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We prove the generalized Hyers-Ulam stability of multi-Jensen, multi-Euler-Lagrange additive, and quadratic mappings in »-
Banach spaces, using the socalled direct method. The corollaries from our main results correct some outcomes from Park (2011).

1. Introduction and Preliminaries

In 2005, Prager and Schwaiger (see [1] and also [2]) intro-
duced the notion of multi-Jensen functions with the connec-
tion with generalized polynomials and obtained their general
form. In 2008, (see [3]) they also proved the Hyers-Ulam sta-
bility of multi-Jensen equation, whereas Cieplinski (see [4, 5])
showed its generalized stability: in the spirit of Bourgin (see
[6]) and Gavruta (see [7]), and in the spirit of Aoki (see [8])
and Rassias (see [9]). Recently, some further results on the
stability of multi-Jensen mappings were obtained in [10-14].
We refer the reader to [15-19] for more information on dif-
ferent aspects of stability of functional equations.

In this paper, we deal with the generalized Hyers-Ulam
stability of multi-Jensen, multi-Euler-Lagrange additive, and
quadratic mappings in n-Banach spaces. The corollaries from
our main results correct some outcomes from [20]. The
results of Sections 2 and 4 generalize those from [12].

The concept of 2-normed spaces was initially developed
by Gahler [21, 22] in the middle of the 1960s, while that of
n-normed spaces can be found in [23, 24]. Since then, many
others have studied this concept and obtained various results
(see [23, 25-27]).

Throughout this paper, N stands for the set of all positive
integers and R represents the set of all real numbers. More-
over, we fix two positive integers k and n.

We recall some basic facts concerning n-normed spaces.

Definition 1. Let n € N and let X be a real linear space with
dim X > n,and let ||-,...,:] : X* — R be a function
satisfying the following properties:

(ND) [y, ..., x,ll = 0if and only if x,,..., x, are linearly
dependent,

(N2) [Ixq, ..., x,| is invariant under permutation,

(N3) lloxys ..o x,0l = lexlllxgs - o5 x5

(N4) [Ix + y, x5, .5 X, < N, %0, oo, L+ 1ys X555 %,

forall « € R and x, y,x,x5,...,%, € X. Then the function
[I-,...,|l is called an #n-norm on X, and the pair (X, [|-,...,-|))
is called an n-normed space.

A sequence {x} ;¢ in an n-normed space X is said to a
converge to some x € X in the n-norm if

lim ”xj =% Yoo Vn

= 0’

Jfim, g
for every y,,...,y, € X. Every convergent sequence has
exactly one limit. If x is the limit of the sequence {x}c\,
then we write lim; _, . x; = x. For any convergent sequences
:{xj}jeN and {y;} ;e of elements of X, the sequence {x;+y} ey
is convergent and

lim (xj +yj) = lim x; + lim y;. (2)

j—o00 j— o0 J j— 00

If, moreover, {&;} ey is a convergent sequence of real num-
bers, then the sequence {«; - x;} ey is also convergent and

lerrgo ((xj -xj) = lerrgoaj . jlingoxj. (3)



A sequence {x;} oy in an n-normed space X is said to be a
Cauchy sequence with respect to the n-norm if

lim ;= x5y 3 = 0 (4)

jl — 00

for every y,,..., y, € X. A linear n-normed space in which
every Cauchy sequence is convergent is called an n-Banach
space.

Example 2. For x,,...,x, € R", the Euclidean n-norm |x,,

..» X, |l is defined by

X110 X
.,xn||E:'det(xij)|:abs Do , (5
x

.

SERER

where x; = (x;1,...,%;,) € R" foreachi=1,...,n.

Example 3. The standard n-norm on X, a real inner product
space of dimension dim X > #, is as follows:

(xx) - (x|

bevoowalls =) (0

<xn’x1> e <xn’ xn>

where (-,-) denotes the inner product on X. If X = R”,
then this n-norm is exactly the same as the Euclidean n-norm
lx1, ..., x,ll; mentioned earlier. For n = 1, this n-norm is the
usual norm |x, || = (xl,x1>1/2.

In what follows, we will also use the following lemma
from [19].

Lemma 4. Let X be an n-normed space. Then,

(1) forx; € X (i = 1,...,n) and y, a real number,

T

7)
= "xl,...,xi,...,xj+yxl-,...,xn||,
foralll <i#j<n,
@) W Yoo w5 ull =15y s pulll < = 95 50
forallx,y,v,, ..., y, € X,
(3) ifllx, ¥y .. ., ¥l = 0forall y,,...,y, € X, thenx = 0,

(4) for a convergent sequence {xj} in X,

> (8)

lim x;, 35,0005 9,
j—oo

lim "xj,yz, ces Vi

j—oo

forall y,,...,y, € X.

