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We investigate the optimal scheduling of retrieval jobs for double-deep type Automated Storage and Retrieval Systems (AS/RS)
in the Flexible Manufacturing System (FMS) used in modern industrial production. Three types of evolutionary algorithms, the
Genetic Algorithm (GA), the Immune Genetic Algorithm (IGA), and the Particle Swarm Optimization (PSO) algorithm, are
implemented to obtain the optimal assignments. The objective is to minimize the working distance, that is, the shortest retrieval
time travelled by the Storage and Retrieval (S/R) machine. Simulation results and comparisons show the advantages and feasibility
of the proposed methods.

1. Introduction

Optimization has shown itself to be one of the most
important problems of engineering design and scientific
analysis (e.g., see [1–12]) and has been widely studied in
the manufacturing industry [1–8]. Since Automated Stor-
age and Retrieval Systems (AS/RS) have been used as a
part of manufacturing systems [1–8, 13–19] and function as
important links in the supply chain, many researchers have
discussed the applications of optimization to such systems.
The AS/RS have great flexibility in interfacing with other
components of Flexible Manufacturing Systems (FMS) to
maintain quick responses to demands in manufacturing,
warehousing, and distribution applications [19]. The AS/RS
are a class of industrial automatic systems composed of
high-level stereoscopic shelves, raising machines, forklift
trucks, stock movement systems, unmanned carriers, control
systems, peripheral apparatuses, and so forth.The system can
fully utilize minimum stock space and realize online control
of the apparatus through computer. It can rapidly process
data, deal accurately with stock control, and thus rationally
improvemanagement efficiency. However, the high efficiency
of AS/RS is based on storage and retrieval locations and

scheduling management [8]. Scheduling can be a difficult
task due to a variety of reasons, including different goals,
priorities, and the complexity of the computing systems. In
recent years, there has been growing interest in exploring the
scheduling and performance of AS/RS. For example, Chetty
and Reddy [1] proposed the Genetic Algorithm (GA) for the
AS/RS integratedwithmachines.Wang et al. [2] discussed the
selection of AS/RS scheduling rules based on GA. Asokan et
al. [3] discussed the optimal scheduling of the AS/RS in FMS.

Traditional AS/RS are almost structured in the single-
deep configuration for the storage rack, such that the Storage
and Retrieval (S/R) machine has movement control in the
middle of the pathway. However, in a range-limited factory,
it will store significantly more goods if we adopt the double-
deep AS/RS, a double-deep rack with the pallets being stored
and retrieved by an automated S/R machine (e.g., see Figures
1 and 2, [19]). Due to more goods being preserved in the
double-deep AS/RS, it is even more important to precisely
manage the fetching and placing of goods, such that possible
interference and/or deadlock can be avoided. Therefore, in
order tomake the double-deep type AS/RSmore effective, we
have to optimize the storage location and the job scheduling
for storage and retrieval. A survey of the literature indicates
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Figure 1: Configuration of a double-deep rack.

Figure 2: An actual photo of a double-deep rack.

that optimal scheduling for double-deep type Automated
Storage and Retrieval Systems (AS/RS) has not yet been
studied. In this paper, we systematically propose a formula for
theAS/RS traveled distance calculation and are the first to use
evolutionary algorithms to optimize retrieval jobs scheduling
problems for the double-deep typeAS/RS. Based on the study,
scheduling with evolutionary algorithms is shown to perform
more effectively than random retrieval without evolutionary
algorithms. Similar applications can thus be extended tomore
complex systems and job scheduling.

The Genetic Algorithm (GA) [20–25] was first proposed
by Holland 1975 [20] based on the genetic scheme and
bioevolution. Being a global search algorithm, it is capable
of producing better solutions in complex situations through
chromosome representation, reproduction, crossover, and
mutation. The concept of Artificial Immune System (AIS)
was improved from GA and was originally proposed by
Jerne [26]; it has since been widely studied (e.g., see [26–
32]). In Immune Genetic Algorithm (IGA) approaches, we
calculate the affinity between any pairs of strings. If the
affinity is close, the string will be selected with a lower
possibility to avoid localminimum.Due to the advantage that
a variety of feasible spaces can be better assured while solving
the optimization problems to more likely achieve optimal
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Figure 3: Description of the AS/RS structure model.

solutions, IGA is thus applied in this study. Particle Swarm
Optimization (PSO) [33–38] was first proposed by Kennedy
and Eberhart 1995 [33] based on swarm intelligence. All three
algorithms share many advantages, such as fast convergence
speed, easy implementation, and limited parameters to be
tuned. Unlike GA and IGA, however, PSO does not have
evolution operators, such as crossover and mutation. PSO is
not only easy to implement, since there are fewer parameters
to adjust, but it is also able to combine local and global search
methods [33]. In this study, GA, IGA, and PSO are applied
to optimal retrieval scheduling in the AS/RS. The algorithms
and objective functions can minimize the working distance,
that is, the shortest retrieval time, travelled by the automated
S/Rmachine, so that the AS/RS will bemore effective. Finally,
simulation results and comparisons show the advantages and
feasibility of the proposed methods.

