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When the conservative governing equation of incompressible fluid flow and heat transfer is discretized by the finite volume method,
there are various schemes to deal with the convective term. In this paper, studies on the convective term discretized by two different
schemes, named strong and weak conservation schemes, respectively, are presented in detail. With weak conservation scheme, the
convective flux at interface is obtained by respective interpolation and subsequent product of primitive variables. With strong
conservation scheme, the convective flux is treated as single physical variable for interpolation. The numerical results of two
convection heat transfer cases indicate that under the same computation conditions, discretizing the convective term by strong
conservation scheme would not only obtain a more accurate solution, but also guarantee the stability of computation and the clear
physical meaning of the solution. Especially in the computation regions with sharp gradients, the advantages of strong conservation

scheme become more apparent.

1. Introduction

In the 1980s, the conservation form and nonconservation
form of the governing equation formally existed in the
literature [1, 2]. Since then, the governing equations are clearly
classified into these two different forms, and for the control
volume, the different characteristics of these two forms of
equations gradually drew the attention of researchers. Based
on previous studies, the conservation form of the governing
equation is superior to the non-conservation form in many
aspects, for example: (1) in the control volume of limited
size, only the conservation form could ensure that the
conservation principles of variables are satisfied [3-5]; (2) in
the calculation of flow problem involving shock wave, the
obtained flow field is usually smooth and stable, employing
the conservation form of the governing equation; while using
the non-conservation equation might lead to unsatisfactory
spatial oscillations in the upstream and downstream regions
of the shock wave [6-8]; (3) when the conservation equation

is used in a body-fitted coordinate system, the conservative-
ness of the governing equation can still be satisfied [9, 10].
More related research and applications are presented in the
literature [11-18].

As a result, the conservation form of governing equation
has been widely applied in the fields of computational fluid
dynamics (CFD) and numerical heat transfer (NHT). In
the compressible flow problems of aerodynamics, especially
the flow containing shock wave, the conservation govern-
ing equation is usually expressed by first-order derivative
equation system of the flux column vector, which is called
strong conservation equation [1]. The convective flux in the
strong conservation equation is regarded as a conservative
variable. However, in the conservation equation employed
in the incompressible fluid flow and heat transfer, the
convective flux is the multiplication of primitive variables.
In the aerodynamics field, when the governing equation is
discretized by the finite volume method, strong conservation
scheme is usually employed to deal with the convective flux
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at interface as a whole, in order to guarantee the physical
meaning of the numerical solution. While in the incom-
pressible fluid flow and heat transfer field, the convective
flux at interface is obtained by respective interpolation and
subsequent product of relevant variables, which is called weak
conservation scheme, correspondingly. The employment of
weak conservation scheme is quite common in solving the
incompressible fluid flow and heat transfer problems, and
nevertheless, the applications of strong conservation scheme
are rarely presented in the literature.

In order to yield a more reasonable discrete scheme
of the convective term in the numerical computation of
incompressible fluid flow and heat transfer, two common
categories of the convection heat transfer problem are studied
in this paper. Based on the discretization equation obtained
by the finite volume method, the convective flux is discretized
by strong and weak conservation schemes, respectively, and
through the numerical results of cases, the advantages and
disadvantages of these two different schemes are compared
comprehensively and systematically in terms of accuracy,
stability, and so on.

2. Numerical Method

It is noteworthy that the two discrete schemes of the convec-
tive term are derived from the finite volume method of the
conservation governing equation, and thus, in the following
text, the governing equations are all conservative and the
discrete methods are all finite volume methods.

For the convenience of comparison and analysis with-
out losing generality, the present paper takes the one-
dimensional convection heat transfer problem as an example,
and the governing equation of this problem can be written as
follows:

d(pp) 10(pAug) 10 (03¢
TR —m@“a)’ @

where the second term on the left-hand side (1/A)(d(pAud¢)/
0x) is the convective term and its discretization is one critical
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FIGURE 1: Sketch map of discrete grid.

key of the numerical computation. As mentioned above, in
the numerical calculation of aerodynamics, strong conser-
vation scheme is broadly employed to treat the convective
flux pAug¢ as a conservative variable. On the other hand, in
the calculation of incompressible fluid flow and heat transfer,
using weak conservation scheme, the primitive variables
p> A, u, and ¢ are often discretized first and multiplied
together to get the discretized convective term. For the sketch
map of the discrete grid, the common expressions of the
convective flux (pAug¢), at the interface e with two different
discrete schemes are shown in Table 1.

Through Table 1, with strong conservation scheme, the
variable values of the convective flux at the interface are stored
in the grid nodes rather than interpolate primitive variables
at the interface. In the actual computation, this operation not
only reduces the workload of interpolation to diminish the
interpolation error, but also reduces the interface information
storage to save memory.

