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This paper makes use of stochastic calculus to develop a continuous-time model for valuing European options on foreign exchange
(FX) when both domestic and foreign spot rates follow a generalized Wiener process. Using the dollar/euro exchange rate as input
for parameter estimation and employing our FX option model as a yardstick, we find that the traditional Garman-Kohlhagen FX
option model, which assumes constant spot rates, values incorrectly calls and puts for different values of the ratio of exchange rate
to exercise price. Specifically, it undervalues calls when the ratio is between 0.70 and 1.08, and it overvalues calls when the ratio is
between 1.18 and 1.30, whereas it overvalues puts when the ratio is between 0.70 and 0.82, and it undervalues puts when the ratio is
between 0.86 and 1.30.

1. Introduction

In this paper, we make use of stochastic calculus [1–3]
to develop a continuous-time model for valuing European
options on foreign exchange when both domestic and foreign
spot rates follow a generalized Wiener process.

Foreign exchange (FX) options have traded on the
Philadelphia Stock Exchange since 1982. An FX option is
an agreement between two parties in which one party pays
a premium and obtains the right to buy or sell the stated
amount of foreign exchange at a later date at the exercise
price, where the exercise price is an exchange rate agreed
upon at the initial time. Extending the Black-Scholes [4]
pricing model for stock options and assuming that both
domestic and foreign spot rates are constant during the life
of the option, Garman and Kohlhagen [5] developed in 1983
a model for valuing European FX options.

However, the assumption of Garman and Kohlhagen
(G-K) that the two spot rates are constant over the life of
the option is inappropriate because they are, in actuality,
evolving continuously and stochastically through time. In
this study, we incorporate the stochastic character of the
two spot rates into our FX option model. Specifically, we
employ the following stochastic process, often referred to as
the generalized Wiener process, to represent the evolution of

the spot rate 𝑟(𝑡) and, accordingly, derive a continuous-time
model for valuing European call and put FX options as

𝑑𝑟(𝑡) = 𝑎𝑑𝑡 + 𝑏𝑑𝑊. (1)

In (1), the generalized Wiener process has a drift rate of 𝑎, a
variance rate of 𝑏2, and𝑊 is a standardWiener process whose
increment 𝑑𝑊 has a normal distribution with zero mean and
variance 𝑑𝑡.

Remark 1. It is possible that the spot rate under (1) can
become negative. But negative spot rate is not probable if
the drift rate is positive. More importantly, most FX options
traded on an exchange have an expiration of less than one
year. Hence, if we use an initial positive value for 𝑟(𝑡)

and suitable values for the drift rate and variance rate, the
expected first-passage time of the spot rate to the origin can
easily be made longer than one year.

Remark 2. Our FX option model essentially extends the
traditional G-Kmodel to incorporate the stochastic character
of the two spot rates. Like the G-K model, our model is for
valuing European FX options. To value American options,
often we have to resort to numerical procedures because
no analytic formulas are available. For some well-articulated
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numerical procedures for valuing American options, see Hull
[6] for pricing FX options with constant interest rates, Ho et
al. [7] for pricing stock options with stochastic interest rates,
and Zhang and Wang [8] for pricing bond options with a
penalty method (see [9, 10]).

The rest of this paper is organized as follows. In Section 2,
we derive an explicit formula for valuing European call and
put FX options when both domestic and foreign spot rates
evolve according to (1). In Section 3, we first estimate the
various parameters of our FX option model based on the
dollar/euro exchange rate; then, we compute the FX option
prices for our model and the G-Kmodel using the parameter
estimates as inputs, and finally we examine the pricing biases
in the G-K model employing our model as a yardstick. A
short conclusion is given in Section 4. The derivation of the
rather lengthy equation (27) in Section 2 is relegated to the
Appendix.

2. Deriving a Formula for Call and
Put FX Options

In this paper, we assume that the foreign exchange market
is frictionless; that is, there are no trading costs, margin
requirements, exchange rate controls, and taxes; trading takes
place continuously; borrowing and short-selling are allowed;
there exist pure discount bonds at which each currency can
be borrowed or lent. To proceed, we adopt the following
notation:

𝑆(𝑡): the spot exchange rate (domestic currency price per
unit of foreign currency) at time 𝑡,

𝑟
𝑑
(𝑡): the domestic spot rate of interest at time 𝑡,

𝑟
𝑓
(𝑡): the foreign spot rate of interest at time 𝑡,

𝐵
𝑑
(𝑡, 𝑇): the domestic currency price of a pure discount bond

at time 𝑡 which pays one unit of domestic currency at
time 𝑡 + 𝑇,

𝐵
𝑓
(𝑡, 𝑇): the foreign currency price of a pure discount bond at

time 𝑡which pays one unit of foreign currency at time
𝑡 + 𝑇,

𝑐(𝑡, 𝑇): the domestic currency price at time 𝑡 of a European
call on one unit of foreign currency which expires at
time 𝑡 + 𝑇,

𝑝(𝑡, 𝑇): the domestic currency price at time 𝑡 of a European
put on one unit of foreign currency which expires at
time 𝑡 + 𝑇,

𝑋: the domestic currency exercise price of a European
call or a put on foreign currency.

Using (1) for the domestic and foreign spot rates, their
diffusion processes are expressed as follows:

𝑑𝑟
𝑑
(𝑡) = 𝑎

𝑑
𝑑𝑡 + 𝑏

𝑑
𝑑𝑊
𝑑
,

𝑑𝑟
𝑓
(𝑡) = 𝑎

𝑓
𝑑𝑡 + 𝑏

𝑓
𝑑𝑊
𝑓
,

(2)

with 𝑑𝑊
𝑑
𝑑𝑊
𝑓
= 𝜌
𝑑𝑓
𝑑𝑡. Using (2) and applying Ito’s lemma

[11–13], we have

𝑑𝐵
𝑑
= [

𝜕𝐵
𝑑

𝜕𝑡

+ 𝑎
𝑑

𝜕𝐵
𝑑

𝜕𝑟
𝑑

+

1

2

𝑏
2

𝑑

𝜕
2
𝐵
𝑑

𝜕𝑟
2

𝑑

]𝑑𝑡 + 𝑏
𝑑

𝜕𝐵
𝑑

𝜕𝑟
𝑑

𝑑𝑊
𝑑
,

𝑑𝐵
𝑓
= [

𝜕𝐵
𝑓

𝜕𝑡

+ 𝑎
𝑓

𝜕𝐵
𝑓

𝜕𝑟
𝑓

+

1

2

𝑏
2

𝑓

𝜕
2
𝐵
𝑓

𝜕𝑟
2

𝑓

]𝑑𝑡 + 𝑏
𝑓

𝜕𝐵
𝑓

𝜕𝑟
𝑓

𝑑𝑊
𝑓
.

(3)

Letting

𝜇
𝑑
=

1

𝐵
𝑑

[

𝜕𝐵
𝑑

𝜕𝑡

+ 𝑎
𝑑

𝜕𝐵
𝑑

𝜕𝑟
𝑑

+

1

2

𝑏
2

𝑑

𝜕
2
𝐵
𝑑

𝜕𝑟
2

𝑑

] ,

𝜎
𝑑
=

−1

𝐵
𝑑

[𝑏
𝑑

𝜕𝐵
𝑑

𝜕𝑟
𝑑

] =

−𝑏
𝑑

𝐵
𝑑

𝜕𝐵
𝑑

𝜕𝑟
𝑑

,

𝜇
𝑓
=

1

𝐵
𝑓

[

𝜕𝐵
𝑓

𝜕𝑡

+ 𝑎
𝑓

𝜕𝐵
𝑓

𝜕𝑟
𝑓

+

1

2

𝑏
2

𝑓

𝜕
2
𝐵
𝑓

𝜕𝑟
2

𝑓

] ,

𝜎
𝑓
=

−1

𝐵
𝑓

[𝑏
𝑓

𝜕𝐵
𝑓

𝜕𝑟
𝑓

] =

−𝑏
𝑓

𝐵
𝑓

𝜕𝐵
𝑓

𝜕𝑟
𝑓

,

(4)

and assuming the local expectations hypothesis holds for the
term structure of interest rates (i.e., 𝜇

