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Denote by A
𝑛
the set of all 𝑛 × 𝑛 skew-symmetric matrices over the field of real numbers, which forms a Lie ring under the usual

matrix addition and the Lie multiplication as [𝐴, 𝐵] = 𝐴𝐵−𝐵𝐴,𝐴, 𝐵 ∈ A
𝑛
. In this paper, we characterize the automorphism group

of the Lie ringA
𝑛
.

1. Introduction and Main Result

A Lie ring is defined as a nonassociative ring with multiplica-
tion that is anticommutative and satisfies the Jacobi identity.
More specifically, we can define a Lie ring 𝐿 to be an abelian
group with an operation [, ] that has the following properties:

(i) biadditive:

[𝑥 + 𝑦, 𝑧] = [𝑥, 𝑧] + [𝑦, 𝑧] , [𝑧, 𝑥 + 𝑦] = [𝑧, 𝑥] + [𝑧, 𝑦] ,

(1)

for all 𝑥, 𝑦, 𝑧 ∈ 𝐿;
(ii) the Jacobi identity:

[[𝑥, 𝑦] , 𝑧] + [[𝑦, 𝑧] , 𝑥] + [[𝑧, 𝑥] , 𝑦] = 0, (2)

for all 𝑥, 𝑦, 𝑧 ∈ 𝐿;
(iii) for all 𝑥 in 𝐿,

[𝑥, 𝑥] = 0. (3)

It is well known that a Lie algebra can be viewed as a Lie
ring. So, the theory of Lie ring can be used in the theory of the
Lie algebra. Recall that an automorphism of a Lie ring (𝐿, [, ])
is a bijective map 𝜙 form 𝐿 onto itself such that 𝜙(𝑥 + 𝑦) =
𝜙(𝑥)+𝜙(𝑦) and 𝜙([𝑥, 𝑦]) = [𝜙(𝑥), 𝜙(𝑦)] for all 𝑥, 𝑦 ∈ 𝐿.There

are a lot of papers that studied the automorphism groups of
some fixed Lie rings (or, more for the Lie algebras), see [1–7].

Note that any associative ring 𝐿 can be made into a Lie
ring (𝐿, +, [, ]) by defining a bracket operator [𝑥, 𝑦] = 𝑥𝑦 −

𝑦𝑥. Let R be the real number field and denote by R× the rest
R \ {0}. Let𝑀

𝑛
be the algebra of all 𝑛×𝑛matrices overR. We

denote by A
𝑛
the subset of𝑀

𝑛
consisting of all 𝑛 × 𝑛 skew-

symmetric matrices, that is,

A
𝑛
= {[𝑎
𝑖𝑗
] ∈ 𝑀

𝑛
: [𝑎
𝑖𝑗
]

𝑡

= − [𝑎
𝑖𝑗
]} . (4)

It is well known that the setA
𝑛
forms a Lie ring under the

usual matrix addition and the Lie multiplication as [𝐴, 𝐵] =
𝐴𝐵−𝐵𝐴,𝐴, 𝐵 ∈ A

𝑛
. In the same way, we know that𝑀

𝑛
or 𝑇
𝑛

(the set of all 𝑛×𝑛 upper triangular matrices) as well as forms
a Lie ring.

Hua [8] gives the form of any automorphism of the
Lie ring 𝑀

𝑛
over a skew field by using the fundamental

theorem of geometry of matrices; Dolinar [1] studies the
automorphism of the Lie ring of triangular matrices 𝑇

𝑛

over any field. Jacobson [9] considers the Lie algebra A
𝑛

over any algebraically closed field; he gives the form of the
automorphism of the Lie algebra A

𝑛
for the case 𝑛 ≥ 5 if 𝑛 is

odd or 𝑛 ≥ 10 if 𝑛 is even. Now, let us see a general result on
isomorphism of some Lie rings as follows.

Proposition 1 (see [10, 11]). Let 𝐴 and 𝐴 be prime rings
with involutions of the first kind and of characteristic not 2.
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Let 𝐾 and 𝐾 denote, respectively, the skew elements of 𝐴
and 𝐴. Assume that the dimension of the central closure of 𝐴
over 𝐶

𝐴
 is different from 1, 4, 9, 16, 25, and 64. Then, any

Lie isomorphism 𝜃 of 𝐾 onto 𝐾 can be extended uniquely to
an associative isomorphism of ⟨𝐾⟩ onto ⟨𝐾⟩, the associative
subrings generated by𝐾 and 𝐾, respectively.

Note that the Lie ring A
𝑛
is a particular class of the

previous setting of skew elements of 𝑀
𝑛
. So, the previous

proposition in fact partially solved the problem to character-
ize the automorphism group of A

𝑛
. However, the problem is

still open when 𝑛 takes any positive integer.
The purpose of this paper is to characterize AutA

𝑛
, the

automorphism group of the Lie ringA
𝑛
, for 𝑛 ≥ 2. Our main

result is the following.

Theorem 2. Suppose that 𝑛 ≥ 2 is an integer, then 𝜙 ∈ AutA
𝑛

if and only if there is a real orthogonal matrix 𝑄 such that

𝜙 (𝑋) = 𝑄𝑋𝑄
𝑡

, ∀𝑋 ∈ A
𝑛
. (5)

Further, one has AutA
𝑛
≅ 𝑂
𝑛
(𝑅), where 𝑂

𝑛
(𝑅) is the real

orthogonal group.

2. Preliminary Results

Now, let us start this section by denoting some notations.
Denote by [𝑛/2] the maximal integer number no more than
𝑛/2. Let 𝐸(𝑛)

𝑖𝑗
be the 𝑛 × 𝑛 matrix which has 1 in the (𝑖, 𝑗)

entry and is 0 elsewhere. Set 𝐷 = 𝐸
(2)

12
+ 𝐸
(2)

21
, and denote

by 𝐼
𝑛
= Σ
𝑛

𝑖=1
𝐸
(𝑛)

𝑖𝑖
the 𝑛 × 𝑛 identity matrix. Note that the

notation 𝐼
0
means that thematrix vanished. Let 𝐽 = 𝐸(2)

11
−𝐸
(2)

22
,

𝐾 = 𝐸
(2)

12
− 𝐸
(2)

21
.

Suppose that S ⊂ A
𝑛
. We call S to be commutative

if [𝑥,S] = 0, for all 𝑥 ∈ S, and call S to be maximal
commutative if S is not only commutative but [𝑦,S] ̸= 0,
for all 𝑦 ∉ S. Clearly, the maximal commutative subset is
a subring ofA

𝑛
. Suppose that 𝐴 ∈ A

𝑛
. Set

C (𝐴) := {𝑋 ∈ A
𝑛
: [𝐴,𝑋] = 0} . (6)

We denote by 𝐴 ⊕ 𝐵 and 𝐴 ⊗ 𝐵 the direct sum and the
Kronecker product of 𝐴 and 𝐵, respectively.

Definition 3. A matrix 𝐴 ∈ A
𝑛
is called regular if it satisfies

the following conditions: (i) when 𝑛 is an even number, there
is an orthogonal matrix𝑄, and the real numbers 𝜀

1
, . . . , 𝜀

𝑛/2
∈

R with different absolute values, such that

𝐴 = 𝑄 diag (𝜀
1
𝐾, . . . , 𝜀

𝑛/2
𝐾)𝑄
𝑡

. (7)

(ii) When 𝑛 is an odd number, there is an orthogonal
matrix 𝑄, and the nonzero real numbers 𝜀

1
, . . . , 𝜀

[𝑛/2]
∈ R

with different absolute values, such that

𝐴 = 𝑄 diag (𝜀
1
𝐾, . . . , 𝜀

[𝑛/2]
𝐾 ⊕ 0)𝑄

𝑡

. (8)

Now, a subring h of A
𝑛
is called a regular subring if h is

maximal commutative and there is a regular matrix in h.
For 𝑥 ∈ A

𝑛
, denote C(𝑥) = {𝐴 ∈ A

𝑛
: [𝐴, 𝑥] = 0}.