In addition, the strong conservation scheme of the one-
dimensional problem is also suitable for multidimensional
issues. It is well known that in the field of CFD and NHT, the
general governing equation can be expressed as follows:

9 (p¢)
ot

+div(pU¢) = div(F¢grad¢) + S, )

When the convective term div(pU¢) is discretized by strong
and weak conservation schemes, respectively, the discrete
expressions in the x direction of the Cartesian coordinate
system are the same with that in Table 1. And it needs to be
noted that A, = 1.
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FIGURE 2: Boundary conditions of two categories of the problem.

3. Results and Analyses

In order to compare the differences between the two con-
servation schemes in terms of computation accuracy and
stability, the present paper first compares the numerical
results of two categories of convection-diffusion cases: (1)
the one-dimensional convection heat transfer problem; (2)
the two-dimensional convection heat transfer problem with
constant cross-section. Subsequently, Taylor series are used to
analyze the truncation errors of the discretization equation
with the convective term discretized by strong and weak
conservation schemes, respectively. Finally, the deviations
of the numerical solutions are presented to compare the
computation accuracy of these two schemes.

3.1. Case Descriptions. The physical model of the one-
dimensional convection heat transfer problem (called “one-
dimensional problem” for short, hereinafter) is shown in
Figure 2(a). The cases of this category, CASE 1 and CASE
2 (the governing equations are shown as (1)), correspond
to two situations which have large gradient and relatively
small gradient of primitive variables, respectively. Similarly,
the physical model of the two-dimensional convection heat
transfer problem with constant cross-section (called “two-
dimensional problem” for short, hereinafter) is shown in
Figure 2(b). The cases of this category, CASE 3 and CASE 4
(the governing equations are shown as (2)), correspond to
two situations which have large gradient and relatively small
gradient of primitive variables, respectively.

The detailed boundary conditions of these two categories
of the problem are presented in Figure 2, in which the left
and right boundaries of the one-dimensional problem are
of the first boundary condition, and the left and bottom
boundaries of the two-dimensional problem are of the first
boundary condition; meanwhile, the upper and right bound-
aries are of the second boundary condition. Table 2 shows
the expressions of flow area and velocity distribution of the

TABLE 2: Flow area and velocity expressions of the one-dimensional
problem.

Flow area Velocity u
CASE1 A=-sin(mx/2)+1.5 u=0.2/(-sin(x/2) + 1.5)
CASE2 A =4(-sin(mx/2) + 1.01) u = 0.05/(— sin (7rx/2) + 1.01)

TABLE 3: Velocity expressions of the two-dimensional problem.

Velocity u Velocity v
CASE3  u=0.1sin(2m(x+y)) v=—0.1sin (27 (x + y))
CASE 4 u=sin (27 (x + y)) v=—sin (27 (x + y))

two one-dimensional cases. And the velocity profiles in the
x direction of the two one-dimensional cases are given in
Figures 3(a) and 3(b). In Table 3, there are the expressions of
velocity distribution of the two two-dimensional cases. For
direct display of the velocity distribution, Figures 3(c) and
3(d) depict the u and v velocity distributions in the position
of y = 0.5 along the x direction. It is noteworthy that in the
four cases, densities and thermal conductivities are all set to
be p = 1000 (kg/m3) and T = 100 W/(m - °C), respectively.

Different kinds of uniform mesh are utilized for these
four cases, and the grid number of CASE 3 and CASE 4 in
the x and y directions is the same, that is, N, = N,. The
convective term is discretized by weak conservation scheme
and strong conservation scheme, respectively, and in the
following text, these two schemes are referred to as Scheme 1
and Scheme 2. CD and QUICK formats are also employed to
discretize the governing equation. The stable field of variable
¢ is obtained by solving the discretized equation with explicit
time marching method. And the numerical results indicate
that all four cases achieve the grid-independent solutions
when the grid number satisfies N, = 200.
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FIGURE 3: Velocity distribution along the x direction.

3.2. Numerical Results. As shown in Figure 4, the present
paper first compares the solution of the two schemes on the
sparse grid (N, = 7 for the one-dimensional problem and
N, = 30 for the two-dimensional problem) with the grid-
independent solution.

In Figure 4, Figures 4(a) to 4(d) show the temperature
distribution along the x coordinate in CASE 1 and CASE
2 with CD and QUICK formats, and Figures 4(e) to 4(h)
present the contour map of temperature field in CASE 3 and
CASE 4 with CD and QUICK formats. It is found that on
the sparse grid when the gradient of variables is relatively
small, the solutions of these two schemes agree with the
grid-independent solution very well. However, when the
gradient becomes relatively large, the solution with strong

conservation scheme is obviously better than that with weak
conservation scheme. It can be seen from Figures 4(b) and
4(d) that in CASE 2, when the convective term is discretized
by weak conservation scheme, the solution would overshoot
in the position of x = 1.0, and with the CD format, the
oscillations are even more severe. In contrast, the solution
of clear physical meaning can be obtained with strong
conservation scheme. As shown in Figures 4(f) and 4(h),
in the top right corner of the temperature contour map,
the solution with weak conservation scheme deviates greatly
from the grid-independent solution.