This remainder of this paper is organized as follows.
Section 2 presents the problem statement. Section 3 describes
the implementation of evolutionary algorithms, including
GA, IGA, and PSO. The simulation results are illustrated
and discussed in Section 4. Finally, Section 5 presents the
conclusion.

2. AS/RS Structure Model and
Problem Statement

Figure 3 shows the structure of the double-deep type Auto-
mated Storage and Retrieval Systems (AS/RS) considered in
this work. The AS/RS structure is rectangular with 𝑚 rows,
𝑛 columns, and 2 depths, where 𝑚 is set to be 20 and 𝑛 is
set to be 30. Each cell is capable of holding one cargo in any
type. In our study, we assume that there are 4 types of cargos
and 10 for each type. The center distance between any two
adjacent cells in a row is 𝑋

𝑟
, in a column is 𝑋

𝑐
, and in a

depth is 𝑋
𝑑
, respectively. The numbers 1, 2, 3 given beside

the cell indicate the address of the storage location. There
is one shuttle of the crane type, which is capable of moving
vertically, horizontally, and thoroughly. The maximum load
capacity of the forklift truck is 10 goods each time; one cargo
can be taken at each time.The goods stored in the outer-layer
of the storage rack will stop the retrieval of the inner storage
unit. In this case, the inner-layer cargo can be accessed only
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if the outer-layer cargo is moved first. We assume that both
of the Pickup and Deposit (P&D) stations are at the same
points at lower left-hand corner of the aisle. The movement,
that is, the travelled distance, of the Storage and Retrieval
(S/R) machine is a major decision parameter in the operation
and control of the AS/RS. The distance travelled by the S/R
machine, from address point 𝑎 to point 𝑏 to complete one
activity, is calculated by the following two steps.

Step 1 (identification of row, column, and depth numbers). A
simple table can be used to represent the row, column, and
depth numbers of the addresses, that is, the storage locations
of cargo (see Tables 1–5).

Step 2 (distance calculation for themovement from point 𝑎 to
point 𝑏). The distance between two storage location points 𝑎
and 𝑏 can be calculated using the general formula

distance = 𝑃 + 𝐸 +𝑀
𝑎
+ 2 ⋅ 𝑋

𝑑
⋅ 𝑎
𝑑

+ [√(𝑋
𝑟
⋅ (𝑎
𝑟
− 𝑏
𝑟
))
2

+ (𝑋
𝑐
⋅ (𝑎
𝑐
− 𝑏
𝑐
))
2

+𝑀
𝑏
+ 2 ⋅ 𝑋

𝑑
⋅ 𝑏
𝑑
] ,

(1)

where 𝑃 is distance from the P&D station to the first storage
cell; 𝑀

𝑎
and 𝑀

𝑏
are the required time to move the outer-

layer cargo when the outer-layer cargo stops the retrieval of
the inner-layer cargo; 𝑋

𝑟
, 𝑋
𝑐
, and 𝑋

𝑑
are center distances

between two adjacent cells in a row, column, and depth,
respectively; 𝑎

𝑟
and 𝑏

𝑟
are distances between the locations

“𝑎” and “𝑏” row-wise; 𝑎
𝑐
and 𝑏

𝑐
are distances between the

locations “𝑎” and “𝑏” column-wise; 𝑎
𝑑
and 𝑏
𝑑
are distances

between the locations “𝑎” and “𝑏” depth wise; and 𝐸 is
distance from the P&D station to last storage cell.

We set the P&D station to be at point (0, 0, 0), and the
formula for the P&D can be calculated as

𝑃 = √(𝑎
1𝑟
⋅ 𝑋
𝑟
)
2

+ (𝑎
1𝑐
⋅ 𝑋
𝑐
)
2

,

𝐸 = √(𝑎
𝑤𝑟
⋅ 𝑋
𝑟
)
2

+ (𝑎
𝑤𝑐
⋅ 𝑋
𝑐
)
2

,

(2)

where 𝑋
𝑟
and 𝑋

𝑐
are center distances between two adjacent

cells in a row, column, respectively, 𝑎
1𝑟
is distance between the

location of first cargo “𝑎” and “P&D station” row-wise; 𝑎
1𝑐
is

distance between the location of first cargo “𝑎” and the “P&D
station” column-wise; 𝑤 is the maximum load-capacity (i.e.,
maximum number of cargos) of the forklift truck each time;
𝑎
𝑤𝑟

is distance between the location of last cargo “𝑤” and the
“P&D station” row-wise; 𝑎

