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We give an overview on some recent results concerning the study of the Dirichlet problem for second-order linear elliptic partial
differential equations in divergence form and with discontinuous coefficients, in unbounded domains. The main theorem consists
in an 𝐿𝑝-a priori bound, 𝑃 > 1. Some applications of this bound in the framework of non-variational problems, in a weighted and
a non-weighted case, are also given.

1. Introduction

The aim of this work is to give an overview on some recent
results dealingwith the study of a certain kind of theDirichlet
problem in the framework of unbounded domains. To be
more precise, given an unbounded open subset Ω of R𝑛,
𝑛 ≥ 2, we are concerned with the elliptic second-order linear
differential operator in variational form

𝐿 = −

𝑛

∑

𝑖,𝑗=1

𝜕

𝜕𝑥𝑗
(𝑎𝑖𝑗

𝜕

𝜕𝑥𝑖
+ 𝑑𝑗) +

𝑛

∑

𝑖=1

𝑏𝑖
𝜕

𝜕𝑥𝑖
+ 𝑐, (1)

with coefficients 𝑎𝑖𝑗 ∈ 𝐿
∞
(Ω) and with the associated Dirich-

let problem

𝑢 ∈
∘

𝑊
1,2
(Ω) ,

𝐿𝑢 = 𝑓, 𝑓 ∈ 𝑊
−1,2

(Ω) .

(2)

As far as we know, were Bottaro and Marina the first
to approach this kind of problem who proved, in [1], an
existence anduniqueness theorem for the solution of problem
(2), for 𝑛 ≥ 3, assuming that

𝑎𝑖𝑗 ∈ 𝐿
∞
(Ω) , 𝑖, 𝑗 = 1, . . . , 𝑛, (3)

𝑏𝑖, 𝑑𝑖 ∈ 𝐿
𝑛
(Ω) , 𝑖 = 1, . . . , 𝑛,

𝑐 ∈ 𝐿
𝑛/2

(Ω) + 𝐿
∞
(Ω) ,

(4)

𝑐 −

𝑛

∑

𝑖=1

(𝑑𝑖)𝑥𝑖
≥ 𝜇, 𝜇 ∈ R+. (5)

The study was later on generalized in [2] weakening the
hypothesis (4) by considering coefficients 𝑏𝑖, 𝑑𝑖, and 𝑐 satisfy-
ing (4) only locally and for 𝑛 ≥ 2. Further improvements have
been achieved in [3], for 𝑛 ≥ 3, since the 𝑏𝑖, 𝑑𝑖, and 𝑐 are taken
in suitable Morrey type spaces with lower summabilities.

In [1–3], the authors also provide the bound

‖𝑢‖𝑊1,2(Ω) ≤ 𝐶
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝑊−1,2(Ω), (6)

giving explicit description of the dependence of the constant
𝐶 on the data of the problem.

In two recent works, [4, 5], considering a more regular
set Ω and supposing that the lower order terms coefficients
are as in [3] for 𝑛 ≥ 3 and as in [2] for 𝑛 = 2, we prove that
if 𝑓 ∈ 𝐿

2
(Ω) ∩ 𝐿

∞
(Ω), then there exists a constant 𝐶, whose

dependence is completely described, such that

‖𝑢‖ 𝐿𝑝(Ω) ≤ 𝐶
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩 𝐿𝑝(Ω), (7)
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for any bounded solution 𝑢 of (2) and for every 𝑝 > 2.
This can be done taking into account two different sign
hypotheses, namely, (5) and the less common

𝑐 −

𝑛

∑

𝑖=1

(𝑏𝑖)𝑥𝑖
≥ 𝜇, 𝜇 ∈ R+. (8)

Successively, in [6], we deepen the study begun in [4, 5]
showing that to a bounded datum 𝑓 ∈ 𝐿

2
(Ω) it corresponds

a bounded solution 𝑢. This allows us to prove, by means of an
approximation argument, that if 𝑓 belongs to 𝐿2(Ω) ∩ 𝐿𝑝(Ω),
𝑝 > 2, then the solution is in 𝐿

𝑝
(Ω) too and verifies (7).

Putting together the two preliminary 𝐿𝑝-estimates, 𝑝 > 2,
obtained under the different sign assumptions and adding the
further hypothesis that the 𝑎𝑖𝑗 are also symmetric, by means
of a duality argument, we finally obtain (7) for 𝑝 > 1, for each
sign hypothesis, assuming no boundedness of the solution
and for 𝑓 ∈ 𝐿

2
(Ω) ∩ 𝐿

𝑝
(Ω).

To conclude, we provide two applications of our final
𝐿
𝑝-bound, 𝑝 > 1, recalling the results of [7, 8] where our

estimate plays a fundamental role in the study of certain
weighted and non-weighted non-variational problems with
leading coefficients satisfying hypotheses of Miranda’s type
(see [9]).Thenodal point in this analysis is the existence of the
derivatives of the leading coefficients that allows us to rewrite
the involved operator in variational form and avail ourselves
of the above-mentioned a priori bound.

Always in the framework of unbounded domains, the
study of different variational problems can be found in
[10, 11]. Quasilinear elliptic equations with quadratic growth
have been considered in [12]. In [13–15] a very general
weighted case, with principal coefficients having vanishing
mean oscillation, has been taken into account.