Lemma 4 (see [12, 2.5.14]). Suppose that 𝐴 ∈ A
𝑛
. Then, there

are an orthogonal matrix 𝑄 and real numbers 𝑎
1
, . . . , 𝑎

[𝑛/2]

such that

𝐴 = 𝑄 diag (𝑎
1
𝐾 ⊕ ⋅ ⋅ ⋅ ⊕ 𝑎

[𝑛/2]
𝐾 ⊕ 0)𝑄

𝑡

. (9)

Lemma5 (see [13, 14]). Let F be any field, and let𝐾
𝑛
(F) denote

the space of all 𝑛 × 𝑛 alternate matrices over F . Then, 𝜙 is an
additive surjective mapping of 𝐾

𝑛
(F) (𝑛 ≥ 2) to itself that

preserves rank 2 matrices if and only if 𝜙 is of the following
forms:

(i) 𝑛 ≥ 4, 𝜙((𝑎
𝑖𝑗
)) = 𝛼𝑃

𝑡

(𝑓(𝑎
𝑖𝑗
))𝑃, for all (𝑎

𝑖𝑗
) ∈ 𝐾

𝑛
(F),

where 𝛼 ∈ F \ {0}, 𝑃 is an 𝑛 × 𝑛 invertible matrix, and
𝑓 is a field automorphism of F ;

(ii) when 𝑛 = 4, 𝜙 is of the form

𝜙 ((𝑎
𝑖𝑗
)) = 𝛼𝑃

𝑡

(𝑓 (𝑎
𝑖𝑗
))

∗

𝑃, ∀ (𝑎
𝑖𝑗
) ∈ 𝐾
4
(F) , (10)

where 𝛼, 𝑃, and 𝑓 have the same meaning as before, and
(𝑎
𝑖𝑗
) → (𝑎

𝑖𝑗
)
∗ is either the identity map or the map:

[

[

[

[

0 𝑎
12

𝑎
13

𝑎
14

−𝑎
12

0 𝑎
23

𝑎
24

−𝑎
13

−𝑎
23

0 𝑎
34

−𝑎
14

−𝑎
24

−𝑎
34

0

]

]

]

]

→

[

[

[

[

0 𝑎
12

𝑎
13

𝑎
23

−𝑎
12

0 𝑎
14

𝑎
24

−𝑎
13

−𝑎
14

0 𝑎
34

−𝑎
23

−𝑎
24

−𝑎
34

0

]

]

]

]

.

(11)

In the next text, we always assume that 𝜙 ∈ AutA
𝑛
is

arbitrary.

Lemma 6. Suppose that h is a regular subring of A
𝑛
. Then,

there is an orthogonal matrix 𝑄 and maps 𝜂
𝑖
: A
𝑛
→ R, 𝑖 =

1, . . . , [𝑛/2] such that

𝑄𝑋𝑄
𝑡

= 𝜂
1
(𝑋)𝐾 ⊕ ⋅ ⋅ ⋅ ⊕ 𝜂

[𝑛/2]
(𝑋)𝐾 ⊕ 0, ∀𝑋 ∈ h.

(12)

Proof. For every𝑋 ∈ h, note that 𝑄𝑋𝑄𝑡 is commutative with
every regular matrix in h. So, one can obtain the conclusion
by Lemma 4.

Corollary 7. Suppose that h is a regular subring of A
𝑛
, and

𝐻 ∈ h is a regular matrix. Then,

𝑋 ∈ h⇐⇒ [𝑋,𝐻] = 0. (13)

Lemma 8. Suppose that h
1
, h
2
are both regular subrings ofA

𝑛
,

and that there is a regular matrix𝐻 ∈ h
1
∩ h
2
. Then, h

1
= h
2
.

Proof. Note that a regular subring ismaximal; the conclusion
follows by Corollary 7.

Lemma 9. Both maps 𝜙 and 𝜙−1 preserve the regular subring.
Expressly, for𝐻 ∈ A

𝑛
, one has that𝐻 is a regular matrix if and

only if 𝜙(𝐻) is so.

Proof. Take any regular subring h ofA
𝑛
and a regular matrix

𝐻 ∈ h. By Lemma 6, we can assume that 𝑄𝜙(𝐻)𝑄𝑡 = 𝜀
1
𝐾 ⊕

⋅ ⋅ ⋅ ⊕ 𝜀
[𝑛/2]

𝐾 ⊕ 0, where 𝑄 is an orthogonal matrix.
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Suppose that 𝐴 ∈ A
𝑛
satisfying 𝑄𝜙(𝐴)𝑄𝑡 = 1𝐾 ⊕ 2𝐾 ⊕

⋅ ⋅ ⋅ ⊕ [𝑛/2]𝐾 ⊕ 0. Then, 𝜙(𝐴) is a regular matrix in A
𝑛
. Since

[𝜙(𝐻), 𝜙(𝐴)] = 0, [𝐻,𝐴] = 0. This means that 𝐴 ∈ h. Let h
1

be a regular subring containing 𝜙(𝐴). By Lemma 8, we only
need to prove that 𝜙(h) = h

1
. Take any 𝜙(𝑋) ∈ h

1
. Then, we

see by Lemma 6 that there are 𝑥
1
, . . . , 𝑥

[𝑛/2]
∈ R such that

𝑄𝜙 (𝑋)𝑄
𝑡

= 𝑥
1
𝐾 ⊕ ⋅ ⋅ ⋅ ⊕ 𝑥

[𝑛/2]
𝐾 ⊕ 0. (14)

So, [𝜙(𝑋), 𝜙(𝐻)] = 0, and [𝑋,𝐻] = 0. Hence,𝑋 ∈ h. This
shows that h

1
⊂ 𝜙(h). Note that h

1
is maximal, so we obtain

that 𝜙(h) = h
1
.

Now, we prove that 𝜙 preserves the regular matrix.
Otherwise, suppose that 𝜙(𝐻) is not a regular matrix, then
we will get a contradiction. By the definition, we see that one
of the following cases holds.

Case 1. 𝑛 is odd and there is 𝜀
𝑖
= 0.

Case 2.There is some 𝜀
𝑖
∈ {±𝜀
𝑗
}.

If Case 1 happens, we assume without loss the generality
that 𝜀
1
= 0. We take𝑋 ∈ A

𝑛
such that

𝑄𝜙 (𝑋)𝑄
𝑡

= 𝐸
(𝑛)

1𝑛
− 𝐸
(𝑛)

𝑛1
. (15)

If Case 2 happens, we assume without loss the generality
that 𝜀
2
∈ {±𝜀
1
}. When 𝜀

1
= 𝜀
2
, we take𝑋 ∈ A

𝑛
such that

𝑄𝜙 (𝑋)𝑄
𝑡

= 𝐾 ⊗ 𝐼
2
⊕ 0. (16)

When 𝜀
1
= −𝜀
2
, we take𝑋 ∈ A

𝑛
such that

𝑄𝜙 (𝑋)𝑄
𝑡

= 𝐾 ⊗ 𝐽 ⊕ 0. (17)

On one hand, it is clear that [𝜙(𝑋), 𝜙(𝐴)] ̸= 0, so we have
𝜙(𝑋) ∉ h

1
. On the other hand, [𝜙(𝑋), 𝜙(𝐻)] = 0; hence,

[𝑋,𝐻] = 0. Thus, 𝑋 ∈ h, and so 𝜙(𝑋) ∈ 𝜙(h) = h
1
; this is

impossible. Note that 𝜙 is an automorphism; we see that 𝜙−1
also preserves the regularmatrix.Theproof is completed.

