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The motion of dilute charged particles can be modeled by Vlasov-Poisson-Boltzmann system. We study the large time stability of
the VPB system. To be precise, we prove that when time goes to infinity, the solution of VPB system tends to global Maxwellian
state in a rate 𝑂(𝑡−∞), by using a method developed for Boltzmann equation without force in the work of Desvillettes and Villani
(2005). The improvement of the present paper is the removal of condition on parameter 𝜆 as in the work of Li (2008).

1. Introduction

Large time behavior for the Boltzmann equation and related
systems is an important topic for both physicists and math-
ematicians. We consider the Cauchy problem for Vlasov-
Poisson-Boltzmann system in a torus T𝑁:

𝑓
𝑡

+ V ⋅ ∇
𝑥

𝑓 + ∇
𝑥

𝜙 ⋅ ∇V𝑓 = 𝑄 (𝑓, 𝑓) , on T
𝑁

, (1)

Δ𝜙 = ∫
R𝑁
𝑓𝑑V − 𝜌

0

, on T
𝑁

, (2)

𝑓 (0, 𝑥, V) = 𝑓
0

(𝑥, V) , (3)

𝑄 (𝑓, 𝑓) = ∫
R𝑁
∫
S𝑁−1

(𝑓
󸀠

𝑓
󸀠

∗

− 𝑓𝑓
∗

) 𝑞 (V − V
∗

, 𝜎) 𝑑𝜎 𝑑V
∗

. (4)

𝑓 = (𝑡, 𝑥, V), which represents the distribution of particles,
is a function of time 𝑡 ∈ R+, particle velocity V ∈ R𝑁,
and position 𝑥 ∈ T𝑁. The force ∇𝜙 in (1) is controlled
by Poisson equation (2), which comes intrinsically by the
nonequilibrium distribution of particles.

The quadratic term 𝑄(𝑓, 𝑓) is the collision operator and
𝑞(V − V

∗

, 𝜎) is the corresponding cross-section. It is well-
known by the conservation of mass that 𝜌

0

= ∫
T𝑁×R𝑁

𝑓
0

𝑑𝑥 𝑑V
is a fixed constant which represents the background charge.

Without loss of generality, we can assume |T𝑁| = 1, 𝜌
0

=

1. Define 𝜌, 𝑢, 𝑇, which are functions of 𝑡 and 𝑥 by

𝜌 = ∫
R𝑁
𝑓𝑑V, 𝜌𝑢 = ∫

R𝑁
𝑓V 𝑑V,

𝜌|𝑢|
2

+ 𝑁𝜌𝑇 = ∫
R𝑁
𝑓|V|2𝑑V.

(5)

Physically, they represent themacroscopic quantities: density,
bulk velocity, and temperature, respectively. It is well known
that the conservation of mass, momentum, and energy holds:

𝑑

𝑑𝑡
∫
T𝑁
𝜌 𝑑𝑥 = 0,

𝑑

𝑑𝑡
∫
T𝑁
𝜌𝑢 𝑑𝑥 = 0,

𝑑

𝑑𝑡
∫
T𝑁
(
𝜌|𝑢|

2

2
+
𝑁𝜌𝑇

2
+

󵄨󵄨󵄨󵄨∇𝜙
󵄨󵄨󵄨󵄨

2

2
)𝑑𝑥 = 0.

(6)

Here, the total energy consists of the kinetic energy 𝜌|𝑢|2/2,
the internal heat energy 𝑁𝜌𝑇/2, and the electric potential
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energy |∇𝜙|2/2. By simple translation and dilation, 𝜌, 𝑢,𝑇 can
be normalized as

∫
T𝑁×R𝑁

𝑓𝑑V 𝑑𝑥 = ∫
T𝑁
𝜌 𝑑𝑥 = 𝜌

0

= 1,

∫
T𝑁×R𝑁

𝑓 V 𝑑V 𝑑𝑥 = ∫
T𝑁
𝜌𝑢 𝑑𝑥 = 0,

∫
T𝑁×R𝑁

(𝑓
|V|2

2
+

󵄨󵄨󵄨󵄨∇𝜙
󵄨󵄨󵄨󵄨

2

2
)𝑑V 𝑑𝑥

= ∫
T𝑁
(
𝜌|𝑢|

2

2
+
𝑁𝜌𝑇

2
+

󵄨󵄨󵄨󵄨∇𝜙
󵄨󵄨󵄨󵄨

2

2
)𝑑𝑥 =

𝑁

2
.

(7)

If the initial datum 𝑓
0

satisfies the conservation laws (7),
then the stationary solution is a global Maxwellian𝑀, in the
form of

𝑀 = 𝑀
[1,0,1]

=
1

(2𝜋)
𝑁/2

exp{−|V|
2

2
} , (8)

where the subscript [1, 0, 1] represents the corresponding
macroscopic quantities: density, bulk velocity, and tempera-
ture, respectively.

Traditional method for studying the asymptotic behavior
is using linearization around local or globalMaxwellian state.
Without external force, Ukai [1] proved an exponential decay
rate for the cutoff hard potential in a torus in 1974. In 1980,
Caflisch [2] obtained a rate like 𝑂(𝑒−𝑡

𝛽

) for the cutoff soft
potential with 𝛾 ≥ −1 in a torus, where 𝛽 = 2/(2 − 𝛾) ∈ [0, 1].
Strain and Guo [3] extend Caflisch’s result in 2008 and get a
convergence rate like 𝑂(𝑒−𝑡

𝑃

) (0 < 𝑃 < 1) for the very soft
potential case (𝛾 < −1). The previous results all make use of
the linearization.

However, by using some estimates on systems of second-
order differential inequalities, Desvillettes and Villani [4]
obtain an almost exponential convergence rate like 𝑂(𝑡−∞).
The result is weaker than using linearization, but the small-
ness assumption on initial data 𝑓

0

− 𝑀 is removed and the
conclusion holds for noncutoff collision kernels as well.

Our work is inspired by the work of Desvillettes and
Villani [4]. We extend their result for Boltzmann equation
without external force to the Vlasov-Poisson-Boltzmann
system.

In a previous work [5], the Vlasov-Poisson-Boltzmann
system with (2) replaced by

𝜆Δ𝜙 = ∫
R𝑁
𝑓𝑑V − 𝜌

0

(9)

is proved to satisfy the following theorem.

Theorem 1. Let 𝑞(V − V
∗

, 𝜎) satisfy

𝑞 ≥ 𝐾
𝐵

min (󵄨󵄨󵄨󵄨V − V
∗

󵄨󵄨󵄨󵄨

𝛾−
,
󵄨󵄨󵄨󵄨V − V

∗

󵄨󵄨󵄨󵄨

−𝛽−
) , (10)

and let the collision operator satisfy
󵄩󵄩󵄩󵄩𝑄(𝑔, ℎ)

󵄩󵄩󵄩󵄩𝐿2(R𝑁V )
≤ 𝐶

𝐵

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩
𝐻

𝑘0
𝑠0
(R𝑁V )

‖ℎ‖
𝐻

𝑘0
𝑠0
(R𝑁V )

, (11)

for some 𝑘
0

, 𝑠
0

≥ 0, where 𝐾
𝐵

and 𝐶
𝐵

are positive constants.
Let (𝑓)

𝑡≥0

be a smooth solution of the problem (1), (9), and (3),
such that, for all 𝑘, 𝑠 > 0,

sup
𝑡≥0

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐻𝑘
𝑠
(T𝑁×R𝑁)

≤ 𝐶
𝑘,𝑠

< +∞, (12)

and for all 𝑡 > 0, 𝑥 ∈ T𝑁, and V ∈ R𝑁,

𝑓 (𝑥, V) ≥ 𝐾
0

𝑒
−𝐴0|V|

𝑞0

(𝐴
0

, 𝐾
0

> 0; 𝑞
0

≥ 2) . (13)

Then ∃𝜆
0

, such that, for all 𝜆 > 𝜆
0

, the solution 𝑓 converges to
𝑀 in an almost exponential rate; that is, for any small positive
constant 𝜖 > 0,

󵄩󵄩󵄩󵄩𝑓 −𝑀
󵄩󵄩󵄩󵄩 = 𝑂 (1) 𝑡

−1/700𝜖

, (14)

where𝑂(1) depends on𝐾
𝐵

, 𝛾
−

, 𝛽
−

, 𝐶
𝐵

, 𝑘
0

, 𝑠
0

, 𝐶
𝑘,𝑠

,𝐾
0

, 𝐴
0

, 𝑞
0

,
and 𝜖.