2. A Class of Spaces of Morrey Type

In this section we recall the definitions and the main prop-
erties of a certain class of spaces of Morrey type where the
coefficients of our operators belong. These spaces generalize
the classical notion of Morrey spaces to unbounded domains
and were introduced for the first time in [3]; see also [16]
for some details. Thus, from now on, let Ω be an unbounded
open subset of R𝑛, 𝑛 ≥ 2. By Σ(Ω) we denote the 𝜎-algebra
of all Lebesgue measurable subsets of Ω. For 𝐸 ∈ Σ(Ω), 𝜒

𝐸

is its characteristic function, |𝐸| its Lebesgue measure, and
𝐸(𝑥, 𝑟) = 𝐸 ∩ 𝐵(𝑥, 𝑟) (𝑥 ∈ R𝑛, 𝑟 ∈ R+), where 𝐵(𝑥, 𝑟) is the
open ball with center in 𝑥 and radius 𝑟. The class of
restrictions to Ω of functions 𝜁 ∈ 𝐶

∞

∘
(R𝑛) is D(Ω). For

𝑞 ∈ [1, +∞[, 𝐿𝑞loc (Ω) is the class of all functions 𝑔 : Ω → R

such that 𝜁 𝑔 ∈ 𝐿𝑞(Ω) for any 𝜁 ∈ D(Ω).
For 𝑞 ∈ [1, +∞[ and 𝜆 ∈ [0, 𝑛[, the space of Morrey type

𝑀
𝑞,𝜆
(Ω) is made up of all the functions 𝑔 in 𝐿𝑞loc (Ω) such that

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩𝑀𝑞,𝜆(Ω) = sup

𝜏∈]0,1]

𝑥∈Ω

𝜏
−𝜆/𝑞󵄩󵄩󵄩󵄩𝑔

󵄩󵄩󵄩󵄩 𝐿𝑞(Ω(𝑥,𝜏)) < +∞, (9)

equipped with the norm defined in (9).

The closures of 𝐶∞
∘
(Ω) and 𝐿∞(Ω) in𝑀𝑞,𝜆(Ω) are deno-

ted by𝑀𝑞,𝜆∘ (Ω) and 𝑀̃𝑞,𝜆(Ω), respectively.
The following inclusion holds true:

𝑀
𝑞,𝜆

∘
(Ω) ⊂ 𝑀̃

𝑞,𝜆
(Ω) . (10)

Moreover,

𝑀
𝑞,𝜆

(Ω) ⊆ 𝑀
𝑞0,𝜆0 (Ω) if 𝑞0 ≤ 𝑞,

𝜆0 − 𝑛

𝑞0
≤
𝜆 − 𝑛

𝑞
.

(11)

We put 𝑀𝑞(Ω) = 𝑀
𝑞,0
(Ω), 𝑀̃𝑞(Ω) = 𝑀̃

𝑞,0
(Ω), and

𝑀
𝑞

∘ (Ω) = 𝑀
𝑞,0

∘ (Ω).
Now, let us define the moduli of continuity of functions

belonging to 𝑀̃
𝑞,𝜆
(Ω) or 𝑀𝑞,𝜆∘ (Ω). For ℎ ∈ R+ and 𝑔 ∈

𝑀
𝑞,𝜆
(Ω), we set

𝐹 [𝑔] (ℎ) = sup
𝐸∈Σ(Ω)

sup
𝑥∈Ω
|𝐸(𝑥,1)|≤1/ℎ

󵄩󵄩󵄩󵄩𝑔𝜒𝐸
󵄩󵄩󵄩󵄩𝑀𝑞,𝜆(Ω). (12)

Given a function 𝑔 ∈ 𝑀
𝑞,𝜆
(Ω), the following characteriza-

tions hold:

𝑔 ∈ 𝑀̃
𝑞,𝜆

(Ω) ⇐⇒ lim
ℎ→+∞

𝐹 [𝑔] (ℎ) = 0,

𝑔 ∈ 𝑀
𝑞,𝜆

∘
(Ω)

⇐⇒ lim
ℎ→+∞

(𝐹 [𝑔] (ℎ) +
󵄩󵄩󵄩󵄩 (1 − 𝜁ℎ) 𝑔

󵄩󵄩󵄩󵄩𝑀𝑞,𝜆(Ω)) = 0,

(13)

where 𝜁ℎ denotes a function of class 𝐶∞
𝑜
(𝑅
𝑛
) such that

0 ≤ 𝜁ℎ ≤ 1,

𝜁ℎ|
𝐵(0,ℎ)

= 1,

supp 𝜁ℎ ⊂ 𝐵 (0, 2ℎ) .

(14)

Thus, if 𝑔 is a function in 𝑀̃𝑞,𝜆(Ω), amodulus of continuity of
𝑔 in 𝑀̃𝑞,𝜆(Ω) is a map 𝜎̃𝑞,𝜆[𝑔] : R+ → R+ such that

𝐹 [𝑔] (ℎ) ≤ 𝜎̃
𝑞,𝜆

[𝑔] (ℎ) ,

lim
ℎ→+∞

𝜎̃
𝑞,𝜆

[𝑔] (ℎ) = 0.
(15)

While if 𝑔 belongs to𝑀𝑞,𝜆
𝑜
(Ω), amodulus of continuity of 𝑔 in

𝑀
𝑞,𝜆

𝑜
(Ω) is an application 𝜎𝑞,𝜆

𝑜
[𝑔] : R+ → R+ such that

𝐹 [𝑔] (ℎ) +
󵄩󵄩󵄩󵄩 (1 − 𝜁ℎ) 𝑔

󵄩󵄩󵄩󵄩𝑀𝑞,𝜆(Ω) ≤ 𝜎
𝑞,𝜆

𝑜
[𝑔] (ℎ) ,

lim
ℎ→+∞

𝜎
𝑞,𝜆

𝑜
[𝑔] (ℎ) = 0.

(16)

We finally recall two results of [4, 7], obtained adapting to
our needs a more general theorem proved in [17], providing
the boundedness and some embedding estimates for the
multiplication operator

𝑢 󳨀→ 𝑔𝑢, (17)

where the function 𝑔 belongs to suitable spaces of Morrey
type.