Abstract and Applied Analysis

2. Approximate Multi-Jensen Mappings

First, we prove the stability of the system of equations defining
multi-Jensen mappings in n-Banach spaces. For a given map-
ping f: V¥ — W, we define the difference operators

Dif (%1500 Xpep1)
= 2f<x1,...,xi_1,xi +2xi+1,xi+2,...,xk+1>
— (X1 ey Xy X e o5 Xpey1) )
—f(xp s X X K1) 5

(Xp5e. s psy) €VEL i€ {1, K},

Theorem 5. Let V be a commutative group uniquely divisible
by 2, and, W be an n-Banach space. Assume also that for every

ie{l,....,k}, ¢; : V"' = [0,00) is a mapping such that

(o)

1 :
j
Z3j+1 [‘Pi (3 xl’xZ""’ka)
j=0
+ot @ (xl,...,xi_2,3]xi_1,xi,...,xk+1)
i (3055 X1 3% 3 X X Xy )

J
+ ¢ ('xl’-"’xiﬂ’?’ xi+2’xi+3"-"xk+1)

oot @ (xl,...,xk,3]xk+1)] < 00,

(Xp5. s Xpyy) € VEL
(10)
If f: V¥ — W is a function satisfying
Fepsees 50,5155 %) =0,
(11)
(Xpoe s Xp s Xin e n X)) €VEL i€ {1, K},

IDif (1 s X01) 5 Yoo Yl < @1 (3153 Xper)

(X Xpe)) €EVEL i€ (L, K,y Y €W,
(12)

then for every i € {1,...,k}, there exists a multi-Jensen map-
ping F; : VK — W for which

If oo xi) = F (X5 X0) 5 Vas e o5 2l
(o)
1
Sj;)sj+l
X [(pi (xl,...,xi_1,3jx,~,—3jxi,xi+1,...,xk)
+¢; (xl, . ,x,-,l,—.’ajxi, 3j+1xi,xi+1, - ,xk)] ,
(Xpoeo ) €VE 300y, €W.
(13)
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Foreveryi € {1,...,k}, the function F, is given by

.1 j
F (xp,. %) = jlilrgoyf(xl,...,xi,1,3’xl-,x,-+1,...,xk),

(xp5..., %) € V.
(14)

Proof. Fix xy,...,x € V, y,,..
By (12) and (11), we get

Y, € Wandi e {1,...,k}.

If Cepoeeon i)+ (Xps e os Xy =25 X1+ o> Xi) 5
Vareos V|
S P; (Xps ey Xiy =Xy Xjy 1o o 05 Xi) >
(15)
2 (15 xi) = F (310 os Xiops =X X 1+ o> X )
—f (%15 e s X415 3% X153 Xk) 5 Voo e o> Yl
S(Pi(Xp--.,xi_l,—x,-,3xi,xi+1,...,xk).
Hence,
I35 (epseer i) = f (Xpoeeos Xi_15 3K Xiy1s o5 X)) 5
Vareeos
(16)

<@ (%15 en s Xiy =Xy Xj15 e+ o> Xi)

)xk))

and consequently for any nonnegative integers / and m such
that / < m, we obtain

+ @ (Xqs s Xi_y =X, 3K, Xy 15 - - -

” f xl,...,xi_1,3x le,...,xk)

1
—3—mf(xl,...,xi_1,3mxi,x,-+1,...,xk),yz,...
m—1 1 .
< Q3 [(p,-(xl, X3, -3, xm,...,xk)
=
i Al
+¢; (xl,...,x,»_l,—3]xi,3]+ xi,xiH,...,xk)].
(17)
Therefore, from (10), it follows that {(1/3j)f(x1,...,xi_1,

3x;, Xit1> -+ X)}jen 18 @ Cauchy sequence. Since W is an
n-Banach space, this sequence is convergent and we define
F; : vk 5w by (14). Putting [ = 0, lettingm — oo in (17),
and using Lemma 4 and (10), we see that (13) holds.

Finally, fix x; € V, j € N, and note that according to (12),
we have

o
D;f xl,...,xi,1,31x,-,31xi,xi+1,...,xk),yz,...

E

1 ) .
< 3% (xl,...,x,»,l,.’a]xi, 3]xi,x,-+1,...,xk).

(18)

Next, fixs € {1,...,k}\ {i}, x: € V,and assume that s < i
(the same arguments apply to the case where s > i). From
(12), it follows that

!
D f XiseworXgr Xy Xgylseeor Xis

E

3Jx,-,x,~+1,...,xk>,y2,...,yn
(19)

!
3 Xgs Xy Xgypoeees

S%(ps(xl,...

x;_ 1,3 X x1+1,...,xk).

