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Let𝐻 be a weak crossed Hopf group coalgebra over group 𝜋; we first introduce a kind of new 𝛼-Yetter-Drinfel’d module categories
WYD

𝛼
(𝐻) for 𝛼 ∈ 𝜋 and use it to construct a braided 𝑇-category WYD(𝐻). As an application, we give the concept of a Long

dimodule category
𝐻
WL𝐻 for a weak crossed Hopf group coalgebra𝐻 with quasitriangular and coquasitriangular structures and

obtain that
𝐻
WL𝐻 is a braided 𝑇-category by translating it into a weak Yetter-Drinfel’d module subcategoryWYD(𝐻 ⊗ 𝐻).

1. Introduction

Braided crossed categories over a group 𝜋 (i.e., braided
𝑇-categories), introduced by Turaev [1] in the study of
3-dimensional homotopy quantum field theories, are braided
monoidal categories in Freyd-Yetter categories of crossed
𝜋-sets [2]. Such categories play an important role in the
construction of homotopy invariants. By using braided
𝑇-categories, Virelizier [3, 4] constructed Hennings-type
invariants of flat group bundles over complements of links
in the 3-sphere. Braided 𝑇-categories also provide suitable
mathematical formalism to describe the orbifold models of
rational conformal field theory (see [5]).

Themethods of constructing braided 𝑇-categories can be
found in [5–8]. Especially, in [8], Zunino gave the definition
of 𝛼-Yetter-Drinfel’d modules over Hopf group coalgebras
and constructed a braided 𝑇-category, then proved that both
the category of Yetter-Drinfel’d modules YD(𝐻) and the
center of the category of representations of 𝐻 as well as
the category of representations of the quantum double of
𝐻 are isomorphic as braided 𝑇-categories. Furthermore, in
[6], Wang considered the dual setting of Zunino’s partial
results, formed the category of Long dimodules over Hopf
group algebras, and proved that the category is a braided
𝑇-subcategory of Yetter-Drinfel’d categoryYD(𝐻 ⊗ 𝐵).

Weak multiplier Hopf algebras, as a further development
of the notion of the well-known multiplier Hopf algebras
[9], were introduced by Van Daele and Wang [10]. Examples
of such weak multiplier Hopf algebras can be constructed
from weak Hopf group coalgebras [10, 11]. Furthermore, the
concepts of weak Hopf group coalgebras are also regard as a
natural generalization ofweakHopf algebras [12, 13] andHopf
group coalgebras [14].

In this paper, we mainly generalize the above construc-
tions shown in [6, 8], replacing their Hopf group coalgebras
(or Hopf group algebras) by weak crossedHopf group coalge-
bras [11] and provide new examples of braided 𝑇-categories.

This paper is organized as follows. In Section 1, we recall
definitions and properties related to braided𝑇-categories and
weak crossed Hopf group coalgebras.

In Section 2, let𝐻 be a weak crossed Hopf group coalge-
bra over group 𝜋; 𝛼 is a fixed element in 𝜋. We first introduce
the concept of a (left-right) weak 𝛼-Yetter-Drinfel’d module
and define the category WYD(𝐻) = ∐

𝛼∈𝜋
WYD

𝛼
(𝐻),

where WYD
𝛼
(𝐻) is the category of (left-right) weak 𝛼-

Yetter-Drinfel’d modules. Then, we show that the category
WYD(𝐻) is a braided 𝑇-category.

In Section 3, we introduce a (left-right) weak 𝛼-Long
dimodule category

𝐻
WL
𝐻

𝛼
for a weak crossed Hopf group
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coalgebra 𝐻. Then, we obtain a new category
𝐻
WL
𝐻

=

∐
𝛼∈𝜋 𝐻

WL
𝐻

𝛼
and show that as 𝐻 is a quasitriangular

and coquasitriangular weak crossed Hopf group coalgebra,
then

𝐻
WL
𝐻 is a braided 𝑇-subcategory of Yetter-Drinfel’d

categoryWYD(𝐻 ⊗ 𝐻).

2. Preliminary

Throughout the paper, let 𝜋 be a group with the unit 1 and
let 𝑘 be a field. All algebras, vector spaces, and so forth are
supposed to be over 𝑘. We use the Sweedler-type notation
[15] for the comultiplication and coaction, 𝑡 for the flip map,
and id for the identity map. In the section, we will recall some
basic definitions and results related to our paper.