Abstract and Applied Analysis 3

Theorem 1. If 𝑔 ∈ 𝑀
𝑞,𝜆
(Ω), with 𝑞 > 2 and 𝜆 = 0 if 𝑛 = 2,

and 𝑞 ∈ ]2, 𝑛] and 𝜆 = 𝑛 − 𝑞 if 𝑛 > 2, then the operator in
(17) is bounded from

∘

𝑊
1,2
(Ω) to 𝐿2(Ω). Moreover, there exists

a constant 𝐶 ∈ R+ such that

󵄩󵄩󵄩󵄩𝑔𝑢
󵄩󵄩󵄩󵄩 𝐿2(Ω) ≤ 𝐶

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩𝑀𝑞,𝜆(Ω)‖𝑢‖𝑊1,2(Ω) ∀𝑢 ∈

∘

𝑊
1,2
(Ω) , (18)

with 𝐶 = 𝐶(𝑛, 𝑞).
Let 𝑝 > 1 and 𝑟, 𝑡 ∈ [𝑝, +∞[. If Ω is an open subset of R𝑛

having the cone property and 𝑔 ∈ 𝑀
𝑟
(Ω), with 𝑟 > 𝑝 if 𝑝 = 𝑛,

then the operator in (17) is bounded from 𝑊
1,𝑝
(Ω) to 𝐿𝑝(Ω).

Moreover, there exists a constant 𝑐 ∈ R+ such that

󵄩󵄩󵄩󵄩𝑔𝑢
󵄩󵄩󵄩󵄩 𝐿𝑝(Ω) ≤ 𝑐

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩𝑀𝑟(Ω)‖𝑢‖𝑊1,𝑝(Ω) ∀𝑢 ∈ 𝑊

1,𝑝
(Ω) , (19)

with 𝑐 = 𝑐 (Ω, 𝑛, 𝑝, 𝑟).
If 𝑔 ∈ 𝑀

𝑡
(Ω), with 𝑡 > 𝑝 if 𝑝 = 𝑛/2, then the operator in

(17) is bounded from𝑊
2,𝑝
(Ω) to 𝐿𝑝(Ω). Moreover, there exists

a constant 𝑐󸀠 ∈ R+ such that

󵄩󵄩󵄩󵄩𝑔𝑢
󵄩󵄩󵄩󵄩 𝐿𝑝(Ω) ≤ 𝑐

󸀠󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩𝑀𝑡(Ω)‖𝑢‖𝑊2,𝑝(Ω) ∀𝑢 ∈ 𝑊

2,𝑝
(Ω) (20)

with 𝑐󸀠 = 𝑐
󸀠
(Ω, 𝑛, 𝑝, 𝑡).

3. The Variational Problem

Consider, in an unbounded open subset Ω of R𝑛, 𝑛 ≥ 2, the
second-order linear differential operator in divergence form

𝐿 = −

𝑛

∑

𝑖,𝑗=1

𝜕

𝜕𝑥𝑗
(𝑎𝑖𝑗

𝜕

𝜕𝑥𝑖
+ 𝑑𝑗) +

𝑛

∑

𝑖=1

𝑏𝑖
𝜕

𝜕𝑥𝑖
+ 𝑐. (21)

Assume that the leading coefficients satisfy the hypotheses

𝑎𝑖𝑗 ∈ 𝐿
∞
(Ω) , 𝑖, 𝑗 = 1, . . . , 𝑛,

∃] > 0 :

𝑛

∑

𝑖,𝑗=1

𝑎𝑖𝑗𝜉𝑖𝜉𝑗 ≥ ]
󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨
2 a.e. in Ω, ∀𝜉 ∈ R

𝑛
.

(ℎ1)

For the lower order terms coefficients suppose that

𝑏𝑖, 𝑑𝑖 ∈ 𝑀
2𝑡,𝜆

𝑜
(Ω) , 𝑖 = 1, . . . , 𝑛,

𝑐 ∈ 𝑀
𝑡,𝜆
(Ω) ,

with 𝑡 > 1 and 𝜆 = 0 if 𝑛 = 2,

with 𝑡 ∈ ]1,
𝑛

2
] and 𝜆 = 𝑛 − 2𝑡 if 𝑛 > 2.

(ℎ2)

Furthermore, let one of the following sign assumptions hold
true:

𝑐 −

𝑛

∑

𝑖=1

(𝑑𝑖)𝑥𝑖
≥ 𝜇, (ℎ3)

or

𝑐 −

𝑛

∑

𝑖=1

(𝑏𝑖)𝑥𝑖
≥ 𝜇, (ℎ4)

in the distributional sense onΩ, with 𝜇 positive constant.

We are interested in the study of the Dirichlet problem

𝑢 ∈
∘

𝑊
1,2
(Ω) ,

𝐿𝑢 = 𝑓, 𝑓 ∈ 𝑊
−1,2

(Ω) ,

(22)

(ℎ1)–(ℎ3) or (ℎ1), (ℎ2), and (ℎ4) being satisfied.
It is natural to associate to 𝐿 the bilinear form

𝑎 (𝑢, V) = ∫
Ω

(

𝑛

∑

𝑖,𝑗=1

(𝑎𝑖𝑗𝑢𝑥𝑖
+ 𝑑𝑗𝑢) V𝑥𝑗

+(

𝑛

∑

𝑖=1

𝑏𝑖𝑢𝑥𝑖
+ 𝑐𝑢) V)𝑑𝑥,

(23)

𝑢, V ∈
∘

𝑊
1,2
(Ω), and observe that, in view of Theorem 1, the

form 𝑎 is continuous on
∘

𝑊
1,2
(Ω) ×

∘

𝑊
1,2
(Ω) and so the

operator 𝐿 :
∘

𝑊
1,2
(Ω) → 𝑊

−1,2
(Ω) is continuous too.