Lemma 10. Suppose that 𝑛 ≥ 5 and 𝐴, 𝐵 ∈ A
𝑛
. If rank𝐴 = 2

and 𝐵 ∉ R𝐴, then there is 𝐶 ∈ A
𝑛
such that

[𝐴, 𝐶] = 0, [𝐵, 𝐶] ̸= 0. (18)

Proof. We can assume without loss the generality by
Lemma 4 that 𝐴 = 𝑎𝐾 ⊕ 0, 𝑎 ̸= 0. Hence, we have C(𝐴) =
0 ⊕A

𝑛−2
. If any matrix 𝐶 cannot satisfy the conclusion, then

one has [𝐵, 0 ⊕ A
𝑛−2
] = 0. Note that 𝑛 ≥ 5, so we have

𝑛 − 2 ≥ 3. This implies that 𝐵 ∈ R𝐾 ⊕ 0, which contradicts
with 𝐵 ∉ R𝐴.

Lemma 11. Let 𝐴 ∈ A
𝑛
. Then, 𝜙(C(𝐴)) = C(𝜙(𝐴)).

Proof. As [𝐴,C(𝐴)] = 0, we deduce that [𝜙(𝐴), 𝜙(C(𝐴))] =
0. Farther, we have 𝜙(C(𝐴)) ⊂ C(𝜙(𝐴)). The desired result
follows from the following:

C (𝜙 (𝐴)) = (𝜙𝜙
−1

)C (𝜙 (𝐴)) = 𝜙 (𝜙
−1

(C (𝜙 (𝐴))))

⊂ 𝜙 (C (𝜙
−1

(𝜙 (𝐴)))) = 𝜙 (C (𝐴)) .

(19)

Lemma 12. Suppose that𝐴 ∈ A
4
is not a regularmatrix.Then,

𝜙(R𝐴) = R𝜙(𝐴).

Proof. It follows from Lemma 6 that there is an orthogonal
matrix 𝑄 such that

𝜙 (𝑟𝐴) = 𝑄 (𝜀
1
(𝑟)𝐾 ⊕ 𝜀

2
(𝑟)𝐾)𝑄

𝑡

, ∀𝑟 ∈ R. (20)

Since 𝐴 is not a regular matrix and so is 𝑟𝐴, we see that
𝜀
2
(𝑟) ∈ {±𝜀

1
(𝑟)}, for all 𝑟 ∈ R. If 𝜀

1
(1) = 𝜀

2
(1), then we will

see that 𝜀
1
= 𝜀
2
. Otherwise, there is 𝑟

0
∈ R× such that 𝜀

1
(𝑟
0
) =

−𝜀
2
(𝑟
0
), and so 𝑄(𝐾 ⊗ 𝐼

2
)𝑄
𝑡

∈ C(𝜙(𝐴)). But we know that
𝑄(𝐾⊗𝐼

2
)𝑄
𝑡

∉ C(𝜙(𝑟
0
𝐴)), this, together with Lemma 11, gives

that

C (𝜙 (𝐴)) = 𝜙 (C (𝐴)) = 𝜙 (C (𝑟
0
𝐴)) = C (𝜙 (𝑟

0
𝐴)) . (21)

This is impossible. Similarly, we can show that if 𝜀
1
(1) =

−𝜀
2
(1), then 𝜀

1
= −𝜀
2
, and then we get the conclusion.

Lemma 13. Suppose that 𝑛 ≥ 5 and 𝐴 ∈ A
𝑛
such that

rank𝐴 = 2. Then, 𝜙(R𝐴) = R𝜙(𝐴).

Proof. If there is 𝐵 ∉ R𝐴 such that 𝜙(𝐵) ∈ R𝜙(𝐴), then
by Lemma 10 we can choose 𝐶 ∈ A

𝑛
such that [𝐴, 𝐶] = 0,

[𝐵, 𝐶] ̸= 0. Thus, [𝜙(𝐴), 𝜙(𝐶)] = 0; [𝜙(𝐵), 𝜙(𝐶)] ̸= 0. But we
see that 𝜙(𝐵) ∈ R𝜙(𝐴); this is impossible. Furthermore,

R𝜙 (𝐴) ⊂ 𝜙 (R𝐴) . (22)

For any nonzero real number 𝑟, we replace𝐴 by 𝑟𝐴 in the
previous equation. It follows that

R𝜙 (R𝐴) ⊂ 𝜙 (R𝐴) ⊂ R𝜙 (R𝐴) , (23)

that is, 𝜙(R𝐴) = R𝜙(R𝐴). Note that 𝜙 is additive. So, 𝜙(R𝐴)
is a subspace.

Suppose that

𝜙 (𝑟𝐴) = 𝑄 diag (𝜀
1
(𝑟)𝐾 ⊕ ⋅ ⋅ ⋅ ⊕ 𝜀

[𝑛/2]
(𝑟)𝐾 ⊕ 0)𝑄

𝑡

,

(24)

where 𝑄 is an orthogonal matrix, 𝜀
𝑖
: R→R, 𝑖 = 1, . . . , [𝑛/2].

We first prove the following.

Assertion. If there is an index 𝑖
0
such that 𝜀

𝑖
0

(𝑟) ̸= 0, for all 𝑟 ∈
R×, then 𝜙(R𝐴) ⊂ R𝜙(𝐴).

In fact, for any given 𝑟 ∈ R×, suppose that 𝜀
𝑖
0

(𝑟) = 𝜌𝜀
𝑖
0

(1),
then 𝜌 ̸= 0. Now, we assume that the assertion is not true; then
there is some index 𝑠 such that 𝜀

𝑠
(𝑟) ̸= 𝜌𝜀

𝑠
(1). Then, we see

by 𝜙(𝐴) ∈ 𝜙(R𝐴), 𝜙(𝑟𝐴) ∈ 𝜙(R𝐴), and the fact 𝜙(R𝐴) is a
space that 𝜌𝜙(𝐴) − 𝜙(𝑟𝐴) ∈ 𝜙(R𝐴). This tells us that there
is some 𝑐 ∈ R such that 𝜌𝜙(𝐴) − 𝜙(𝑟𝐴) = 𝜙(𝑐𝐴). Thus,
𝜀
𝑠
(𝑐) = 𝜌𝜀

𝑠
(1) − 𝜀

𝑠
(𝑟) ̸= 0, and so we have 𝑐 ̸= 0. But we know

that 𝜀
𝑖
0

(𝑐) = 𝜌𝜀
𝑖
0

(1) − 𝜀
𝑖
0

(𝑟) = 0, which contradicts with the
conditions of the assertion. This gives that 𝜙(𝑟𝐴) = 𝜌𝜙(𝐴).
The assertion is proved.

As 𝐴 is not a regular matrix, one has that 𝜙(𝑟𝐴) is not a
regular matrix too. Next, the proof of the lemma is divided
into the following cases with respect to 𝑛.