The present paper extends the result of [5] by removing
the condition on 𝜆 and considers system (1)–(3). To be
precise, the main result of this paper is as follows.

Theorem 2. Under condition (10)–(13), the solution 𝑓 of
problem (1)–(3) converges to𝑀 in an almost exponential rate;
that is, for any small positive constant 𝜖 > 0,

󵄩󵄩󵄩󵄩𝑓 −𝑀
󵄩󵄩󵄩󵄩 = 𝑂 (1) 𝑡

−1/700𝜖

, (15)

where 𝑂(1) depends on the constants in (10)–(13) and 𝜖.

Now, we state some results on the existence of solutions of
VPB system.The global existence of solutions is proved in [6]
in a torus and [7–9] in the whole space with small perturbed
initial data. The existence result in [7] also holds for a more
general case, like the Vlasov-Maxwell-Boltzmann system.

The following is devoted to the proof of Theorem 2.
Section 2 gives some lemmas which will be used later. Proof
of the main result is given in Section 3.

2. Preliminaries

First, denote some local Maxwellian states in forms of 𝜌, 𝑢, 𝑇.
Define𝑀

[𝜌,𝑢,𝑇]

,𝑀
[𝜌,𝑢,⟨𝑇⟩]

,𝑀
[𝜌,0,⟨𝑇⟩]

,𝑀
[𝜌,0,1]

as follows:

𝑀
[𝜌,𝑢,𝑇]

(V) =
𝜌

(2𝜋𝑇)
𝑁/2

exp{−|V − 𝑢|
2

2𝑇
} ,

𝑀
[𝜌,𝑢,⟨𝑇⟩]

(V) =
𝜌

(2𝜋 ⟨𝑇⟩)
𝑁/2

exp{−|V − 𝑢|
2

2 ⟨𝑇⟩
} ,

𝑀
[𝜌,0,⟨𝑇⟩]

(V) =
𝜌

(2𝜋 ⟨𝑇⟩)
𝑁/2

exp{− |V|2

2 ⟨𝑇⟩
} ,

𝑀
[𝜌,0,1]

(V) =
𝜌

(2𝜋)
𝑁/2

exp{−|V|
2

2
} ,

(16)

where ⟨𝑇⟩ = ∫ 𝜌𝑇𝑑𝑥 stands for the mean temperature.
As we will show in Section 3, the gradient of tempera-

ture prevents 𝑓 from being close to 𝑀
[𝜌,𝑢,𝑇]

for too long;
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the symmetric gradient of velocity prevents 𝑓 from being
close to𝑀

[𝜌,𝑢,⟨𝑇⟩]

for long, that is, the local Maxwellians with
constant temperature; and finally, the gradient of 𝜌 and 𝜙
prevents 𝑓 from being close to𝑀

[𝜌,0,⟨𝑇⟩]

and𝑀
[𝜌,0,1]

for long.
In order to estimate the distance between two distributions,
we need to define 𝐻 functional and relative information
(or relative entropy) between two distributions, which is
the main measure of the distance between 𝑓 and the local
Maxwellians.

Definition 3. Suppose 𝑓 and 𝑔 are two distributions on T𝑁 ×

R𝑁, s.t.:

∫
T𝑁×R𝑁

𝑓 = ∫
T𝑁×R𝑁

𝑔. (17)

Define the H functional (negative of the entropy) and the
Kullback relative information by

𝐻(𝑓) = ∫
T𝑁×R𝑁

𝑓 log𝑓, 𝐻 (𝑓 | 𝑔) = ∫
T𝑁×R𝑁

𝑓 log
𝑓

𝑔
.

(18)

Proposition 4. The well-known Csiszár-Kullback inequality
asserts

𝐻(𝑓𝑔) ≥
1

4

󵄩󵄩󵄩󵄩𝑓 − 𝑔
󵄩󵄩󵄩󵄩

2

𝐿

1
(𝑥,V),

(19)

if 𝑓 and 𝑔 are two distributions on T𝑁 ×R𝑁. Moreover, if 𝑓 is
the solution of (1), (2) and satisfies (7), then

𝐻(𝑓 | 𝑀) = 𝐻 (𝑓) − 𝐻 (𝑀) −
1

2
∫
T𝑁

󵄨󵄨󵄨󵄨∇𝜙
󵄨󵄨󵄨󵄨

2

. (20)

Proof. Define 𝜑(ℎ) = ℎ log(ℎ); then since ∫𝑓 = ∫𝑔 = 1, we
have

𝐻(𝑓 | 𝑔) = ∫𝑓 log
𝑓

𝑔
= ∫𝑓 log𝑓 − 𝑓 log𝑔 − 𝑓 + 𝑔

= ∫𝑓 log𝑓 − 𝑔 log𝑔 − (log𝑔 + 1) (𝑓 − 𝑔)

= ∫𝜑 (𝑓) − 𝜑 (𝑔) − 𝜑
󸀠

(𝑔) (𝑓 − 𝑔)

=
1

2
∫𝜑

󸀠󸀠

(ℎ)
󵄨󵄨󵄨󵄨𝑓 − 𝑔

󵄨󵄨󵄨󵄨

2

=
1

2
∫
1

ℎ

󵄨󵄨󵄨󵄨𝑓 − 𝑔
󵄨󵄨󵄨󵄨

2

,

(21)

where ℎ stands for a positive function between 𝑓 and 𝑔.
The last equality is obtained by using second-order Taylor
expansion. By Hölder’s inequality, we have

∫
󵄨󵄨󵄨󵄨𝑓 − 𝑔

󵄨󵄨󵄨󵄨 ℎ
−1/2

ℎ
1/2

≤ (∫
1

ℎ

󵄨󵄨󵄨󵄨𝑓 − 𝑔
󵄨󵄨󵄨󵄨

2

)

1/2

(∫ℎ)

1/2

, ∀ℎ > 0.

(22)

Since ℎ lies between 𝑓 and 𝑔, notice that distributions 𝑓, 𝑔
are nonnegative; thus ℎ ≤ 𝑓 + 𝑔. We have

∫
1

ℎ

󵄨󵄨󵄨󵄨𝑓 − 𝑔
󵄨󵄨󵄨󵄨

2

≥

(∫
󵄨󵄨󵄨󵄨𝑓 − 𝑔

󵄨󵄨󵄨󵄨)
2

∫ (𝑓 + 𝑔)
=
1

2
(∫

󵄨󵄨󵄨󵄨𝑓 − 𝑔
󵄨󵄨󵄨󵄨)

2

, (23)

and (19) is obtained. Equation (20) follows directly from (7).

We now state the quantitative version of𝐻-theorem. See
[10] for the proof.

Theorem 5 (Quantitative 𝐻-Theorem). If (𝑓)
𝑡≥0

is a smooth
solution of the VPB equation (1), (2), then the H functional
𝐻(𝑓) is nonincreasing as a function of 𝑡, and the decreasing
rate

𝑑

𝑑𝑡
𝐻 (𝑓) = −∫

T𝑁
𝐷(𝑓 (𝑥, ⋅)) 𝑑𝑥, (24)

where

𝐷(𝑓) =
1

4
∫
R𝑁×R𝑁×S𝑁−1

(𝑓
󸀠

𝑓
󸀠

∗

− 𝑓𝑓
∗

) log
𝑓
󸀠

𝑓
󸀠

∗

𝑓𝑓
∗

𝐵𝑑𝜎𝑑V 𝑑V
∗

(25)

is a positive definite functional.
Moreover, if the collision kernel 𝑞 satisfies (10), and 𝑓 com-

plies with (12), then

𝐷(𝑓) ≥ 𝐾
𝜖

(∫
R𝑁
𝑓 log

𝑓

𝑀
[𝜌,𝑢,𝑇]

)

1+𝜖

,

−
𝑑

𝑑𝑡
𝐻 (𝑓) ≥ 𝐾

𝐻

𝐻(𝑓 | 𝑀
[𝜌,𝑢,𝑇]

)
1+𝜖

.