Through the above analyses, under the same computation
conditions, when the primitive variables change slightly, the
difference between the solutions of the two schemes is very
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FIGURE 4: Comparison of different evaluations of the convective term.

small, but when there are sharp changes of variables, the supe-
riority of high accuracy and stability with strong conservation
scheme is apparently shown, and the corresponding solution
is more likely to have clear physical meaning.

3.3. Accuracy Analysis. In order to further compare the
accuracy difference of the numerical solutions with strong
and weak conservation schemes, the present paper introduces
Taylor series to analyze the truncation error of the same
computation form obtained by discretizing the convective
term with two different schemes. Taking the CD format of
CASE 1 and CASE 2 as an example to explain the following.

Scheme 1:
ppt+pPpAp+Agup+upTp+Tg
2 2 2 2

1 0%u

= PeAeueTe + PeA T€8 ax2

Ax?
. 3)

2
+Peeesaz Ax

10°T

88 -— Ax? +0(Ax).

+ p.A U,

Scheme 2:
AuT) , + (pAuT
(pAu )pz(p uT)g _ (pAuT),
19 (pAuT)| 3
+§TEAX +0(Ax )

(4)

The truncation errors of CD format obtained by the two
schemes can be expressed as:

2

1 82 2 10°A 2
=P, AeT68 Fw Ax" + Pe“eTeg ) eAx
. 5)
1
pAeue8 Fw Ax? +0(Ax ),
, 10 (PA”T) 2 3
£ =§T8Ax +0(Ax). (6)

Since the incompressible fluid flow satisfies the continuity
equation, (6) can be further written as follows:

2

2
= A - —
&= Weg ax2

Ax*+o (Axs) . (7)

e
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Through comparing (5) and (6), the truncation error of weak
conservation scheme contains 0*A/0x> and 9°u/0x?, while
these two terms, respectively, reflect the changing degree
of flow area and velocity. In order to further analyze the
influence of 3?A/dx? and 0*u/dx? on the errors £' and &%, the
values of 0*A/0x? and 9°u/dx?* in one-dimensional cases are
shown in Figure 5.

From Figure 5, the values of 0*A/0x* and 9*u/ox* in
CASE 2 fluctuate more acutely than those in CASE 1,
especially in the position of x = 1.0. The absolute value of
0*u/0x” in CASE 2 reaches as great as 1200, which is far larger
than that in CASE 1. Correspondingly, comparing Figures
4(b) and 4(d), we can see that the abrupt change of velocity
in CASE 2 with Scheme 1 appears exactly in the position of
x = 1.0, and in the same position, the computation results
of CASE 2 overshoot to make the solution not conform to
the physical meaning. Hence, it is reasonable to conclude
that in some cases, the values of 0*A/dx* and 0*u/0x”
with weak conservation scheme have a serious effect on the
numerical errors; however, there is no such problem with
strong conservation scheme.

Based on the above analysis, the derivative of primitive
variable is very small when the changing gradient is relatively
small. When the values of the first two terms in (5) can
be neglected compared with that of the third term, the
truncation errors of the two different schemes are almost
the same, and the two numerical solutions have no obvious
difference. However, when the changing gradient is very
large, the derivative of primitive variable becomes large,
correspondingly. If the values of the first two terms in (5) are
equal to or even greater than the value of the third term, it is
obvious that &' > & and that there is a big difference between
the numerical solutions of the two schemes.

Last but not least, in order to compare the calculation
accuracy of the two different schemes quantitatively, the
present paper defines the average absolute error and maxi-
mum absolute error as follows:

NGrid

Z |Tc _Tb|’

n=1 (8)

1
¢ NGrid

average absolute error: ¢

maximum absolute error: &, = max (|T. - T|).

Through (8), the average and maximum absolute errors of
the four cases on different kinds of uniform mesh, in which
the largest grid number is N, = 200 and the smallest one
is N, = 10, are calculated. And the numerical solutions
on the grid N, = 1000 and N, = 500 are, respectively,
regarded as the benchmark solutions of the one-dimensional
and two-dimensional problems. It is worth pointing out
that the grid number of the benchmark solution taken in
this paper is much larger than the required grid number of
obtaining the grid-independent solution; thus, it is feasible
to use these numerical solutions to evaluate the average
and maximum absolute errors of the two different schemes
with grid numbers ranging from N, = 10 to N, = 200.
Additionally, the same conclusion can be obtained using CD
or QUICK formats; thus, only the average and maximum
absolute errors of the numerical solution employing QUICK
format (as shown in Figures 6 and 7, resp.) are given to
evaluate the computation accuracy. Furthermore, the ratios
of the average absolute errors and those of the maximum
absolute errors of the four cases employing QUICK format
are presented in Figure 8.