Let us start collecting some preliminary results concern-
ing the existence and uniqueness of the solution of problem
(22), as well as some a priori estimates. For the case where
assumptions (ℎ1)–(ℎ3) are taken into account and for 𝑛 = 2,
we refer to [2] while for 𝑛 ≥ 3 details can be found in [3].
If (ℎ1), (ℎ2), and (ℎ4) hold true, the results are proved in the
more recent [5].

Theorem 2. Under hypotheses (ℎ1)–(ℎ3) (or (ℎ1), (ℎ2), and
(ℎ4)), problem (22) is uniquely solvable and its solution 𝑢

satisfies the estimate

‖𝑢‖𝑊1,2(Ω) ≤ 𝐶
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝑊−1,2(Ω), (24)

where 𝐶 is a constant depending on 𝑛, 𝑡, ], 𝜇, ||𝑏𝑖 − 𝑑𝑖||𝑀2𝑡,𝜆(Ω),
𝑖 = 1, . . . , 𝑛.

The next step in our analysis is to achieve an 𝐿𝑝-estimate,
𝑝 > 2, for the solution of (22) (see Theorem 8). This requires
some additional hypotheses on the regularity of the set and
on the datum 𝑓, and some preparatory results that essentially
rely on the introduction of certain auxiliary functions𝑢𝑠, used
for the first time by Bottaro and Marina in [1] and employed
in the framework of Morrey type spaces in [3]. Let us give
their definition and recall some useful properties.

Let ℎ ∈ R+ ∪ {+∞} and 𝑘 ∈ R, with 0 ≤ 𝑘 ≤ ℎ. For each
𝑡 ∈ R we set

𝐺𝑘ℎ (𝑡) =
{

{

{

𝑡 − 𝑘 if 𝑡 > 𝑘,

0 if − 𝑘 ≤ 𝑡 ≤ 𝑘, if ℎ = +∞,

𝑡 + 𝑘 if 𝑡 < −𝑘,

𝐺𝑘ℎ (𝑡) = 𝐺𝑘∞ (𝑡) − 𝐺ℎ∞ (𝑡) , if ℎ ∈ R+.

(25)

Lemma 3. Let 𝑔 ∈ 𝑀
𝑞,𝜆

𝑜
(Ω), 𝑢 ∈

∘

𝑊
1,2
(Ω), and 𝜀 ∈ R+. Then

there exist 𝑟 ∈ N and 𝑘1, . . . , 𝑘𝑟 ∈ R, with 0 = 𝑘𝑟 < 𝑘𝑟−1 <

⋅ ⋅ ⋅ < 𝑘1 < 𝑘0 = +∞, such that set

𝑢𝑠 = 𝐺𝑘𝑠𝑘𝑠−1
(𝑢) , 𝑠 = 1, . . . , 𝑟, (26)



4 Abstract and Applied Analysis

one has 𝑢1, . . . , 𝑢𝑟 ∈
∘

𝑊
1,2
(Ω) and

󵄩󵄩󵄩󵄩󵄩
𝑔𝜒supp (𝑢𝑠)𝑥

󵄩󵄩󵄩󵄩󵄩𝑀𝑞,𝜆(Ω)
≤ 𝜀, 𝑠 = 1, . . . , 𝑟, (27)

󵄨󵄨󵄨󵄨𝑢𝑠
󵄨󵄨󵄨󵄨 ≤ |𝑢| , 𝑠 = 1, . . . , 𝑟, (28)

𝑢1 + ⋅ ⋅ ⋅ + 𝑢𝑟 = 𝑢, (29)

𝑟 ≤ 𝑐, (30)

with 𝑐 = 𝑐 (𝜀, 𝑞, ‖𝑔‖
𝑀𝑞,𝜆(Ω)

) positive constant.

In order to prove a fundamental preliminary estimate,
obtained for 𝑝 > 2 (seeTheorem 7), we need to take products
involving the above defined functions 𝑢𝑠 as test functions in
the variational formulation of our problem (23). To be more
precise, in the first set of hypotheses ((ℎ1)–(ℎ3)), the test
functions needed are |𝑢|𝑝−2𝑢𝑠. The following result ensures
that these functions effectively belong to

∘

𝑊
1,2
(Ω).

Lemma 4. If Ω has the uniform 𝐶
1-regularity property, then

for every 𝑢 ∈
∘

𝑊
1,2
(Ω) ∩ 𝐿

∞
(Ω) and for any 𝑝 ∈ ]2, +∞[ one

has

|𝑢|
𝑝−2

𝑢𝑠 ∈
∘

𝑊
1,2
(Ω) , 𝑠 = 1, . . . , 𝑟. (31)

Lemma 4, whose rather technical proof can be found in [4],
is a generalization of a known result by Stampacchia (see
[18], or [19] for details), obtained within the framework of
the generalization of the study of certain elliptic equations
in divergence form with discontinuous coefficients on a
bounded open subset of R𝑛 to some problems arising
for harmonic or subharmonic functions in the theory of
potential.

Once achieved (31), always in [4], we could prove the
next lemma. Let 𝑢𝑠 be the functions of Lemma 3 obtained
in correspondence of a given 𝑢 ∈

∘

𝑊
1,2
(Ω) ∩ 𝐿

∞
(Ω), of

𝑔 = ∑
𝑛

𝑖=1
|𝑏𝑖 − 𝑑𝑖| and of a positive real number 𝜀 specified

in the proof of Lemma 4.1 of [4]. One has the following.

Lemma 5. Let 𝑎 be the bilinear form defined in (23). If Ω
has the uniform𝐶

1-regularity property, under hypotheses (ℎ1)–
(ℎ3), there exists a constant 𝐶 ∈ R+ such that

∫
Ω

|𝑢|
𝑝−2

((𝑢𝑠)
2

𝑥
+ 𝑢
2

𝑠
) 𝑑𝑥 ≤ 𝐶

𝑠

∑

ℎ=1

𝑎 (𝑢, |𝑢|
𝑝−2

𝑢ℎ) ,

𝑠 = 1, . . . , 𝑟, ∀𝑝 ∈ ]2, +∞[,

(32)

where 𝐶 depends on 𝑠, ], 𝜇.