2.1. Weak Crossed Hopf Group Coalgebras. Recall from
Turaev and Virelizier (see [1, 14]) that a group coalgebra over
𝜋 is a family of 𝑘-spaces 𝐶 = {𝐶

𝛼
}
𝛼∈𝜋

together with a family
of 𝑘-linear maps Δ = {Δ

𝛼,𝛽
: 𝐶
𝛼𝛽

→ 𝐶
𝛼
⊗ 𝐶
𝛽
}
𝛼,𝛽∈𝜋

(called
a comultiplication) and a 𝑘-linear map 𝜀 : 𝐶

1
→ 𝑘 (called a

counit), such that Δ is coassociative in the sense that

(Δ
𝛼,𝛽

⊗ id
𝐶𝛾
)Δ
𝛼𝛽,𝛾

= (id
𝐶𝛼

⊗ Δ
𝛽,𝛾

) Δ
𝛼,𝛽𝛾

, ∀𝛼, 𝛽, 𝛾 ∈ 𝜋.

(id
𝐶𝛼

⊗ 𝜀) Δ
𝛼,1

= id
𝐶𝛼

= (𝜀 ⊗ id
𝐶𝛼
) Δ
1,𝛼

, ∀𝛼 ∈ 𝜋.

(1)

We use the Sweedler-type notation (see [14]) for a comul-
tiplication; that is, we write

Δ
𝛼,𝛽

(𝑐) = 𝑐
(1,𝛼)

⊗ 𝑐
(2,𝛽)

, for any 𝛼, 𝛽 ∈ 𝜋, 𝑐 ∈ 𝐶
𝛼𝛽
. (2)

Recall from Van Daele and Wang (see [11]) that a weak
semi-Hopf group coalgebra 𝐻 = {𝐻

𝛼
, 𝑚
𝛼
, 1
𝛼
, Δ, 𝜀}
𝛼∈𝜋

is
a family of algebras {𝐻

𝛼
, 𝑚
𝛼
, 1
𝛼
}
𝛼∈𝜋

and at the same time
a group coalgebra {𝐻

𝛼
, Δ = {Δ

𝛼,𝛽
}, 𝜀}
𝛼,𝛽∈𝜋

, such that the
following conditions hold.

(i) The comultiplication Δ
𝛼,𝛽

: 𝐶
𝛼𝛽

→ 𝐶
𝛼
⊗ 𝐶
𝛽
is a

homomorphism of algebras (not necessary unit pre-
serving) such that

(Δ
𝛼,𝛽

⊗ id
𝐻𝛾
)Δ
𝛼𝛽,𝛾

(1
𝛼𝛽𝛾

)

= (Δ
𝛼,𝛽

(1
𝛼𝛽
) ⊗ 1
𝛾
) (1
𝛼
⊗ Δ
𝛽,𝛾

(1
𝛽𝛾
)) ,

(Δ
𝛼,𝛽

⊗ id
𝐻𝛾
)Δ
𝛼𝛽,𝛾

(1
𝛼𝛽𝛾

)

= (1
𝛼
⊗ Δ
𝛽,𝛾

(1
𝛽𝛾
)) (Δ

𝛼,𝛽
(1
𝛼𝛽
) ⊗ 1
𝛾
) ,

(3)

for all 𝛼, 𝛽, 𝛾 ∈ 𝜋.

(ii) The counit 𝜀 : 𝐻
1

→ 𝑘 is a 𝑘-linear map satisfying
the identity

𝜀 (𝑔𝑥ℎ) = 𝜀 (𝑔𝑥
(2,1)

) 𝜀 (𝑥
(1,1)

ℎ) = 𝜀 (𝑔𝑥
(1,1)

) 𝜀 (𝑥
(2,1)

ℎ) , (4)

for all 𝑔, ℎ, 𝑥 ∈ 𝐻
1
.