𝑤𝑐
is distance between the location

of last cargo “𝑤” and the “P&D station” column-wise.
When the outer-layer cargo stops the inner-layer cargo,

we must first move the outer-layer cargo to the nearest empty
place and then move back to the original place to retrieve the

cargo. The formula for calculating 𝑀 can be represented as
follows:
𝑀

=

{
{
{
{

{
{
{
{

{

2⋅(𝑋
𝑑
⋅(𝑝
𝑑
+𝑞
𝑑
)+√(𝑋

𝑟
⋅(𝑝
𝑟
−𝑞
𝑟
))
2

+(𝑋
𝑐
⋅ (𝑝
𝑐
−𝑞
𝑐
))
2

)

if depth = 2when one different type
of cargo at depth = 1,

0, otherwise,
(3)

where 𝑋
𝑟
, 𝑋
𝑐
, and 𝑋

𝑑
are center distance between two

adjacent cells in a row, column, and depth, respectively, 𝑝 is
the place of the cargo that we want to retrieve; 𝑞 is the nearest
empty place that we can put the cargo; 𝑝

𝑟
and 𝑞
𝑟
are distances

between the locations “𝑝” and “𝑞” row-wise; 𝑝
𝑐
and 𝑞

𝑐
are

distances between the locations “𝑝” and “𝑞” column-wise; 𝑝
𝑑

and 𝑞
𝑑
are distance between the locations “𝑝” and “𝑞” depth-

wise.
The objective is to develop an optimal control program

for theAS/RS in order tominimize the total distance travelled
by the S/R machine. The objective function is formulated as
follows:
total distance𝑍

= 𝑃 + 𝐸 +𝑀
1
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,

(4)

where𝑍 is total distance travelled by the S/Rmachine;𝑤 is the
maximum load capacity (i.e., maximumnumber of cargos) of
the forklift truck each time.

3. Implementation of Evolutionary Algorithms

3.1. Genetic Algorithm (GA). The following GA procedure
is adopted to perform the double-deep AS/RS retrieval
scheduling optimization.

Step 1 (chromosome representation). Produce various com-
binations of different retrieval orders and give the number to
represent them.
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Table 1: The addresses of the stored cargo for simulation in Case 1.

Type and number of cargo Address Order
R C D GA IGA PSO

A1 9 8 1 2 10 2
A2 8 20 1 8 6 8
A3 20 13 1 5 5 7
A4 19 10 2 7 2 4
A5 2 12 2 10 7 10
A6 19 12 2 4 4 6
A7 6 4 1 1 1 1
A8 21 9 1 6 3 5
A9 9 9 1 3 9 3
A10 7 11 2 9 8 9
B1 29 4 2 16 18 15
B2 17 14 1 14 15 14
B3 23 7 2 17 17 16
B4 21 3 2 15 20 18
B5 6 7 2 12 12 20
B6 13 9 2 19 14 12
B7 11 7 1 20 13 19
B8 13 17 2 13 16 13
B9 23 5 2 18 19 17
B10 4 8 1 11 11 11
C1 17 7 2 23 28 23
C2 1 11 1 29 22 30
C3 27 4 1 22 29 22
C4 16 16 2 24 27 24
C5 1 18 1 27 24 28
C6 20 2 1 21 30 21
C7 7 14 1 28 23 27
C8 1 10 1 30 21 29
C9 11 20 1 25 26 25
C10 6 20 1 26 25 26
D1 29 14 1 35 36 36
D2 4 3 1 40 31 31
D3 15 8 2 33 40 40
D4 3 20 2 38 32 32
D5 17 9 2 31 39 39
D6 28 18 2 34 35 37
D7 14 20 2 37 34 34
D8 17 11 1 32 38 38
D9 23 15 1 36 37 35
D10 8 19 1 39 33 33

Step 2 (parameter settings). Consider the following:

population size: 100;
select amaximumgenerationnumber 𝑡max = 100, and
set 𝑡 = 0 at the beginning;
crossover rate: 0.6;
mutation rate: 0.05.

Table 2: The addresses of the stored cargo for simulation in Case 2.