If we consider the second set of hypotheses ((ℎ1), (ℎ2),
and (ℎ4)), the test functions required in (23) are the prod-
ucts |𝑢𝑠|

𝑝−2
𝑢𝑠, obtained in correspondence of a fixed 𝑢 ∈

∘

𝑊
1,2
(Ω) ∩ 𝐿

∞
(Ω), of 𝑔 = ∑

𝑛

𝑖=1
|𝑑𝑖 − 𝑏𝑖| and of a positive real

number 𝜀 specified in the proof of Lemma 4.1 of [5]. In this
last case and if Ω has the uniform 𝐶

1-regularity property, a
result of [20] applies giving that |𝑢𝑠|

𝑝−2
𝑢𝑠 ∈

∘

𝑊
1,2
(Ω), for any

𝑝 > 2, 𝑠 = 1, . . . , 𝑟. Hence, in [5] we could show the result.

Lemma 6. Let 𝑎 be the bilinear form in (23). If Ω has the
uniform 𝐶

1-regularity property, under hypotheses (ℎ1), (ℎ2),
and (ℎ4), there exists a constant 𝐶 ∈ R+ such that

∫
Ω

󵄨󵄨󵄨󵄨𝑢𝑠
󵄨󵄨󵄨󵄨
𝑝−2

((𝑢𝑠)
2

𝑥
+ 𝑢
2

𝑠
) 𝑑𝑥 ≤ 𝐶

𝑟

∑

ℎ=s
𝑎 (𝑢,

󵄨󵄨󵄨󵄨𝑢ℎ
󵄨󵄨󵄨󵄨
𝑝−2

𝑢ℎ) ,

𝑠 = 1, . . . , 𝑟, ∀𝑝 ∈ ]2, +∞[,

(33)

where 𝐶 depends on 𝑠, 𝑟, ], 𝜇.

The two lemmas just stated put us in a position to prove
the following preliminary 𝐿

𝑝-a priori estimate, 𝑝 > 2, in
both sets of hypotheses; see also [4, 5]. We stress that here we
require that both the datum𝑓 and the solution𝑢 are bounded.

Theorem 7. Under hypotheses (ℎ1)–(ℎ3) or (ℎ1), (ℎ2), and
(ℎ4) and if Ω has the uniform 𝐶

1-regularity property, 𝑓 is in
𝐿
2
(Ω) ∩ 𝐿

∞
(Ω) and the solution 𝑢 of (22) is in

∘

𝑊
1,2
(Ω) ∩

𝐿
∞
(Ω), then 𝑢 ∈ 𝐿𝑝(Ω) and

‖𝑢‖ 𝐿𝑝(Ω) ≤ C󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩 𝐿𝑝(Ω), ∀𝑝 ∈ ]2, +∞[, (34)

where𝐶 is a constant depending on 𝑛, 𝑡, 𝑝, ], 𝜇, ||𝑏𝑖−𝑑𝑖||𝑀2𝑡,𝜆(Ω),
𝑖 = 1, . . . , 𝑛.

Proof. Fix 𝑝 ∈ ]2, +∞[. We provide two different proofs in
the cases that hypotheses (ℎ3) or (ℎ4) hold true.

Let (ℎ1)–(ℎ3) be satisfied. We consider the functions 𝑢𝑠,
𝑠 = 1, . . . , 𝑟, obtained in correspondence of the solution 𝑢 and
of 𝑔 = ∑

𝑛

𝑖=1
|𝑑1 − 𝑏𝑖| and of 𝜀 as in Lemma 4.1 of [4]. In view

of (29) we get

∫
Ω

|𝑢|
𝑝−2

(𝑢
2

𝑥
+ 𝑢
2
) 𝑑𝑥

≤ 𝑐0∫
Ω

|𝑢|
𝑝−2
𝑟

∑

𝑠=1

((𝑢𝑠)
2

𝑥
+ 𝑢
2

𝑠
) 𝑑𝑥,

(35)

with 𝑐0 = 𝑐0(𝑟).
Hence, (32) entails that

∫
Ω

|𝑢|
𝑝−2

(𝑢
2

𝑥
+ 𝑢
2
) 𝑑𝑥

≤ 𝑐0

𝑟

∑

𝑠=1

𝐶𝑠

𝑠

∑

ℎ=1

𝑎 (𝑢, |𝑢|
𝑝−2

𝑢ℎ)

≤ 𝐶

𝑟

∑

𝑠=1

𝑎 (𝑢, |𝑢|
𝑝−2

𝑢𝑠) ,

(36)

with 𝐶𝑠 = 𝐶𝑠(𝑠, ], 𝜇) and 𝐶 = 𝐶(𝑟, ], 𝜇).
From the linearity of 𝑎, (29), and (30), we have then

∫
Ω

|𝑢|
𝑝−2

(𝑢
2

𝑥
+ 𝑢
2
) 𝑑𝑥 ≤ 𝐶𝑎 (𝑢, |𝑢|

𝑝−2
𝑢) , (37)

with 𝐶 = 𝐶(𝑛, 𝑡, 𝑝, ], 𝜇, ||𝑏𝑖 − 𝑑𝑖||𝑀2𝑡,𝜆(Ω)).
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Using this last inequality and Hölder inequality we
conclude our proof, since

‖𝑢‖
𝑝

𝐿𝑝(Ω)
≤ ∫
Ω

|𝑢|
𝑝−2

(𝑢
2

𝑥
+ 𝑢
2
) 𝑑𝑥

≤ 𝐶𝑎 (𝑢, |𝑢|
𝑝−2

𝑢) = 𝐶∫
Ω

𝑓|𝑢|
𝑝−2

𝑢𝑑𝑥

≤ 𝐶∫
Ω

󵄨󵄨󵄨󵄨𝑓
󵄨󵄨󵄨󵄨 |𝑢|
𝑝−1

𝑑𝑥 ≤ 𝐶
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩 𝐿𝑝(Ω)‖𝑢‖

𝑝−1

𝐿𝑝(Ω)
.