A weakHopf group coalgebra over 𝜋 is a weak semi-Hopf
group coalgebra 𝐻 = {𝐻

𝛼
, 𝑚
𝛼
, 1
𝛼
, Δ, 𝜀}
𝛼∈𝜋

endowed with a
family of 𝑘-linear maps 𝑆 = {𝑆

𝛼
: 𝐻
𝛼
→ 𝐻
𝛼
−1}
𝛼∈𝜋

(called an
antipode) satisfying the following equations:

𝑚
𝛼
(𝑆
𝛼
−1 ⊗ id

𝐻𝛼
) Δ
𝛼
−1
,𝛼
(ℎ) = 1

(1,𝛼)
𝜀 (ℎ1
(2,1)

) ,

𝑚
𝛼
(id
𝐻𝛼

⊗ 𝑆
𝛼
−1) Δ
𝛼,𝛼
−1 (ℎ) = 𝜀 (1

(1,1)
ℎ) 1
(2,𝛼)

,

𝑆
𝛼
(𝑔
(1,𝛼)

) 𝑔
(2,𝛼
−1
)
𝑆
𝛼
(𝑔
(3,𝛼)

) = 𝑆
𝛼
(𝑔) ,

(5)

for all ℎ ∈ 𝐻
1
, 𝑔 ∈ 𝐻

𝛼
, and 𝛼 ∈ 𝜋.

Let𝐻 be a weak Hopf group coalgebra. Define a family of
linear maps 𝜀

𝑡
= {𝜀
𝑡

𝛼
: 𝐻
1
→ 𝐻

𝛼
}
𝛼∈𝜋

and 𝜀
𝑠
= {𝜀
𝑠

𝛼
: 𝐻
1
→

𝐻
𝛼
}
𝛼∈𝜋

by the formulae

𝜀
𝑡

𝛼
(ℎ) = 𝜀 (1

(1,1)
ℎ) 1
(2,𝛼)

= 𝑚
𝛼
(id
𝐻𝛼

⊗ 𝑆
𝛼
−1) Δ
𝛼,𝛼
−1 (ℎ) ,

𝜀
𝑠

𝛼
(ℎ) = 1

(1,𝛼)
𝜀 (ℎ1
(2,1)

) = 𝑚
𝛼
(𝑆
𝛼
−1 ⊗ id

𝐻𝛼
) Δ
𝛼
−1
,𝛼
(ℎ) ,

(6)

for any ℎ ∈ 𝐻
1
, where 𝜀

𝑡 and 𝜀
𝑠 are called the 𝜋-target and

𝜋-source counital maps.
By Van Daele and Wang (see [11]), let𝐻 be a weak semi-

Hopf group coalgebra.Then, we have the following equations:

(1) 𝜀(𝑔ℎ) = 𝜀(𝑔𝜀
𝑡

1
(ℎ)), 𝜀(𝑔ℎ) = 𝜀(𝜀

𝑠

1
(𝑔)ℎ), for all 𝑔, ℎ ∈

𝐻
1
,

(2) 𝑥
(1,𝛼)

⊗𝜀
𝑡

𝛽
(𝑥
(2,1)

) = 1
(1,𝛼)

𝑥⊗1
(2,𝛽)

, for all 𝑥 ∈ 𝐻
𝛼
, 𝛼, 𝛽 ∈

𝜋,
(3) 𝜀𝑠
𝛽
(𝑥
(1,1)

)⊗𝑥
(2,𝛼)

= 1
(1,𝛽)

⊗𝑥1
(2,𝛼)

, for all 𝑥 ∈ 𝐻
𝛼
, 𝛼, 𝛽 ∈

𝜋,
(4) 𝜀𝑡
𝛼
(𝜀
𝑡

1
(𝑥)𝑦) = 𝜀

𝑡

𝛼
(𝑥)𝜀
𝑡

𝛼
(𝑦), 𝜀𝑠
𝛼
(𝑥𝜀
𝑠

1
(𝑦)) = 𝜀

𝑠

𝛼
(𝑥)𝜀
𝑠

𝛼
(𝑦), for

all 𝑥, 𝑦 ∈ 𝐻
1
.

Similarly, for any 𝛼 ∈ 𝜋 and ℎ ∈ 𝐻
1
, define 𝜀

𝑡

𝛼
(ℎ) =

𝜀(ℎ1
(1,1)

)1
(2,𝛼)

, 𝜀𝑠
𝛼
(ℎ) = 1

(1,𝛼)
𝜀(1
(2,1)

ℎ). Then, we have

(1) 𝜀𝑠
𝛼
(ℎ
(1,1)

)⊗ℎ
(2,𝛽)

= 1
(1,𝑎)

⊗1
(2,𝛽)

ℎ, for all ℎ ∈ 𝐻
𝛽
, 𝛼, 𝛽 ∈

𝜋,
(2) 𝑥
(1,𝛼)

⊗𝜀
𝑡

𝛼
(𝑥
(2,1)

) = 𝑥1
(1,𝛼)

⊗1
(2,𝛽)

, for all 𝑥 ∈ 𝐻
𝛼
, 𝛼, 𝛽 ∈

𝜋.