𝑑
= 𝑟
𝑑
and 𝜇

𝑓
= 𝑟
𝑓
), we

obtain
𝑑𝐵
𝑑

𝐵
𝑑

= 𝑟
𝑑
𝑑𝑡 + 𝜎

𝑑
𝑑𝑊
𝑑
, (5)

𝑑𝐵
𝑓

𝐵
𝑓

= 𝑟
𝑓
𝑑𝑡 + 𝜎

𝑓
𝑑𝑊
𝑓
. (6)

Solving (5) and (6) for 𝐵
𝑑
and 𝐵

𝑓
, we obtain explicit

formulas for the prices of domestic and foreign pure discount
bonds with time to maturity 𝑇 as

𝐵
𝑑
(𝑡, 𝑇) = exp{−𝑟

𝑑
𝑇 −

𝑎
𝑑
𝑇
2

2

+

𝑏
2

𝑑
𝑇
3

6

} ,

𝐵
𝑓
(𝑡, 𝑇) = exp{−𝑟

𝑓
𝑇 −

𝑎
𝑓
𝑇
2

2

+

𝑏
2

𝑓
𝑇
3

6

} .

(7)

Note that 𝑇 = −(1/𝐵
𝑑
)[𝜕𝐵
𝑑
/𝜕𝑟
𝑑
] = −(1/𝐵

𝑓
)[𝜕𝐵
𝑓
/𝜕𝑟
𝑓
].

Hence, we have 𝜎
𝑑
= −(𝑏

𝑑
/𝐵
𝑑
)[𝜕𝐵
𝑑
/𝜕𝑟
𝑑
] = 𝑏

𝑑
𝑇 and 𝜎

𝑓
=

−(𝑏
𝑓
/𝐵
𝑓
)[𝜕𝐵
𝑓
/𝜕𝑟
𝑓
] = 𝑏
𝑓
𝑇.

Similar to the G-K FX option model, we assume that the
spot exchange rate follows the geometric Wiener process

𝑑𝑆

𝑆

= 𝜇
𝑠
𝑑𝑡 + 𝜎

𝑠
𝑑𝑊
𝑠
, (8)

where 𝜇
𝑠
and 𝜎
𝑠
are constant parameters, and𝑊

𝑠
is a standard

Wiener process. In addition, we assume𝑑𝑊
𝑠
𝑑𝑊
𝑑
= 𝜌
𝑠𝑑
𝑑𝑡 and

𝑑𝑊
𝑠
𝑑𝑊
𝑓
= 𝜌
𝑠𝑓
𝑑𝑡.

Converting the price of a foreign pure discount bond into
domestic currency price, we define a new variable 𝐺 = 𝑆𝐵

𝑓

such that
𝑑𝐺

𝐺

= 𝜇
𝐺
𝑑𝑡 + 𝜎

𝐺
𝑑𝑊
𝐺
. (9)
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Applying Ito’s lemma to the call function 𝑐 ≡ 𝑐(𝑡, 𝑇) ≡

𝑐(𝐺, 𝐵
𝑑
, 𝑇; 𝑋) and the relation 𝑑𝑡 = −𝑑𝑇, we obtain

𝑑𝑐 =

𝜕𝑐

𝜕𝐺

𝑑𝐺 +

𝜕𝑐

𝜕𝐵
𝑑

𝑑𝐵
𝑑

− [

1

2

𝜕
2
𝑐

𝜕𝐺
2
𝜎
2

𝐺
𝐺
2
+

1

2

𝜕
2
𝑐

𝜕𝐵
2

𝑑

𝜎
2

𝑑
𝐵
2

𝑑

+

𝜕
2
𝑐

𝜕𝐺𝜕𝐵
𝑑

𝜌
𝐺𝑑
𝜎
𝐺
𝜎
𝑑
𝐺𝐵
𝑑
−

𝜕𝑐

𝜕𝑇

]𝑑𝑇.

(10)

At this point, we set up a hedge consisting of three assets:
𝐺, 𝐵
𝑑
, and 𝑐. Let 𝑄

𝐺
be the number of 𝐺, 𝑄

𝑑
the number of

𝐵
𝑑
, and 𝑄

𝑐
the number of 𝑐 in the hedge. Let 𝑃

ℎ
be the value

of the hedge portfolio. The hedge is set up in such a way that
the value of this hedge portfolio is zero, that is, 𝑃

ℎ
= 𝑄
𝐺
𝐺 +

𝑄
𝑑
𝐵
𝑑
+ 𝑄
𝑐
𝑐 = 0. Hence, the change in the value of this hedge

portfolio is also zero, that is,

𝑑𝑃
ℎ
= 𝑄
𝐺
𝑑𝐺 + 𝑄

𝑑
𝑑𝐵
𝑑
+ 𝑄
𝑐
𝑑𝑐 = 0. (11)

Remark 3. Our hedge is different from that of Black and
Scholes [4]. In their case, they create their hedge such that the
hedge portfolio is riskless. Hence, its return must equal the
riskless rate or the spot rate. In our case, we create our hedge
such that the value 𝑃

ℎ
of the hedge portfolio is zero (i.e., the

aggregate investment is zero). Hence, we have 𝑑𝑃
ℎ
= 0 in (11).

Substituting (5), (9), and (10) into (11) and grouping, (11)
becomes

𝑑𝑃
ℎ
= 𝑄
𝑐
[

1

2

𝜕
2
𝑐

𝜕𝐺
2
𝜎
2

𝐺
𝐺
2
+

1

2

𝜕
2
𝑐

𝜕𝐵
2

𝑑

𝜎
2

𝑑
𝐵
2

𝑑

+

𝜕
2
𝑐

𝜕𝐺𝜕𝐵
𝑑

𝜌
𝐺𝑑
𝜎
𝐺
𝜎
𝑑
𝐺𝐵
𝑑
−

𝜕𝑐

𝜕𝑇

]𝑑𝑇

+ [𝑄
𝑐

𝜕𝑐

𝜕𝐺

+ 𝑄
𝐺
] 𝑑𝐺 + [𝑄

𝑐

𝜕𝑐

𝜕𝐵
𝑑

+ 𝑄
𝑑
] 𝑑𝐵
𝑑
= 0.

(12)

Equation (12) suggests that 𝑄
𝑐
(𝜕𝑐/𝜕𝐺) + 𝑄

𝐺
= 0, 𝑄

𝑐
(𝜕𝑐/

𝜕𝐵
𝑑
) + 𝑄
𝑑
= 0, and

1

2

𝜕
2
𝑐

𝜕𝐺
2
𝜎
2

𝐺
𝐺
2
+

1

2

𝜕
2
𝑐

𝜕𝐵
2

𝑑

𝜎
2

𝑑
𝐵
2

𝑑
+

𝜕
2
𝑐

𝜕𝐺𝜕𝐵
𝑑

𝜌
𝐺𝑑
𝜎
𝐺
𝜎
𝑑
𝐺𝐵
𝑑
−

𝜕𝑐

𝜕𝑇

= 0.

(13)

Then the price of a call must satisfy (13) subject to two
boundary conditions: (i) the call price is zero if 𝐺 = 0; (ii) at
its expiration, the call has a value of either zero if 𝐺 ≤ 𝑋 or
𝐺 − 𝑋 if 𝐺 > 𝑋. In notations, the two boundary conditions
are

𝑐 (𝐺 = 0, 𝐵
𝑑
, 𝑇; 𝑋) = 0,

𝑐 (𝐺, 𝐵
𝑑
= 1, 0; 𝑋) = max (0, 𝐺 − 𝑋) .

