

󵄨󵄨󵄨󵄨󵄨
= 0, ∀𝑇 < ∞. (58)

By Lemma 14,

𝑑
−

𝑑𝑡

󵄨󵄨󵄨󵄨󵄨
𝑌
𝛼,𝛽

(𝑡)
󵄨󵄨󵄨󵄨󵄨

= min{⟨𝑥
∗
,
𝑑
−

𝑑𝑡
𝑌
𝛼,𝛽

(𝑡)⟩ : 𝑥
∗
∈ 𝜕

󵄨󵄨󵄨󵄨󵄨
𝑌
𝛼,𝛽

(𝑡)
󵄨󵄨󵄨󵄨󵄨
}

= min {⟨𝑥
∗
, 𝐴
𝛽
𝑌
𝛼,𝛽

(𝑡)

+ [𝐵 (𝑌
𝛼,𝛽

(𝑠) + 𝑍
𝐴
(𝑠−) , 𝑌

𝛼,𝛽
(𝑠) + 𝑍

𝐴
(𝑠−))

+𝑅 (𝑌
𝛼,𝛽

(𝑠) + 𝑍
𝐴
(𝑠−))]

𝛼
⟩ :

𝑥
∗
∈ 𝜕

󵄨󵄨󵄨󵄨󵄨
𝑌
𝛼,𝛽

(𝑡)
󵄨󵄨󵄨󵄨󵄨
} .

(59)

Recalling that both 𝐴
𝛽
and [𝐵(⋅, ⋅) + 𝑅(⋅)] are 𝑚-dissipative

and 𝐴
𝛽
is linear, we obtain

𝑑
−

𝑑𝑡

󵄨󵄨󵄨󵄨󵄨
𝑌
𝛼,𝛽

(𝑡)
󵄨󵄨󵄨󵄨󵄨
≤
󵄨󵄨󵄨󵄨󵄨
[𝐵 (𝑌

𝛼,𝛽
(𝑡) + 𝑍

𝐴
(𝑡−) , 𝑌

𝛼,𝛽
(𝑠) + 𝑍

𝐴
(𝑡−))

+𝑅 (𝑌
𝛼,𝛽

(𝑡) + 𝑍
𝐴
(𝑡−))]

𝛼

󵄨󵄨󵄨󵄨󵄨

≤
󵄨󵄨󵄨󵄨󵄨
𝐵 (𝑌

𝛼,𝛽
(𝑡) + 𝑍

𝐴
(𝑡−) , 𝑌

𝛼,𝛽
(𝑠) + 𝑍

𝐴
(𝑡−))

+𝑅 (𝑌
𝛼,𝛽

(𝑡) + 𝑍
𝐴
(𝑡−))

󵄨󵄨󵄨󵄨󵄨
,

(60)

that is,
󵄨󵄨󵄨󵄨󵄨
𝑌
𝛼,𝛽

(𝑡)
󵄨󵄨󵄨󵄨󵄨
≤

󵄨󵄨󵄨󵄨𝑈0
󵄨󵄨󵄨󵄨+∫

𝑡

0

󵄨󵄨󵄨󵄨󵄨
𝐵 (𝑌

𝛼,𝛽
(𝑠)+𝑍

𝐴
(𝑠−) , 𝑌

𝛼,𝛽
(𝑠) + 𝑍

𝐴
(𝑠−))

+𝑅 (𝑌
𝛼,𝛽

(𝑠) + 𝑍
𝐴
(𝑠−))

󵄨󵄨󵄨󵄨󵄨
𝑑𝑠, 𝑡 ≥ 0.

(61)

It follows from the estimate (58) that, for any 𝛼 > 0, and 𝑡 ∈

[0, 𝑇],

󵄨󵄨󵄨󵄨𝑌𝛼 (𝑡)
󵄨󵄨󵄨󵄨 ≤

󵄨󵄨󵄨󵄨𝑈0
󵄨󵄨󵄨󵄨+∫

𝑡

0

󵄨󵄨󵄨󵄨󵄨
[𝐵 (𝑌

𝛼,𝛽
(𝑠) + 𝑍

𝐴
(𝑠−) , 𝑌

𝛼,𝛽
(𝑠) + 𝑍

𝐴
(𝑠−))

+𝑅 (𝑌
𝛼,𝛽

(𝑠) + 𝑍
𝐴
(𝑠−))

󵄨󵄨󵄨󵄨󵄨
𝑑𝑠.