(26)

The only set that can make 𝐷 vanish is the local Maxwellian
state.

We state some notations here for the fluency of descrip-
tion. Let 𝐴 and 𝐵 be matrices; let the operation 𝐴 : 𝐵 =

∑
𝑖𝑗

𝐴
𝑖𝑗

𝐵
𝑖𝑗

. For a vector-valued function 𝑢, the divergence is

∇
𝑥

⋅ 𝑢 = ∑

𝑖

𝜕𝑢
𝑖

𝜕𝑥
𝑖

, (27)

the elements of gradient matrix ∇
𝑥

𝑢 satisfy

(∇
𝑥

𝑢)
𝑖𝑗

=
𝜕𝑢

𝑗

𝜕𝑥
𝑖

, (28)

the symmetric part of ∇𝑢 is

∇
sym
𝑥

𝑢 =
∇
𝑥

𝑢 + (∇
𝑥

𝑢)
𝑇

2
, (29)

and the traceless part of ∇sym
𝑥

𝑢 is symbolized by {∇
𝑥

𝑢}:

{∇
𝑥

𝑢} = ∇
sym
𝑥

𝑢 −
∇
𝑥

⋅ 𝑢

𝑁
𝐼
𝑁

. (30)
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We expect to estimate decay rate of the distance between
𝑓 and𝑀, and the distance is measured by Kullback relative
information. By using conservation laws, a direct computa-
tion will show that the relative information between 𝑓 and𝑀
can be decomposed into a purely hydrodynamic part and a
purely kinetic part:

𝐻(𝑓 | 𝑀) =H (𝜌, 𝑢, 𝑇) + 𝐻(𝑓 | 𝑀
[𝜌,𝑢,𝑇]

) ,

H (𝜌, 𝑢, 𝑇) = ∫
𝑇

𝑁

𝜌 log 𝜌 + 𝑁
2
∫
𝑇

𝑁

𝜌 (𝑇 − log𝑇 − 1)

+ ∫
𝑇

𝑁

𝜌
|𝑢|

2

2

=:H (𝜌 | 1) +H (𝑇 | 1) +H (𝑢 | 0) ,

(31)

where

H (𝑢 | 0) = ∫𝜌
|𝑢|

2

2
,

H (𝜌 | 1) = ∫
𝑇

𝑁

𝜌 log 𝜌 = ∫
𝑇

𝑁

𝜌 log 𝜌 − 𝜌 + 1
(32)

are nonnegative since 𝜌 log 𝜌 − 𝜌 + 1 is convex with the
minimum zero at 𝜌 = 1.

Moreover, denote Ψ(𝑋) = (𝑁/2)(𝑋 − ln𝑋 − 1); we can
further decomposeH(𝑇 | 1) into

H (𝑇 | 1) =H (𝑇 | ⟨𝑇⟩) +H (⟨𝑇⟩ | 1) , (33)

where

H (𝑇 | ⟨𝑇⟩) = ∫𝜌Ψ (𝑇) − Ψ (⟨𝑇⟩) ,

H (⟨𝑇⟩ | 1) = Ψ (⟨𝑇⟩) .

(34)

It is easy to check that each of the previous terms is nonneg-
ative by using Jensen’s inequality and convexity of functions
Ψ(𝑋).

It is easy to verify the following.

Lemma 6. Use the previously mentioned notations; then one
has the following additivity roles:

𝐻(𝑓 | 𝑀
[𝜌,𝑢,𝑇]

) +H (𝑇 | ⟨𝑇⟩) = 𝐻(𝑓 | 𝑀
[𝜌,𝑢,⟨𝑇⟩]

) ,

𝐻 (𝑓 | 𝑀
[𝜌,𝑢,⟨𝑇⟩]

) +
1

⟨𝑇⟩
H (𝑢 | 0) = 𝐻 (𝑓 | 𝑀

[𝜌,0,⟨𝑇⟩]

) ,

𝐻 (𝑓 | 𝑀
[𝜌,0,⟨𝑇⟩]

) +H (⟨𝑇⟩ | 1) + (1 −
1

⟨𝑇⟩
)H (𝑢 | 0)

= 𝐻 (𝑓 | 𝑀
[𝜌,0,1]

) ,

𝐻 (𝑓 | 𝑀
[𝜌,0,1]

) +H (𝜌 | 1) = 𝐻 (𝑓 | 𝑀) .

(35)

Moreover, one has

𝐻(𝑓 | 𝑀
[𝜌,𝑢,𝑇]

) ≥ 𝐾
𝐼

󵄩󵄩󵄩󵄩󵄩
𝑓 −𝑀

[𝜌,𝑢,𝑇]

󵄩󵄩󵄩󵄩󵄩

2(1+𝜖)

𝐿

2
,

𝐻 (𝑓 | 𝑀
[𝜌,𝑢,⟨𝑇⟩]

) ≥ 𝐾
𝐼

󵄩󵄩󵄩󵄩󵄩
𝑓 −𝑀

[𝜌,𝑢,⟨𝑇⟩]

󵄩󵄩󵄩󵄩󵄩

2(1+𝜖)

𝐿

2
,

𝐻 (𝑓 | 𝑀
[𝜌,0,⟨𝑇⟩]

) ≥ 𝐾
𝐼

󵄩󵄩󵄩󵄩󵄩
𝑓 −𝑀

[𝜌,0,⟨𝑇⟩]

󵄩󵄩󵄩󵄩󵄩

2(1+𝜖)

𝐿

2
,

𝐻 (𝑓 | 𝑀
[𝜌,0,1]

) ≥ 𝐾
𝐼

󵄩󵄩󵄩󵄩󵄩
𝑓 −𝑀

[𝜌,0,1]

󵄩󵄩󵄩󵄩󵄩

2(1+𝜖)

𝐿

2
.

(36)

Here nonnegative termsH(𝜌 | 1),H(𝑢 | 0),H(𝑇 | ⟨𝑇⟩),
H(⟨𝑇⟩ | 1) are parts of the relative entropy, 𝐾

𝐼

> 0.

Proof. Additivity rules can be verified by direct computation.
By using Csiszár-Kullback inequality and the interpolation
from 𝐿

2 into 𝐿1, we can get (36). See [4] or [5] for more
details.

Now we assert the key lemma of the paper, which asserts
the instability of hydrodynamic descriptions for 𝑓.