Type and number of cargo Address Order
R C D GA IGA PSO

A1 9 8 2 9 10 2
A2 8 20 1 2 4 8
A3 20 13 1 6 5 7
A4 19 10 2 8 8 5
A5 2 12 2 1 3 9
A6 19 12 2 5 6 6
A7 6 4 1 10 1 1
A8 21 9 1 7 7 4
A9 9 9 1 4 9 3
A10 7 11 2 3 2 10
B1 29 4 2 15 18 16
B2 9 8 1 13 13 19
B3 23 7 2 17 17 14
B4 21 3 2 14 20 17
B5 6 7 2 20 12 20
B6 13 9 2 19 15 13
B7 11 7 1 12 14 18
B8 13 17 2 18 16 12
B9 23 5 2 16 19 15
B10 4 8 2 11 11 11
C1 17 7 2 30 22 30
C2 1 11 1 23 29 23
C3 27 4 1 28 24 29
C4 16 16 2 26 26 26
C5 1 18 1 24 28 24
C6 20 2 1 29 23 28
C7 19 12 1 27 25 27
C8 1 10 1 22 30 22
C9 11 20 1 25 27 25
C10 4 8 1 21 21 21
D1 29 14 1 36 35 37
D2 4 3 1 40 31 40
D3 15 8 2 39 34 31
D4 17 7 1 37 32 32
D5 17 9 2 38 33 33
D6 28 18 2 35 36 36
D7 14 20 2 32 39 38
D8 16 16 1 33 38 34
D9 23 15 1 34 37 35
D10 8 19 1 31 40 39

Step 3. According to population size, randomly select the
retrieval order number and put it into the genetic pool.

Step 4. Calculate the cost value through the fitness function
formula (4) for each gene.
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Table 3: The addresses of the stored cargo for simulation in Case 3.

Type and number of cargo Address Order
R C D GA IGA PSO

A1 9 8 2 1 2 3
A2 8 20 1 7 8 9
A3 20 13 1 5 7 7
A4 19 10 2 3 6 5
A5 2 12 2 8 10 10
A6 19 12 2 6 4 8
A7 6 4 1 10 1 1
A8 21 9 1 4 5 6
A9 9 9 1 2 3 4
A10 7 11 2 9 9 2
B1 29 4 2 15 17 17
B2 9 8 1 18 13 12
B3 23 7 2 13 16 18
B4 21 3 2 17 20 15
B5 6 7 2 19 11 11
B6 13 9 2 12 14 13
B7 21 3 1 16 19 14
B8 13 17 2 11 15 19
B9 23 5 2 14 18 16
B10 4 8 2 20 12 20
C1 17 7 2 28 30 22
C2 13 17 1 25 25 28
C3 27 4 1 29 28 24
C4 16 16 2 26 26 26
C5 1 18 1 23 23 29
C6 20 2 1 30 29 23
C7 19 12 1 27 27 25
C8 1 10 1 22 22 30
C9 11 20 1 24 24 27
C10 4 8 1 21 21 21
D1 29 14 1 34 35 35
D2 19 10 1 33 36 36
D3 15 8 2 39 40 40
D4 17 7 1 38 38 38
D5 17 9 2 32 37 37
D6 28 18 2 35 34 34
D7 14 20 2 36 33 33
D8 16 16 1 37 32 32
D9 7 11 1 40 31 31
D10 15 8 1 31 39 39

Step 5. Calculate the probability to be selected by the follow-
ing formulas:

𝑋
𝑘
=

∑
𝑛

𝑖=1
𝑓
𝑖

𝑓
𝑘

, (5)

where 𝑓
𝑘
is the fitness value for the 𝑘th gene in population;

𝑃
𝑘
=

𝑋
𝑘

∑
𝑛

𝑖=1
𝑋
𝑖

, (6)

Table 4:The addresses of the stored cargo for simulation in Case 4.

Type and number of cargo Address Order
R C D GA IGA PSO

A1 9 8 2 1 4 3
A2 8 20 1 6 8 7
A3 20 13 1 7 7 5
A4 19 10 2 9 5 4
A5 2 12 2 4 10 9
A6 19 12 2 8 6 6
A7 6 4 1 10 1 10
A8 2 12 1 3 9 8
A9 9 9 1 2 3 2
A10 7 11 2 5 2 1
B1 29 4 2 17 17 17
B2 9 8 1 20 12 20
B3 23 7 2 18 18 19
B4 21 3 2 15 15 16
B5 6 7 2 12 20 12
B6 13 9 2 19 13 14
B7 21 3 1 14 14 15
B8 13 17 2 13 19 13
B9 23 5 2 16 16 18
B10 4 8 2 11 11 11
C1 17 7 2 28 29 23
C2 13 17 1 22 23 29
C3 27 4 1 26 27 25
C4 16 16 2 23 24 28
C5 23 7 1 25 25 26
C6 29 4 1 27 26 24
C7 19 12 1 24 28 27
C8 1 10 1 21 22 30
C9 6 7 1 29 30 22
C10 4 8 1 30 21 21
D1 29 14 1 34 34 34
D2 19 10 1 36 36 36
D3 15 8 2 40 40 40
D4 17 7 1 37 38 39
D5 17 9 2 38 37 37
D6 23 5 1 35 35 35
D7 14 20 2 33 32 32
D8 16 16 1 32 33 33
D9 7 11 1 31 31 31
D10 15 8 1 39 39 38

where 𝑃
𝑘
is the probability of the 𝑘th gene to be selected for

reproduction.