Case 1. When 𝑛 is odd, note that 𝐴 ̸= 0, so we can
assume without loss the generality that 𝜀

1
(1) ̸= 0. If for some
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𝑟
0
∈ R× such that 𝜀

1
(𝑟
0
) = 0, then it follows by Lemma 11

that 𝑄(𝐸(𝑛)
1𝑛

− 𝐸
(𝑛)

𝑛1
)𝑄
𝑡

∈ C(𝜙(𝑟
0
𝐴)) = C(𝜙(𝐴)), which is a

contradiction. Now, the lemma follows by using the previous
assertion for the index 𝑖

0
= 1.

Case 2.When 𝑛 is even, assume without loss of the generality
that 𝜀
1
(1) ∈ {±𝜀

2
(1)}. If 𝜀

1
(1) = 𝜀

2
(1), then 𝜀

1
= 𝜀
2
. In fact, if

there is some 𝑟
0
∈ R× such that 𝜀

1
(𝑟
0
) ̸= 𝜀
2
(𝑟
0
), then one has

by Lemma 11 that 𝑄(𝐾 ⊗ 𝐼
2
⊕ 0)𝑄

𝑡

∈ C(𝜙(𝐴)) = C(𝜙(𝑟
0
𝐴))

is a contradiction. If 𝜀
1
(1) = −𝜀

2
(1), then 𝜀

1
= −𝜀
2
. In fact, if

there is some 𝑟
0
∈ R× such that 𝜀

1
(𝑟
0
) ̸= − 𝜀

2
(𝑟
0
), then we see

by Lemma 11 that 𝑄(𝐾 ⊗ 𝐽 ⊕ 0)𝑄
𝑡

∈ C(𝜙(𝐴)) = C(𝜙(𝑟
0
𝐴));

this is impossible.
When 𝜀

1
(1) ̸= 0, if there is 𝑟

0
∈ R× such that 𝜀

1
(𝑟
0
) = 0,

then 𝜀
2
(𝑟
0
) = 0.Thus,A

4
⊕0⊂C(𝜙(𝑟

0
𝐴)) = C(𝜙(𝐴)), which is

a contradiction. Now, we get the lemma by using the previous
assertion for the index 𝑖

0
= 1.

When 𝜀
1
(1) = 0, if there is 𝑟

0
∈ R× such that 𝜀

1
(𝑟
0
) ̸= 0,

then since 𝜀
2
(1) = 𝜀

1
(1) = 0,A

4
⊕ 0 ⊂ C(𝜙(𝐴)) = C(𝜙(𝑟

0
𝐴)).

This is absurd. As 𝐴 ̸= 0, it is clear that 𝑛 ≥ 6. Hence, we can
assumewithout loss of the generality that 𝜀

3
(1) ̸= 0. If for some

𝑟
0
∈ R× such that 𝜀

3
(𝑟
0
) = 0, then we have by Lemma 11 that

𝑄((𝐸
(5)

15
− 𝐸
(5)

51
) ⊕ 0)𝑄

𝑡

∈ C (𝜙 (𝑟
0
𝐴)) = C (𝜙 (𝐴)) , (25)

which is a contradiction. The lemma can be shown by using
the previous assertion for the index 𝑖

0
= 3.

Corollary 14. Suppose that 𝑛 ≥ 5 and𝑊 ≤ A
𝑛
is a subspace

with bases which are formed by rank 2 matrices. Then, we have

dim𝑊 = dim𝜙 (𝑊) . (26)

Proof. Suppose that rank 2 matrices 𝑒
1
, . . . , 𝑒

𝑠
form bases of

𝑊. Then,

R𝑒
1
⊕ ⋅ ⋅ ⋅ ⊕R𝑒

𝑠
= 𝑊. (27)

It follows immediately that

𝜙 (R𝑒
1
) + ⋅ ⋅ ⋅ + 𝜙 (R𝑒

𝑠
) = 𝜙 (𝑊) . (28)

If there is 𝑖 such that 𝜙(R𝑒
𝑖
) ∩ Σ
𝑗 ̸= 𝑖
𝜙(R𝑒
𝑗
) ̸= 0, then we

can choose 𝜆
1
, . . . , 𝜆

𝑠
∈ R, not all zero, such that 𝜙(𝜆

𝑖
𝑒
𝑖
) =

Σ
𝑗 ̸= 𝑖

𝜙(𝜆
𝑗
𝑒
𝑗
), which is absurd. We see by Lemma 13 that

𝜙(R𝑒
𝑖
) = R𝜙(𝑒

𝑖
), for all 𝑖 = 1, . . . , 𝑠. Thus,

R𝜙 (𝑒
1
) ⊕ ⋅ ⋅ ⋅ ⊕R𝜙 (𝑒

𝑠
) = 𝜙 (𝑊) . (29)

The proof is completed.

Lemma 15. Suppose that 𝑛 ≥ 5 and𝐴 ∈ A
𝑛
is of rank 2.Then,

dimC (𝜙 (𝐴)) =
1

2

(𝑛 − 2) (𝑛 − 3) + 1. (30)

Proof. Note that dimC(𝐴) = dimA
𝑛−2

+ 1 = (1/2)(𝑛 −

2)(𝑛 − 3) + 1 and C(𝐴) has bases which are formed by
rank 2 matrices. This, together with Corollary 14, proves the
conclusion.

Lemma 16. Suppose that 𝑎
1
, . . . , 𝑎

𝑠
are positive real numbers,

which are different from one another. Let 𝑥 = 𝑎
1
𝐼
𝑛
1

⊗ 𝐾 ⊕

−𝑎
1
𝐼
𝑛
−1

⊗ 𝐾 ⊕ ⋅ ⋅ ⋅ ⊕ 𝑎
𝑠
𝐼
𝑛
𝑠

⊗ 𝐾 ⊕ −𝑎
𝑠
𝐼
𝑛
−𝑠

⊗ 𝐾 ⊕ 0. Then, we have

dimC (𝑥) = (Σ
𝑖
(𝑛
𝑖
+ 𝑛
−𝑖
))
2

+ 2
−1

× (𝑛 − 2Σ
𝑖
(𝑛
𝑖
+ 𝑛
−𝑖
)) (𝑛 − 2Σ

𝑖
(𝑛
𝑖
+ 𝑛
−𝑖
) − 1) .

(31)

In particular, if we let 𝑑 = Σ
𝑖
(𝑛
𝑖
+ 𝑛
−𝑖
), then

dimC (𝑥) ≤ 𝑑
2

+ 2
−1

(𝑛 − 2𝑑) (𝑛 − 2𝑑 − 1) , (32)

and the equation holds if and only if 𝑠 = 1.

Proof. It follows by a direct computation.

Lemma 17. Suppose that 𝜙 ∈ AutA
𝑛
preserves the rank 2

matrix subset of A
𝑛
. Then, there is a real orthogonal matrix

𝑄 such that

𝜙 (𝑋) = 𝑄𝑋𝑄
𝑡

, ∀𝑋 ∈ A
𝑛
. (33)

Proof. The proof under the case 𝑛 = 2 is obvious. It is not
difficult to see that, if 𝑛 = 3, then a surjective map preserving
rank 2 matrices still is of the form (i) of Lemma 5. Next, we
assume that 𝑛 ≥ 3 and assume that 𝜙 has the form (i) of
Lemma 5. For distinct 𝑖, 𝑗, 𝑘, it is clear that

[𝐸
𝑖𝑗
− 𝐸
𝑗𝑖
, 𝐸
𝑖𝑘
− 𝐸
𝑘𝑖
] = 𝐸
𝑘𝑗
− 𝐸
𝑗𝑘
,

[𝐸
𝑖𝑗
− 𝐸
𝑗𝑖
, 𝐸
𝑗𝑘
− 𝐸
𝑘𝑗
] = 𝐸
𝑖𝑘
− 𝐸
𝑘𝑖
.