Lemma7. The following four second-order differential inequa-
lities hold:

𝑑
2

𝑑𝑡2

󵄩󵄩󵄩󵄩󵄩
𝑓 −𝑀

[𝜌,𝑢,𝑇]

󵄩󵄩󵄩󵄩󵄩

2

𝐿

2
(𝑥,V)

≥ 𝐾
1

[∫
𝑇

𝑁

|∇𝑇 (𝑥)|
2

𝑑𝑥 + ∫
𝑇

𝑁

|{∇𝑢 (𝑥)}|
2

𝑑𝑥]

−
𝐶
1

𝛿
1−𝜖

1

(
󵄩󵄩󵄩󵄩󵄩
𝑓 −𝑀

[𝜌,𝑢,𝑇]

󵄩󵄩󵄩󵄩󵄩

2

𝐿

2
)

1−𝜖

− 𝛿
1

𝐻(𝑓 | 𝑀) ,

(37)

𝑑
2

𝑑𝑡2

󵄩󵄩󵄩󵄩󵄩
𝑓 −𝑀

[𝜌,𝑢,⟨𝑇⟩]

󵄩󵄩󵄩󵄩󵄩

2

𝐿

2
(𝑥,V)

≥ 𝐾
2

∫
𝑇

𝑁

󵄨󵄨󵄨󵄨∇
sym
𝑢
󵄨󵄨󵄨󵄨

2

𝑑𝑥

−
𝐶
2

𝛿
1−𝜖

2

(
󵄩󵄩󵄩󵄩󵄩
𝑓 −𝑀

[𝜌,𝑢,⟨𝑇⟩]

󵄩󵄩󵄩󵄩󵄩

2

𝐿

2
)

1−𝜖

− 𝛿
2

𝐻(𝑓 | 𝑀) ,

(38)

𝑑
2

𝑑𝑡2

󵄩󵄩󵄩󵄩󵄩
𝑓 −𝑀

[𝜌,0,⟨𝑇⟩]

󵄩󵄩󵄩󵄩󵄩

2

𝐿

2
(𝑥,V)

≥ 𝐾
3

[∫
𝑇

𝑁

󵄨󵄨󵄨󵄨∇𝜙
󵄨󵄨󵄨󵄨

2

𝑑𝑥 + ∫
𝑇

𝑁

󵄨󵄨󵄨󵄨∇𝜌
󵄨󵄨󵄨󵄨

2

𝑑𝑥]

−
𝐶
3

𝛿
1−𝜖

3

(
󵄩󵄩󵄩󵄩󵄩
𝑓 −𝑀

[𝜌,0,⟨𝑇⟩]

󵄩󵄩󵄩󵄩󵄩

2

𝐿

2
)

1−𝜖

− 𝛿
3

𝐻(𝑓 | 𝑀) ,

(39)

𝑑
2

𝑑𝑡2

󵄩󵄩󵄩󵄩󵄩
𝑓 −𝑀

[𝜌,0,1]

󵄩󵄩󵄩󵄩󵄩

2

𝐿

2
(𝑥,V)

≥ 𝐾
4

[∫
𝑇

𝑁

󵄨󵄨󵄨󵄨∇𝜙
󵄨󵄨󵄨󵄨

2

𝑑𝑥 + ∫
𝑇

𝑁

󵄨󵄨󵄨󵄨∇𝜌
󵄨󵄨󵄨󵄨

2

𝑑𝑥]

−
𝐶
4

𝛿
1−𝜖

4

(
󵄩󵄩󵄩󵄩󵄩
𝑓 −𝑀

[𝜌,0,1]

󵄩󵄩󵄩󵄩󵄩

2

𝐿

2
)

1−𝜖

− 𝛿
4

𝐻(𝑓 | 𝑀) .

(40)

Here 𝛿
1

, 𝛿
2

, 𝛿
3

, 𝛿
4

are small enough constants, and all constants
are positive.
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Roughly speaking, the previous inequalities show that
𝑓 cannot stay near local Maxwellian states. The gradient of
𝑇 prevents 𝑓 from staying close to 𝑀

[𝜌,𝑢,𝑇]

for long; the
symmetric gradient of 𝑢 prevents 𝑓 from staying close to
𝑀

[𝜌,𝑢,⟨𝑇⟩]

for long; finally, the gradient of 𝜌 prevents 𝑓 from
staying close to𝑀

[𝜌,0,⟨𝑇⟩]

and𝑀
[𝜌,0,1]

. It left𝑀 = 𝑀
[1,0,1]

as
the only stable state.

To prove Lemma 7, the following lemma is needed, whose
proof can be found in [4].

Lemma 8. Let ℎ be a smooth function of 𝑥, V. Then, for all
multi-indexes 𝛼, 𝛽, and for all 𝜂 < 1,

∫(V𝛼𝜕𝛽
𝑥,Vℎ)

2

𝑑V 𝑑𝑥 ≤ ‖ℎ‖
2𝜂

𝐻

|𝛽|

|𝛼|/𝜂

‖ℎ‖
2𝜂(1−𝜂)

𝐻

|𝛽|/𝜂
‖ℎ‖

2(1−𝜂)

2

𝐿

2
. (41)

Proof of Lemma 7. Most of the proof is similar to that in [4, 5];
the only difference is in estimating terms with 𝜙. We will only
prove (39) as an example of how to estimate terms with 𝜙.

We have

𝑑
2

𝑑𝑡2

󵄩󵄩󵄩󵄩󵄩
𝑓 −𝑀

[𝜌,0,⟨𝑇⟩]

󵄩󵄩󵄩󵄩󵄩

2

𝐿

2

= 2∫(
𝜕

𝜕𝑡
(𝑓 −𝑀

[𝜌,0,⟨𝑇⟩]

))

2

𝑑V 𝑑𝑥

+ 2∫ (𝑓 −𝑀
[𝜌,0,⟨𝑇⟩]

)
𝜕
2

𝜕𝑡2
(𝑓 − 𝑔) 𝑑V 𝑑𝑥

= 𝐴 + 𝐵.

(42)

At the moment when 𝑓 = 𝑀
[𝜌,0,⟨𝑇⟩]

, 𝐵 vanishes, so we
only need to estimate 𝐴:

𝜕

𝜕𝑡
(𝑓 −𝑀

[𝜌,0,⟨𝑇⟩]

) = −V ⋅ ∇
𝑥

𝑓 − ∇
𝑥

𝜙 ⋅ ∇V𝑓 + 𝑄 (𝑓, 𝑓)

−
𝜕

𝜕𝑡
𝑀

[𝜌,0,⟨𝑇⟩]

= −(
𝜕

𝜕𝑡
+ V ⋅ ∇

𝑥

+ ∇
𝑥

𝜙 ⋅ ∇V)𝑀[𝜌,0,⟨𝑇⟩]

.

(43)

From (1) we have

𝜌
𝑡

+ ∇
𝑥

⋅ (𝜌𝑢) = 0,

(𝜌𝑢)
𝑡

+ ∇
𝑥

⋅ (𝜌𝑢 ⊗ 𝑢 + 𝜌𝑇𝐼
𝑁

+ 𝐷) − 𝜌∇
𝑥

𝜙 = 0,

(𝜌|𝑢|
2

+ 𝑁𝜌𝑇)
𝑡

+ ∇
𝑥

⋅ (𝜌|𝑢|
2

𝑢 + (𝑁 + 2) 𝜌𝑢𝑇 + 2𝐷𝑢 + 2𝑅)

− 2𝜌𝑢 ⋅ ∇
𝑥

𝜙 = 0.

(44)

Here, 𝐷 and 𝑅 are matrix-valued and vector-valued func-
tions, respectively, defined by

𝐷
𝑖𝑗

(𝑥) = ∫
𝑅

𝑁

𝑓 (𝑥, V)

× [(V − 𝑢)
𝑖

(V − 𝑢)
𝑗

−
|V − 𝑢|2

𝑁
𝛿
𝑖𝑗

]𝑑V,

𝑅 (𝑥) = ∫
𝑅

𝑁

𝑓 (𝑥, V)
|V − 𝑢|2

2
(V − 𝑢) 𝑑V.

(45)

Then, we obtain

(𝜕
𝑡

+ 𝑢 ⋅ ∇) 𝜌 + 𝜌∇ ⋅ 𝑢 = 0,

(𝜕
𝑡

+ 𝑢 ⋅ ∇) 𝑢 + ∇𝑇 +
𝑇∇𝜌

𝜌
+
∇ ⋅ 𝐷

𝜌
− ∇

𝑥

𝜙 = 0,

(𝜕
𝑡

+ 𝑢 ⋅ ∇) 𝑇 +
2𝑇

𝑁
∇ ⋅ 𝑢 +

2

𝜌𝑁
(∇𝑢 : 𝐷 + ∇ ⋅ 𝑅) = 0.