(14)

The second-order partial differential equation in (13) has
no well-known solution. Hence, to solve for 𝑐 in (13), we

transform (13) to a standard heat equation [14–16] of the form
𝑢
𝑡
(𝑥, 𝑡) = 𝛼

2
𝑢
𝑥𝑥
(𝑥, 𝑡), where 𝛼 is some constant. Making

use of the linear homogeneity of 𝑐 in 𝐺 and 𝑋𝐵
𝑑
, we can

carry out such transformation for (13). Consequently, we set
𝜃 ≡ 𝜃(𝐺, 𝐵

𝑑
, 𝑇) = 𝐺/𝑋𝐵

𝑑
.

Remark 4. A function 𝑓 ≡ 𝑓(𝑥
1
, . . . , 𝑥

𝑛
) is said to be linear

homogeneous or homogeneous of degree one in 𝑥
𝑖
, where 𝑖 =

1, . . . , 𝑛, if 𝑓(𝛼𝑥
1
, . . . , 𝛼𝑥

𝑛
) = 𝛼𝑓(𝑥

1
, . . . , 𝑥

𝑛
), where 𝛼 is some

constant. In a competitive and perfect market, the fact that
the value of a call is homogeneous of degree one in the asset
and exercise pricemeans that the value of the call with exercise
price 𝑋 when the asset value is 𝐺 will be exactly 𝛼 times the
value of a call on the same asset with exercise price𝑋/𝛼when
the asset value is 𝐺/𝛼. See [17–19] for more description on
linear homogeneity.

Using Ito’s lemma and (5) and (9), the total differential of
𝜃 is given by

𝑑𝜃 = [

𝜕𝜃

𝜕𝐺

𝜇
𝐺
𝐺 +

𝜕𝜃

𝜕𝐵
𝑑

𝑟
𝑑
𝐵
𝑑
+

𝜕𝜃

𝜕𝑡

+

1

2

𝜕
2
𝜃

𝜕𝐺
2
𝜎
2

𝐺
𝐺
2

+

1

2

𝜕
2
𝜃

𝜕𝐵
2

𝑑

𝜎
2

𝑑
𝐵
2

𝑑
+

𝜕
2
𝜃

𝜕𝐺𝜕𝐵
𝑑

𝜌
𝐺𝑑
𝜎
𝐺
𝜎
𝑑
𝐺𝐵
𝑑
]𝑑𝑡

+

𝜕𝜃

𝜕𝐺

𝜎
𝐺
𝐺𝑑𝑊
𝐺
+

𝜕𝜃

𝜕𝐵
𝑑

𝜎
𝑑
𝐵
𝑑
𝑑𝑊
𝑑
.

(15)

Substituting 𝜕𝜃/𝜕𝐺 = 1/𝑋𝐵
𝑑
, 𝜕𝜃/𝜕𝐵

𝑑
= −𝐺/𝑋𝐵

2

𝑑
, 𝜕𝜃/𝜕𝑡=

0, 𝜕2𝜃/𝜕𝐺2 = 0, 𝜕2𝜃/𝜕𝐵2
𝑑
= 𝐺/𝑋𝐵

3

𝑑
, and 𝜕2𝜃/𝜕𝐺𝜕𝐵

𝑑
=−1/𝑋𝐵2

𝑑

into (15) and simplifying, (15) becomes

𝑑𝜃

𝜃

= 𝜇
𝜃
𝑑𝑡 + 𝜎

𝜃
𝑑𝑊
𝜃
, (16)

where 𝜇
𝜃
= 𝜇
𝐺
− 𝑟
𝑑
+ (𝜎
2

𝑑
/2) − 𝜌

𝐺𝑑
𝜎
𝐺
𝜎
𝑑
and 𝜎2

𝜃
= 𝜎
2

𝐺
+ 𝜎
2

𝑑
−

2𝜌
𝐺𝑑
𝜎
𝐺
𝜎
𝑑
.

To solve (13) for 𝑐(𝐺, 𝐵
𝑑
, 𝑇; 𝑋) subject to the two bound-

ary conditions in (14), we use another variable 𝐾 such that
𝐾 ≡ 𝐾(𝜃, 𝑇;𝑋) = (𝑐(𝐺, 𝐵

𝑑
, 𝑇; 𝑋))/𝑋𝐵

𝑑
. In words, 𝐾 is

the call price expressed in the same units as 𝜃. Expressed
in another way, 𝑐(𝐺, 𝐵

𝑑
, 𝑇; 𝑋) = 𝑋𝐵

𝑑
𝐾(𝜃, 𝑇;𝑋). Then

𝜕
2
𝑐/𝜕𝐺
2
= (1/𝑋𝐵

𝑑
)(𝜕
2
𝐾/𝜕𝐺

2
), 𝜕2𝑐/𝜕𝐵2

𝑑
= (𝐺
2
/𝑋𝐵
3

𝑑
)(𝜕
2
𝐾/

𝜕𝐺
2
), 𝜕2𝑐/𝜕𝐺𝜕𝐵

𝑑
= −(𝐺/𝑋𝐵

2

𝑑
)(𝜕
2
𝐾/𝜕𝐺

2
), and 𝜕𝑐/𝜕𝑇 =

𝑋𝐵
𝑑
(𝜕𝐾/𝜕𝑇). Substituting them into (13) and simplifying,

(13) becomes

1

2

(

𝐺
2

𝑋𝐵
𝑑

) [𝜎
2

𝐺
+ 𝜎
2

𝑑
− 2𝜌
𝐺𝑑
𝜎
𝐺
𝜎
𝑑
]

𝜕
2
𝐾

𝜕𝐺
2
− 𝑋𝐵
𝑑

𝜕𝐾

𝜕𝑇

= 0,

(17)
or

1

2

(

𝐺

𝑋𝐵
𝑑

)

2

[𝜎
2

𝐺
+ 𝜎
2

𝑑
− 2𝜌
𝐺𝑑
𝜎
𝐺
𝜎
𝑑
]

𝜕
2
𝐾

𝜕𝐺
2
−

𝜕𝐾

𝜕𝑇

= 0. (18)

Since 𝜃2 = (𝐺/𝑋𝐵
𝑑
)
2 and 𝜎2

𝜃
= 𝜎
2

𝐺
+ 𝜎
2

𝑑
− 2𝜌
𝐺𝑑
𝜎
𝐺
𝜎
𝑑
, (18)

becomes
1

2

𝜎
2

𝜃
𝜃
2 𝜕
2
𝐾

𝜕𝜃
2
−

𝜕𝐾

𝜕𝑇

= 0. (19)
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In other words, 𝐾 ≡ 𝐾(𝜃, 𝑇;𝑋) has to satisfy (19) subject to
the following two boundary conditions: 𝐾(𝜃 = 0, 𝑇;𝑋) = 0

and𝐾(𝜃, 0; 𝑋) = max(0, 𝜃 − 1).

Remark 5. Given 𝜃 = 𝐺/𝑋𝐵
𝑑
, 𝐺 = 0 is equivalent to 𝜃 = 0.

Thus, we have the first boundary condition 𝐾(𝜃 = 0, 𝑇;𝑋) =

0. At time 𝑡+𝑇, 𝐵
𝑑
(𝑇, 𝑇) = 1, and we have the second bound-

ary condition 𝐾(𝜃, 0; 𝑋) = (𝑐(𝐺, 𝐵
𝑑
(𝑇, 𝑇), 0; 𝑋))/(𝑋𝐵

𝑑
(𝑇, 𝑇))

= (max(0, 𝐺 − 𝑋))/𝑋 = max(0, (𝐺/𝑋) − 1) = max(0, 𝜃 − 1).