(38)

If (ℎ1), (ℎ2), and (ℎ4) hold, we consider again the
functions 𝑢𝑠, 𝑠 = 1, . . . , 𝑟, obtained in correspondence of
the solution 𝑢 and of 𝑔 as in the previous case, and of 𝜀 as
in Lemma 4.1 of [5]. In this second case, easy computations
together with (29) give

∫
Ω

|𝑢|
𝑝
𝑑𝑥 ≤ 𝑐0

𝑟

∑

𝑠=1

∫
Ω

󵄨󵄨󵄨󵄨𝑢𝑠
󵄨󵄨󵄨󵄨
𝑝
𝑑𝑥, (39)

with 𝑐0 = 𝑐0(𝑟, 𝑝).
Thus, from (33), we deduce that

∫
Ω

|𝑢|
𝑝
𝑑𝑥 ≤ 𝑐0

𝑟

∑

𝑠=1

𝐶s

𝑟

∑

ℎ=s
𝑎 (𝑢,

󵄨󵄨󵄨󵄨𝑢ℎ
󵄨󵄨󵄨󵄨
𝑝−2

𝑢ℎ)

≤ 𝑐1

𝑟

∑

𝑠=1

𝑎 (𝑢,
󵄨󵄨󵄨󵄨𝑢𝑠
󵄨󵄨󵄨󵄨
𝑝−2

𝑢𝑠) ,

(40)

with 𝐶𝑠 = 𝐶𝑠(𝑠, 𝑟, ], 𝜇) and 𝑐1 = 𝑐1(𝑟, 𝑝, ], 𝜇).
Hence, by (28) and Hölder inequality we obtain

‖𝑢‖
𝑝

𝐿𝑝(Ω)
≤ 𝑐1

𝑟

∑

𝑠=1

∫
Ω

𝑓
󵄨󵄨󵄨󵄨𝑢𝑠
󵄨󵄨󵄨󵄨
𝑝−2

𝑢𝑠𝑑𝑥

≤ 𝑟𝑐1∫
Ω

󵄨󵄨󵄨󵄨𝑓
󵄨󵄨󵄨󵄨 |𝑢|
𝑝−1

𝑑𝑥

≤ 𝑟𝑐1
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩 𝐿𝑝(Ω)‖𝑢‖

𝑝−1

𝐿𝑝(Ω)
.

(41)

This ends the proof, in view of (30).

In the later paper [6], estimate (34) has been improved
dropping the hypotheses on the boundedness of 𝑓 and 𝑢, by
means of the theorem below.

Theorem 8. Assume that hypotheses (ℎ1)–(ℎ3) or (ℎ1), (ℎ2),
and (ℎ4) are satisfied. If the setΩ has the uniform𝐶

1-regularity
property and the datum 𝑓 ∈ 𝐿

2
(Ω) ∩ 𝐿

𝑝
(Ω), for some 𝑝 ∈

]2, +∞[, then the solution 𝑢 of problem (22) is in 𝐿𝑝(Ω) and

‖𝑢‖ 𝐿𝑝(Ω) ≤ 𝐶
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩 𝐿𝑝(Ω), (42)

where𝐶 is a constant depending on 𝑛, 𝑡, 𝑝, ], 𝜇, ||𝑏𝑖−𝑑𝑖||𝑀2𝑡,𝜆(Ω),
𝑖 = 1, . . . , 𝑛.

The proof, which is different according to hypothesis (ℎ3)
or (ℎ4), is essentially performed into two steps. In the first
step, we show some regularity results, exploiting a technique

introduced by Miranda in [21]. Namely, we prove that if 𝑢 ∈
∘

𝑊
1,2
(Ω) is the solution of (22) with𝑓 ∈ 𝐿

2
(Ω)∩𝐿

∞
(Ω), then,

the datum 𝑓 being more regular, one also has 𝑢 ∈ 𝐿
∞
(Ω).

Thus Theorem 7 applies giving that 𝑢 ∈ 𝐿
𝑝
(Ω) and satisfies

(34). The second step consists in considering a datum 𝑓 ∈

𝐿
2
(Ω) ∩ 𝐿

𝑝
(Ω) and then one can conclude by means of some

approximation arguments; see also [16].
Finally, in [6], we prove the main result, that is, the

claimed 𝐿𝑝-bound, 𝑝 > 1. To this aim, a further assumption
on the leading coefficients is required:

𝑎𝑖𝑗 = 𝑎𝑗𝑖, 𝑖, 𝑗 = 1, . . . , 𝑛. (ℎ0)

Then one has the following.

Theorem 9. Assume that hypotheses (ℎ0)–(ℎ3) or (ℎ0), (ℎ2),
and (ℎ4) are satisfied. If the setΩ has the uniform𝐶

1-regularity
property and the datum 𝑓 ∈ 𝐿

2
(Ω) ∩ 𝐿

𝑝
(Ω), for some 𝑝 ∈

]1, +∞[, then the solution 𝑢 of problem (22) is in 𝐿𝑝(Ω) and

‖𝑢‖ 𝐿𝑝(Ω) ≤ 𝐶
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩 𝐿𝑝(Ω), (43)

where𝐶 is a constant depending on 𝑛, 𝑡, 𝑝, ], 𝜇, ||𝑏𝑖−𝑑𝑖||𝑀2𝑡,𝜆(Ω),
𝑖 = 1, . . . , 𝑛.

Proof. For 𝑝 ≥ 2, Theorems 2 and 8 already prove the result.
It remains to show it for 1 < 𝑝 < 2.