According to the 𝑃
𝑘
, we proceed to select genes with the

roulette wheel method.

Step 6. Crossover.

Step 7. Mutation.
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Table 5: The addresses of the stored cargo for simulation in Case 5.

Type and number of cargo Address Order
R C D GA IGA PSO

A1 9 8 2 9 9 1
A2 8 20 2 5 4 5
A3 20 13 2 8 5 4
A4 19 10 2 7 7 2
A5 2 12 2 4 1 7
A6 19 12 2 6 6 3
A7 6 4 2 10 10 10
A8 2 12 1 3 2 6
A9 9 9 2 1 8 9
A10 7 11 2 2 3 8
B1 29 4 2 16 16 15
B2 9 8 1 11 11 20
B3 23 7 2 17 17 17
B4 21 3 2 14 15 14
B5 6 7 2 19 19 12
B6 13 9 2 12 12 19
B7 21 3 1 13 13 13
B8 13 17 2 18 18 18
B9 23 5 2 15 14 16
B10 4 8 2 20 20 11
C1 17 7 2 22 29 29
C2 13 17 1 27 24 24
C3 6 4 1 21 30 30
C4 16 16 2 26 25 25
C5 23 7 1 23 28 27
C6 29 4 1 24 27 28
C7 19 12 1 25 26 26
C8 8 20 1 28 23 23
C9 6 7 1 30 22 22
C10 4 8 1 29 21 21
D1 13 9 1 38 40 40
D2 19 10 1 34 35 36
D3 15 8 2 37 39 39
D4 17 7 1 31 37 37
D5 9 9 1 40 31 32
D6 23 5 1 32 36 35
D7 20 13 1 33 34 34
D8 16 16 1 35 33 33
D9 7 11 1 39 32 31
D10 15 8 1 36 38 38

Step 8. Set 𝑡 = 𝑡 + 1 and go to Step 4, recursively. Stop if
𝑡 < 𝑡max.

The flow chart of GA is shown in Figure 4.

3.2. Immune Genetic Algorithm (IGA). The IGA procedure
is improved from GA, and the following IGA procedure
is adopted to perform the double-deep AS/RS retrieval
scheduling optimization.

t = t + 1

t < tmax

Begin

Initialization

Population initialization

Fitness value

Roulette wheel method

Crossover

Mutation

Stop

Yes

No

Chromosome representation

Figure 4: Flow chart of the Genetic Algorithm (GA).

Step 1 (chromosome representation). Produce various com-
binations of different retrieval orders and give the number to
represent them.

Step 2 (parameter settings). Consider the following:

population size: 100;

select amaximumgenerationnumber 𝑡max = 100, and
set 𝑡 = 0 at the beginning;

crossover rate: 0.6;

mutation rate: 0.05.

Step 3. According to population size, randomly select the
retrieval order number and put it into the genetic pool.
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Begin

Initialization

Population initialization

Fitness value

Crossover

Mutation

Stop

Yes

No

No

Yes

The best fitness value 
decision

Chromosome representation

Set the best fitness value fp

Roulette wheel method by
IGA

t < tmax

t = t + 1

t = 0

Figure 5: Flow chart of the Immune Genetic Algorithm (IGA).

Step 4. Calculate the cost value through the fitness function
formula (4) for each gene.

Step 5. Set the best fitness value 𝑓
𝑝
.

Step 6. Calculate the probability of being selected with the
following formula:

𝑋
𝑘
=

∑
𝑛

𝑖=1
𝑓
𝑖

𝑓
𝑘

, (7)

where 𝑓
𝑘
is the fitness value for the 𝑘th gene in population.

Evaluate the affinity between any pairs of strings with the
following formula:

1 − 𝜀 ≤ 𝑄
𝑠
(𝑢, V) =

𝑋
𝑢

𝑋V

≤ 1 + 𝜀, (8)

where 𝑄
𝑠
(𝑢, V) is similarity, 𝑢 = {𝑢

1
, 𝑢
2
, . . . , 𝑢

𝑛
} and V =

{V
1
, V
2
, . . . , V

𝑛
} are any two strings in population, and the

fitness values for 𝑢
𝑖
and V

𝑖
are 𝑋

𝑢
and 𝑋V, respectively; 𝜀 is

the threshold value for gene similarity, and 𝜀 > 0 where we
set 𝜀 = 0.02.