(46)

Also, we get

𝜕
𝑡

⟨𝑇⟩ = [∫ (𝜕
𝑡

𝜌) 𝑇 + ∫𝜌 (𝜕
𝑡

𝑇)]

= [−∫∇ ⋅ (𝜌𝑢) 𝑇 − ∫𝜌𝑢 ⋅ ∇𝑇 −
2

𝑁
∫𝜌𝑇∇ ⋅ 𝑢

−
2

𝑁
∫∇𝑢 : 𝐷 −

2

𝑁
∫∇ ⋅ 𝑅]

= [−
2

𝑁
∫𝜌𝑇∇ ⋅ 𝑢 −

2

𝑁
∫∇𝑢 : 𝐷] .

(47)

Then the equations of𝑀
[𝜌,0,⟨𝑇⟩]

can be stated as follows:

(𝜕
𝑡

+ V ⋅ ∇
𝑥

+ ∇
𝑥

𝜙 ⋅ ∇V)𝑀[𝜌,0,⟨𝑇⟩]

= 𝑀
[𝜌,0,⟨𝑇⟩]

× {[
𝜕
𝑡

𝜌

𝜌
−
𝑁

2

𝜕
𝑡

⟨𝑇⟩

⟨𝑇⟩
]

+V ⋅ [
∇𝜌

𝜌
−
∇
𝑥

𝜙

⟨𝑇⟩
] + |V|2 [

𝜕
𝑡

⟨𝑇⟩

2⟨𝑇⟩
2

]} .

(48)

From (46) and (47), we have

𝜕
𝑡

(𝑓 −𝑀
[𝜌,0,⟨𝑇⟩]

)

= −𝑀
[𝜌,0,⟨𝑇⟩]

× {[
𝜕
𝑡

𝜌

𝜌
−
𝑁

2

𝜕
𝑡

⟨𝑇⟩

⟨𝑇⟩
]

+V ⋅ [
∇𝜌

𝜌
−
∇
𝑥

𝜙

⟨𝑇⟩
] + |V|2 [

𝜕
𝑡

⟨𝑇⟩

2⟨𝑇⟩
2

]} .

(49)
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Note that𝑀
[𝜌,0,⟨𝑇⟩]

, |V|2𝑀
[𝜌,0,⟨𝑇⟩]

, |V|2𝑀
[𝜌,0,⟨𝑇⟩]

are linearly
independent in weighted 𝐿2((1/𝑀

[𝜌,0,⟨𝑇⟩]

)𝑑V) space. There-
fore,

𝑑
2

𝑑𝑡2

󵄩󵄩󵄩󵄩󵄩
𝑓 −𝑀

[𝜌,0,⟨𝑇⟩]

󵄩󵄩󵄩󵄩󵄩

2

𝐿

2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑓=𝑀[𝜌,0,⟨𝑇⟩]

≥ 𝜅∫
𝑇

𝑁

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∇𝜌

𝜌
−
∇
𝑥

𝜙

⟨𝑇⟩

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥

= 𝜅 [∫

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∇𝜌

𝜌

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

+ ∫

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∇
𝑥

𝜙

⟨𝑇⟩

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

− 2∫
∇𝜌 ⋅ ∇𝜙

𝜌 ⟨𝑇⟩
] ,

(50)

where

−2∫
∇𝜌 ⋅ ∇𝜙

𝜌 ⟨𝑇⟩
= −

2

⟨𝑇⟩
∫∇ ln 𝜌 ⋅ ∇𝜙

=
2

⟨𝑇⟩
∫ ln 𝜌Δ𝜙 = 2

⟨𝑇⟩
∫ ln 𝜌 (𝜌 − 1) .

(51)

It is easy to verify the convexity and nonnegativity of ln 𝜌(𝜌−
1). Therefore,

𝑑
2

𝑑𝑡2

󵄩󵄩󵄩󵄩󵄩
𝑓 −𝑀

[𝜌,0,⟨𝑇⟩]

󵄩󵄩󵄩󵄩󵄩

2

𝐿

2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑓=𝑀[𝜌,0,⟨𝑇⟩]

≥ 𝜅[∫

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∇𝜌

𝜌

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

+ ∫

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∇
𝑥

𝜙

⟨𝑇⟩

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

]

≥ 𝐾
3

[∫
𝑇

𝑁

󵄨󵄨󵄨󵄨∇𝜌
󵄨󵄨󵄨󵄨

2

𝑑𝑥 + ∫
𝑇

𝑁

󵄨󵄨󵄨󵄨∇𝑥𝜙
󵄨󵄨󵄨󵄨

2

𝑑𝑥] .

(52)

When 𝑓 does not coincide with 𝑀
[𝜌,0,⟨𝑇⟩]

, we need to
estimate two terms 𝐴 and 𝐵 of (42) separately. The detailed
calculation can be found in [4, 5]. Also, we just emphasize
the estimates for terms with 𝜙 here.

Notice that, when estimating 𝐵, we need to control
‖𝜕

2

𝑓/𝜕𝑡
2

‖
𝐿

2 by ‖𝑓 −𝑀‖1−𝛼
𝐿

2 . Substitute the Vlasov-Poisson-
Boltzmann equation (1) into 𝜕2𝑓/𝜕𝑡2; we get terms of 𝜙.

(a) 𝐿2 norm estimate of ∇
𝑥

𝜙
𝑡

⋅ ∇V𝑓.
It is obvious that

󵄩󵄩󵄩󵄩∇𝑥𝜙𝑡 ⋅ ∇V𝑓
󵄩󵄩󵄩󵄩𝐿2

≤
󵄩󵄩󵄩󵄩∇𝑥𝜙𝑡 ⋅ ∇V(𝑓 −𝑀)

󵄩󵄩󵄩󵄩𝐿2 +
󵄩󵄩󵄩󵄩∇𝑥𝜙𝑡 ⋅ ∇V𝑀

󵄩󵄩󵄩󵄩𝐿2

≤ 𝐶(∫
󵄨󵄨󵄨󵄨∇V (𝑓 −𝑀)

󵄨󵄨󵄨󵄨

2

𝑑𝑥 𝑑V)
1/2

+ 𝐶(∫
󵄨󵄨󵄨󵄨∇𝑥𝜙𝑡

󵄨󵄨󵄨󵄨

2

𝑑𝑥)

1/2

.

(53)

The first term is bounded by 𝐶‖𝑓 −𝑀‖1−𝛼
𝐿

2 by interpolation
lemma. As for the second term, since

∫
󵄨󵄨󵄨󵄨∇𝑥𝜙𝑡

󵄨󵄨󵄨󵄨

2

𝑑𝑥 = −∫Δ𝜙
𝑡

⋅ 𝜙
𝑡

𝑑𝑥 = −∫𝜌
𝑡

𝜙
𝑡

𝑑𝑥

= ∫∇
𝑥

⋅ (𝜌𝑢) 𝜙
𝑡

𝑑𝑥 = −∫𝜌𝑢 ⋅ (∇
𝑥

𝜙
𝑡

) 𝑑𝑥

≤ (∫𝜌
2

𝑢
2

𝑑𝑥)

1/2

(∫
󵄨󵄨󵄨󵄨∇𝑥𝜙𝑡

󵄨󵄨󵄨󵄨

2

𝑑𝑥)

1/2

,

(54)

we have

∫
󵄨󵄨󵄨󵄨∇𝑥𝜙𝑡

󵄨󵄨󵄨󵄨

2

𝑑𝑥 ≤ 𝐶∫𝜌
2

𝑢
2

𝑑𝑥 ≤ 𝐶H (𝑢 | 0)

≤ 𝐶𝐻 (𝑓 | 𝑀) ≤ 𝐶
󵄩󵄩󵄩󵄩𝑓 −𝑀

󵄩󵄩󵄩󵄩

2

𝐿

2 .