We assume that hypotheses (ℎ0)–(ℎ3) hold true. Under
hypotheses (ℎ0), (ℎ2), and (ℎ4), a similar argument, with
suitable modifications, can be used (we refer the reader to [6]
for the details).

Let us define the bilinear form

𝑎
∗
(𝑤, V) = 𝑎 (V, 𝑤) , 𝑤, V ∈

∘

𝑊
1,2
(Ω) . (44)

By (ℎ0) one has

𝑎
∗
(𝑤, V)

= ∫
Ω

(

𝑛

∑

𝑖,𝑗=1

(𝑎𝑖𝑗𝑤𝑥𝑖
+𝑏𝑗𝑤) V𝑥𝑗+(

𝑛

∑

𝑖=1

𝑑𝑖𝑤𝑥𝑖
+𝑐𝑤) V)𝑑𝑥.

(45)

Now consider the problem

𝑤 ∈
∘

𝑊
1,2
(Ω) ,

𝑎
∗
(𝑤, V) = ∫

Ω

𝑔V 𝑑𝑥, 𝑔 ∈ 𝐿
2
(Ω) ∩ 𝐿

𝑝
󸀠

(Ω) ,

(46)

where, since 1 < 𝑝 < 2, one gets 𝑝󸀠 = 𝑝/(𝑝 − 1) > 2.
As a consequence of Theorem 2 (in the second set of

hypotheses) the solution 𝑤 of (46) exists and is unique.
Furthermore, byTheorem 8 (in the second set of hypotheses)
one also has

‖𝑤‖
𝐿𝑝
󸀠

(Ω)
≤ 𝐶

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩 𝐿𝑝
󸀠

(Ω)
. (47)

Hence, if we denote by 𝑢 the solution of

𝑢 ∈
∘

𝑊
1,2
(Ω) ,

𝐿𝑢 = 𝑓, 𝑓 ∈ 𝐿
2
(Ω) ∩ 𝐿

𝑝
(Ω) ,

(48)
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which exists and is unique in view of Theorem 2 (in the first
set of hypotheses), we obtain

∫
Ω

𝑔𝑢 𝑑𝑥 = 𝑎
∗
(𝑤, 𝑢) = 𝑎 (𝑢, 𝑤) = ∫

Ω

𝑓𝑤 𝑑𝑥

≤
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩 𝐿𝑝(Ω)‖𝑤‖ 𝐿𝑝

󸀠

(Ω)
≤ 𝐶

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩 𝐿𝑝(Ω)

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩 𝐿𝑝
󸀠

(Ω)
.

(49)

Finally, taking 𝑔 = |𝑢|
𝑝−1 sign 𝑢 in (49), we get the claimed

result.

4. Non-Variational Problems

In this section, we show two applications of ourmain estimate
(43).

To this aim, let 𝑝 > 1 and assume that

Ω has the uniform 𝐶
1,1-regularity property. (ℎ

󸀠

0
)

Consider, then, the non-variational differential operator

𝐿 = −

𝑛

∑

𝑖,𝑗=1

𝑎𝑖,𝑗
𝜕
2

𝜕𝑥𝑖𝜕𝑥𝑗
+

𝑛

∑

𝑖=1

𝑎𝑖
𝜕

𝜕𝑥𝑖
+ 𝑎, (50)

with the following conditions on the leading coefficients:

𝑎𝑖𝑗 = 𝑎𝑗𝑖 ∈ 𝐿
∞
(Ω) , 𝑖, 𝑗 = 1, . . . , 𝑛,

∃] > 0 :

𝑛

∑

𝑖,𝑗=1

𝑎𝑖𝑗𝜉𝑖𝜉𝑗 ≥ ]
󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨
2 a.e in Ω, ∀𝜉 ∈ R

𝑛
,

(𝑎𝑖𝑗)𝑥ℎ
∈ 𝑀
𝑞,𝜆

𝑜
(Ω) , 𝑖, 𝑗, ℎ = 1, . . . , 𝑛, with

𝑞 > 2, 𝜆 = 0 for 𝑛 = 2,

𝑞 ∈ ] 2, 𝑛 [, 𝜆 = 𝑛 − 𝑞 for 𝑛 > 2.

(ℎ
󸀠

1
)

Suppose that the lower order terms are such that

𝑎𝑖 ∈ 𝑀
𝑟

𝑜
(Ω) , 𝑖 = 1, . . . , 𝑛, with

𝑟 > 2 if 𝑝 ≤ 2, 𝑟 = 𝑝 if 𝑝 > 2 for 𝑛 = 2,

𝑟 ≥ 𝑝 , 𝑟 ≥ 𝑛, with 𝑟 > 𝑝 if 𝑝 = 𝑛 for 𝑛 > 2,

(ℎ
󸀠

2
)

𝑎 ∈ 𝑀̃
𝑡
(Ω) , with

𝑡 = 𝑝 for 𝑛 = 2,

𝑡 ≥ 𝑝 , 𝑡 ≥
𝑛

2
, with 𝑡 > 𝑝 if 𝑝 =

𝑛

2
for 𝑛 > 2,

ess inf
Ω

𝑎 = 𝑎0 > 0.

(ℎ
󸀠

3
)

In view of Theorem 1, under the assumptions (ℎ󸀠
0
)–(ℎ󸀠
3
), the

operator 𝐿 : 𝑊2,𝑝(Ω) → 𝐿
𝑝
(Ω) is bounded.

The first application is contained in Theorem 3.2 and
Corollary 3.3 of [7] (see also [22] where the case 𝑝 = 2 is
considered) and reads as follows.