Letting j — oo in the above two inequalities and using (10)
and Lemma 4, we see that the mapping F; is multi-Jensen. [

Theorem 6. Let V be a real linear space and, W be an n-
Banach space. Assume also that for every i € {1,...,k}, ¢; :

VT [0, 00) is @ mapping such that

231[ ( ,xz,...,ka)

Xi-1
e @ X Xy

?,xi,...,xk+1>

xi Xit+1
@i | X e Xy =5 s Xiyar e+ i
377 3i (20)
Xiy2
T (xl""’xi+1>?’xi+3""’xk+l
X1
+ + @; (xl, > Xjes ? < 00,

(15 Xy ) € VEFL

If f: V5 — W is a function satisfying conditions (11) and
(12), then for every i € {1,...,k} there exists a multi-Jensen
mapping F; : VK — W for which

"f(xl""’xk)_Fi(Xl,...

s Xk) s Vs Yl

)xk>

X; X
3]+1 3],x1+1,...,xk 5

< 0031 X X5
< @; xl,...,x,-_l,3j+l, 3j+1,xi+1,...
j=0

+¢; (xl,...,xi,l,—

(Xl,...,xk) EVk) Yaseo s Vn ew.
(21)

For everyi € {1,...,k}, the function F; is given by

F (xp,...,x;)

X

—’-,xmw-,xk)’ (22)

= lim 3/ f (xl, X 3

j— 00

(xp5..., %) € V.



Proof. Fixx,,...,x, €V, ¥y..., ¥, €W, jeNU{0}andi €
{1,...,k}. By (12) and (11), we get

|3j+1f(x1,...

Xi
’xi—l’ _3j+1 ,xi+1, cee ,xk

j Xi
-3 f Xpsee s Xy 350 Xito oo > Xk |5 Voo Y

)xk>
X; X

i
+@; (xl,...,xi,l,—ﬁ, y,xm,...,xk)] ’

and consequently for any non-negative integers / and m such
that / < m, we obtain

! Xi
|3f<x1,...,xi_1,3—;,xi+1,...,xk)

(23)
j X; X;
<3 (Pi xl"“,xi_l)F,_W’x”l,“.

3m Xi
-3"f Xpsewor X T Xito oo o X |5 Yoo J

)xk>

m—1

<Z3f o (x [OOSR B

= i Do i-D 3]'+1’ 3j+1’ 52 S
=

Xi X
+(Pl (Xl,. . .,xi_l,_ﬁ, ;,xﬂ_l,.. . ,xk>] .
(24)
Therefore, from (20), it follows that {3jf(x1, e XL xi/3j,

Xis1>+- > X} jen i @ Cauchy sequence. Since W is an n-
Banach space, this sequence is convergent and we define F, :
vk 5w by (22). Putting [ = 0, lettingrn — o in (24), and
using Lemma 4 and (20), we see that (21) holds.

Finally, fix x, € V,and note thataccording to (12), we have

!

. X X

j i i
3 Dif(xl,...,x,-l,— —.,xiﬂ,...,xk),yz,...,yn

357 3i
,.xk) .

Next, fixs € {1,...,k}\ {i}, x; € V, and assume that s < i (the
same arguments apply to the case where s > i). From (12), it
follows that

i
<3j ﬁ ﬁ
<5 Q; xl,...,xi_1,3j,3j,x,-+1,...

(25)

31D5f <x1,...,xs,xs,xs+1,...,xi_1, y,xm,...,xk),

Yareeor

<3/ ! i
S 3P X0 X Koo Xy oo Xt 50 Koo X |
(26)
Letting j — oo in the previous two inequalities and

using (20) and Lemma 4, we see that the mapping F, is multi-
Jensen. O

As applications of Theorems 5 and 6 we get the following
corollaries.
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Corollary 7. LetV be a real normed linear space and, W be an
n-Banach space. Assume also that 0 € [0,00) and r € (0, 00)

are such thatr# 1. If f : V¥ — W is a function satisfying (11)
and

IDif (1o X)) Yoo 2l
<Ol el (il + i)
X ||xi+2||r"'||xk+1||r]’ (27)
(X1 i) € VEL e (L. KD,

oo I €W,

then foreveryi € {1, ..., k} there exists a multi-Jensen mapping
F,: VK — W for which

||f(x1,...,xk)—Fi(xl,...,xk),yz,...,yn||

Ol el " (3 + 37) (28)
- |3 - 37| ’
forallx,,...,x, €V, yy..., ¥, € W.

Corollary 8. Let V be a real normed linear space and let W be
an n-Banach space. Assume also that 0 € [0,00) and r, p,q €
(0,00) are such thatr,p+q € (0,1) orr,p+q € (1,00). If
f: V5 — W is a function satisfying (11) and

ID:f (15 Xi1) Yoo 2l
< Ot i I (el i)
X il Pl (29)
(Xp5e s xpsy) €VEL i€ {1, K},

Vosos Yu €W,

then for every i € {1,...,k}, there exists a multi-Jensen map-
ping F, : VF — W for which

I Grreen) = F Gorveos )y 3]
< Olx| - ”xH“r"xi”pm"xi““r el (1 +3)
N |3 — 3p%4| ’
(30)
forallx,,...,x €V, y,,..., ¥, € W.