(55)

Hence, ‖∇
𝑥

𝜙
𝑡

⋅ ∇V𝑓‖
𝐿

2 ≤ 𝐶‖𝑓 −𝑀‖
1−𝛼

𝐿

2 .
(b) 𝐿2 norm estimate of (V ⊗ ∇V𝑀) : (∇

2

𝑥

𝜙).
Note that𝑀 is a Gaussian distribution, so that𝑀2 times

any polynomials of V is integrable:

󵄩󵄩󵄩󵄩󵄩
(V ⊗ ∇V𝑀) : (∇

2

𝑥

𝜙)
󵄩󵄩󵄩󵄩󵄩

2

𝐿

2

=
󵄩󵄩󵄩󵄩󵄩
(V ⊗ V) : (∇2

𝑥

𝜙)𝑀
󵄩󵄩󵄩󵄩󵄩

2

𝐿

2

= ∑

𝑖,𝑗,𝑘,𝑙

∫ V
𝑖

V
𝑗

V
𝑘

V
𝑙

𝑀
2

𝜕
𝑥𝑖𝑥𝑗
𝜙𝜕

𝑥𝑘𝑥𝑙
𝜙𝑑V 𝑑𝑥

≤ 𝐶∑

𝑖,𝑗

∫𝜕
𝑥𝑖𝑥𝑖
𝜙𝜕

𝑥𝑗𝑥𝑗
𝜙𝑑𝑥

= 𝐶∫ (Δ𝜙)
2

𝑑𝑥 = 𝐶∫
󵄨󵄨󵄨󵄨𝜌 − 1

󵄨󵄨󵄨󵄨

2

𝑑𝑥

≤ 𝐶H (𝜌 | 1) ≤ 𝐶𝐻 (𝑓 | 𝑀) ≤ 𝐶
󵄩󵄩󵄩󵄩𝑓 −𝑀

󵄩󵄩󵄩󵄩

2

𝐿

2 .

(56)

(c) 𝐿2 norm estimate of (∇
𝑥

𝜙 ⊗ ∇
𝑥

𝜙) : ∇
2

V𝑀.
Similarly as in the previous argument, 𝑀2 times any

polynomials of V is integrable. Also, 𝜙 and 𝜕𝜙 are bounded
by Schauder estimate because it is constrained by a Poisson
equation.

Note that Δ𝜙 = 𝜌 − 1; we have

∫
𝑇

𝑁

󵄨󵄨󵄨󵄨∇𝜙
󵄨󵄨󵄨󵄨

2

𝑑𝑥 = −∫Δ𝜙 (𝜙 − 𝜙) 𝑑𝑥

= −∫ (𝜌 − 1) (𝜙 − 𝜙) 𝑑𝑥

≤ (∫ (𝜌 − 1)
2

)

1/2

(∫ (𝜙 − 𝜙)
2

)

1/2

≤ 𝐾
1/2

𝑃

(∫ (𝜌 − 1)
2

)

1/2

(∫
󵄨󵄨󵄨󵄨∇𝜙

󵄨󵄨󵄨󵄨

2

)

1/2

.

(57)

Here,𝐾
𝑃

is the constant appearing in the Poincaré inequality,
which is only relevant to the domain 𝑇𝑁. Thus,

∫
󵄨󵄨󵄨󵄨∇𝜙

󵄨󵄨󵄨󵄨

2

≤ 𝐾
𝑃

∫ (𝜌 − 1)
2

≤ 𝐾
2

𝑃

∫
󵄨󵄨󵄨󵄨∇𝜌

󵄨󵄨󵄨󵄨

2

. (58)



Abstract and Applied Analysis 7

Therefore,

󵄩󵄩󵄩󵄩󵄩
(∇

𝑥

𝜙 ⊗ ∇
𝑥

𝜙) : ∇
2

V𝑀
󵄩󵄩󵄩󵄩󵄩

2

𝐿

2

=
󵄩󵄩󵄩󵄩(∇𝑥𝜙 ⊗ ∇𝑥𝜙) : (V ⊗ V − 𝐼)𝑀󵄩󵄩󵄩󵄩

2

𝐿

2

= ∑

𝑖,𝑗,𝑘,𝑙

∫𝜕
𝑖

𝜙𝜕
𝑗

𝜙𝜕
𝑘

𝜙𝜕
𝑙

𝜙 (V
𝑖

V
𝑗

− 𝛿
𝑖𝑗

)

× (V
𝑘

V
𝑙

− 𝛿
𝑘𝑙

)𝑀
2

𝑑V 𝑑𝑥

≤ 𝐶∑

𝑖,𝑗

∫(𝜕
𝑖

𝜙𝜕
𝑗

𝜙)
2

𝑑𝑥 ≤ 𝐶∑

𝑖

∫ (𝜕
𝑖

𝜙)
2

𝑑𝑥

= 𝐶∫
󵄨󵄨󵄨󵄨∇𝜙

󵄨󵄨󵄨󵄨

2

𝑑𝑥 ≤ 𝐶∫
󵄨󵄨󵄨󵄨𝜌 − 1

󵄨󵄨󵄨󵄨

2

𝑑𝑥 ≤ 𝐶H (𝜌 | 1)

≤ 𝐶𝐻 (𝑓 | 𝑀) ≤ 𝐶
󵄩󵄩󵄩󵄩𝑓 −𝑀

󵄩󵄩󵄩󵄩

2

𝐿

2 .

(59)

(d) 𝐿2 norm estimate of 𝑄sym
(𝑓, ∇

𝑥

𝜙 ⋅ ∇V𝑀).
From themomentum and energy conservation of particle

collisions, it is easy to verify that

𝑄
sym

(𝑀, V
𝑖

𝑀) = 0. (60)

Thus,

𝑄
sym

(𝑓, ∇
𝑥

𝜙 ⋅ ∇V𝑀) = 𝑄
sym

(𝑓 −𝑀,∇
𝑥

𝜙 ⋅ V𝑀) . (61)

Then, using our continuity assumption (11) on 𝑄(𝑔, ℎ) and
the interpolation Lemma 8, we can estimate 𝐿2 norm of
𝑄

sym
(𝑓, ∇

𝑥

𝜙 ⋅ ∇V𝑀) by ‖𝑓 −𝑀‖
1−𝛼

𝐿

2 . Therefore, we have

∀0 < 𝛼 < 𝜂 < 1,

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝜕
2

𝑓

𝜕𝑡2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿2
≤ 𝐶

𝛼

󵄩󵄩󵄩󵄩𝑓 −𝑀
󵄩󵄩󵄩󵄩

1−𝛼

𝐿

2 ≤ 𝐶
𝜂

󵄩󵄩󵄩󵄩𝑓 −𝑀
󵄩󵄩󵄩󵄩

1−𝜂

𝐿

1 .

(62)

The rest of the proof is similar to that in [5]. Now we
complete the proof of the lemma.

Notice that there is the symmetric gradient of 𝑢 in (38);
the next lemma can provide a method to control this term.

Lemma 9. One has the Korn-type inequality:

∫
𝑇

𝑁

󵄨󵄨󵄨󵄨∇
sym
𝑢
󵄨󵄨󵄨󵄨

2

𝑑𝑥 ≥ 𝐾
𝐾

∫
Ω

|∇𝑢|
2

𝑑𝑥 (63)

and the following Poincaré-type inequalities:

∫
𝑇

𝑁

|∇𝑇|
2

𝑑𝑥 ≥ 𝐾
𝑇

H (𝑇 | ⟨𝑇⟩) ,

∫
𝑇

𝑁

|∇𝑢|
2

𝑑𝑥 ≥ 𝐾
𝑢

H (𝑢 | 0) ,

∫
𝑇

𝑁

󵄨󵄨󵄨󵄨∇𝜌
󵄨󵄨󵄨󵄨

2

𝑑𝑥 ≥ 𝐾
𝜌

H (𝜌 | 1) .

(64)

Here all constants are positive.