(62)

Similarly, by Lemma 16, for 𝑡 ∈ [0, 𝑇],

1

2

𝑑
−

𝑑𝑡

󵄨󵄨󵄨󵄨󵄨
𝑌
𝛼,𝛽

(𝑡) − 𝑌
𝛾,𝛽

(𝑡)
󵄨󵄨󵄨󵄨󵄨

2

= ⟨
𝑑
−

𝑑𝑡
(𝑌
𝛼,𝛽

(𝑡) − 𝑌
𝛾,𝛽

(𝑡)) , 𝑌
𝛼,𝛽

(𝑡) − 𝑌
𝛾,𝛽

(𝑡)⟩

= ⟨(𝐴
𝛽
𝑌
𝛼,𝛽

(𝑡) − 𝐴
𝛽
𝑌
𝛾,𝛽

(𝑡)) + [(𝐵 + 𝑅)
𝛼
]

× (𝑌
𝛼,𝛽

(𝑡) + 𝑍
𝐴
(𝜔) (𝑡−)) − [(𝐵 + 𝑅)

𝛾
]

× (𝑌
𝛾,𝛽

(𝑡) + 𝑍
𝐴
(𝜔) (𝑡−)) , 𝑌

𝛼,𝛽
(𝑡) − 𝑌

𝛾,𝛽
(𝑡)⟩

≤ ⟨[(𝐵 + 𝑅)
𝛼
] (𝑌

𝛼,𝛽
(𝑡) + 𝑍

𝐴
(𝜔) (𝑡−)) − [(𝐵 + 𝑅)

𝛾
]

× (𝑌
𝛾,𝛽

(𝑡) + 𝑍
𝐴
(𝜔) (𝑡−)) , 𝑌

𝛼,𝛽
(𝑡) − 𝑌

𝛾,𝛽
(𝑡)⟩

≤ (𝛾 + 𝛼) [
󵄨󵄨󵄨󵄨󵄨
(𝐵 + 𝑅)

𝛼
(𝑌
𝛼,𝛽

(𝑡) + 𝑍
𝐴
(𝜔) (𝑡−))

󵄨󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨󵄨
(𝐵 + 𝑅)

𝛾
(𝑌
𝛾,𝛽

(𝑡) + 𝑍
𝐴
(𝜔) (𝑡−))

󵄨󵄨󵄨󵄨󵄨
]
2

≤ (𝛾 + 𝛼) [
󵄨󵄨󵄨󵄨󵄨
(𝐵 + 𝑅) (𝑌

𝛼,𝛽
(𝑡) + 𝑍

𝐴
(𝜔) (𝑡−))

󵄨󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨󵄨
(𝐵 + 𝑅) (𝑌

𝛾,𝛽
(𝑡) + 𝑍

𝐴
(𝜔) (𝑡−))

󵄨󵄨󵄨󵄨󵄨
]
2

.

(63)

By the dissipation of the operators 𝐴, 𝐵, and 𝑅 and estimates
(63), there exists a constant 𝐶 > 0 such that

1

2

𝑑
−

𝑑𝑡

󵄨󵄨󵄨󵄨󵄨
𝑌
𝛼,𝛽

(𝑡) − 𝑌
𝛾,𝛽

(𝑡)
󵄨󵄨󵄨󵄨󵄨

2

≤ 𝐶 (𝛼 + 𝛾) , 𝑡 ∈ [0, 𝑇] .

(64)
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Therefore

󵄨󵄨󵄨󵄨󵄨
𝑌
𝛼,𝛽

(𝑡) − 𝑌
𝛾,𝛽

(𝑡)
󵄨󵄨󵄨󵄨󵄨

2

≤ 2𝐶 (𝛼 + 𝛾) 𝑇, 𝑡 ∈ [0, 𝑇] . (65)

By the estimate (58),

󵄨󵄨󵄨󵄨󵄨
𝑌
𝛼
(𝑡) − 𝑌

𝛾
(𝑡)

󵄨󵄨󵄨󵄨󵄨

2

≤ 2𝐶 (𝛼 + 𝛾) 𝑇, 𝑡 ∈ [0, 𝑇] . (66)

Thus, 𝑌
𝛼
(𝑡) → 𝑌(𝑡) in𝐻 uniformly on [0, 𝑇] as 𝛼 → 0.