Calculate the expected rate of reproduction as follows:

𝑒
𝑘
=

𝑋
𝑘

(𝐶
𝑘
)
𝛽

, (9)

where 𝑒
𝑘
is the expected rate of reproduction; 𝑋

𝑘
is the

estimate value for the 𝑘th string; 𝐶
𝑘
is the total number

similar to the 𝑘th string in all the strings in the generation;
𝛽 is the parameter to tune the𝑋

𝑘
and 𝐶

𝑘
.
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According to (10), we calculate the probability to be
selected for each gene as follows:

𝑃
𝑖𝑘
=

𝑒
𝑘

∑
𝑛

𝑖=1
𝑒
𝑖

, (10)

where 𝑃
𝑖𝑘
is the probability of the 𝑘th gene being selected for

reproduction; 𝑒
𝑘
is the expected rate of reproduction.

According to the 𝑃
𝑖𝑘
, we proceed to select genes by using

the roulette wheel method.

Step 7. Crossover.

Step 8. Mutation.

Step 9. If the string is with the best fitness value, and the
fitness value is not equal to 𝑓

𝑝
, then replace the string with

the worst fitness value by using 𝑓
𝑝
.

If the current fitness value is better than the best fitness
value in history (𝑓

𝑝
), we use the current value as the new best

fitness value 𝑓
𝑝
.

Step 10. Set 𝑡 = 𝑡 + 1 and go to Step 4, recursively. Stop if
𝑡 < 𝑡max.

The flow chart of IGA is shown in Figure 5.

3.3. Particle Swarm Optimization (PSO). The following PSO
[33] procedure is adopted to perform the double-deep AS/RS
retrieval scheduling optimization.

Step 1 (chromosome representation). Produce various com-
binations of different retrieval orders and give the number to
represent them.

Step 2 (parameter settings). Consider the following:

learning factor 𝑐
1
= 2;

learning factor 𝑐
2
= 2;

population size: 100;

select amaximumgenerationnumber 𝑡max = 100, and
set 𝑡 = 0 at the beginning;

maximum velocity: 𝑉max.

Step 3. According to population size, randomly select the
retrieval order number and regard it as the initial value of
particle.

Step 4. Calculate the cost value with the fitness function
formula (4) for each particle.

Step 5. Calculate the fitness value for each particle. If the
fitness value is better than the best fitness value in history, we
use the current value as the new best fitness value 𝑓

𝑝
.

Step 6. Select the particle with the best fitness value of all the
particles as the global best fitness value 𝑓

𝑔
.

Begin

Initialization

Population initialization

Fitness value

Stop

Yes

No

Chromosome representation

t < tmax

t = t + 1

Set the best fitness value fp

for each particle

Calculate particle velocity
according to fp, fg

Limited Vmax

Set the global best fitness
value fg

Figure 6: Flow chart of the Particle Swarm Optimization (PSO).

Step 7. For each particle, calculate particle velocity according
to the following equation:

V = 𝑐
1
∗ 𝑟 (⋅) ∗ (𝑓

𝑝
− 𝑝
𝑐
) + 𝑐
2
∗ 𝑟 (⋅) ∗ (𝑓

𝑔
− 𝑝
𝑐
) , (11)

where V, simplified from V[𝑡], is the particle velocity; 𝑝
𝑐
,

simplified from 𝑝
𝑐
[𝑡], is the current particle position; 𝑝

𝑐
[𝑡 +

1] = 𝑝
𝑐
[𝑡] + V[𝑡]; 𝑟(⋅) is a random function 9 in the

range [0, 1]; 𝑐
1
, 𝑐
2
are learning factors = 2.

Step 8. Particle velocities on each dimension are bounded by
a maximum velocity 𝑉max. If the sum of acceleration causes
the velocity on that dimension to exceed 𝑉max (specified by
the user), the velocity on the dimension is limited to 𝑉max.
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Figure 7: The shortest traveled distance for simulation results for Case 1. All the goods do not overlap by GA, IGA, and PSO. (a) Goods type
A, (b) goods type B, (c) goods type C, and (d) goods type D.

Step 9. Set 𝑡 = 𝑡 + 1 and go to Step 4, recursively. Stop if
𝑡 < 𝑡max.

The flow chart of PSO is shown in Figure 6.