AweakHopf group coalgebra𝐻 = {𝐻
𝛼
,𝑚
𝛼
, 1
𝛼
, Δ, 𝜀, 𝑆}

𝛼∈𝜋

is called a weak crossedHopf group coalgebra if it is endowed
with a family of algebra isomorphisms 𝜑 = {𝜑

𝛼
: 𝐻
𝛽

→

𝐻
𝛼𝛽𝛼
−1}
𝛼,𝛽∈𝜋

(called a crossing) such that (𝜑
𝛼
⊗ 𝜑
𝛼
) ∘ Δ
𝛽,𝛾

=

Δ
𝛼𝛽𝛼
−1
,𝛼𝛾𝛼
−1 ∘𝜑
𝛼
, 𝜀∘𝜑
𝛼
= 𝜀, and𝜑

𝛼𝛽
= 𝜑
𝛼
∘𝜑
𝛽
for all 𝛼, 𝛽, 𝛾 ∈ 𝜋.

If 𝐻 is crossed with the crossing 𝜑 = {𝜑
𝛼
}
𝛼∈𝜋

, then we
have

𝜑
𝛽
∘ 𝜀
𝑠

𝛼
= 𝜀
𝑠

𝛽𝛼𝛽
−1 ∘ 𝜑
𝛽
, 𝜑
𝛽
∘ 𝜀
𝑡

𝛼

= 𝜀
𝑡

𝛽𝛼𝛽
−1 ∘ 𝜑
𝛽
, ∀𝛼, 𝛽 ∈ 𝜋.

(7)

A quasitriangular weak crossed Hopf group coalgebra
over 𝜋 is a pair (𝐻, 𝑅) where 𝐻 is a weak crossed Hopf
group coalgebra together with a family of maps 𝑅 = {𝑅

𝛼,𝛽
∈

Δ
cop
𝛽
−1
,𝛼
−1(1
𝛼𝛽
)(𝐻
𝛼

⊗ 𝐻
𝛽
)Δ
𝛼,𝛽

(1
𝛼𝛽
)} satisfying the following

conditions:
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(1) 𝑅
𝛼,𝛽

Δ
𝛼,𝛽

(ℎ) = Δ
cop
𝛽
−1
,𝛼
−1(ℎ)𝑅

𝛼,𝛽
, for all ℎ ∈ 𝐻

𝛼𝛽
, 𝛼, 𝛽 ∈

𝜋,
(2) (id

𝐻𝛼
⊗ Δ
𝛽,𝛾

)(𝑅
𝛼,𝛽𝛾

) = (𝑅
𝛼,𝛾

)
1𝛽3

(𝑅
𝛼,𝛽

)
12𝛾

, for all 𝛼, 𝛽,
𝛾 ∈ 𝜋,

(3) (Δ
𝛼,𝛽

⊗id
𝐻𝛾
) (𝑅
𝛽
−1
𝛼
−1
,𝛾
) = (𝑅

𝛼
−1
,𝛾
)
1𝛽
−1
3
(𝑅
𝛽
−1
,𝛾
)
𝛼
−1
23
, for

all 𝛼, 𝛽, 𝛾 ∈ 𝜋,

whereΔ
𝛼,𝛽

= (𝜑
𝛽
⊗id
𝐻
𝛽
−1
)∘Δ
𝛽
−1
𝛼
−1
𝛽,𝛽
−1 ,Δcop
𝛼,𝛽

= 𝑡
𝐻
𝛼
−1 ,𝐻
𝛽
−1
∘(𝜑
𝛽
⊗

id
𝐻
𝛽
−1
) ∘Δ
𝛽
−1
𝛼
−1
𝛽,𝛽
−1 for all 𝛼, 𝛽 ∈ 𝜋, and such that there exists

a family of𝑅 = {𝑅
𝛼,𝛽

∈ Δ
𝛼,𝛽

(1
𝛼𝛽
)(𝐻
𝛼
⊗𝐻
𝛽
)Δ

cop
𝛽
−1
,𝛼
−1(1
𝛼𝛽
)}with

𝑅
𝛼,𝛽

𝑅
𝛼,𝛽

= Δ
cop
𝛽
−1
,𝛼
−1 (1𝛼𝛽) , 𝑅

𝛼,𝛽
𝑅
𝛼,𝛽

= Δ
𝛼,𝛽

(1
𝛼𝛽
) ,

(𝜑
𝛽
⊗ 𝜑
𝛽
) (𝑅
𝛼,𝛾

) = 𝑅
𝛽𝛼𝛽
−1
,𝛽𝛾𝛽
−1 ,

(8)