From Corollary 8, we obtain the following corollary
which corrects Theorems 3.1 and 3.2 from [20].

Corollary 9. Let V be a real normed linear space and W be
an n-Banach space. Assume also that 0 € [0,00) and p,q €
(0,00) are such that p+ q# 1. If f : V. — W is a function
satisfying f(0) = 0 and
X +x
|27 (F52) - £ () - £ ()]
(3D
< 9||x1||p||x2||q, xX,x, €V, yeW,
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then there exists a Jensen mapping F : V. — W for which

|f )= F(x), 5]

01 (1+37) (2
, x€eV, yeW
|3 - 3p+4]

3. Approximate Multi-Euler-Lagrange
Additive Mappings

In this section, we prove the stability of the system of equa-
tions defining multi-Euler-Lagrange additive mappings.

Throughout this section, let V' be a real linear space and
let W be an n-Banach space, and a,b € R \ {0} are fixed with
A=a+b+0,+l.

A mapping f: V¥ — W is called a multiEuler-Lagrange
additive mapping as follows if it satisfies the Euler-Lagrange
additive equations in each of their k arguments as follows:

f(xl,...
+f(x1,...

!
, Xi_1> AX; + bxi,xm,...,xk)

!
X1, bx; + axi,xm,...,xk)

(33)
:(a+b)[f(x1,...,xk)
!
+f(xl,...,xi_l,xi,xm,...,xk)],
foralli € {I,...,k}and all x;,...,X; |, X} X}, Xjpps e s Xp €

V.Ifa = b = 1, then the multi-Euler-Lagrange additive map-
ping is multiadditive (see [28]). For a given mapping f :
V* — W, we define the difference operators

Bif(xl""’xk+l)
= f (X1 s X5 AX; + bX11, Xipgs -+ o> Xpy1)
+ f (0o X1 0%+ X1 Xy X))
(34)
—(@+b) [f (X es X Xiygs e oo s Xpeag
+f (%1 X X Xt )]
(Xpsee s %) €V, i€ (L. K},
Theorem 10. Assume that for every i € {l,...,k}, ¢;
V1 [0, 00) is a mapping such that
— o, (Mx,,...,x
Z|)&| [4’1( 1 k+1)
+eot @ (xl,...,xi,z,/\in,l,x,-,...,xkﬂ)
+(Pi(x1"">xi—1’/\x /\le, ,+2,...,xk+1) (35)
T ¢ (x17""xi+1’/vxi+2’xi+3""’xk+1)

+ot @ (xl,...,xk,/kaH)] < o,

(15 Xy ) € VEL

5
If f: V¥ — W is a function satisfying
"ﬁif(xl"'"xk+1)’y2""’yn“ <@ (X X))
(Xpse s X)) VI ie{l, kb, vy sy €W,
(36)

then for everyi € {1,...,k}, there exists a unique multi-Euler-
Lagrange additive mapping A, : V¥ — W for which

If Gepsevosxi) = Aj (x5
< 1

1
< - E —
250

s Xk) > Yoo Yo

X @, (xl,...,xi_l,)tjxi,)tjx,-,xm,...,xk),
k
(XX ) EVY, ¥y, ¥, €W
(37)

For everyi € {1,

A (%o xi)

k}, the function A, is given by

1 .
= lim — (xl,...,xi,l,)t]x,-,x,-ﬂ,...,xk), (38)

]HOOAJ

(x15...,%,) € V.

Proof. Fixxy,...,x €V, y5,..., ¥, € W,jeNU{0}andi €

{1,...,k}. By (36), we get

||f (%1 s Xp) — (xl,...

X1y AXiy Xjy 1o s Xi) s

Yas-os Vn (39)

1
< m% (X0 s X Xy Xjy 1o o> Xi)

whence

1
ﬁf(xl,...

,xi_l,/\ X, x,+1,...,xk)

1
_Wf(xl,...,xi,l,/\ X le,...,xk),yz,...

1 S
< 2|A|]+1 i (xl)- ..,x,-_l,)tfxi, Aj'xi"xiﬂ-l" . .,xk) .
(40)
For any nonnegative integers [ and m with | < m, using (40)
we get
1 !
Hﬁf(xl,...,x,-,l,)k Xip Xpy1- e or Xy )

1

—)L—mf (Xl,.. .

m—1

X A" X0 Xy s s

R
(41)

]=l 2|A|J+1

,x,»,l,)t]xi,)t]x,-,xm,...,xk),

xgo,-(xl,...



which tends to zero as I tends to infinity. Therefore, from (35)
it follows that {(1/A7) f (xy, ..., %1 AVX; X415 X))} e s 2
Cauchy sequence in n-Banach space W and it thus converges.
Hence, we can define A, : V¥ — W by

A; (%o xk)

(42)

,xi_l,/\]xi,xi+1,...,xk).