Next, we are going to show that the solution 𝑌
𝛼
of the

Yosida approximations equation is a mild solution:

𝑌
𝛼
(𝑡) = 𝑆 (𝑡) 𝑈

0
+ ∫

𝑡

0

𝑆 (𝑡 − 𝑠) (𝐵 + 𝑅)
𝛼
(𝑌
𝛼
(𝑠) + 𝑍

𝐴
(𝑠)) 𝑑𝑠,

𝑡 ∈ [0, 𝑇] .

(67)

By the reflexivity of 𝐻
1 and the estimate ‖𝑌

𝛼
(𝑡)‖

𝐻
1 ≤

𝐶
2
‖𝑈
0
‖
𝐻
1 , 𝑡 ∈ [0, 𝑇], 𝛼 > 0, there exists a subsequence {𝑌

𝛼,𝑛
},

which converges weakly in 𝐻
1 and weakly converges to the

function 𝑌(𝑡) in 𝐻
1. Since {𝑌

𝛼,𝑛
(𝑡)} is strong convergent in

𝐿
2, and

‖𝑌(𝑡)‖
𝐻
1 ≤ 𝐶

2

󵄩󵄩󵄩󵄩𝑈0
󵄩󵄩󵄩󵄩𝐻1 , 𝑡 ∈ [0, 𝑇] . (68)

Let ℎ ∈ 𝐿
2, then

⟨𝑌
𝛼
(𝑡), ℎ⟩

𝐿
2

= ⟨𝑆(𝑡)𝑈
0
, ℎ⟩

𝐿
2

+ ∫

𝑡

0

⟨(𝐵 + 𝑅) 𝐽
𝛼
(𝑌
𝛼
(𝑠) + 𝑍

𝐴
(𝑠)) , 𝑆

∗
(𝑡 − 𝑠) ℎ⟩

𝐿
2𝑑𝑠.

(69)

Moreover

𝐽
𝛼
(𝑌
𝛼
(𝑠) + 𝑍

𝐴
(𝑠)) 󳨀→ 𝑌 (𝑠) + 𝑍

𝐴
(𝑠) , as 𝛼 󳨀→ 0. (70)

Notice that (𝐵+𝑅)(𝐽
𝛼
(𝑌
𝛼
(𝑠)+𝑍

𝐴
(𝑠)) → (𝐵+𝑅)(𝑌

𝛼
(𝑠)+𝑍

𝐴
(𝑠))

weakly converges in 𝐿
2. So, letting 𝛼 → 0, we obtain

⟨𝑌(𝑡), ℎ⟩𝐿2 = ⟨𝑆(𝑡)𝑈
0
, ℎ⟩

𝐿
2

+ ∫

𝑡

0

⟨(𝑆(𝑡 − 𝑠)(𝐵 + 𝑅)(𝑌(𝑠) + 𝑍
𝐴
(𝑠)), ℎ⟩

𝐿
2𝑑𝑠.

(71)

It follows from the arbitrariness of ℎ that

𝑌 (𝑡) = 𝑆 (𝑡) 𝑈
0
+ ∫

𝑡

0

𝑆 (𝑡 − 𝑠) (𝐵 + 𝑅) (𝑌
𝛼
(𝑠) + 𝑍

𝐴
(𝑠)) 𝑑𝑠,

𝑡 ∈ [0, 𝑇] .

(72)

Thus, 𝑌(𝑡) is a mild solution of random Boussinesq equation
(50).

Theorem 18. For any 𝑈
0
∈ 𝐻, the map 𝜑 : T × Ω × 𝐻 → 𝐻

defined by the solution of stochastic Boussinesq equation (11)
as 𝑈(𝑡) = Φ(𝑡, 𝜗

𝑡
(𝜔))𝑈

0
has the cocycle property; that is,

the solution of stochastic Boussinesq equation (11) generates a
random dynamical system (Ω,F,P, (𝜗

𝑡
)
𝑡≥0

, Φ).

Proof. FromTheorem 17, stochastic Boussinesq equation (11)
admits a unique solution 𝑉(𝑡, 𝑍(𝜔)(𝑡), 𝑥). Define the map

Φ : R
+
× Ω × 𝐻 󳨀→ 𝐻,

Φ (𝑡, 𝜔) 𝑥 = 𝑉 (𝑡 ⋅ 𝑍 (𝜔) (𝑡)) (𝑥 − 𝑍 (𝜔) (0)) + 𝑍 (𝜔) (𝑡 + 𝑠) .