Setting up another variable 𝑉 ≡ ∫

𝑡+𝑇

𝑡
𝜎
2

𝜃
(V)𝑑V and then

defining (𝜃, 𝑉) ≡ 𝐾(𝜃, 𝑇), we have that 𝜕2𝐾/𝜕𝜃2 = 𝜕
2
𝑦/𝜕𝜃
2

and 𝜕𝐾/𝜕𝑇 = (𝜕𝑦/𝜕𝑉)(𝜕𝑉/𝜕𝑇) = (𝜕𝑦/𝜕𝑉)𝜎
2

𝜃
. Substituting

them into (19), we obtain

1

2

𝜎
2

𝜃
𝜃
2 𝜕
2
𝑦

𝜕𝜃
2
−

𝜕𝑦

𝜕𝑉

𝜎
2

𝜃
= 𝜎
2

𝜃
[

1

2

𝜃
2 𝜕
2
𝑦

𝜕𝜃
2
−

𝜕𝑦

𝜕𝑉

] = 0, (20)

or

1

2

𝜃
2 𝜕
2
𝑦

𝜕𝜃
2
−

𝜕𝑦

𝜕𝑉

= 0. (21)

In other words, 𝑦 = 𝑦(𝜃, 𝑉) has to satisfy (21) subject to the
following two boundary conditions:𝑦(0, 𝑉) = 0 and𝑦(𝜃, 0) =
max(0, 𝜃 − 1).

To solve (21) subject to the two boundary conditions, we
transform (21) by using the change of variables 𝛿 ≡ log 𝜃 +
(𝑉/2) and 𝑢(𝛿, 𝑉) ≡ 𝑦(𝜃, 𝑉)/𝜃. Then we have 𝑦(𝜃, 𝑉) =

𝑢(log 𝜃 + (1/2) ∫

𝑡+𝑇

𝑡
𝜎
2

𝜃
(V)𝑑V, ∫

𝑡+𝑇

𝑡
𝜎
2

𝜃
(V)𝑑V)𝜃, 𝜕

2
𝑦/𝜕𝜃
2

=

(1/𝜃)((𝜕𝑢/𝜕𝛿) + (𝜕
2
𝑢/𝜕𝛿
2
)), and 𝜕𝑦/𝜕𝑉 = 𝜃((1/2)(𝜕𝑢/𝜕𝛿) +

(𝜕𝑢/𝜕𝑉)). Substituting them into (21) and simplifying, (21)
becomes 𝜕𝑢/𝜕𝑉 = (1/2)(𝜕

2
𝑢/𝜕𝛿
2
). For the first boundary

condition, we have that 𝑢(𝛿, 𝑉) = 𝑦(𝜃, 𝑉)/𝜃 = (1/𝜃)𝐾(𝜃, 𝑇) =
(1/𝜃)(𝑐/𝑋𝐵

𝑑
) = (𝑋𝐵

𝑑
/𝐺)(𝑐/𝑋𝐵

𝑑
) = 𝑐/𝐺. As always, 0 ≤ 𝑐 ≤

𝐺.Thus, the first boundary condition is |𝑢(𝛿, 𝑉)| = (𝑐/𝐺) ≤ 1.
For the second boundary condition, we have that 1 − (1/𝜃) =
1−exp[− log 𝜃] = 1−exp[−𝛿], because 𝛿 = log 𝜃when𝑉 = 0.
Hence, 𝑢(𝛿, 𝑉 = 0) = (𝜃 − 1)/𝜃 = 1 − (1/𝜃) = 1 − exp[−𝛿] if
1 ≥ exp[−𝛿] and 𝑢(𝛿, 𝑉 = 0) = 0 if 1 < exp[−𝛿]. In short,
our boundary value problem is made up of a boundedness
condition |𝑢(𝛿, 𝑉)| ≤ 1 and the following two conditions:

𝜕𝑢 (𝛿, 𝑉)

𝜕𝑉

=

1

2

𝜕
2
𝑢 (𝛿, 𝑉)

𝜕𝛿
2

, (22)

𝑢 (𝛿, 0) = {

1 − exp [−𝛿] if 1 ≥ exp [−𝛿]
0 if 1 < exp [−𝛿] .

(23)

Now (22) is in standard heat equation form and hence
can be solved by the separation-of-variables method. Let
𝑢(𝛿, 𝑉) = 𝑓(𝛿)𝑔(𝑉), where 𝑓(𝛿) is some function of 𝛿 and
𝑔(𝑉) is some function of 𝑉. Substituting 𝑢(𝛿, 𝑉) = 𝑓(𝛿)𝑔(𝑉)
into (22) and simplifying, we get

2

𝑔 (𝑉)

𝜕𝑔 (𝑉)

𝜕𝑉

=

1

𝑓 (𝛿)

𝜕
2
𝑓 (𝛿)

𝜕𝛿
2

. (24)

In other words, the right-hand side of (24) depends only on 𝛿
and the left-hand side depends only on 𝑉. Since 𝛿 and 𝑉 are
independent variables, we can equate the two sides of (24) to
a constant −𝑘2, where 𝑘 > 0.

Remark 6. We equate the two sides of (24) to −𝑘
2 so

that the two differential equations in (25) have continuous
eigenvalues 𝑘2.

Hence, by setting the two sides of (24) equal to −𝑘2, we
obtain the following two ordinary differential equations:

𝜕𝑔 (𝑉)

𝜕𝑉

+

1

2

𝑘
2
𝑔 (𝑉) = 0,

𝜕
2
𝑓 (𝛿)

𝜕𝛿
2

+ 𝑘
2
𝑓 (𝛿) = 0.

(25)

Rewriting (25), we have 𝑔(𝑉) = exp(−(1/2)𝑘2𝑉) and
𝑓(𝛿) = 𝐴(𝛿) cos(𝑘𝛿) + 𝐵(𝛿) sin(𝑘𝛿). The generalized linear
combination of functions 𝑢(𝛿, 𝑉) = 𝑓(𝛿)𝑔(𝑉) becomes

𝑢 (𝛿, 𝑉) = ∫

∞

0

[𝐴 (𝑘) cos (𝑘𝛿) + 𝐵 (𝑘) sin (𝑘𝛿)]

× exp(−1
2

𝑘
2
𝑉)𝑑𝑘.

(26)

By the Fourier integral theorem, the expression in (26) is
legitimate if 𝐴(𝑘) = (1/𝜋) ∫

∞

−∞
𝑓(𝜔) cos(𝑘𝜔)𝑑𝜔 and 𝐵(𝑘) =

(1/𝜋) ∫

∞

−∞
𝑓(𝜔) sin(𝑘𝜔)𝑑𝜔. Substituting 𝐴(𝑘) and 𝐵(𝑘) into

(26), we obtain (see the Appendix for derivation of (27))

𝑢 (𝛿, 𝑉) =

1

𝜋

∫

∞

0

{∫

∞

−∞

[cos (𝑘𝜔) cos (𝑘𝛿) + sin (𝑘𝜔) sin (𝑘𝛿)]

×𝑓 (𝜔) 𝑑𝜔} exp (−1
2

𝑘
2
𝑉)𝑑𝑘

=

1

√2𝑉𝜋

∫

∞

−∞

𝑓 (𝜔) exp(−(𝜔 − 𝛿)
2

2𝑉

)𝑑𝜔.

(27)

Setting 𝑞 = (𝜔 − 𝛿)/√2𝑉, we have 𝜔 = 𝛿 + 𝑞√2𝑉 and
𝑑𝜔 = √2𝑉𝑑𝑞. Substituting 𝑞 = (𝜔 − 𝛿)/√2𝑉 and (24) into
(27), we get

𝑢 (𝛿, 𝑉) =

1

√𝜋

∫

∞

−∞

𝑓 (𝛿 + 𝑞√2𝑉) exp (−𝑞2) 𝑑𝑞

=

1

√𝜋

∫

∞

−𝛿/√2𝑉

[1 − exp (−𝛿 − 𝑞√2𝑉)]exp (−𝑞2) 𝑑𝑞

=

1

√𝜋

∫

∞

−𝛿/√2𝑉

exp (−𝑞2) 𝑑𝑞

−

1

√𝜋

∫

∞

−𝛿/√2𝑉

exp (−𝛿 − 𝑞√2𝑉 − 𝑞
2
) 𝑑𝑞.