From Figure 6, it is easily found that on the same grid,
the average absolute errors of the numerical solutions with
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strong conservation scheme are all less than those with weak
conservation scheme in the four cases.

As shown in Figure 7, when it comes to dealing with the
one-dimensional problem, Scheme 2 is superior to Scheme
1, while in solving the two-dimensional problem, the perfor-
mances of the two different schemes are basically the same.
The reason why the results of CASE 3 and CASE 4 are not
desirable lies in the consideration of the second boundary
condition in CASE 3 and CASE 4. For the strong and weak
conservation schemes, the maximum error usually occurs
in the boundary adjacent nodes. Due to the fact that the
effective treatment method of boundary condition has not
been found so far, strong conservation scheme did not have
an obvious advantage over weak conservation scheme in

10 T T T T T T

g, (°C)

(b) CASE 2
10 T T T T T T
1 - -
S oot .
WS
0.01 _
1E-3 R 1 R 1 R 1 R
0 50 100 150 200
Nx
—— Scheme 1
--~- Scheme 2
(d) CASE 4

absolute error.

CASE 3 and CASE 4. Comparing Figures 7(a), 7(b), 7(c), and
7(d), at the same time, it shows that when the gradient of
variables is relatively large, in terms of average and maximum
absolute errors, the solution with Scheme 2 enjoys higher
accuracy than that with Scheme 1. That is because more
interface interpolations are involved in Scheme 1, which
might lead to error accumulation. Thus, under the same
computation conditions, the solution with Scheme 1 is not as
accurate as that with Scheme 2, and the larger the gradient of
primitive variables is, the greater the errors due to interface
interpolations are, along with the more obvious difference
between the solutions of the two schemes.

Through Figure 8, the two kinds of ratio, average absolute
error and maximum absolute error, with the two different
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schemes are basically larger than 1. Notice specifically, from
Figure 8(a) that the ratios of average absolute errors with
the two schemes in solving the one-dimensional problem
are presented basically to be 2, while in CASE 4 of the two-
dimensional problem, the ratios of average absolute errors
can be as large as 4-7. Moreover, from Figure 8(b), in solving
the one-dimensional problem, the maximum absolute error
with Scheme 1 is almost three times greater than that with
Scheme 2.

In short, under the same computation conditions, when
the gradient of primitive variables is relatively large, the
numerical solution with Scheme 2 is more accurate than that
with Scheme 1.

4. Conclusions

In the incompressible fluid flow and heat transfer, when the
conservation governing equation is discretized by the finite
volume method, the convective flux at the interface can be
obtained by strong conservation scheme and weak conserva-
tion scheme. The present paper studies the influences of these
two different schemes on the numerical solution with various
typical cases. The results of the numerical cases indicate the
following:

(1) under the same computation conditions and on the
sparse grid, when the gradient of primitive vari-
ables is relatively small, the numerical solutions with
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the two schemes are close to each other and all
could match the grid-independent solution quite
well. When the gradient becomes sharp, the solution
with weak conservation scheme deviates greatly from
the benchmark solution: even oscillation or solution
without physical meaning occurs. On the other hand,
the solution with strong conservation scheme still
matches the grid-independent solution well;

through calculating average absolute error and max-
imum absolute error, it is found that even when
the gradient of primitive variables is small, strong
conservation scheme still has advantage over weak
conservation scheme.

In conclusion, treating the convective flux as single physical
variable and discretizing the convective term by strong
conservation scheme is a more effective way in the numerical
computation of incompressible fluid flow and heat transfer.

Nomenclatures

t: Time, s

u, v Velocities, m/s

u: Second partial derivative of velocity
u, v’ = 0%u/ox*

x,y:  Spatial coordinates, m

U: Velocity vector

A: Flow area, m?

A" Second partial derivative of flow area
A A" =0*A)0x2

N,, N,: Grid numbers in the x and y coordinates

Ngrg:  Total grid number

Heat source, W/m®.

Greek Symbols

Ax: Width of control volume in the x direction, m
: Distance between adjacent nodes, m

p:  Density, kg/m’

¢:  General variable

&: Numerical error

General diffusion coefhicient, W/(m-"C)

I Thermal conductivity, W/(m-"C).

Superscripts

1: Scheme 1, weak conservation scheme
2: Scheme 2, strong conservation scheme.

Subscripts

a: Average error

b: Benchmark solution

c Calculation solution

I: Computational domain

m: Maximum error

e, w: Interfaces of the control volume P as

shown in Figure 1
P,W, E, EE: Grid nodes as shown in Figure 1.
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