(34)

Consider the image of 𝜙; then, it follows by the form (i)
of Lemma 5 that

𝛼 ((𝐸
𝑖𝑗
− 𝐸
𝑗𝑖
) 𝑃
𝑡

𝑃 (𝐸
𝑖𝑘
− 𝐸
𝑘𝑖
)

− (𝐸
𝑖𝑘
− 𝐸
𝑘𝑖
) 𝑃
𝑡

𝑃 (𝐸
𝑖𝑗
− 𝐸
𝑗𝑖
)) = 𝐸

𝑘𝑗
− 𝐸
𝑗𝑘
,

𝛼 ((𝐸
𝑖𝑗
− 𝐸
𝑗𝑖
) 𝑃
𝑡

𝑃 (𝐸
𝑗𝑘
− 𝐸
𝑘𝑗
)

− (𝐸
𝑗𝑘
− 𝐸
𝑘𝑗
) 𝑃
𝑡

𝑃 (𝐸
𝑖𝑗
− 𝐸
𝑗𝑖
)) = 𝐸

𝑖𝑘
− 𝐸
𝑘𝑖
.

(35)

Hence, by a direct computation and the arbitrariness of 𝑖,
𝑗, 𝑘, it follows that 𝑃𝑡𝑃 = 𝛼

−1

𝐼
𝑛
. Clearly, 𝛼 > 0. Note that R

is the field of real numbers, so we have 𝑓 = 1. Let 𝑄 = √𝛼𝑃;
then, the conclusion is obtained.

When 𝑛 = 4 and 𝜙 is of the form (ii) of Lemma 5, then
we let 𝑖 = 1, 𝑗 = 2, and 𝑘 = 3. Thus, we have by taking the
images under 𝜙 for the previous two equations that 1 = 0,
which is a contradiction. So, the form (ii) of Lemma 5 does
not occur.

3. The Proof of the Main Result

The proof of the main theorem is divided into the following
three propositions.

Proposition 18. Suppose that 𝑛 = 2 or 3 and 𝜙 ∈ AutA
𝑛
.

Then, there is an orthogonal matrix 𝑄 such that

𝜙 (𝑋) = 𝑄𝑋𝑄
𝑡

, ∀𝑋 ∈ A
𝑛
. (36)
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Proof. Since 𝜙 is bijective, 𝜙 preserves the rank 2 matrices of
A
2
or A
3
. If 𝑛 = 2, the conclusion is clear. If 𝑛 = 3, then we

also can get the conclusion by Lemma 17.

Proposition 19. Suppose that 𝜙 ∈ AutA
4
. Then, there is an

orthogonal matrix 𝑄 such that

𝜙 (𝑋) = 𝑄𝑋𝑄
𝑡

, ∀𝑋 ∈ A
4
. (37)

Proof. It is clear that [𝐾,𝐷] = 2𝐽, [𝐽, 𝐾] = 2𝐷, and [𝐽, 𝐷] =
2𝐾. Note that𝐾⊕0 is regular, sowe can assume that𝜙(𝐾⊕0) =
𝑄(𝑎𝐾⊕ 𝑏𝐾)𝑄

𝑡, where 𝑎 ̸= ± 𝑏 and𝑄 is an orthogonal matrix.
Without loss of generality, one can assume that

𝜙 (𝐾 ⊕ 0) = 𝑎𝐾 ⊕ 𝑏𝐾. (38)

Since the regular subring containing the nonregular
matrix 𝜙(𝐼

2
⊗ 𝐾) is determined by 𝜙(𝐾 ⊕ 0), there are 𝑐 ∈ R×

and 𝜀 ∈ {±1} such that

𝜙 (𝐼
2
⊗ 𝐾) = 𝑐 (𝐾 ⊕ 𝜀𝐾) . (39)

Therefore,

𝜙 (0 ⊕ 𝐾) = 𝜙 (𝐼
2
⊗ 𝐾) − 𝜙 (𝐾 ⊕ 0) = (𝑐 − 𝑎)𝐾 ⊕ (𝜀𝑐 − 𝑏)𝐾.

(40)

Suppose that

𝜙 (𝐾 ⊗ 𝐼
2
) = [

𝑋
1

𝑌
1

−𝑌
𝑡

1
𝑍
1

] , (41)

where 𝑋
1
is a 2 × 2matrix. It follows by [𝐼

2
⊗ 𝐾,𝐾 ⊗ 𝐼

2
] = 0

that

[𝑐 (𝐾 ⊕ 𝜀𝐾) , 𝜙 (𝐾 ⊗ 𝐼
2
)] = 0. (42)

So, we have 𝐾𝑋 = 𝑋𝐾, 𝐾𝑍 = 𝑍𝐾, 𝐾𝑌
1
= 𝜀𝑌
1
𝐾, and

𝐾𝑌
𝑡

= 𝜀𝑌
𝑡

𝐾. Note that

[𝐾 ⊕ 0, [𝐾 ⊕ 0,𝐾 ⊗ 𝐼
2
]] = −𝐾 ⊗ 𝐼

2
. (43)

Thus,

[[

𝑎𝐾 0

0 𝑏𝐾

] , [[

𝑎𝐾 0

0 𝑏𝐾

] , [

𝑋
1

𝑌
1

−𝑌
𝑡

1
𝑍
1

]]] = −[

𝑋
1

𝑌
1

−𝑌
𝑡

1
𝑍
1

] .

(44)

This, together with 𝐾𝑌
1
= 𝜀𝑌
1
𝐾, gives that (𝑎 − 𝜀𝑏)2 = 1,

𝑋
1
= 0, 𝑍

1
= 0. We deduce that

𝜙 (𝐾 ⊗ 𝐼
2
) = [

0 𝑌
1

−𝑌
𝑡

1
0
] . (45)

Similarly, we see by [𝐼
2
⊗ 𝐾,𝐷 ⊗ 𝐾] = 0 and [𝐾 ⊕ 0, [𝐾 ⊕

0,𝐷 ⊗ 𝐾]] = −𝐷 ⊗ 𝐾 that

𝜙 (𝐷 ⊗ 𝐾) = [

0 𝑌
2

−𝑌
𝑡

2
0
] , (46)

where 𝑌
2
𝐾 = 𝜀𝐾𝑌

2
. We also have by [𝐾⊗ 𝐼

2
, 𝐷⊗𝐾] = 2𝐽⊗𝐾

that

𝜙 (𝐽 ⊗ 𝐾) = 2
−1

[[

0 𝑌
1

−𝑌
𝑡

1
0

] , [

0 𝑌
2

−𝑌
𝑡

2
0

]]

= 2
−1

[

𝑌
2
𝑌
𝑡

1
− 𝑌
1
𝑌
𝑡

2
0

0 𝑌
𝑡

2
𝑌
1
− 𝑌
𝑡

1
𝑌
2

] .