Lemma 10. One has estimates on damping of hydrodynamic
oscillations with 𝐶

𝑆

> 0,
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑑

𝑑𝑡
H (𝜌 | 1) ,

𝑑

𝑑𝑡
H (𝑢 | 0) ,

𝑑

𝑑𝑡
H (⟨𝑇⟩ | 1) ,

𝑑

𝑑𝑡
H (𝑇 | ⟨𝑇⟩)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝐶
𝑆

𝐻(𝑓 | 𝑀)
1−𝜖

.

(65)

See [4] or [5] for the proof of the previous two lemmas.
Inequalities of Lemma 9 provide estimates of the right-hand
side of second-order differential inequalities in Lemma 7.
Lemma 10 provides the decay rate for hydrodynamic oscil-
lations.

3. Proof of the Main Result

Use the previous lemmas; we are now ready to prove
Theorem 2. The main idea is similar to that in [5]; for
convenience of the reader, we restate the sketch of the proof
and make it more complete by proving Lemma 11.

From 𝐻-theorem (Theorem 5), the convergence rate
of 𝐻(𝑓) to 𝐻(𝑀) is determined by entropy production
functional 𝐷(𝑓). But there are many local Maxwellians,
which make our entropy production functional𝐷(𝑓) vanish.
Therefore it is impossible to get a uniform lower bound on the
entropy production. To overcome this difficulty, it is natural
to estimate the average value of entropy production. Suppose
that

𝛼
0

= 𝐻(𝑓) − 𝐻(𝑀)
󵄨󵄨󵄨󵄨𝑡=𝑡0

. (66)

We wish to find an upper bound on a duration 𝑇
0

(it is
possible since𝐻(𝑓) is monotone nonincreasing), such that

𝐻(𝑓) − 𝐻(𝑀)
󵄨󵄨󵄨󵄨𝑡=𝑡0+𝑇0

= 𝜎𝛼
0

, (67)

where 𝜎 ∈ (0, 1) is fixed; say 𝜎 = 4/5. Therefore, we have

4

5
𝛼
0

≤ 𝐻 (𝑓) − 𝐻 (𝑀) ≤ 𝛼
0

. (68)

Lemma 11. Choose that 𝜖 > 0 is small enough, like 𝜖 < 0.01, if
one can show

𝑇
0

≤ 𝐶
0

(𝜖) 𝛼
−699𝜖

0

, (69)

where 𝐶
0

depends on 𝜖 and the various constants appearing in
lemmas of Section 2. Then

𝐻(𝑓) − 𝐻 (𝑀) = 𝑂 (𝑡
−1/700𝜖

) . (70)

Proof. Fix 𝜖 > 0 sufficiently small. Denote 𝐻(𝑓) − 𝐻(𝑀)
by 𝑔(𝑡). It is not hard to prove the continuity of 𝑔(𝑡). From
the boundedness of initial data 𝑓

0

, we can denote 𝑡
0

:= 0,
𝑔(𝑡)|

𝑡=0

= 𝑔(0) =: 𝛽
0

. It is sufficient to prove that, for all 𝑡 > 0,
𝑡
1/700𝜖

𝑔(𝑡) or equivalently 𝑡𝑔(𝑡)700𝜖 is uniformly bounded.
Define a sequence {𝑡

𝑖

}, such that

𝑔(𝑡)
󵄨󵄨󵄨󵄨𝑡=𝑡𝑖

= 𝜎
𝑖

𝛽
0

. (71)
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Correspondingly, we can define {𝑇
𝑖

}, 𝑇
𝑖

= 𝑡
𝑖

− 𝑡
𝑖−1

. From
the estimate of 𝑇

0

in (69), we have

𝑇
𝑖

≤ 𝐶
0

(𝜖) (𝜎
𝑖−1

𝛽
0

)
−699𝜖

. (72)

Therefore,

𝑡
𝑖

=

𝑖

∑

𝑘=1

𝑇
𝑘

≤ 𝐶
0

(𝜖) (𝛽
0

)
−699𝜖

𝜎
−699𝜖(𝑖−1)

− 1

𝜎−699𝜖 − 1
. (73)

It is obvious that 𝑡
𝑖

→ ∞, as 𝑖 → ∞.
For any 𝑡 > 0, we can find an interval such that 𝑡 ∈

[𝑡
𝑖−1

, 𝑡
𝑖

]. Now we are ready to estimate 𝑡𝑔(𝑡)700𝜖. From the
monotonicity of 𝑔(𝑡), we have

𝑡𝑔(𝑡)
700𝜖

≤ 𝑡
𝑖

𝑔(𝑡
𝑖−1

)
700𝜖

≤ 𝐶
0

(𝜖) (𝛽
0

)
−699𝜖

𝜎
−699𝜖(𝑖−1)

− 1

𝜎−699𝜖 − 1

× (𝜎
𝑖−1

𝛽
0

)
700𝜖

≤ 𝐶,

(74)

where the constant is independent of 𝑖, since 𝜎 < 1 is fixed
and 𝜖 > 0 can be chosen to be sufficiently small.

Once condition (69) is proved, the main theorem is a
direct consequence of𝐻(𝑓 | 𝑀) = 𝑂(𝐻(𝑓)−𝐻(𝑀)). Indeed,
from (58) and (20), we have

∫
󵄨󵄨󵄨󵄨∇𝜙

󵄨󵄨󵄨󵄨

2

≤ 𝐾
𝑃

∫ (𝜌 − 1)
2

≤ 𝐾
󸀠

H (𝜌 | 1) ≤ 𝐾
󸀠󸀠

𝐻(𝑓 | 𝑀) ,

𝐻 (𝑓 | 𝑀) ≤ 𝐻 (𝑓) − 𝐻 (𝑀) = 𝐻 (𝑓 | 𝑀) + ∫
1

2

󵄨󵄨󵄨󵄨∇𝜙
󵄨󵄨󵄨󵄨

2

≤ (1 +
𝐾
󸀠󸀠

2
)𝐻 (𝑓 | 𝑀) .

(75)

Therefore, it remains to prove condition (69). Detailed
proof can be found in the last part of [5] for Vlasov-Poisson-
Boltzmann equations; we only describe the idea of the proof
for the completion of this paper. Consider

4

5
𝛼
0

≤ 𝐻 (𝑓) − 𝐻 (𝑀) ≤ 𝛼
0

, (76)

on interval 𝐼 := [𝑡
0

, 𝑡
0

+𝑇
0

]; that is,𝐻(𝑓)−𝐻(𝑀) has variation
𝛼
0

/5. In order to prove (69), it is sufficient to prove that the
average value of −(𝑑/𝑑𝑡)𝐻(𝑓) on interval 𝐼 satisfies

⟨−𝐻̇ (𝑓)⟩
𝐼

≥
𝐶𝛼

0

𝐶
0

(𝜖) 𝛼
−699𝜖

0

= 𝐶𝛼
1+699𝜖

0

. (77)

Now we proceed the proof of Theorem 2 step by step.

(1) 𝐼
𝐺

: Subinterval of 𝐼 Where 𝐻(𝑓 | 𝑀
[𝜌,𝑢,𝑇]

) Is Large.
Fromquantitative𝐻-Theorem 5, ⟨−𝐻̇(𝑓)⟩

𝐼𝐺
can be estimated

directly on subinterval of 𝐼 where 𝐻(𝑓 | 𝑀
[𝜌,𝑢,𝑇]

) is large.
The subinterval can be called 𝐼

𝐺

, which means good interval.
Other interval is called 𝐼

𝐵

, bad interval.

Notice the entropy additivity rules in Lemma 6; we actu-
ally have

𝐻(𝑓) − 𝐻 (𝑀) = 𝐻 (𝑓 | 𝑀) + ∫
1

2

󵄨󵄨󵄨󵄨∇𝜙
󵄨󵄨󵄨󵄨

2

≤ (1 +
𝐾
󸀠

2
)H (𝜌 | 1) +H (𝑢 | 0)

+H (𝑇 | ⟨𝑇⟩)

+H (⟨𝑇⟩ | 1) + 𝐻 (𝑓 | 𝑀
[𝜌,𝑢,𝑇]

) .