Theorem 10. Let 𝐿 be defined in (50). If hypotheses (ℎ󸀠
0
)–(ℎ󸀠
3
)

are satisfied, then there exists a constant 𝑐 ∈ R+ such that

‖𝑢‖𝑊2,𝑝(Ω) ≤ 𝑐
󵄩󵄩󵄩󵄩󵄩
𝐿𝑢
󵄩󵄩󵄩󵄩󵄩 𝐿𝑝(Ω)

∀𝑢 ∈ 𝑊
2,𝑝

(Ω) ∩
∘

𝑊
1,𝑝

(Ω) , (51)

with 𝑐= 𝑐(Ω, 𝑛, ], 𝑝, 𝑟, 𝑡, ||𝑎𝑖𝑗||𝐿∞(Ω), 𝜎
𝑞,𝜆

𝑜
[(𝑎𝑖𝑗)𝑥ℎ

], 𝜎
𝑟

𝑜
[𝑎𝑖], 𝜎̃

𝑡
[𝑎],

𝑎0).
Moreover, the problem

𝑢 ∈ 𝑊
2,𝑝

(Ω) ∩
∘

𝑊
1,𝑝

(Ω) ,

𝐿𝑢 = 𝑓, 𝑓 ∈ 𝐿
𝑝
(Ω)

(52)

is uniquely solvable.

The nodal point in achieving these results consists in the
existence of the derivatives of the 𝑎𝑖𝑗. Indeed, this consents
to rewrite the operator 𝐿 in divergence form and exploit
(43) in order to obtain an estimate as that in (51) but for
more regular functions. Then, one can prove (51) by means
of an approximation argument. Estimate (51) immediately
takes to the solvability of problem (52) via a straightforward
application of the method of continuity along a parameter,
see, for instance, [23], and by the already known solvability
of an opportune auxiliary problem.

As second application of (43), we obtain, in [8], an
analogous of Theorem 10, in a weighted framework. Namely,
we consider a weight function 𝜌𝑠 that is a power of a function
𝜌 of class 𝐶2(Ω) such that 𝜌 : Ω → R+ and

sup
𝑥∈Ω

󵄨󵄨󵄨󵄨𝜕
𝛼
𝜌 (𝑥)

󵄨󵄨󵄨󵄨

𝜌 (𝑥)
< +∞, ∀ |𝛼| ≤ 2,

lim
|𝑥|→+∞

(𝜌 (𝑥) +
1

𝜌 (𝑥)
) = +∞,

lim
|𝑥|→+∞

𝜌
𝑥
(𝑥) + 𝜌

𝑥𝑥
(𝑥)

𝜌 (𝑥)
= 0.

(53)

For instance, one can think of 𝜌 as the function

𝜌 (𝑥) = (1 + |𝑥|
2
)
𝑡

, 𝑡 ∈ R \ {0} . (54)

For 𝑘 ∈ N0, 𝑝 ∈ [1, +∞[ and 𝑠 ∈ R, and given 𝜌 satisfying
(53), we define the weighted Sobolev space 𝑊𝑘,𝑝

𝑠
(Ω) as the

space of distributions 𝑢 onΩ such that

‖𝑢‖
𝑊
𝑘,𝑝

𝑠 (Ω)
= ∑

|𝛼|≤𝑘

󵄩󵄩󵄩󵄩𝜌
𝑠
𝜕
𝛼
𝑢
󵄩󵄩󵄩󵄩 𝐿𝑝(Ω) < +∞, (55)

endowed with the norm in (55). Furthermore, we denote the
closure of 𝐶∞

∘
(Ω) in𝑊𝑘,𝑝

𝑠
(Ω) by

∘

𝑊
𝑘,𝑝

𝑠
(Ω) and put𝑊0,𝑝

𝑠
(Ω) =

𝐿
𝑝

𝑠
(Ω).
In Theorems 4.2 and 5.2 of [8] we showed the following.

Theorem 11. Let 𝐿 be defined in (50). If hypotheses (ℎ󸀠
0
)–(ℎ󸀠
3
)

are satisfied, then there exists a constant 𝑐 ∈ R+ such that

‖𝑢‖
𝑊
2,𝑝

𝑠 (Ω)
≤ 𝑐

󵄩󵄩󵄩󵄩󵄩
𝐿𝑢
󵄩󵄩󵄩󵄩󵄩 𝐿𝑝𝑠 (Ω)

∀𝑢 ∈ 𝑊
2,𝑝

𝑠
(Ω) ∩

∘

𝑊
1,2

𝑠
(Ω) ,

(56)
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with 𝑐 = 𝑐(Ω, 𝑛, 𝑠, ], 𝑝, 𝑟, 𝑡, ||𝑎𝑖𝑗||𝐿∞(Ω), ||𝑎𝑖||𝑀𝑟(Ω), 𝜎𝑞,𝜆𝑜 [(𝑎𝑖𝑗)𝑥ℎ],
𝜎
𝑟

𝑜
[𝑎𝑖], 𝜎̃

𝑡
[𝑎], 𝑎0).

Moreover, the problem

𝑢 ∈ 𝑊
2,𝑝

𝑠
(Ω) ∩

∘

𝑊
1,2

𝑠
(Ω) ,

𝐿𝑢 = 𝑓, 𝑓 ∈ 𝐿
𝑝

𝑠
(Ω)

(57)

is uniquely solvable.

One of the main tools in the proof of Theorem 11 is given
by the existence of a topological isomorphism from𝑊

𝑘,𝑝

𝑠
(Ω)

to𝑊𝑘,𝑝(Ω) and from
∘

𝑊
𝑘,𝑝

𝑠
(Ω) to

∘

𝑊
𝑘,𝑝
(Ω).This isomorphism

consents to deduce by the non-weighted bound in (51) the
corresponding weighted estimate in (56), taking into account
also the imbedding results of Theorem 1. The existence and
uniqueness of the solution of problem (57) follow then, as in
the previous case, from a direct application of the method of
continuity along a parameter by the solvability of a suitable
auxiliary problem.
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