(28)
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In order to solve (28), we make another change of
variables by setting 𝑎 = √2𝑞. Then the first term of (28)
becomes

1

√𝜋

∫

∞

−𝛿/√2𝑉

exp (−𝑞2) 𝑑𝑞 = 1

√2𝜋

∫

∞

−𝛿/√𝑉

exp(−𝑎
2

2

)𝑑𝑎

=

1

√2𝜋

∫

𝛿/√𝑉

−∞

exp(−𝑎
2

2

)𝑑𝑎

= 𝑁(

𝛿

√𝑉

) = 𝑁 (𝑎
1
) ,

(29)

where 𝑎
1
= 𝛿/√𝑉 and 𝑁(⋅) is the cumulative probability

distribution function for a standardized normal random
variable; that is, 𝑁(𝑎

1
) is the probability that such a variable

will be less than 𝑎
1
.

For the second term of (28), note that −𝛿 − 𝑞√2𝑉 − 𝑞
2 =

− log 𝜃−(𝑉/2)−𝑎√𝑉−(𝑎2/2) = log(1/𝜃)−(1/2)[𝑎2+2𝑎√𝑉+
(√𝑉)

2

] = log(1/𝜃) − (1/2)(𝑎 + √𝑉)2. Hence, the integrand of
the second term is exp(−𝛿 − 𝑞√2𝑉 − 𝑞

2
) = exp[log(1/𝜃) −

(1/2)(𝑎 + √𝑉)

2

] = (1/𝜃) exp[−(1/2)(𝑎 + √𝑉)2]. Substituting
it into the second term and simplifying, (28) becomes

1

√𝜋

∫

∞

−𝛿/√2𝑉

exp (−𝛿 − 𝑞√2𝑉 − 𝑞
2
) 𝑑𝑞

=

1

𝜃√2𝜋

∫

𝑎
1

−∞

exp [−1
2

(𝑎 + √𝑉)

2

] 𝑑𝑎

=

1

𝜃√2𝜋

∫

𝑎
2

−∞

exp[−𝑏
2

2

] 𝑑𝑏 =

1

𝜃

𝑁 (𝑎
2
) ,

(30)

where 𝑏 = 𝑎 + √𝑉 and 𝑎
2
= 𝑎
1
− √𝑉. Combining (29) and

(30), we obtain

𝑢 (𝛿, 𝑉) = 𝑁 (𝑎
1
) −

1

𝜃

𝑁 (𝑎
2
) , (31)

or

𝑦 (𝜃, 𝑉) = 𝜃𝑢 (𝛿, 𝑉) = 𝜃𝑁 (𝑎
1
) − 𝑁 (𝑎

2
) . (32)

As stated earlier, 𝐺 = 𝑆𝐵
𝑓
, 𝜃 = 𝐺/𝑋𝐵

𝑑
, and 𝑐(𝐺, 𝐵

𝑑
,

𝑇; 𝑋) = 𝑋𝐵
𝑑
𝐾(𝜃, 𝑇;𝑋) = 𝑋𝐵

𝑑
𝑦(𝜃, 𝑉). By the linear homo-

geneity property of 𝑐 ≡ 𝑐(𝑡, 𝑇) ≡ 𝑐(𝐺, 𝐵
𝑑
, 𝑇; 𝑋), the price of a

European call FX option is

𝑐 = 𝑋𝐵
𝑑
[𝜃𝑁 (𝑎

1
) − 𝑁 (𝑎

2
)] = 𝑆𝐵

𝑓
𝑁(𝑎
1
) − 𝑋𝐵

𝑑
𝑁(𝑎
2
) ,

(33)

where 𝑎
1
= 𝛿/√𝑉 = (log 𝜃 + (𝑉/2))/√𝑉 and 𝑎

2
= 𝑎
1
− √𝑉 =

(log 𝜃 − (𝑉/2))/√𝑉. In addition, 𝑉 is given by

𝑉 ≡ ∫

𝑡+𝑇

𝑡

𝜎
2

𝜃
(V) 𝑑V

= ∫

𝑡+𝑇

𝑡

[𝜎
2

𝑠
− 2 (𝜌

𝑠𝑑
𝜎
𝑠
𝑏
𝑑
− 𝜌
𝑠𝑓
𝜎
𝑠
𝑏
𝑓
) V

+ (𝑏
2

𝑑
+ 𝑏
2

𝑓
− 2𝜌
𝑑𝑓
𝑏
𝑑
𝑏
𝑓
) V
2
] 𝑑V

= 𝜎
2

𝑠
𝑇 − (𝜌

𝑠𝑑
𝜎
𝑠
𝑏
𝑑
− 𝜌
𝑠𝑓
𝜎
𝑠
𝑏
𝑓
) 𝑇
2

+

1

3

(𝑏
2

𝑑
+ 𝑏
2

𝑓
− 2𝜌
𝑑𝑓
𝑏
𝑑
𝑏
𝑓
) 𝑇
3
.

(34)

According to put-call parity for European options, the
price 𝑝 ≡ 𝑝(𝐺, 𝐵

𝑑
, 𝑇; 𝑋) of a European put FX option is

𝑝 = 𝑐 − 𝑆𝐵
𝑓
+ 𝑋𝐵
𝑑
= 𝑋𝐵
𝑑
𝑁(−𝑎

2
) − 𝑆𝐵

𝑓
𝑁(−𝑎

1
) . (35)

Equations (33) through (35), as a whole, constitute our
FX option model. If both domestic and foreign spot rates are
constant (i.e., 𝑎

𝑑
= 𝑎
𝑓
= 𝑏
𝑑
= 𝑏
𝑓
= 0 in (2)), then the domestic

and foreign bond prices in (7) become 𝐵
𝑑
(𝑡, 𝑇) = exp(−𝑟

𝑑
𝑇)

and 𝐵
𝑓
(𝑡, 𝑇) = exp(−𝑟

𝑓
𝑇), and 𝑉 ≡ ∫

𝑡+𝑇

𝑡
𝜎
2

𝜃
(V)𝑑V = 𝜎

2

𝑠
𝑇.

Substituting them into (33) and (35), our FX model then
reduces to the following G-K FXmodel for valuing European
call and put options:

𝑐
𝐺𝐾

= 𝑆 exp (−𝑟
𝑓
𝑇)𝑁 (𝑑

1
) − 𝑋 exp (−𝑟

𝑑
𝑇)𝑁 (𝑑

2
) ,

𝑝
𝐺𝐾

= 𝑋 exp (−𝑟
𝑑
𝑇)𝑁 (−𝑑

2
) − 𝑆 exp (−𝑟

𝑓
𝑇)𝑁 (−𝑑

1
) ,

(36)

where 𝑑
1
= (log(𝑆/𝑋) + (𝑟

𝑑
− 𝑟
𝑓
+ 𝜎
2

𝑠
/2)𝑇)/𝜎

𝑠
√𝑇 and 𝑑

2
=

𝑑
1
− 𝜎
𝑠
√𝑇.

3. FX Option Prices and Pricing Biases in
the G-K Model

Retrieved from the Datastream database, three sets of daily
data (a total of 2,869 observations from 4 January 1999 to 31
December 2009) are used for parameter estimation.One set is
the dollar/euro exchange rate and the other two sets are the 3-
monthUS. Treasury Bill Rate and the 1-month euro-currency
rate; that is, we use the Treasury Bill Rate to represent the
domestic spot rate 𝑟

𝑑
and the euro-currency rate to represent

the foreign spot rate 𝑟
𝑓
. Accordingly, the estimates for the

six parameters of our FX option model are as follows: 𝜎
𝑠
=

0.198428, ̂𝑏
𝑑
= 0.018534,̂𝑏

𝑓
= 0.011398, 𝜌

𝑠𝑑
= −0.347350, 𝜌

𝑠𝑓
=

−0.297520, and 𝜌
𝑑𝑓

= 0.524996.

Remark 7. The euro was introduced as an accounting cur-
rency on 1 January 1999. Euro coins and banknotes have been
in circulation since 1 January 2002.