(73)

(i) By the similar argument ofTheorem 17, every solution
𝑌
𝛼
(𝑡) of the Yosida approximation equation (50) is

measurable. Notice that 𝑌
𝛼
(𝑡) → 𝑌(𝑡) uniformly as

𝛼 → 0. Hence, the limit function 𝑌(𝑡) is also mea-
surable. Thus, the mappingΦ is measurable.

(ii) Obviously, Φ(0, 𝜔) = 𝐼.
(iii) It suffices to verify that the cocycle property holds for

the mappingΦ, that is,

Φ (𝑡 + 𝑠, 𝜔) 𝑥 = 𝑉 (𝑡 + 𝑠, 𝑍
𝐴
(𝜔) (𝑡 + 𝑠)) (𝑥 − 𝑍

𝐴
(𝜔) (0))

+ 𝑍
𝐴
(𝜔) (𝑡 + 𝑠) .

(74)

In fact, recalling that 𝑍
𝐴
(𝜔)(𝑠) = 𝑍

𝐴
(𝜃
𝑠
𝜔)(0), it follows

that

Φ(𝑡, 𝜃
𝑠
𝜔) [Φ (𝑠, 𝜔) 𝑥]

= 𝑉 (𝑡, 𝑍
𝐴
(𝜃
𝑠
𝜔) (𝑡)) (Φ (𝑠, 𝜔) 𝑥 − 𝑍

𝐴
(𝜃
𝑠
𝜔) (0))

+ 𝑍
𝐴
(𝜃
𝑠
𝜔) (𝑡)

= 𝑉 (𝑡, 𝑍
𝐴
(𝜃
𝑠
𝜔) (𝑡))

× [𝑉 (𝑠, 𝑍
𝐴
(𝜔) (𝑠)) (𝑥 − 𝑍

𝐴
(𝜔) (0)) + 𝑍 (𝜔) (𝑠)

−𝑍 (𝜃
𝑠
𝜔) (0)] + 𝑍 (𝜃

𝑠
𝜔) (𝑡)

= 𝑉 (𝑡, 𝑍
𝐴
(𝜃
𝑠
𝜔) (𝑡)) 𝑉 (𝑠, 𝑍

𝐴
(𝜔) (𝑠))

× (𝑥 − 𝑍
𝐴
(𝜔) (0)) + 𝑍

𝐴
(𝜃
𝑠
𝜔) (𝑡)

= 𝑉
1
(𝑡) .

(75)

Moreover,

𝑉 (𝑡 + 𝑠, 𝑍
𝐴
(𝜔) (𝑡 + 𝑠)) (𝑥 − 𝑍

𝐴
(𝜔) (0))

= 𝑉 (𝑡, 𝑍
𝐴
(𝜃
𝑠
𝜔) (𝑡)) 𝑉 (𝑠, 𝑍

𝐴
(𝜔) (𝑠)) (𝑥 − 𝑍

𝐴
(𝜔) (0))

= 𝑉
2
(𝑡) .

(76)

Since

𝑉 (0, 𝑍
𝐴
(𝜃
𝑠
𝜔) (0)) (𝑥 − 𝑍

𝐴
(𝜃
𝑠
𝜔) (0)) = 𝑥 − 𝑍

𝐴
(𝜃
𝑠
𝜔) (0) .

(77)
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Thus,

𝑉
1
(0) = 𝑉 (𝑠, 𝑍

𝐴
(𝜔) (𝑠)) (𝑥 − 𝑍

𝐴
(𝜔) (0))

= 𝑉 (0, 𝑍
𝐴
(𝜃
𝑠
𝜔) (0)) 𝑉 (𝑠, 𝑍

𝐴
(𝜔) (𝑠))

× (𝑥 − 𝑍
𝐴
(𝜔) (0)) = 𝑉

2
(0) ,

𝑑𝑉
1
(𝑡)

𝑑𝑡
=

𝑑𝑉 ((𝑡 + 𝑠) , 𝑍
𝐴
(𝜔))

𝑑𝑡
(𝑡 + 𝑠) .

(78)

Therefore, we obtain

𝑑𝑉
1
(𝑡)

𝑑𝑡
+ 𝐴𝑉

1
(𝑡)

+ 𝐵 (𝑉
1
(𝑡) + 𝑍

𝐴
(𝜔) (𝑡 + 𝑠) , 𝑉

1
(𝑡) + 𝑍

𝐴
(𝜔) (𝑡 + 𝑠))

= −𝑅 (𝑉
1
(𝑡) + 𝑍

𝐴
(𝜃
𝑡+𝑠

𝜔)) ,

𝑑𝑉
2
(𝑡)

𝑑𝑡
+ 𝐴𝑉

2
(𝑡)

+ 𝐵 (𝑉
2
(𝑡) + 𝑍

𝐴
(𝜃
𝑠
𝜔) (𝑡) , 𝑉

2
(𝑡) + 𝑍

𝐴
(𝜃
𝑠
𝜔) (𝑡))

= −𝑅 (𝑉
2
(𝑡) + 𝑍

𝐴
(𝜃
𝑠
𝜔) (𝑡)) .