(47)

Note that 𝑌
𝑖
𝐾 = 𝜀𝐾𝑌

𝑖
, so we can assume that

𝑌
1
= [

𝑦
1

𝑦
2

−𝜀𝑦
2
𝜀𝑦
1

] , 𝑌
2
= [

𝑦
3

𝑦
4

−𝜀𝑦
4
𝜀𝑦
3

] . (48)

Further,

𝑌
2
𝑌
𝑡

1
− 𝑌
1
𝑌
𝑡

2
= 2𝜀 (𝑦

1
𝑦
4
− 𝑦
2
𝑦
3
)𝐾,

𝑌
𝑡

2
𝑌
1
− 𝑌
𝑡

1
𝑌
2
= −2 (𝑦

1
𝑦
4
− 𝑦
2
𝑦
3
)𝐾,

𝜙 (𝐽 ⊗ 𝐾) = (𝑦
1
𝑦
4
− 𝑦
2
𝑦
3
) (𝜀𝐾 ⊕ −𝐾) .

(49)

On the other hand, we know by 𝐽⊗𝐾 = 𝐾⊕0−0⊕𝐾 that

𝜙 (𝐽 ⊗ 𝐾) = (2𝑎 − 𝑐)𝐾 ⊕ (2𝑏 − 𝜀𝑐)𝐾. (50)

By a direct computation with (49) and (50), we have 2𝑎 −
𝑐 = 𝑐 − 2𝜀𝑏 = 𝜀(𝑦

1
𝑦
4
− 𝑦
2
𝑦
3
) and then 𝑎 + 𝜀𝑏 = 𝑐. Noting that

(𝑎 − 𝜀𝑏)
2

= 1, we can assume without loss of the generality
that 𝑎 − 𝜀𝑏 = 1 (for the case 𝑎 − 𝜀𝑏 = −1, the proof is similar).
We deduce that

𝜙 (𝐽 ⊗ 𝐾) = 𝐽 ⊗ 𝐾. (51)

If 𝜀 = −1, then 𝜙(𝐼
2
⊗𝐾) = 𝑐(𝐾⊕−𝐾) ∈ R𝜙(𝐽⊗𝐾), which

contradicts Lemma 12. This tells us that 𝜀 = 1.
Again by [𝐾 ⊕ 0,𝐾 ⊗ 𝐼

2
] = 𝐷 ⊗ 𝐾, we get 𝑌

2
= 𝐾𝑌
1
.

Suppose that

𝜙 (𝐾 ⊗ 𝐽) = [

𝑋
3

𝑌
3

−𝑌
𝑡

3
𝑍
3

] . (52)

It follows by [𝐽 ⊗ 𝐾,𝐾 ⊗ 𝐽] = 0 that

[𝐽 ⊗ 𝐾, [

𝑋
3

𝑌
3

−𝑌
𝑡

3
𝑍
3

]] = 0. (53)

Therefore, we have𝐾𝑌
3
+𝑌
3
𝐾 = 0. Note that [𝐼

2
⊗𝐾, [𝐼

2
⊗

𝐾,𝐾⊗𝐽]] = −4𝐾⊗𝐽. This tells us that 𝑐2 = 1. We can assume
without loss of the generality that 𝑐 = 1. Then, we get that
𝑎 = 1 and 𝑏 = 0. Thus,

𝜙 (𝐾 ⊕ 0) = 𝐾 ⊕ 0. (54)

For any but fixed 𝑟 ∈ R×, we assert that𝜙(𝑟𝐾⊕0) ∈ R𝐾⊕0.
In fact, firstly, by Lemma 12, we can assume that 𝜙(𝑟𝐼

2
⊗

𝐾) = 𝑠𝐼
2
⊗𝐾,𝜙(𝑟𝐾⊕0) = 𝑢𝐾⊕V𝐾. So, we have that𝜙(0⊕𝑟𝐾) =

(𝑠 − 𝑢)𝐾 ⊕ (𝑠 − V)𝐾.
Secondly, noting that [𝐼

2
⊗𝐾, 𝑟𝐾⊗𝐼

2
] = 0 and [𝑟𝐾⊕0, [𝐾⊕

0,𝐾 ⊗ 𝐼
2
]] = −𝑟𝐾 ⊗ 𝐼

2
, we deduce that

𝜙 (𝑟𝐾 ⊗ 𝐼
2
) = (𝑢 − V) 𝜙 (𝐾 ⊗ 𝐼

2
) . (55)
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Furthermore, we see by 𝑟𝐽⊗𝐾 = (1/2)[𝑟𝐾⊗𝐼
2
, [𝐾⊕0,𝐾⊗

𝐼
2
]] and 𝑟𝐽 ⊗ 𝐾 = 𝑟𝐾 ⊕ 0 − 0 ⊕ 𝑟𝐾 that

𝜙 (𝑟𝐽 ⊗ 𝐾) = (𝑢 − V) 𝐽 ⊗ 𝐾,

𝜙 (𝑟𝐽 ⊗ 𝐾) = (2𝑢 − 𝑠)𝐾 ⊕ (2V − 𝑠)𝐾.
(56)

Thus, (2𝑢 − 𝑠) = 𝑢 − V = (𝑠 − 2V). It follows that 𝑢 + V = 𝑠.
Finally, due to [𝑟𝐾 ⊕ 0, [𝐾 ⊕ 0,𝐾 ⊗ 𝐽]] = −𝑟𝐾 ⊗ 𝐽 and

[𝑟𝐼
2
⊗ 𝐾, [𝐼

2
⊗ 𝐾,𝐾 ⊗ 𝐽]] = −4𝑟𝐾 ⊗ 𝐽, one can obtain that

𝜙 (𝑟𝐾 ⊗ 𝐽) = 𝑠𝜙 (𝐾 ⊗ 𝐽) = (𝑢 − V) 𝜙 (𝐾 ⊗ 𝐽) . (57)

This tells us that 𝑢−V = 𝑠, and so we have that 𝑢 = 𝑠, V = 0.
In otherwords,𝜙(𝑟𝐾⊕0) = 𝑢𝐾⊕0, which proves the assertion.
Now, we prove that 𝜙 preserves the set of rank 2 matrices on
A
4
. By applying Lemma 17, we finish the proof.

Proposition 20. Suppose that 𝑛 ≥ 5 and 𝜙 ∈ AutA
𝑛
. Then,

there is an orthogonal matrix 𝑄 such that

𝜙 (𝑋) = 𝑄𝑋𝑄
𝑡

, ∀𝑋 ∈ A
𝑛
. (58)

Proof. Take any rank 2 matrix 𝐴 ∈ A
𝑛
. By Lemma 4, we can

assume that

𝜙 (𝐴) = 𝑄 (𝑎
1
𝐼
𝑛
1

⊗ 𝐾 ⊕ −𝑎
1
𝐼
𝑛
−1

⊗ 𝐾 ⊕ ⋅ ⋅ ⋅ ⊕ 𝑎
𝑠
𝐼
𝑛
𝑠

⊗ 𝐾⊕

−𝑎
𝑠
𝐼
𝑛
−𝑠

⊗ 𝐾 ⊕ 0)𝑄
𝑡

.

(59)

Let Σ
𝑖
(𝑛
𝑖
+ 𝑛
−𝑖
) = 𝑑. Now, we assert that 𝑑 = 1 and so that

the rank of 𝜙(𝐴) is 2; that is, we will assert that 𝜙 is a preserver
of rank 2 onA

𝑛
; then, we can finish the proof by Lemma 17.

It follows by Lemmas 15 and 16 that

1

2

(𝑛 − 2) (𝑛 − 3) + 1 ≤ 𝑑
2

+ 2
−1

(𝑛 − 2𝑑) (𝑛 − 2𝑑 − 1) .