4. Simulation and Discussion

In the simulation, MATLAB (7.10.0 (R2010a), 64 bits) is used
to analyze the performance. The specifications of the PC
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Figure 8:The shortest traveled distance for simulation results for Case 2. 5 goods overlap by GA, IGA, and PSO. (a) Goods type A, (b) goods
type B, (c) goods type C, and (d) goods type D.

are CPU: Intel I7-3770, quad-core, 3.4GHz (Turbo 4.2GHz);
RAM: 16GB, DDR3, 1600MHz, CL 11; OS:Windows 7 Enter-
prise, 64 bits. The chosen AS/RS structure model is shown in
Section 2 with 𝑚 rows, 𝑛 columns, and 2 depths, where 𝑚 is

set to be 20 and 𝑛 is set to be 30. There are 4 types of goods
and 10 for each type. The Genetic Algorithm (GA), Immune
Genetic Algorithm (IGA), and Particle Swarm Optimization
(PSO) are applied. In GA and IGA, we select a coding to
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Figure 9:The shortest traveled distance for simulation results for Case 3. 10 goods overlap by GA, IGA, and PSO. (a) Goods type A, (b) goods
type B, (c) goods type C, and (d) goods type D.

represent problem parameters and choose population size
to be 100, crossover probability to be 0.6, and mutation
probability to be 0.05. Additionally, we initialize a random
population of strings and each string has a size of 22 bits. In
PSO, we randomly initialize a population of 100 particles and

the learning factors are set to be 2. The relevant parameters
and details are presented in Section 3. Tables 1–5 illustrate
random examples with the possible addresses of cargo stored
in the AS/RS with the fixed overlapped number. The 𝑅,
𝐶, and 𝐷 represent row, column, and depth, respectively.
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Figure 10: The shortest traveled distance for simulation results for Case 4. 15 goods overlap by GA, IGA, and PSO. (a) Goods type A, (b)
goods type B, (c) goods type C, and (d) goods type D.

Software framework is used to run 100 iterations to obtain
optimal results. Five cases are studied—Case 1: all goods do
not overlap at the front and rear positions, as shown inTable 1;
Case 2: five goods sets overlap, as shown in Table 2; Case 3:
ten goods sets overlap, as shown in Table 3; Case 4: fifteen

goods sets overlap, as shown in Table 4; and Case 5: twenty
goods sets overlap, as shown in Table 5. For example, in
Table 2, five goods sets overlap; that is, Cargo B2 overlaps
A1 at the place ([9, 8, 1], [9, 8, 2]), Casrgo C7 overlaps A6
at the place ([19, 12, 1], [19, 12, 2]), Casrgo D8 overlaps C4
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Figure 11: The shortest traveled distance for simulation results for Case 5. 20 goods overlap by GA, IGA, and PSO. (a) Goods type A, (b)
goods type B, (c) goods type C, and (d) goods type D.

at the place ([16, 16, 1], [16, 16, 2]), Casrgo D4 overlaps C1
at the place ([17, 7, 1], [17, 7, 2]), and Casrgo C10 overlaps
B10 at the place ([4, 8, 1], [4, 8, 2]). The optimal scheduling
orders for five cases with three algorithms can be obtained
and are shown in the “Order” column of Tables 1–5. For

example, in Table 1 for Case 1 by GA method, we can get
the optimal retrieval order as (1) Cargo A7, (2) Cargo A2,
(3) Cargo A9, . . ., and finally (40) Cargo D2. The simulation
results for these five different cases are illustrated in Figures
7, 8, 9, 10, and 11. The five cases, from Case 1 to Case 5, have
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Table 6: The CPU time (sec) under different cases and by three different algorithms.

Average Maximum Minimal Max-min Standard deviation
Case 1

GA 49.80 61.29 29.98 31.31 5.23
IGA 49.22 59.65 29.95 29.70 5.18
PSO 46.44 57.00 28.39 28.61 4.86

Case 2
GA 106.03 148.03 91.60 56.43 16.70
IGA 105.61 148.15 91.59 56.57 16.34
PSO 103.12 139.76 89.34 50.42 15.23

Case 3
GA 153.52 212.33 133.57 78.76 21.95
IGA 152.30 223.71 133.51 90.20 22.32
PSO 146.84 206.33 130.14 76.19 20.58

Case 4
GA 204.05 273.58 179.03 94.55 26.72
IGA 201.43 286.81 176.25 110.56 27.30
PSO 196.30 293.83 173.33 120.50 26.84

Case 5
GA 260.06 381.33 233.78 147.55 33.58
IGA 260.26 373.89 233.46 140.43 33.13
PSO 252.24 352.52 228.18 124.33 30.20