for all 𝛼, 𝛽, 𝛾 ∈ 𝜋. In this paper, we denote 𝑅
𝛼,𝛽

= 𝑎
𝛼
⊗ 𝑏
𝛽
.

Recall from [16] that a coquasitriangular weak Hopf
group coalgebra (𝐻, 𝜎) consists of a weak Hopf group
coalgebra 𝐻 = {𝐻

𝛼
, 𝑚
𝛼
, 1
𝛼
, Δ, 𝜀, 𝑆}

𝛼∈𝜋
and a map 𝜎 : 𝐻

1
⊗

𝐻
1
→ 𝑘 satisfying

𝜎 (ℎ
(1,1)

, 𝑔
(1,1)

) ℎ
(2,𝛼)

𝑔
(2,𝛼)

= 𝑔
(1,𝛼)

ℎ
(1,𝛼)

𝜎 (ℎ
(2,1)

, 𝑔
(2,1)

) ,

𝜎 (𝑎, 𝑏𝑐) = 𝜎 (𝑎
(1,1)

, 𝑐) 𝜎 (𝑎
(2,1)

, 𝑏) ,

𝜎 (𝑎𝑏, 𝑐) = 𝜎 (𝑎, 𝑐
(1,1)

) 𝜎 (𝑏, 𝑐
(2,1)

) ,

𝜀 (𝑎
(1,1)

𝑏
(1,1)

) 𝜎 (𝑏
(2,1)

, 𝑎
(2,1)

) 𝜀 (𝑏
(3,1)

𝑎
(3,1)

) = 𝜎 (𝑏, 𝑎) ,

(9)

and there exists 𝜎−1 : 𝐻
1
⊗ 𝐻
1
→ 𝑘 such that

𝜎 (𝑎
(1,1)

, 𝑏
(1,1)

) 𝜎
−1

(𝑎
(2,1)

, 𝑏
(2,1)

) = 𝜀 (𝑏𝑎) ,

𝜎
−1

(𝑎
(1,1)

, 𝑏
(1,1)

) 𝜎 (𝑎
(2,1)

, 𝑏
(2,1)

) = 𝜀 (𝑎𝑏) ,

𝜀 (𝑎
(1,1)

𝑏
(1,1)

) 𝜎
−1

(𝑎
(2,1)

, 𝑏
(2,1)

) 𝜀 (𝑏
(3,1)

𝑎
(3,1)

) = 𝜎
−1

(𝑎, 𝑏) ,

(10)

for all ℎ, 𝑔 ∈ 𝐻
𝛼
, 𝑎, 𝑏, 𝑐 ∈ 𝐻

1
, where 𝜎

−1 is called a weak
inverse of 𝜎.

2.2. Braided 𝑇-Categories. We recall that a monoidal cate-
goryC is called a crossed category over group 𝜋 if it consists
of the following data.

(1) A family of subcategories {C
𝛼
}
𝛼∈𝜋

such that C is a
disjoint union of this family and such that for any
𝑈 ∈ C

𝛼
and 𝑉 ∈ C

𝛽
, 𝑈 ⊗ 𝑉 ∈ C

𝛼𝛽
. Here, the

subcategoryC
𝛼
is called the 𝛼th component ofC.

(2) A group homomorphism 𝜓 : 𝜋 → aut(C) : 𝛽 󳨃→

𝜓
𝛽
, the conjugation, (where aut(C) is the group of

invertible strict tensor functors fromC to itself) such
that 𝜓

𝛽
(C
𝛼
) = C

𝛽𝛼𝛽
−1 for any 𝛼, 𝛽 ∈ 𝜋. Here, the

functors 𝜓
𝛽
are called conjugation isomorphisms.