(60)

Moreover, we see that (𝑑 − 1)(3𝑑 − 2𝑛 + 4) ≥ 0. Hence, we
have either 𝑑 ≤ 1 or 𝑑 ≥ 3−1(2𝑛 − 4). The former means that
𝑑 = 1, as desired. If the latter holds, then it is clear that

𝑛 ≥ 2𝑑 ≥ 2 ⋅ 3
−1

(2𝑛 − 4) . (61)

In this case, we deduce that 𝑛 ≤ 8 and 𝑛 ̸= 7. Hence, the
remainder of the proof is the cases (i) 𝑛 = 5, 𝑑 = 2, (ii) 𝑛 = 6,
𝑑 = 3, and (iii) 𝑛 = 8, 𝑑 = 4.

Suppose that 𝐵 = 𝑄(0 ⊕ 𝐾 ⊕ 0)𝑄
𝑡. We consider the rank

of 𝜙(𝐵).
When rank 𝜙(𝐵) = 2, it is clear that there is an orthogonal

matrix 𝑃 such that 𝜙(𝐴) = 𝑃(𝜀𝐼
𝑝
⊗ 𝐾 ⊕ −𝜀𝐼

𝑞
⊗ 𝐾 ⊕ 0)𝑃

𝑡 and
𝜙(𝐵) = 𝑃(𝜂𝐾 ⊕ 0)𝑃

𝑡. Without loss of the generality, we can
assume that 𝑝 ̸= 0. Note that 𝜂 ̸= 0. If 𝜂 ̸= − 2𝜀, then one has
𝜀 + 𝜂 ̸= − 𝜀. Let 𝐶 = 𝑄(𝐾 ⊗ 𝐼

2
⊕ 0)𝑄

𝑡. As [𝐴 + 𝐵, 𝐶] = 0, we
can find a matrix𝑋 ∈ A

𝑛−4
such that

𝜙 (𝐶) = 𝑃 (0 ⊕ 𝑋)𝑃
𝑡

. (62)
If 𝜂 = −2𝜀, then 𝜀 − 𝜂 ̸= − 𝜀. Let 𝐶 = 𝑄(𝐾⊗𝐽⊕0)𝑄

𝑡. Since
[𝐴 − 𝐵, 𝐶] = 0, there is a matrix𝑋 ∈ A

𝑛−4
such that

𝜙 (𝐶) = 𝑃 (0 ⊕ 𝑋)𝑃
𝑡

. (63)

Thanks to [𝐵, [𝐵, 𝐶]] = −𝐶, we deduce 𝜙(𝐶) = 0, which is
a contradiction.

When rank 𝜙(𝐵) ̸= 2, then for the previous three cases of
𝑛 and 𝑑, one always has rank 𝜙(𝐵) = rank 𝜙(𝐴). Note that
𝜙(𝐴) and 𝜙(𝐵) are in a common regular subring, and 𝑠 = 1. It
follows by Lemma 6 that there is an orthogonalmatrix𝑃 such
that 𝜙(𝐴) = 𝑃(𝜀

1
𝐾⊕⋅ ⋅ ⋅⊕𝜀

𝑑
𝐾⊕0)𝑃

𝑡 and 𝜙(𝐵) = 𝑃(𝜂
1
𝐾⊕⋅ ⋅ ⋅⊕

𝜂
𝑑
𝐾 ⊕ 0)𝑃

𝑡, where 𝜂
𝑖
∈ {±𝜂

1
}, 𝜀
𝑖
∈ {±𝜀
1
}. Due to dimC(𝐴 +

𝐵) = dimC(𝐴 − 𝐵), we see by Lemma 11 that

dimC (𝜙 (𝐴) + 𝜙 (𝐵)) = dimC (𝜙 (𝐴) − 𝜙 (𝐵))

= dimC (𝐴 − 𝐵) = dimA
𝑛−4

+ 4.

(64)

Case 1. 𝑛 = 5. We first prove that rank(𝜙(𝐴) ± 𝜙(𝐵)) ̸= 2.
If rank(𝜙(𝐴) + 𝜙(𝐵)) = 2, then we may as well assume

that 𝜙(𝐴) = 𝜀𝑃(𝐾 ⊕ 𝐾 ⊕ 0)𝑃
𝑡 and 𝜙(𝐵) = 𝜀𝑃(𝐾 ⊕ −𝐾 ⊕ 0)𝑃

𝑡.
Let 𝐸 = 𝐾 ⊗ 𝐼

2
⊕ 0, 𝐹 = 𝐾 ⊗ 𝐽 ⊕ 0. It is easy to see that

[𝐸, 𝐹] = 0. Now, we want to show that [𝜙(𝐸), 𝜙(𝐹)] ̸= 0, which
is a contradiction. Note the following:

[𝐴, [𝐴, 𝐸]] = −𝐸, [𝐴, [𝐴, 𝐹]] = −𝐹,

[𝐵, [𝐵, 𝐸]] = −𝐸, [𝐵, [𝐵, 𝐹]] = −𝐹.

(65)

So, we know that both 𝜙(𝐸) and 𝜙(𝐹) satisfy an equation
about the matrix𝑋 = [𝑥

𝑖𝑗
] ∈ A
5
as follows:

[𝜙 (𝐴) , [𝜙 (𝐴) , 𝑋]] = −𝑋,

[𝜙 (𝐵) , [𝜙 (𝐵) , 𝑋]] = −𝑋.

(66)

That is,

[

[

[

[

[

[

[

[

[

0 0 2𝜀
2

(𝑥
24
− 𝑥
13
) −2𝜀

2

(𝑥
14
+ 𝑥
23
) −𝜀
2

𝑥
15

0 0 −2𝜀
2

(𝑥
14
+ 𝑥
23
) 2𝜀
2

(𝑥
13
− 𝑥
24
) −𝜀

2

𝑥
25

2𝜀
2

(𝑥
13
− 𝑥
24
) 2𝜀
2

(𝑥
14
+ 𝑥
23
) 0 0 −𝜀

2

𝑥
35

2𝜀
2

(𝑥
14
+ 𝑥
23
) 2𝜀
2

(𝑥
24
− 𝑥
13
) 0 0 −𝜀

2

𝑥
45

𝜀
2

𝑥
15

𝜀
2

𝑥
25

𝜀
2

𝑥
35

𝜀
2

𝑥
45

0

]

]

]

]

]

]

]

]

]

= −𝑋,
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[

[

[

[

[

[

[

[

[

0 0 −2𝜀
2

(𝑥
24
+ 𝑥
13
) 2𝜀
2

(𝑥
23
− 𝑥
14
) −𝜀

2

𝑥
15

0 0 2𝜀
2

(𝑥
14
− 𝑥
23
) −2𝜀

2

(𝑥
13
+ 𝑥
24
) −𝜀
2

𝑥
25

2𝜀
2

(𝑥
24
+ 𝑥
13
) 2𝜀
2

(𝑥
23
− 𝑥
14
) 0 0 −𝜀

2

𝑥
35

2𝜀
2

(𝑥
14
− 𝑥
23
) 2𝜀
2

(𝑥
13
+ 𝑥
24
) 0 0 −𝜀

2

𝑥
45

𝜀
2

𝑥
15

𝜀
2

𝑥
25

𝜀
2

𝑥
35

𝜀
2

𝑥
45

0

]

]

]

]

]

]

]

]

]

= −𝑋.