been calculated using 100 iterations for each time, as well as
a total of 100 times, to obtain an average CPU time for the
analysis, as illustrated in Table 6 and Figure 12. In Table 6,
the average CPU time, maximum CPU time, minimum CPU
time, the difference in the maximum and minimum values,
and the standard deviation are all illustrated. The smaller
the standard deviation is, the more concentrative the average
CPU time will be for all 100 data by running the process 100
times. Therefore, we can see that PSO will cost less average
CPU time in each case, and that PSO will almost get the
smallest standard deviation. Although the CPU time for the
three algorithms is very similar in the five illustrated cases,
regarding CPU time, PSO performs better than the other
two methods. With increasing complexity, computing time
will also increase. However, PSO still performs the best. This
can be easily found in Table 6 and Figure 12. In Figures 7–11,
we run 100 iterations for each time and show the best curve
(i.e., with the shortest distance at the 100th iteration) out of
the 100 times as the minimum curve. Although the three
types of algorithms result in little difference in convergent
speeds under different cases, all the travelled distances tend
to converge. In order to create criteria for the selection of
algorithm in the figures, we use the similar way in [38] to
analyze the curve tendency.Themaximum and average travel
distance values out of the genes by the three algorithms are
illustrated in Figures 7–11. We can find that the maximum
values for the three algorithms are almost the same. However,
the IGA average curve shows a lower traveled distance than
the other two algorithms. We can therefore infer that, by
IGA, we will have a higher probability to select the gene
with the shortest travelled distance and finally obtain the
shortest travelled distance. The different travelled distances

are shown in the Gantt charts as illustrated in Figures 13–
17. The charts clearly show that retrieval scheduling with
three evolutionary algorithms performs much better than
that with random retrieval. In general, the shortest travelled
distance represents the shortest time to complete the job. IGA
performs best based on the criteria stated earlier, as shown in
Figures 7–11 and 13–17.Therefore, the user can select themost
suitable method for optimal retrieval scheduling in a double-
deep AS/RS either based on the viewpoint of CPU time or
the travelled distance. It can also be observed in Figures 7–
11 that there is chattering shown in maximum and average
values since there are crossover and mutation in GA and
IGA and there is calculation of particle velocity in PSO. A
decreasing tendency in minimum values results from the fact
that the best gene will be kept in each iteration for GA, IGA,
and PSO.

In our simulation results, approximate convergence can
be achieved randomly at, for example, the 50th, the 80th, and
the 90th generations in different curves. Therefore, we per-
form the iterations 100 times. If one were to set the iteration
at only the 80th generation, it would perhaps get suboptimal
solutions, but it would save CPU time. However, if one were
to set the iteration at the 3000th generation, it might obtain
optimal solutions, but it would perhapswaste significant CPU
time. We could also establish a rule to determine the number
of iterations. For example, if there is no change in travel
distance or limited travel distance after several iterations have
passed from some iteration instant, we thus stop and use this
as the result. Under this situation, the iteration number is set
andmodified by ourselves or is dependent on the experience.
In this paper, the proposed ideas and methods focus mainly
on double-deep AS/RS retrieval scheduling. However, it can
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Case 1 Case 2 Case 3 Case 4 Case 5
GA 49.7983 106.0339 153.5212 204.0499 260.0596
IGA 49.2238 105.6096 152.2997 201.4332 260.2566
PSO 46.4395 103.1196 146.8405 196.2993 252.2393
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Figure 12: The CPU time (sec) under different cases and by three different algorithms.
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Figure 13: The Gantt chart for different travelled distances under
Case 1.
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Figure 14: The Gantt chart for different travelled distances under
Case 2.

easily be similarly extended to complicated systems with
multiple objectives in real applications.

5. Conclusions

A survey of the literature indicates that optimal retrieval
scheduling for double-deep type Automated Storage and
Retrieval Systems (AS/RS) has not previously been studied.
In this paper, a systematic model for the travelled distance,
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Figure 15: The Gantt chart for different travelled distances under
Case 3.
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Figure 16: The Gantt chart for different travelled distances under
Case 4.

that is, the shortest time, is presented. Three types of
evolutionary algorithms, including the Genetic Algorithm
(GA), the ImmuneGenetic Algorithm (IGA), and the Particle
SwarmOptimization (PSO), are used to optimize the retrieval
scheduling problem for the studied case. With the minimum
objective function value, that is, the shortest retrieval time
travelled by the Storage and Retrieval (S/R) machine, the
corresponding optimal retrieval schedule can be selected. In
this simulation with five different cases, PSO costs less CPU
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Figure 17: The Gantt chart for different travelled distances under
Case 5.

time than GA or IGA. Although the three types of algorithms
result in little difference in convergent speeds under different
cases, all the travelled distances tend to converge. In terms of
CPU time, PSO performs better than the other two methods.
In terms of the shortest travelled distance, IGA performs
better than the other two methods. Therefore, the user can
select a suitable method for optimal retrieval scheduling in a
double-deep AS/RS. Based on this study, extension to more
complicated systems with multiple objectives can thus be
further investigated for real applications in the future.
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parallel genetic algorithm and particle swarm optimization for
real-time UAV path planning,” IEEE Transactions on Industrial
Informatics, vol. 9, no. 1, pp. 132–141, 2013.