.1
= jll»r%oﬁf(xl""

Putting [ = 0, letting mn — o0 in (41), and using (35), we see
that (37) holds.
Now, fix also xlf € V, and from (36), we have

1 — . -
—D; f(xp s X M M X X000 %) s
M !

(43)

S
..,xl-,l,/\]xi,/\]xi,xiﬂ,...,xk).

Next, fix s € {1,...,k} \ {i}, xg € V, and assume that s < i
(the same arguments apply to the case where s > 7). From (36)
it follows that

l ~ 1
llﬁDSf (xl,...,xs,xs,xs+1,...,xi_1,

/Vx,-,xm,...,xk),yz,...,yn

(44)
1

< W(ps (.X'l,...

!
> Xgr X Xor1s w05 Xi 15

AJx,-,xM,...,xk).

Letting j — o0 in the above two inequalities and using (35)
and Lemma 4, we see that the mapping A; is multi-Euler-
Lagrange additive.

Now, let us finally assume that A'i - V¥ — W is another
multi-Euler-Lagrange additive mapping satisfying (37). Then
we have

!
"A,- (%5 e xg) = A (X1 s X0) 5 Vas oo W
_ml—r>noo|/\|m
X HAi (1o X A X X g e e 0 Xg)

! m
—A (X X A X X5 X ) Ve e Y
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li !
S
X [“Ai (%5 e X A X X e e o0 Xg)

—f (x50 s Xk) s Vase oo i

m
S Xl A Xy Xy g -

+ | f (g Xy A X5 X)
—A; (xps e X A X Xy X)) ,yz,...,yn"]
1
= mooo ||
v 1
X Z |A|m+]
=0

m+j m+j
X @; (xl,...,xi_l,)t X A x,-,xi+1,...,xk)

= 0’
(45)
and therefore A; = A’ O
Theorem 11. Assume that foreveryi € {1,...,k}, ¢; : V*'' —

[0, 00) is a mapping such that

ZWJ [Goi (A_})xp ...,xk+1>

j=0

+ .- +(Pl xl,...,xi_z, A’] ,xi,...,xk+1

+¢ (x PO i e R X )
i\ X1 Xin 375 5 Xigs s Xy
AN (46)
X:
i+2
+(Pi<x1>""xi+1>7’xi+3"“’xk+l>

(Xpse s Xpsy) € VEL

If f: VK — W is a function satisfying (36), then for everyi €
{1,...,k}, there exists a unique multi-Euler-Lagrange additive
mapping A; : VX — W for which

If Gerson i) = A (e
1, -1
<2
j=1

Xi X
X @; xl,...,xi_l,ﬁ,ﬁ,xiﬂ,...,xk 5

2 X)s Voo Yl

(47)

(15 sxp) € 1743 Vrener Yy € W.
Foreveryi € {1,...,k}, the function A; is given by

A;(xp,..0 %)
.4 Xi
= lim A f<x1,...,xi_1,ﬁ,xm,...,xk), (48)

J— 00

(Xp5..., %) € V.
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Proof. Fixx;,...,x, €V, y5,...
{1,...,k}. By (36) we get

¥, €W, jeNU{0}andi e

X
Hf(xl,...,xk) —)»f(xl,...,x,»,l,X’,xiﬂ,...,xk),

Varee o>V (49)

1 X; X;
_E(Pi xl,...,xi_l,X,X,xm,...,xk .

For any non-negative integers [ and m with 0 < I < m, using
(49), we get

! Xi
||/\f<x1,...,x,~_1,i,xm,...,xk)

am (xl,

Xi- I’N”’x'“’ ~-’xk>>)/2>--.,y,,

m— 1|/\
< RARLES
= 2
Xi X
X§0i (xl""’xi—l’W’W’xﬁl""’xk)’

(50)

which tends to zero as I tends to inﬁnity Therefore from (46),
it follows that {A/ f(x;,..., X, 1, x;/A, X1y s s X} jen s @
Cauchy sequence in n- Banach space W and it thus converges.
Hence, we can define A; : vk 5w by

A; (X, x) = Lm M f <x1,...,xi_1, ﬁ,xiﬂ,...,xk).
j—>oo A]

(51)

Putting I = 0, letting m — o0 in (50), and using (46), we see

that (47) holds. The further part of the proof is similar to the
proof of Theorem 10. O

As applications of Theorems 10 and 11, we get the follow-
ing corollaries.

Corollary 12. Let V be a real normed linear space and, W be

ann-Banach space. Assume also that 0 € [0, co) andr € (0, c0)
are such thatr# 1. If f : V¥ — W is a function satisfying

||5if(x1,...,

<O

X41)> 2o i
il (el + i)
Il ] ©2)

ief{l,...,k},

x xial -
(Xps. s Xpyy) € VEL

Voo Vn €W,

then for every i € {1, ..., k} there exists a unique multi-Euler-
Lagrange additive mapping A, : V¥ — W for which

If Cepevni) = As (1o X0) 5 20 0l
bl bl )
1AL =1AI"]
forallx,,...,x €V, yp,..., ¥, € W.