(67)

Hence, we get that

𝑋 =

[

[

[

[

[

[

0 0 0 0 𝑥
15

0 0 0 0 𝑥
25

0 0 0 0 𝑥
35

0 0 0 0 𝑥
45

−𝑥
15

−𝑥
25

−𝑥
35

−𝑥
45

0

]

]

]

]

]

]

, (68)

and 𝜀2 = 1. Note that [𝐴 + 𝐵, 𝐸] = 0, [𝐴 − 𝐵, 𝐹] = 0. After
taking the image, we can assume by 𝜀 ̸= 0 that

𝜙 (𝐸) =

[

[

[

[

[

[

0 0 0 0 0

0 0 0 0 0

0 0 0 0 𝑎

0 0 0 0 𝑏

0 0 −𝑎 −𝑏 0

]

]

]

]

]

]

,

𝜙 (𝐹) =

[

[

[

[

[

[

0 0 0 0 𝑐

0 0 0 0 𝑑

0 0 0 0 0

0 0 0 0 0

−𝑐 −𝑑 0 0 0

]

]

]

]

]

]

.

(69)

Again by [𝐸, 𝐹] = 0, we see that

[𝜙 (𝐸) , 𝜙 (𝐹)] =

[

[

[

[

[

[

0 0 𝑎𝑐 𝑏𝑐 0

0 0 𝑎𝑑 𝑏𝑑 0

−𝑎𝑐 −𝑎𝑑 0 0 0

−𝑏𝑐 −𝑏𝑑 0 0 0

0 0 0 0 0

]

]

]

]

]

]

= 0. (70)

We deduce that 𝑎𝑐 = 0, 𝑏𝑐 = 0. It follows by 𝜙(𝐸) ̸= 0 that
𝑐 = 0. Due to 𝑎𝑑 = 0, 𝑏𝑑 = 0, one has 𝑑 = 0. This tells us that
𝜙(𝐹) = 0, which is a contradiction. Similarly, we know that
rank(𝜙(𝐴) − 𝜙(𝐵)) ̸= 2.

Since 𝑛 = 5, it is clear that rank(𝜙(𝐴) ± 𝜙(𝐵)) = 4. When

𝜙 (𝐴) = 𝜀𝑃 (𝐾 ⊕ 𝐾 ⊕ 0) 𝑃
𝑡

,

𝜙 (𝐵) = 𝜂𝑃 (𝐾 ⊕ −𝐾 ⊕ 0) 𝑃
𝑡

,

(71)

we have that 𝜀 ̸= 𝜂. Note that 𝐴 ± 𝐵 is not a regular matrix;
hence, 𝜙(𝐴) ± 𝜙(𝐵) is not too. Further, one has 𝜀 + 𝜂 ∈ {±(𝜀 −
𝜂)}. This implies that 𝜀 = 0 or 𝜂 = 0, which is impossible.
Similarly, we deduce that

𝜙 (𝐴) = 𝜀𝑃 (𝐾 ⊕ −𝐾 ⊕ 0) 𝑃
𝑡

,

𝜙 (𝐵) = 𝜂𝑃 (𝐾 ⊕ 𝐾 ⊕ 0) 𝑃
𝑡

,

(72)

which is also a contradiction.

Case 2. 𝑛 = 6, 8. We first prove that rank(𝜙(𝐴) ± 𝜙(𝐵)) ̸= 2.
Otherwise, if rank(𝜙(𝐴) + 𝜙(𝐵)) = 2, then we have

dimC (𝜙 (𝐴) + 𝜙 (𝐵)) = dimA
𝑛−2

+ 1 ̸= dimA
𝑛−4

+ 4,

(73)

which is a contradiction. In a similar way, we get rank(𝜙(𝐴)−
𝜙(𝐵)) ̸= 2.

If 𝑛 = 6, we assert that rank(𝜙(𝐴) ± 𝜙(𝐵)) ̸= 4. In fact, if
rank(𝜙(𝐴) + 𝜙(𝐵)) = 4, then by 𝜂

𝑖
∈ {±𝜂

1
}, 𝜀
𝑖
∈ {±𝜀

1
}, we

deduce that 𝜂
𝑖
∈ {±𝜀
1
}. Without loss of the generality, we can

assume that 𝜀
𝑖
= 𝜂
𝑖
, 𝑖 = 1, 2, and 𝜀

𝑗
= −𝜂
𝑗
, 𝑗 = 3. Hence, we

see that rank(𝜙(𝐴)−𝜙(𝐵)) = 2, which is impossible. Similarly,
we deduce that rank(𝜙(𝐴) − 𝜙(𝐵)) ̸= 4.

Next, we prove when 𝑛 = 6 that rank(𝜙(𝐴) ± 𝜙(𝐵)) ̸= 6.
Otherwise, by (64) we can assume without loss of the
generality that 𝜀

2
+𝜂
2
∈ {±(𝜀

1
+𝜂
1
)} and 𝜀

3
+𝜂
3
∉ {±(𝜀

1
+𝜂
1
)}.

Note that 𝜂
𝑖
∈ {±𝜂
1
}, 𝜀
𝑖
∈ {±𝜀
1
}, sowe have 𝜀

2
−𝜂
2
∈ {±(𝜀

1
−𝜂
1
)}

and 𝜀
3
− 𝜂
3
∉ {±(𝜀

1
− 𝜂
1
)}. Thus,

C (𝜙 (𝐴 + 𝐵)) = C (𝜙 (𝐴 − 𝐵)) . (74)

But it is clear thatC(𝐴+𝐵) ̸=C(𝐴−𝐵), which contradicts
with C(𝜙(𝑋)) = 𝜙(C(𝑋)), for all 𝑋 ∈ A

𝑛
.

Similarly, we have when 𝑛 = 8 that rank(𝜙(𝐴) ±
𝜙(𝐵)) ̸= 6, 8.

Finally, we prove when 𝑛 = 8 that rank(𝜙(𝐴) ± 𝜙(𝐵)) ̸= 4.
Let 𝑍 = 𝑄(𝐸

(4)

33
⊗ 𝐾)𝑄

𝑡. If rank 𝜙(𝑍) = 2, then we can find a
contradiction similar to the case of rank 𝜙(𝐵) = 2. Otherwise,
if rank 𝜙(𝑍) = 8, then there is an orthogonal matrix 𝑃 such
that

𝜙 (𝐴) = 𝑃 (𝜀
1
𝐾 ⊕ ⋅ ⋅ ⋅ ⊕ 𝜀

𝑑
𝐾)𝑃
𝑡

,

𝜙 (𝐵) = 𝑃 (𝜂
1
𝐾 ⊕ ⋅ ⋅ ⋅ ⊕ 𝜂

𝑑
𝐾)𝑃
𝑡

,

𝜙 (𝑍) = 𝑃 (𝜆
1
𝐾 ⊕ ⋅ ⋅ ⋅ ⊕ 𝜆

𝑑
𝐾)𝑃
𝑡

,

(75)

where 𝜂
𝑖
∈ {±𝜂

1
}, 𝜀
𝑖
∈ {±𝜀

1
}, and 𝜆

𝑖
∈ {±𝜆

1
}. It is easy to

see that the three cases rank(𝜙(𝐴) ± 𝜙(𝐵)) = 4, rank(𝜙(𝐴) ±
𝜙(𝑍)) = 4, and rank(𝜙(𝑍)±𝜙(𝐵)) = 4 cannot simultaneously
hold. This means that rank(𝜙(𝐴) ± 𝜙(𝐵)) = 4 is impossible.

To sum up the previous arguments, we get that
rank 𝜙(𝐴) = 2. The proof is completed.
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