(79)

The uniqueness of the solution implies that almost surely
𝑉
1
(𝑡) = 𝑉

2
(𝑡) holds, that is,

Φ(𝑡, 𝜃
𝑠
𝜔) [Φ (𝑠, 𝜔) 𝑥] = Φ (𝑡 + 𝑠, 𝜃

𝑡+𝑠
(𝜔)) 𝑥. (80)

Thus, the cocycle property for the mappingΦ holds.
By the definition of random dynamical systems [18], the

solution mapping of the stochastic Boussinesq equation (11)
generates a random dynamical system Φ. Thus, the proof of
Theorem 18 is complete.

4. Discussion

In Section 3, we have studied the long-time behavior of
stochastic Boussinesq equations (1) driven by subordinator
Lévy noise and have shown the cocycle property of ran-
dom dynamical systems generated by the mild solution of
stochastic Boussinesq equation (1). To prove the existence of
random attractor, it suffices to show the existence of random
absorbing set and the compactness of random dynamical
system Φ, we refer the similar argument to [13].

Here, we are also interested in the stochastic Boussinesq
equations driven by Poisson noise and Wiener noise, and
we are trying to show the existence of random dynamical

systems. To the end, we consider the following stochastic
Boussinesq equations driven by Lévy noises followed as

𝜕𝑢

𝜕𝑡
+ (𝑢 ⋅ ∇) 𝑢 − 𝜈Δ𝑢 + ∇𝑝

= 𝜃𝑒
2
+ 𝑏
1
𝑑𝑡 + 𝑑𝑊

1
(𝑡) + ∫

𝑋

𝑓 (𝑥) 𝑁̃
1
(𝑑𝑡, 𝑑𝑥) ,

𝜕𝜃

𝜕𝑡
+ (𝑢 ⋅ ∇) 𝜃 − 𝑘Δ𝜃

= 𝑢
2
+ 𝑏
2
𝑑𝑡 + 𝑑𝑊

2
(𝑡) + ∫

𝑋

𝑔 (𝑥) 𝑁̃
2
(𝑑𝑡, 𝑑𝑥) ,

∇ ⋅ 𝑢 = 0,

𝑢|
𝜕𝐷

= 0, 𝑢 (0) = 𝑢
0
, 𝜃 (0) = 𝜃

0
,

(81)

where 𝑊
1
(⋅) and 𝑊

2
(⋅) are 𝐻-valued Brownian motion, 𝑏

1

and 𝑏
2
are constants vector in 𝐻, 𝑓 and 𝑔 are measurable

mappings from some measurable space 𝑋 to 𝐻, and 𝑁̃
1
and

𝑁̃
2
are compensated Poisson measure on [0,∞) × 𝑋 with

intensity measure 𝑛𝜈
1
and 𝑛𝜈

2
, respectively, where 𝜈

1
and 𝜈

2

are 𝜎-finite measure onB(𝑋), 𝑓(𝑥), and 𝑔(𝑥) satisfying

∫
𝑈

󵄨󵄨󵄨󵄨𝑓 (𝑥)
󵄨󵄨󵄨󵄨

2

𝑒
𝛼|𝑓(𝑥)|

𝜈 (𝑑𝑥) < ∞,

∫
𝑈

󵄨󵄨󵄨󵄨𝑔 (𝑥)
󵄨󵄨󵄨󵄨

2

𝑒
𝛽|𝑔(𝑥)|

𝜈 (𝑑𝑥) < ∞, ∀𝛼 > 0, ∀𝛽 > 0.