We will use the Turaev’s left index notation in [1]: for any
object 𝑈 ∈ C

𝛼
, 𝑉,𝑊 ∈ C

𝛽
and any morphism 𝑓 : 𝑉 → 𝑊

inC
𝛽
, we set
𝑈

𝑉 = 𝜓
𝛼
(𝑉) ∈ C

𝛼𝛽𝛼
−1 ,
𝑈

𝑓 = 𝜓
𝛼
(𝑓) :

𝑈

𝑉 󳨀→
𝑈

𝑊.

(11)

Recall form [1] that a braided 𝑇-category is a crossed
category C endowed with braiding, that is a family of
isomorphisms,

𝑐 = {𝑐
𝑈,𝑉

∈ C (𝑈 ⊗ 𝑉, (
𝑈

𝑉) ⊗ 𝑈) }
𝑈,𝑉∈C

(12)

satisfying the following conditions:

(1) for any morphism 𝑓 ∈ C
𝛼
(𝑈, 𝑈
󸀠

) with 𝛼 ∈ 𝜋, 𝑔 ∈

C(𝑉, 𝑉
󸀠

), we have

( (
𝛼

𝑔) ⊗ 𝑓) ∘ 𝑐
𝑈,𝑉

= 𝑐
𝑈
󸀠
,𝑉
󸀠 ∘ (𝑓 ⊗ 𝑔) ; (13)

(2) for all 𝑈,𝑉,𝑊 ∈ C, we have

𝑐
𝑈⊗𝑉,𝑊

= 𝑎 𝑈⊗𝑉
𝑊,𝑈,𝑉

∘ (𝑐
𝑈,
𝑉
𝑊

⊗ id
𝑉
) ∘ 𝑎
−1

𝑈,
𝑉
𝑊,𝑉

∘ (id
𝑈
⊗ 𝑐
𝑉,𝑊

) ∘ 𝑎
𝑈,𝑉,𝑊

,

𝑐
𝑈,𝑉⊗𝑊

= 𝑎
−1

𝑈
𝑉,
𝑈
𝑊,𝑈

∘ (id𝑈
𝑉

⊗ 𝑐
𝑈,𝑊

) ∘ 𝑎 𝑈
𝑉,𝑈,𝑊

∘ (𝑐
𝑈,𝑉

⊗ id
𝑊
) ∘ 𝑎
−1

𝑈,𝑉,𝑊
;

(14)

(3) for any 𝑈,𝑉 ∈ C, 𝛼 ∈ 𝜋,

𝜓
𝛼
(𝑐
𝑈,𝑉

) = 𝑐
𝜓𝛼(𝑈),𝜓𝛼(𝑉)

. (15)

3. Yetter-Drinfel’d Categories for Weak
Crossed Hopf Group Coalgebras

In this section, we first introduce the definition of weak
𝛼-Yetter-Drinfel’d modules over a weak crossed Hopf group
coalgebra 𝐻 and then use it to construct a class of braided
𝑇-categories.

Definition 1. Let 𝐻 be a weak crossed Hopf group coalgebra
over group 𝜋 and let 𝛼 be a fixed element in 𝜋. A (left-
right) weak 𝛼-Yetter-Drinfel’d module, or simply a WYD

𝛼
-

module, is a couple 𝑉 = (𝑉, 𝜌
𝑉

= {𝜌
𝑉

𝜆
}
𝜆∈𝜋

), where 𝑉 is a left
𝐻
𝛼
-module and, for any 𝜆 ∈ 𝜋, 𝜌𝑉

𝜆
: 𝑉 → 𝑉⊗𝐻

𝜆
is a 𝑘-linear

morphism, such that

(1) 𝑉 is coassociative in the sense that, for any 𝜆
1
, 𝜆
2
∈ 𝜋,

we have

(id
𝑉
⊗ Δ
𝜆1 ,𝜆2

) ∘ 𝜌
𝑉

𝜆1𝜆2

= (𝜌
𝑉

𝜆1

⊗ id
𝐻𝜆2

) ∘ 𝜌
𝑉

𝜆2

; (16)

(2) 𝑉 is counitary in the sense that

(id
𝑉
⊗ 𝜀) ∘ 𝜌

𝑉

1
= id
𝑉
; (17)