Corollary13. LetV be a real normed linear space and let W be
an n-Banach space. Assume also that 0 € [0,00) and 1, p,q €
(0,00) are such thatr,p+q € (0,1) orr,p+q € (1,00). If
f: VK — W is a function satisfying

IDif (eio s xi1) s yas o 20
< Ol Bxical” (il i)
< Jxial el
(Xpreo i) €EVEL e (L, k), Yy €W,
(54)

then for everyi € {1,...,k}, there exists a unique multi-Euler-
Lagrange additive mapping A, : V¥ — W for which

I Grreen) = Ay G50 e
B e Y I PN
- 2 1Al = P ’
forallx,,...,x €V, y,,..., ¥, € W.

From Corollary 13 we obtain the following corollary
which corrects Theorems 2.1 and 2.2 from [20].

Corollary14. LetV be a real normed linear space and W be an
2-Banach space. Assume also that 0 € [0, c0) and p,q € (0, 00)
are such that p+ q# 1. If f : V. — W is a function satisfying

”f (2 +25) = f (x1) = f(x2) ))’"
(56)
< 9||x1||p"x2"q’

xl,xze‘/, yGVV,

then there exists a unique additive mapping A : V. — W for
which

(B

1F ()= A )y < 2

m, er,yeW (57)

4. Approximate Multi-Euler-Lagrange
Quadratic Mappings

In this section, we prove the stability of the system of equa-
tions defining multi-Euler-Lagrange quadratic mappings.

Throughout this section, let V' be a real linear space and
let W be an n-Banach space, and a,b € R \ {0} are fixed with
Ai=a’+b #1.



Rassias [29] introduced the notion of a generalized
Euler-Lagrange-type quadratic mapping, and investigated its
generalized stability.

A mapping f: V¥ — W is called a multi-Euler-Lagrange
quadratic mapping, if it satisfies the Euler-Lagrange quadratic
equations in each of their k arguments:

f(xl,...

!
y Xi_1> axX; + bxi,xm,...,xk)

!
+ f(xl,...,x,-,l,bxi —axi,x,-ﬂ,...,xk)
= (a2 + bz)
!
X [f(xl,...,xk) +f(xl,...,xi_l,xi,x,-H,...,xk)],
(58)
forallie{l,...,k}andall x,, ..., X; 1, X;, X}, Xiy 15 - X € V.

Ifa = b = 1, then the multi-Euler-Lagrange quadratic
mapping is multiquadratic (see [30]). Letting x; = x: =0in

(58), we get f(xy, ..., %;_1,0,X;415- .., X;) = 0. Putting x; = 0
in (58), we have
F(X1se e X1, GX) Xy gs e -5 Xg)
+ (%5 X BXy Xjy g e o5 1) (59)

= A (xp5ee 05 xp) -

Replacing x; by ax; and x| by bx; in (58), respectively, we
obtain

fxp...
=A[f (xp,...
+f (xp5...

From (59) and (60), one gets

X1 AXip X0 X))
s X5 AXj Xy s o5 X)) (60)
VX1 DX Xy X)) -

Xp.nn 1) = A f (x5
f( 1y

foralli e {1,...,k} and all x,,...

For a given mapping f : V¥ — W, we define the differ-
ence operators

» Xi_1> AXjy Xjyps - ,Xk)>  (61)

,xk eV.

D;f (X155 Xps1)
= f (x5
+ f (xp,..
x [f (x5
+f (x5

(Xpsee s Xpey) €VEL i€ {1, K},

X1 X + DXy, Xy X))

2 42
.,x,-_l,bxi—axi+1,x,-+2,...,xk+1)—(a +b)
’xi’xi+2""’xk+1)

s Xi 1> Xyl %) |

(62)

Abstract and Applied Analysis

Theorem 15. Assume that foreveryi € {1,...,k}, ¢; : VF'' —
[0, 00) is a mapping such that

<1
23

Jj=0

X [goi ()ijl,xz,...,ka)

s X N X X xk+1)

+~-~+(pi(x1,...

(63)

X M xp My, X oo xk+1)

+(pi(x1,...
+¢; (x Xeo s Mo, X X
Pi Dot i+20 Vi3> 0t Mkt
+o 4@ A <
Pi\ X1 e v s X A Xy 0,

(%150 Xpyy) € VEFL

If f: VF — W is a function satisfying condition (11) and

'lﬁif(xl"">xk+1)’y2""’yn

<@ (X5 Xpy1) s (64)

k+1

(X1 Xpyy) €V, i€ {l,... K},

oreor I €W,

then for everyi € {1,...,k}, there exists a unique multi-Euler-
Lagrange quadratic mapping Q; : VK — W for which
%) = Qi (x5

||f(x1"" ’xk)>y2""’yn||

3

1 .
j
[A2j+1(Pi (xl,...,x,-_l,)t x;, 0, x,-+1,...,xk)

~.
o

j 65
t (xl,...,xi_l,a/\]xi, (65)

b)t’xi,xm,...,xk)],

(xp5...,%,) € V5, Vareeer Yy € WL

Foreveryi € {1,...,k}, the function Q; is given by

Qi (31,5 x)

= lim !
o ]—)()QA,ZJ

xf(xl,...