Using the above parameter estimates as inputs, we com-
pute the option prices for our FX model ((33)–(35)) and
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Table 1: Prices for European call and put FX options when time to maturity 𝑇 = 1month.

𝑆
𝑡
/𝑋 Call

𝑂
CallGK Bias

𝑐
Put
𝑂

PutGK Bias
𝑝

0.70 0.000000 0.000000 0.617117 0.617122 −0.0008

0.72 0.000000 0.000000 0.560023 0.560026 −0.0005

0.74 0.000000 0.000000 0.506014 0.506017 −0.0006

0.76 0.000000 0.000000 0.454848 0.454851 −0.0007

0.78 0.000000 0.000000 0.406307 0.406308 −0.0002

0.80 0.000001 0.000001 0.360193 0.360194 −0.0003

0.82 0.000006 0.000006 0.316332 0.316333 −0.0003

0.84 0.000029 0.000029 0.274579 0.274578 0.0004

0.86 0.000115 0.000115 0.234832 0.234830 0.0009

0.88 0.000387 0.000385 0.5195 0.197081 0.197077 0.0020

0.90 0.001109 0.001105 0.3620 0.161470 0.161464 0.0037

0.92 0.002753 0.002746 0.2549 0.128360 0.128351 0.0070

0.94 0.006003 0.005992 0.1836 0.098336 0.098322 0.0142

0.96 0.011655 0.011639 0.1375 0.072100 0.072081 0.0264

0.98 0.020408 0.020390 0.0883 0.050267 0.050245 0.0438

1.00 0.032643 0.032624 0.0582 0.033139 0.033116 0.0695

1.02 0.048284 0.048267 0.0352 0.020568 0.020547 0.1022

1.04 0.066823 0.066811 0.0180 0.011981 0.011964 0.1421

1.06 0.087482 0.087475 0.0080 0.006538 0.006525 0.1992

1.08 0.109419 0.109416 0.0027 0.003339 0.003330 0.2703

1.10 0.131898 0.131898 0.0000 0.001596 0.001590 0.3774

1.12 0.154374 0.154377 −0.0019 0.000714 0.000711 0.4219

1.14 0.176497 0.176502 −0.0028 0.000300 0.000298 0.6711

1.16 0.198075 0.198082 −0.0035 0.000118 0.000117 0.8547

1.18 0.219023 0.219031 −0.0037 0.000044 0.000043 2.3256

1.20 0.239317 0.239324 −0.0029 0.000015 0.000015

1.22 0.258962 0.258970 −0.0031 0.000005 0.000005

1.24 0.277980 0.277988 −0.0029 0.000002 0.000002

1.26 0.296397 0.296405 −0.0027 0.000000 0.000000

1.28 0.314238 0.314247 −0.0029 0.000000 0.000000

1.30 0.331531 0.331540 −0.0027 0.000000 0.000000

𝑆𝑡 is the exchange rate at initial time 𝑡,𝑋 is the exercise price, Call𝑂 and Put𝑂 are call and put prices for our model, CallGK and PutGK are call and put prices
for the G-K model, Bias𝑐 = 100(Call𝑂 − CallGK)/CallGK, and Bias𝑝 = 100(Put𝑂 − PutGK)/PutGK.

the G-K model (36) by setting the initial time 𝑡 = 1 January
2010 when 𝑟

𝑑
(𝑡) = 0.0008, 𝑟

𝑓
(𝑡) = 0.0049, and 𝑆

𝑡
= 1.4389.

In addition, employing our FX option model as a yardstick,
we examine whether or not the G-K model values correctly
FX call and put options for different values of 𝑆

𝑡
/𝑋, where

𝑆
𝑡
is the exchange rate on 1 January 2010 and𝑋 is the exercise

price. Given that 𝑆
𝑡
is fixed at 1.4389, we vary𝑋 such that 𝑆

𝑡
/𝑋

ranges from 0.70 to 1.30—a range large enough to include
even extreme values of 𝑋 not commonly used in practice.
Tables 1, 2, 3, and 4 show the FX option prices and pricing
biases in the G-K model when time to maturity 𝑇 is 1, 3, 6,
and 9 months, respectively.

Wefirst focus on call options. For𝑇= 1, 3, 6, and 9months,
call prices increase as 𝑆

𝑡
/𝑋 increases from 0.70 to 1.30 under

both our model and the G-K model. For example, in Table 1
where 𝑇 = 1 month, call price increases from 0.001109 to
0.032643 and to 0.131898 under ourmodel, and from 0.001105
to 0.032624 and to 0.131898 under the G-K model as 𝑆

𝑡
/𝑋

increases from 0.90 to 1.00 and to 1.10, respectively. For each
of the four 𝑇s, the G-K model incorrectly values FX calls
for different values of 𝑆

𝑡
/𝑋. Specifically, it undervalues calls

when 𝑆
𝑡
/𝑋 ranges from 0.70 to 1.08, and it overvalues calls

when 𝑆
𝑡
/𝑋 ranges from 1.18 to 1.30. For example, in Table 2

where 𝑇 = 3months, call price is 0.000666 under our model
and 0.000657 under the G-K model for 𝑆

𝑡
/𝑋 = 0.80, which

amounts to a positive pricing bias of 1.3699%, whereas call
price is 0.330616 under our model and 0.330678 under the G-
Kmodel for 𝑆

𝑡
/𝑋 = 1.30, which amounts to a negative pricing

bias of −0.0187%.
The situation is completely opposite for put options.

For 𝑇 = 1, 3, 6, and 9 months, put prices decrease as
𝑆
𝑡
/𝑋 increases from 0.70 to 1.30 under both models. For

example, in Table 3 where 𝑇 = 6 months, put price decrea-
ses from 0.367578 to 0.082131 and to 0.008767 under our
model, and from 0.367695 to 0.081844 and to 0.008639
under the G-K model as 𝑆

𝑡
/𝑋 increases from 0.80 to 1.00
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Table 2: Prices for European call and put FX options when time to maturity 𝑇 = 3months.

𝑆
𝑡
/𝑋 Call

𝑂
CallGK Bias

𝑐
Put
𝑂

PutGK Bias
𝑝

0.70 0.000007 0.000007 0.617944 0.618028 −0.0136

0.72 0.000020 0.000020 0.560879 0.560954 −0.0134

0.74 0.000055 0.000054 1.8519 0.506920 0.506986 −0.0130

0.76 0.000137 0.000135 1.4815 0.455851 0.455907 −0.0123

0.78 0.000314 0.000309 1.6181 0.407499 0.407545 −0.0113

0.80 0.000666 0.000657 1.3699 0.361749 0.361783 −0.0094

0.82 0.001315 0.001299 1.2317 0.318545 0.318566 −0.0066

0.84 0.002432 0.002407 1.0386 0.277897 0.277902 −0.0018

0.86 0.004236 0.004200 0.8571 0.239879 0.239867 0.0050

0.88 0.006985 0.006935 0.7210 0.204615 0.204584 0.0151

0.90 0.010951 0.010888 0.5786 0.172258 0.172208 0.0290

0.92 0.016399 0.016322 0.4718 0.142962 0.142892 0.0490

0.94 0.023547 0.023459 0.3751 0.116845 0.116759 0.0737

0.96 0.032548 0.032452 0.2958 0.093967 0.093868 0.1055

0.98 0.043461 0.043362 0.2283 0.074302 0.074195 0.1442

1.00 0.056252 0.056155 0.1727 0.057739 0.057629 0.1909

1.02 0.070794 0.070703 0.1287 0.044077 0.043969 0.2456

1.04 0.086884 0.086803 0.0933 0.033048 0.032946 0.3096

1.06 0.104267 0.104200 0.0643 0.024335 0.024243 0.3795

1.08 0.122661 0.122610 0.0416 0.017600 0.017520 0.4566

1.10 0.141781 0.141745 0.0254 0.012505 0.012436 0.5548

1.12 0.161356 0.161337 0.0118 0.008730 0.008674 0.6456

1.14 0.181148 0.181143 0.0028 0.005991 0.005946 0.7568

1.16 0.200954 0.200963 −0.0045 0.004042 0.004007 0.8735

1.18 0.220612 0.220632 −0.0091 0.002683 0.002657 0.9785

1.20 0.239997 0.240028 −0.0129 0.001753 0.001733 1.1541

1.22 0.259022 0.259062 −0.0154 0.001128 0.001114 1.2567

1.24 0.277625 0.277672 −0.0169 0.000715 0.000705 1.4184

1.26 0.295770 0.295822 −0.0176 0.000446 0.000440 1.3636

1.28 0.313436 0.313493 −0.0182 0.000275 0.000270 1.8519

1.30 0.330616 0.330678 −0.0187 0.000167 0.000164 1.8293

𝑆𝑡 is the exchange rate at initial time t, 𝑋 is the exercise price, Call𝑂 and Put𝑂 are call and put prices for our model, CallGK and PutGK are call and put prices
for the G-K model, Bias𝑐 = 100(Call𝑂 − CallGK)/CallGK, and Bias𝑝 = 100(Put𝑂 − PutGK)/PutGK.