(78)

(2) 𝐼
𝐵𝐺

: Subinterval of 𝐼
𝐵

Where H(𝑇 | ⟨𝑇⟩) Is Large. On
interval 𝐼

𝐵

, 𝐻(𝑓 | 𝑀
[𝜌,𝑢,𝑇]

) is small, while 𝐻(𝑓) − 𝐻(𝑀)
has lower bound (4/5)𝛼

0

.Then by entropy additivity rules, we
must have thatH(𝜌 | 1)+H(𝑢 | 0)+H(𝑇 | ⟨𝑇⟩)+H(⟨𝑇⟩ | 1)

cannot be small.
Denote the subinterval of 𝐼

𝐵

by 𝐼
𝐵𝐺

where H(𝑇 |

⟨𝑇⟩) is large. Then from the Poincaré-type inequalities of
Lemma 9, we have that ∫

𝑇

𝑁
|∇𝑇|

2

𝑑𝑥 is large. Therefore, the
right hand side of (37) is large. By an argument for second-
order differential inequalities (Lemma 12 of Desvillettes and
Villani in [4]), we can conclude that either the average value
of ‖𝑓 −𝑀

[𝜌,𝑢,𝑇]

‖
𝐿

2
is large (so is𝐻(𝑓|𝑀

[𝜌,𝑢,𝑇]

)) or the length
of interval is small enough to be absorbed. 𝐻-theorem then
asserts that average value ⟨−𝐻̇(𝑓)⟩

𝐼𝐵𝐺
is large.

(3) 𝐼
𝐵𝐵𝐺

: Subinterval of 𝐼
𝐵𝐵

Where H(𝑢 | 0) Is Large. On
interval 𝐼

𝐵𝐵

, 𝐻(𝑓 | 𝑀
[𝜌,𝑢,𝑇]

), H(𝑇 | ⟨𝑇⟩) is small, while
𝐻(𝑓)−𝐻(𝑀) has lower bound (4/5)𝛼

0

.Then similarly,H(𝜌 |

1) +H(𝑢 | 0) +H(⟨𝑇⟩ | 1) cannot be small.
Denote the subinterval of 𝐼

𝐵𝐵

by 𝐼
𝐵𝐵𝐺

where H(𝑢 |

0) is large. Then from the Poincaré-type and Korn-type
inequalities of Lemma 9, we have that ∫ |∇sym

𝑢|
2

𝑑𝑥 is large.
Therefore, the right-hand side of (38) is large. By an argu-
ment for second-order differential inequalities (Lemma 12 of
Desvillettes and Villani in [4]), we can conclude that either
the average value of ||𝑓 − 𝑀

[𝜌,𝑢,⟨𝑇⟩]

||
𝐿

2 is large (so is 𝐻(𝑓 |

𝑀
[𝜌,𝑢,⟨𝑇⟩]

)) or the length of interval is small enough to be
absorbed. But the first line of (35) shows that𝐻(𝑓 | 𝑀

[𝜌,𝑢,𝑇]

)

must be large in average.𝐻-theorem then asserts that average
value ⟨−𝐻̇(𝑓)⟩

𝐼𝐵𝐵𝐺
is large.

(4) 𝐼
𝐵𝐵𝐵𝐺

: subinterval of 𝐼
𝐵𝐵𝐵

where H(⟨𝑇⟩|1) is large. On
interval 𝐼

𝐵𝐵𝐵

,𝐻(𝑓 | 𝑀
[𝜌,𝑢,𝑇]

),H(𝑇 | ⟨𝑇⟩),H(𝑢 | 0) is small,
while𝐻(𝑓)−𝐻(𝑀) has lower bound (4/5)𝛼

0

.Then similarly,
H(𝜌 | 1) +H(⟨𝑇⟩ | 1) cannot be small.

Denote the subinterval of 𝐼
𝐵𝐵𝐵

by 𝐼
𝐵𝐵𝐵𝐺

whereH(⟨𝑇⟩ | 1)

is large. From the conservation of energy, we have

|⟨𝑇⟩ − 1| =
2

𝑁
H (𝑢 | 0) +

1

𝑁
∫
𝑇

𝑁

󵄨󵄨󵄨󵄨∇𝜙
󵄨󵄨󵄨󵄨

2

𝑑𝑥. (79)

Because of the Lipschitz continuity ofH(⟨𝑇⟩ | 1) = Ψ(⟨𝑇⟩),

H (⟨𝑇⟩ | 1) ≤ 𝐿 |⟨𝑇⟩ − 1| . (80)
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Since H(𝑢 | 0) is sufficiently small in 𝐼
𝐵𝐵𝐵𝐺

, therefore, (79)
turns to be

H (⟨𝑇⟩ | 1) ≤ 𝐿 |⟨𝑇⟩ − 1| ≤ 𝐶∫
𝑇

𝑁

󵄨󵄨󵄨󵄨∇𝜙
󵄨󵄨󵄨󵄨

2

𝑑𝑥 ≤ 𝐶H (𝜌 | 1) .

(81)

Therefore, the right-hand side of (40) and (39) is large. By
a similar argument as in previous subintervals, we can also
show that average value ⟨−𝐻̇(𝑓)⟩

𝐼𝐵𝐵𝐵𝐺
is large. By a careful

calculation to absorb all the bad intervals into good ones, we
can prove that average value ⟨−𝐻̇(𝑓)⟩

𝐼

is large on interval 𝐼.
Thus, the whole proof is complete.

To conclude the paper, we remove the condition in
Theorem 1 by making a crucial estimates on terms with 𝜙.
The main differences with previous works [5] are in proving
Lemma 7. We also complete the gap in the last part of [4, 5]
by proving Lemma 11.

Acknowledgment

Project 11001066 is supported by the Natural Science Foun-
dation of China.

References

[1] S. Ukai, “On the existence of global solutions of mixed problem
for non-linear Boltzmann equation,” Proceedings of the Japan
Academy, vol. 50, pp. 179–184, 1974.

[2] R. E. Caflisch, “The Boltzmann equation with a soft potential.
I. Linear, spatially-homogeneous,” Communications in Mathe-
matical Physics, vol. 74, no. 1, pp. 71–95, 1980.

[3] R. M. Strain and Y. Guo, “Exponential decay for soft potentials
near Maxwellian,” Archive for Rational Mechanics and Analysis,
vol. 187, no. 2, pp. 287–339, 2008.

[4] L. Desvillettes and C. Villani, “On the trend to global equilib-
rium for spatially inhomogeneous kinetic systems: the Boltz-
mann equation,” Inventiones Mathematicae, vol. 159, no. 2, pp.
245–316, 2005.

[5] L. Li, “On the trend to equilibrium for the Vlasov-Poisson-
Boltzmann equation,” Journal of Differential Equations, vol. 244,
no. 6, pp. 1467–1501, 2008.

[6] Y. Guo, “The Vlasov-Poisson-Boltzmann system near Maxwel-
lians,” Communications on Pure and Applied Mathematics, vol.
55, no. 9, pp. 1104–1135, 2002.

[7] R. M. Strain, “The Vlasov-Maxwell-Boltzmann system in the
whole space,” Communications in Mathematical Physics, vol.
268, no. 2, pp. 543–567, 2006.

[8] T. Yang, H. J. Yu, and H. J. Zhao, “Cauchy problem for
the Vlasov-Poisson-Boltzmann system,” Archive for Rational
Mechanics and Analysis, vol. 182, no. 3, pp. 415–470, 2006.

[9] T. Yang and H. J. Zhao, “Global existence of classical solutions
to the Vlasov-Poisson-Boltzmann system,” Communications in
Mathematical Physics, vol. 268, no. 3, pp. 569–605, 2006.

[10] C. Villani, “Cercignani’s conjecture is sometimes true and
always almost true,” Communications in Mathematical Physics,
vol. 234, no. 3, pp. 455–490, 2003.