(66)
SXip M X Xy ,xk) ,

(xp5..., %) € V.
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Proof. Fixx;,...,x, €V, y5,...
{1,...,k}. By (64), we get

¥, €W, jeNU{0}andi e

If (epoee s Ximps A% X5 - X))
+ (X X bX Xy g5 e o0 Xg)
“Af (%150 X0) s Yoo Vi
<@ (X1 X 0, X415 X)) 5
I (eps e s Ximps AXiy Xigps -5 X (67)
= Af (X s Xy Xy Xjyps - o> Xi)
= Af (X0 X, DX Xy e X)) 5
Yoreeos Yl
<@ (X1 Xi_p> QX bX Xipgs e s X ) -

From (67), we obtain

1
ﬁf (Xps e e s Xio s AXfy Xy 15+ o5 Xg)

= (X XE) s Voo e e

(68)

1 1
< Xgo,»(xl,...,x,-,O,x,-H,...,xk)+ e

X @ (X105 s X1, X bX1 Xy 15 -5 Xi)

and consequently for any non-negative integers [ and m such
that [ < m, we get

1

1
ﬁf

o

(xl,...,xi,l,/\x xl“,...,xk) -

X fxp..ox 2 Xk)> Y2 e> I

X A" X Xy

m—1
/12(;+1)f( "XH’/\ X x,ﬂ,...,xk)
1
— Ef(xl)-..,xi_l)k Xi» xl+1,...,xk),
Yar-eos Wn
m—1 ‘
J
[AZ}#—I g01( ’xi—l>A Xi)O,Xi+1,...,xk)
J:l
1
+ A2j+2

X @; (xl,...,x,-,l,a)t X; b X; le,...,xk)] .
(69)
Therefore from (63), it follows that {(I/Azj)f(xl,...,xi_l,

Ny X 1o x;)} jen is a Cauchy sequence. Since W is an n-
Banach space, this sequence is convergent and we define

Q, : VF — W by (66). Putting I = 0, lettingm — o0 in (69)
and using Lemma 4 and (63), we see that (65) holds.

Now, fix also x; € V and note that according to (64), we
have

|

1 =~ YN,
WDif (xl,...,xi_l,/\]xl-,/\]xi , xi+1,...,xk),

(70)

i Iy
2% (xl,...,xi_l,)n x5 M, x,,rl,...,xk).

Next, fix s € {1,...,k}\ {i}, x: €V, and assume that s < i
(the same arguments apply to the case where s > i). From
(64), it follows that

1 = '
EDSf (xl,...,xs,xs,xsﬂ,...,xi_l,

Mx,, x1+1,...,xk),y2,...
(71)

!
< E(Ps (Xl,. cr X X X 15w e 05 Xis

J
Ax,-,xiﬂ,...,xk).

Letting j — oo in the above two inequalities and using (63),
and Lemma 4 we see that the mapping Q; is multi-Euler-
Lagrange quadratic.

Now, let us finally assume that Q; : V* — W is another
multi-Euler-Lagrange quadratic mapping satisfying (65) and
note that according to (61) and using Lemma 4, and (63) we
have

“Qi(xl""’xk)_Q; (xv-'-’xk)’yZ"“’y"“
= mILmAZM Qs (xps e vs Xy A X Xy o5 X))
~ Q) (X s Xy A X Xy X ) s
Yoo vl
< Qs (g5 o5 Xy 1o A X5 Xy g5+ o5 Xp)

m—)ooAZm

= (XX AT X X Xg) s

Vareeor Vil

1 G 10 X5 030
_Q,'(Xl,...,xi,l,Amxi,xi+1,...,xk),

Vare o5 Valll
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(]

< lim Z
m— 00

j=0

1
Az(m+j)+1

m+j
X @; (xl,...,xi,l,)x xi,O,xi+1,...,xk)

1
+ /\2(m+j)+2

m+j
X @; (xl,...,xi_l,a)t X,

m+j
bA xi,xm,...,xk)]

=0.
(72)

Therefore, by Lemma 4, we can conclude that Q; = Q. [

Similar to Theorem 15, one can get the following.