and to 1.20, respectively. For each of the four 𝑇s, the G-K
model incorrectly values FX puts for different values of 𝑆

𝑡
/𝑋.

Specifically, it overvalues puts when 𝑆
𝑡
/𝑋 ranges from 0.70 to

0.82, and it undervalues puts when 𝑆
𝑡
/𝑋 ranges from 0.86 to

1.30. For example, in Table 4 where𝑇 = 9months, put price is
0.375783 under ourmodel and 0.376021 under theG-Kmodel
for 𝑆
𝑡
/𝑋 = 0.80, which amounts to a negative pricing bias

of −0.0633%, whereas put price is 0.006367 under our model
and 0.006198 under the G-K model for 𝑆

𝑡
/𝑋 = 1.30, which

amounts to a positive pricing bias of 2.7267%.
Foreign exchange options are actively traded on the

Philadelphia Stock Exchange. The contract size of a euro-
currency option is C62,500. For example, when 𝑇 = 9

months and 𝑆
𝑡
/𝑋 = 0.90, call premium is ($0.042077

× 62,500) = $2,629.81 under our model and ($0.041614 ×

62,500) = $2,600.88 under the G-K model—a difference of
$28.93 underpaid by a call option buyer; similarly, when 𝑇 =

9 months and 𝑆
𝑡
/𝑋 = 1.10, put premium is ($0.044294

× 62,500) = $2,768.38 under our model and ($0.043837 ×
62,500) = $2,739.81 under the G-K model—a difference of
$28.57 underpaid by a put option buyer. In other words,
option sellers are at an obvious disadvantage if FX option
valuation is based on the G-K model.

4. Conclusion

Prior research often assumes constant spot rateswhen valuing
FX options. The traditional G-K FX option model assumes
that both domestic and foreign spot rates remain unchanged
over the life of the FX option. The fact of the matter is that
both spot rates are changing continuously and stochastically
through time. In this paper, we utilize stochastic calculus to
develop a continuous-time model for valuing European call
and put options on foreign exchange when both spot rates are
assumed to follow a generalized Wiener process. Using the
dollar/euro exchange rate as input for parameter estimation
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Table 3: Prices for European call and put FX options when time to maturity 𝑇 = 6months.

𝑆
𝑡
/𝑋 Call

𝑂
CallGK Bias

𝑐
Put
𝑂

PutGK Bias
𝑝

0.70 0.000418 0.000404 3.4653 0.619406 0.619774 −0.0594

0.72 0.000760 0.000736 3.2609 0.562709 0.563030 −0.0570

0.74 0.001314 0.001278 2.8169 0.509307 0.509581 −0.0538

0.76 0.002172 0.002120 2.4528 0.459050 0.459273 −0.0486

0.78 0.003447 0.003374 2.1636 0.411830 0.412001 −0.0415

0.80 0.005265 0.005168 1.8769 0.367578 0.367695 −0.0318

0.82 0.007767 0.007643 1.6224 0.326258 0.326318 −0.0184

0.84 0.011095 0.010942 1.3983 0.287850 0.287854 −0.0014

0.86 0.015386 0.015204 1.1971 0.252347 0.252296 0.0202

0.88 0.020765 0.020555 1.0216 0.219740 0.219636 0.0474

0.90 0.027330 0.027095 0.8673 0.190008 0.189855 0.0806

0.92 0.035151 0.034897 0.7279 0.163110 0.162915 0.1197

0.94 0.044264 0.043997 0.6069 0.138981 0.138750 0.1665

0.96 0.054668 0.054394 0.5037 0.117527 0.117270 0.2192

0.98 0.066323 0.066051 0.4118 0.098627 0.098350 0.2816

1.00 0.079161 0.078898 0.3333 0.082131 0.081844 0.3507

1.02 0.093084 0.092837 0.2661 0.067869 0.067580 0.4276

1.04 0.107972 0.107748 0.2079 0.055657 0.055373 0.5129

1.06 0.123689 0.123494 0.1579 0.045298 0.045025 0.6063

1.08 0.140095 0.139932 0.1165 0.036592 0.036335 0.7073

1.10 0.157045 0.156917 0.0816 0.029344 0.029106 0.8177

1.12 0.174398 0.174306 0.0528 0.023362 0.023146 0.9332

1.14 0.192021 0.191967 0.0281 0.018470 0.018276 1.0615

1.16 0.209793 0.209776 0.0081 0.014503 0.014332 1.1931

1.18 0.227604 0.227623 −0.0083 0.011312 0.011163 1.3348

1.20 0.245361 0.245414 −0.0216 0.008767 0.008639 1.4817

1.22 0.262982 0.263067 −0.0323 0.006752 0.006643 1.6408

1.24 0.280401 0.280517 −0.0414 0.005169 0.005077 1.8121

1.26 0.297566 0.297709 −0.0480 0.003934 0.003857 1.9964

1.28 0.314434 0.314602 −0.0534 0.002977 0.002914 2.1620

1.30 0.330974 0.331165 −0.0577 0.002241 0.002189 2.3755

𝑆𝑡 is the exchange rate at initial time 𝑡,𝑋 is the exercise price, Call𝑂 and Put𝑂 are call and put prices for our model, CallGK and PutGK are call and put prices
for the G-K model, Bias𝑐 = 100(Call𝑂 − CallGK)/CallGK, and Bias𝑝 = 100(Put𝑂 − PutGK)/PutGK.

and employing our FX option model as a yardstick, our
numerical results show that the G-Kmodel values incorrectly
both call and put options for different values of 𝑆

𝑡
/𝑋.

Specifically, it undervalues calls when 𝑆
𝑡
/𝑋 is between 0.70

and 1.08, and it overvalues calls when 𝑆
𝑡
/𝑋 is between 1.18

and 1.30, whereas it overvalues puts when 𝑆
𝑡
/𝑋 is between

0.70 and 0.82, and it undervalues puts when 𝑆
𝑡
/𝑋 is between

0.86 and 1.30.

Appendix

To derive (27), we first prove the following:

∫

∞

0

cos [𝑘 (𝜔 − 𝛿)] exp [−1
2

𝑘
2
𝑉]𝑑𝑘

= √

𝜋

2𝑉

exp[−(𝜔 − 𝛿)
2

2𝑉

] .