(82)

Let 𝐷([0, 𝑇],𝐻) be the space of all cádlág paths from
[0, 𝑇] to𝐻 endowed with the uniform convergence topology.
Since there are finite jumps when the character measure
𝜆(𝑍) < ∞, we can rearrange the jump time of 𝑁(𝑑𝑡, 𝑑𝑥) as
𝜎
1
(𝜔) < 𝜎

2
(𝜔) < ⋅ ⋅ ⋅. Since there is no jump on the interval

[0, 𝜎
1
(𝜔)), just as the approach in [19], we can apply Banach

fixed point theorem to prove that there exists a unique
solution 𝜙(𝑡) in 𝐿

2
([0, 𝜎

1
(𝜔)); 𝑉) ∩ 𝐷([0, 𝜎

1
(𝜔));𝐻). Define

𝜙
(1)

(𝑡) =
{

{

{

𝜙 (𝑡) , 0 ≤ 𝑡 < 𝜎
1
(𝜔) ,

𝜙 (𝜎
1
−) + 𝑓 (𝜙 (𝜎

1
−) , 𝑃

𝜎1
) , 𝑡 = 𝜎

1
(𝜔) .

(83)

On [𝜎
1
(𝜔), 𝜎

2
(𝜔)), define

𝜙
0
= 𝜙

(1)
(𝜎
1
) 1
(𝜎1<∞)

,

𝜎̃
2
= (𝜎

2
− 𝜎

1
) 1
(𝜎1<∞)

+ ∞1
(𝜎1=∞)

,

F̃
𝑡
= F

𝜎1+𝑡
, 𝑃̃

𝑡
= (𝜃

𝜎1
𝑃)
𝑡
1
(𝜎1<∞)

.

(84)

Similar to the argument in [11], since 𝑃
𝑡
is stationary Poisson

point process on 𝑅
+
× 𝑍 with intensity measure 𝜆(𝑑𝑥)𝑑𝑡,
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then 𝑃̃
𝑡
is also a stable Poisson point process on 𝑅

+
× 𝑍 with

intensity measure 𝜆(𝑑𝑥)𝑑𝑡. Define

𝜙
(2)

(𝑡)

=

{{{{{{{

{{{{{{{

{

𝜙
(1)

(𝑡) , 0 ≤ 𝑡 < 𝜎
1
(𝜔) ,

𝜙
(2)

(𝑡 − 𝜎
1
) , 𝜎

1
(𝜔) < 𝑡 < 𝜎

2
(𝜔) ,

𝜙
(2)

((𝜎
2
− 𝜎

1
) −)

+𝑓 (𝜙
(2)

((𝜎
2
− 𝜎

1
) −) , 𝑃

𝜎2
) , 𝑡 = 𝜎

2
(𝜔) ,

𝜙
(𝑛)

(𝑡)

=

{{{{{{{

{{{{{{{

{

𝜙
(𝑛−1)

(𝑡) , 𝑡 < 𝜎
𝑛−1

(𝜔) ,

𝜙
(𝑛)

(𝑡 − 𝜎
𝑛−1

) , 𝜎
𝑛−1

(𝜔)<𝑡<𝜎
𝑛
(𝜔) ,

𝜙
(𝑛)

((𝜎
𝑛
− 𝜎

𝑛−1
) −)

+𝑓 (𝜙
(𝑛)

((𝜎
𝑛
− 𝜎

𝑛−1
) −) , 𝑃

𝜎𝑛
) , 𝑡 = 𝜎

𝑛
.

(85)

Hence, 𝜙(𝑛)(𝑡) is cádlág on [0, 𝑇] such that 𝐵(𝜙(𝑛), 𝜙(𝑛)) ∈ 𝐻

and 𝐴
𝑝
(𝜙
(𝑛)

∈ 𝐻, 𝑃 a.s. for all 𝑡 ≥ 0, and

𝑃(∫

𝑡

0

[
󵄨󵄨󵄨󵄨𝜙 (𝑠)

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝐵 (𝜙 (𝑠) + 𝑧

𝐴
(𝑠) , 𝜙 (𝑠) + 𝑧

𝐴
(𝑠))

󵄨󵄨󵄨󵄨

+2𝜇
0

󵄨󵄨󵄨󵄨𝑅 (𝜙 (𝑠) + 𝑧
𝐴
(𝑠))

󵄨󵄨󵄨󵄨] 𝑑𝑠 < ∞) = 1, ∀𝑡 > 0.

(86)

Therefore, 𝜙(𝑛)(𝑡) is a unique global weak solution of (81).
We can verify the existence of random dynamical systems
generated by the global weak solution of (81).

Acknowledgments

The authors would like to thank an anonymous referee for
valuable comments. Supported by the NSF of China (no.
10971225, no. 11028102, no. 11271013, and no. 91130003), the
SRF for ROCS, SEM, and the NSF Grant 1025422.

References
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