Theorem 16. Assume that for every i € {l,...,k}, ¢;
VT [0, 00) is @ mapping such that

< x
2j 1
Z/\ [‘Pi(ﬁ’xzv"’kaq)
=
Xi-1

+..'+(pi (xl,._.,xi_z,—j,xi,...,ka)

Xi Xit1
+ ¢ Koo Xisp 55 T X oo Xl (73)

Xira
TP\ X o Xivn T X0 X

(15 Xy ) € VEL

If f: V5 — W is a function satisfying condition (11) and

"ﬁif(xl"'"xk+1)’y2""’yn|| <@ (X X))
(Xp5.. s xpyy) € VEL iefl,.. .k}, (74
YoroosYu €W,

then for everyi € {1,...,k}, there exists a unique multi-Euler-
Lagrange quadratic mapping Q; : V¥ — W for which

1f (i) = Qi (X %) s Yo 0
< < A2j+1
|

X
1
X @; <x1,...,xi,1, _/\J'“’O’ xm,...,xk)

2j ax; bx;
+A @; <X1, e Xy W, W,XHI,. ..

)]

s Yn €W
(75)

(X1 nx) €VE ymhi

Abstract and Applied Analysis

Foreveryi € {1,...,k} the function Q; is given by
Qi (%155 %)

. 2i X:
= jlinéo/\ Tf (xl,...,xi,l, A—;,xﬂl,...,xk), (76)
(xp5...,%,) € V.

Proof. Fix x,...,x, € V, ¥5,..., ¥, € W, j € NU {0} and

i €{l,...,k}. By (74), we obtain
2 Xi
)Lf(xl,...,x,-_l,j,xm,...,xk)

= f(xp...

2 Xk)s Varee s I

X, (77)

< Ag; (xl,...,xi,l,X,O,xm,...,xk),

.,xk>,

and consequently for any non-negative integers / and m such
that [ < m, we get

21 Xi
A f(xl,...,xi_l,x},xm,...,xk)

ax; bx;
@i\ X155 Xis T, T,xiﬂ,..

2m Xi
-A f<x1,...,xi_1,A—m,xiﬂ,...,xk),yz,...,yn

m—
2(j+1) X
< Z A J f(xl’ ..,xi_l,/v.—frl,xi“,...,xk)
=1
A ]f<x1, ..,x,-,l,A—;,xiﬂ,...,xk),yz,...,yn
m—1
2j+1 Xi
< |:AJ q)i<x1,...,xi71,/\J.—J:I,O,XHI,...,XIC)
=l
ax; bx;
+A J(Pi <X1, Xl Aj_Jrll’ AJ,—é,xiH,...,xk)] .
(78)
Therefore, from (73), it follows that {A*/ f(x,, ..., x;_, x;/A,

Xis1>-- > X} jen i @ Cauchy sequence. Since W is an n-
Banach space, this sequence is convergent and we define Q; :
vk W by (76). Putting [ = 0, lettingm — oo in (78), and
using Lemma 4 and (73) we see that (75) holds. The further
part of the proof is similar to the proof of Theorem 15. O

As applications of Theorems 15 and 16, we get the follow-
ing corollaries.

Corollary 17. Let V be a real normed linear space and, W
be an n-Banach space. Assume also that 6 € [0,00) and r €

(0,00) are such that r+1. If f : V5 — W is a function
satisfying

Bif (X1 s Xk1) > Yoo ’)’n”
||
<Ol Bl (Il + i)

X il Il ]
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(Xpsee s %) €VEL i€ {1, K},

seeen Vp W
V2 In € (79)

then for everyi € {1,...,k}, there exists a unique multi-Euler-
Lagrange quadratic mapping Q; : VK — W for which

I e ) = Q4 (108 e 3]

Ol el (A + lal” + [BI7)
- [A2 = Ar| ’
s Vo €W,

(80)

forallx,,...,x, €V, y,,...

Corollary 18. LetV be a real normed linear space and let W be
an n-Banach space. Assume also that 6 € [0,00) and r, p,q €
(0,00) are such thatr,p +q € (0,2) orr,p+q € (2,00). If
f:V* — W is a function satisfying

I CINTEN) IO A

< 9||x1||r e ||xi—1||r (“xi"p”xiﬂ“q)

X il el (81)
(xpsee s %) €VE i€ {L,.. K},
y2""’yn € W

then for everyi € {1,...,k}, there exists a unique multi-Euler-
Lagrange quadratic mapping Q; : V¥ — W for which

f G ) = QG
B Y o Y I P
= 2~ Apva] :

forallx,,...,x, €V, yy..., ¥, € W.

For a = b = 1, Corollary 18 yields the following corollary
which corrects Theorems 4.1 and 4.2 from [20].

Corollary 19. Let V be a real normed linear space and let W
be an 2-Banach space. Assume also that 0 € [0, 00) and p,q €
(0,00) are such that p+ q#2. If f : V. — W is a function
satisfying

”f(xl +x2)—f(x1)—f(x2),y||

= Gllxlnp"xz"q’ XX, €V, yeW,

(83)

then there exists a unique quadratic mappingQ : V. — W for
which

Ollx[17*

Il — 84
|4 - 2p%4] (54

If ) -Qx),y] < xeV, yeW.
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