(A.1)

Proof. Since cos[𝑘(𝜔 − 𝛿)] = (1/2) exp[𝑖𝑘(𝜔 − 𝛿)] + (1/2)

exp[−𝑖𝑘(𝜔 − 𝛿)], we obtain

cos [𝑘 (𝜔 − 𝛿)] exp [−1
2

𝑘
2
𝑉]

=

1

2

exp [−1
2

𝑘
2
𝑉 + 𝑖𝑘 (𝜔 − 𝛿)]

+

1

2

exp [−1
2

𝑘
2
𝑉 − 𝑖𝑘 (𝜔 − 𝛿)] ,

(A.2)

where 𝑖 = √−1. Since −(1/2)𝑘
2
𝑉 + 𝑖𝑘(𝜔 − 𝛿) =

−((𝜔 − 𝛿)
2
/2𝑉) − [(𝑘𝑉 − 𝑖(𝜔 − 𝛿))/√2𝑉]

2, we have

1

2

∫

∞

0

exp [−1
2

𝑘
2
𝑉 + 𝑖𝑘 (𝜔 − 𝛿)] 𝑑𝑘

=

1

2

∫

∞

0

exp[−(𝜔 − 𝛿)
2

2𝑉

− (

𝑘𝑉 − 𝑖 (𝜔 − 𝛿)

√2𝑉

)

2

]𝑑𝑘
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Table 4: Prices for European call and put FX options when time to maturity 𝑇 = 9months.

𝑆
𝑡
/𝑋 Call

𝑂
CallGK Bias

𝑐
Put
𝑂

PutGK Bias
𝑝

0.70 0.002017 0.001937 4.1301 0.621839 0.622653 −0.1307

0.72 0.003077 0.002967 3.7074 0.565920 0.566619 −0.1234

0.74 0.004544 0.004401 3.2493 0.513488 0.514072 −0.1136

0.76 0.006516 0.006333 2.8896 0.464397 0.464865 −0.1007

0.78 0.009091 0.008865 2.5494 0.418528 0.418880 −0.0840

0.80 0.012367 0.012096 2.2404 0.375783 0.376021 −0.0633

0.82 0.016438 0.016122 1.9601 0.336077 0.336204 −0.0378

0.84 0.021386 0.021026 1.7122 0.299333 0.299353 −0.0067

0.86 0.027279 0.026878 1.4919 0.265473 0.265392 0.0305

0.88 0.034166 0.033730 1.2926 0.234414 0.234242 0.0734

0.90 0.042077 0.041614 1.1126 0.206066 0.205811 0.1239

0.92 0.051021 0.050540 0.9517 0.180327 0.180002 0.1806

0.94 0.060985 0.060494 0.8117 0.157083 0.156699 0.2451

0.96 0.071935 0.071446 0.6844 0.136210 0.135780 0.3167

0.98 0.083822 0.083344 0.5735 0.117572 0.117107 0.3971

1.00 0.096577 0.096121 0.4744 0.101024 0.100537 0.4844

1.02 0.110123 0.109698 0.3874 0.086416 0.085917 0.5808

1.04 0.124372 0.123986 0.3113 0.073592 0.073092 0.6841

1.06 0.139229 0.138890 0.2441 0.062399 0.061907 0.7947

1.08 0.154598 0.154311 0.1860 0.052683 0.052205 0.9156

1.10 0.170382 0.170153 0.1346 0.044294 0.043837 1.0425

1.12 0.186487 0.186318 0.0907 0.037090 0.036658 1.1785

1.14 0.202823 0.202717 0.0523 0.030934 0.030531 1.3200

1.16 0.219306 0.219263 0.0196 0.025701 0.025328 1.4727

1.18 0.235858 0.235878 −0.0085 0.021273 0.020932 1.6291

1.20 0.252410 0.252493 −0.0329 0.017544 0.017235 1.7929

1.22 0.268900 0.269044 −0.0535 0.014419 0.014141 1.9659

1.24 0.285275 0.285477 −0.0708 0.011810 0.011562 2.1450

1.26 0.301487 0.301745 −0.0855 0.009642 0.009422 2.3350

1.28 0.317498 0.317809 −0.0979 0.007847 0.007654 2.5216

1.30 0.333276 0.333638 −0.1085 0.006367 0.006198 2.7267

𝑆𝑡 is the exchange rate at initial time t, 𝑋 is the exercise price, Call𝑂 and Put𝑂 are call and put prices for our model, CallGK and PutGK are call and put prices
for the G-K model, Bias𝑐 = 100(Call𝑂 − CallGK)/CallGK, and Bias𝑝 = 100(Put𝑂 − PutGK)/PutGK.

=

1

2

exp[−(𝜔 − 𝛿)
2

2𝑉

]

× ∫

∞

0

exp[−(𝑘𝑉 − 𝑖 (𝜔 − 𝛿)

√2𝑉

)

2

]𝑑𝑘.

(A.3)

Letting 𝑥 = (𝑘𝑉 − 𝑖(𝜔 − 𝛿))/√2𝑉, which implies 𝑑𝑘 =

√(2/𝑉)𝑑𝑥, we have

1

2

∫

∞

0

exp [−1
2

𝑘
2
𝑉 + 𝑖𝑘 (𝜔 − 𝛿)] 𝑑𝑘

=

1

2

exp[−(𝜔 − 𝛿)
2

2𝑉

]∫

∞

0

exp [−𝑥2]√ 2

𝑉

𝑑𝑥

=

1

2

√

𝜋

2𝑉

exp[−(𝜔 − 𝛿)
2

2𝑉

] .

(A.4)

Similarly, since −(1/2)𝑘2𝑉−𝑖𝑘(𝜔−𝛿) = −((𝜔 − 𝛿)2/2𝑉)−
[(𝑘𝑉 + 𝑖(𝜔 − 𝛿))/√2𝑉]

2, we have

1

2

∫

∞

0

exp [−1
2

𝑘
2
𝑉 − 𝑖𝑘 (𝜔 − 𝛿)] 𝑑𝑘

=

1

2

exp[−(𝜔 − 𝛿)
2

2𝑉

]

× ∫

∞

0

exp[−(𝑘𝑉 + 𝑖 (𝜔 − 𝛿)

√2𝑉

)

2

]𝑑𝑘.

(A.5)
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Letting 𝑧 = (𝑘𝑉 + 𝑖(𝜔 − 𝛿))/√2𝑉, which implies 𝑑𝑘 =

√(2/𝑉)𝑑𝑧, we have

1

2

∫

∞

0

exp [−1
2

𝑘
2
𝑉 − 𝑖𝑘 (𝜔 − 𝛿)] 𝑑𝑘

=

1

2

exp[−(𝜔 − 𝛿)
2

2𝑉

]∫

∞

0

exp [−𝑧2]√ 2

𝑉

𝑑𝑧

=

1

2

√

𝜋

2𝑉

exp[−(𝜔 − 𝛿)
2

2𝑉

] .

(A.6)

Hence, combining (A.4) and (A.6), we obtain (A.1). Now
substituting 𝐴(𝑘) = (1/𝜋) ∫

∞

−∞
𝑓(𝜔) cos(𝑘𝜔)𝑑𝜔 and 𝐵(𝑘) =

(1/𝜋) ∫

∞

−∞
𝑓(𝜔) sin(𝑘𝜔)𝑑𝜔 into (26), we obtain

𝑢 (𝛿, 𝑉) =

1

𝜋

∫

∞

0

{∫

∞

−∞

[cos (𝑘𝜔) cos (𝑘𝛿) + sin (𝑘𝜔) sin (𝑘𝛿)]

×𝑓 (𝜔) 𝑑𝜔} exp(−1
2

𝑘
2
𝑉)𝑑𝑘

=

1

𝜋

∫

∞

−∞

𝑓 (𝜔)∫

∞

0

cos [𝑘 (𝜔 − 𝛿)]

× exp(−1
2

𝑘
2
𝑉)𝑑𝑘 𝑑𝜔.

(A.7)

Substituting (A.1) into (A.7), we get (27) as follows:

𝑢 (𝛿, 𝑉) =

1

𝜋

∫

∞

−∞

𝑓 (𝜔) [√

𝜋

2𝑉

exp(−(𝜔 − 𝛿)
2

2𝑉

)]𝑑𝜔

=

1

√2𝑉𝜋

∫

∞

−∞

𝑓 (𝜔) exp(−(𝜔 − 𝛿)
2

2𝑉

)𝑑𝜔.

(A.8)
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