(3) 𝑉 is crossed in the sense that, for any 𝜆 ∈ 𝜋, ℎ ∈ 𝐻
𝛼
,

𝜌
𝑉

𝜆
(ℎ ⋅ V) = ℎ

(2,𝛼)
⋅ V
(0)

⊗ ℎ
(3,𝜆)

V
(1,𝜆)

𝑆
−1

𝜑
𝛼
−1 (ℎ
(1,𝛼𝜆
−1
𝛼
−1
)
) ,

(18)

where 𝜌𝑉
𝜆
(V) = V

(0)
⊗ V
(1,𝜆)

.
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Given two WYD
𝛼
-modules (𝑉, 𝜌

𝑉

) and (𝑊, 𝜌
𝑊

), a
morphism 𝑓 : (𝑉, 𝜌

𝑉

) → (𝑊, 𝜌
𝑊

) of this two WYD
𝛼
-

modules is an 𝐻
𝛼
-linear map 𝑓 : 𝑉 ⇀ 𝑊, such that, for any

𝜆 ∈ 𝜋,

𝜌
𝑊

𝜆
∘ 𝑓 = (𝑓 ⊗ id

𝐻𝜆
) ∘ 𝜌
𝑉

𝜆
. (19)

Then, we can form the categoryWYD
𝛼
(𝐻) ofWYD

𝛼
-

modules where the composition of morphisms of WYD
𝛼
-

modules is the standard composition of the underlying linear
maps.

Proposition 2. Equation (18) is equivalent to the following
equations:

ℎ
(1,𝛼)

⋅ V
(0)

⊗ ℎ
(2,𝜆)

V
(1,𝜆)

= (ℎ
(2,𝛼)

⋅ V)
(0)

⊗ (ℎ
(2,𝛼)

⋅ V)
(1,𝜆)

𝜑
𝛼
−1 (ℎ
(1,𝛼𝜆𝛼

−1
)
) ,

(20)

𝜌
𝑉

𝜆
(V) = V

(0)
⊗ V
(1,𝜆)

∈ 𝑉⊗
𝑡𝛼𝜆
𝐻
𝜆
:= Δ
𝛼,𝜆

(1
𝛼𝜆
) ⋅ (𝑉 ⊗ 𝐻

𝜆
) ,

(21)

for any V ∈ 𝑉, ℎ ∈ 𝐻
𝛼𝜆
.

Proof. Assume that (20) and (21) hold for all ℎ ∈ 𝐻
𝛼𝜆
, V ∈ 𝑉.

We compute

ℎ
(2,𝛼)

⋅ V
(0)

⊗ ℎ
(3,𝜆)

V
(1,𝜆)

𝑆
−1

𝜑
𝛼
−1 (ℎ
(1,𝛼𝜆
−1
𝛼
−1
)
)

= (ℎ
(3,𝛼)

⋅ V)
(0)

⊗ (ℎ
(3,𝛼)

⋅ V)
(1,𝜆)

× 𝜑
𝛼
−1 (ℎ
(2,𝛼𝜆𝛼

−1
)
) 𝑆
−1

𝜑
𝛼
−1 (ℎ
(1,𝛼𝜆
−1
𝛼
−1
)
)

= (ℎ
(3,𝛼)

⋅ V)
(0)

⊗ (ℎ
(3,𝛼)

⋅ V)
(1,𝜆)

× 𝜑
𝛼
−1 (ℎ
(2,𝛼𝜆𝛼

−1
)
𝑆
−1

(ℎ
(1,𝛼𝜆
−1
𝛼
−1
)
))

= (ℎ
(2,𝛼)

⋅ V)
(0)

⊗ (ℎ
(2,𝛼)

⋅ V)
(1,𝜆)

× 𝜑
𝛼
−1𝑆
−1

(𝜀
𝑡

𝛼𝜆
−1
𝛼
−1 (ℎ
(1,1)

))

= (1
󸀠

(2,𝛼)
ℎ
(2,𝛼)

⋅ V)
(0)

⊗ (1
󸀠

(2,𝛼)
ℎ
(2,𝛼)

⋅ V)
(1,𝜆)

× 𝜑
𝛼
−1 (1
(1,𝛼𝜆𝛼

−1
)
) × 𝜀 (1

(2,1)
1
󸀠

(1,1)
ℎ
(1,1)

)

= (1
(2,𝛼)

ℎ ⋅ V)
(0)

⊗ (1
(2,𝛼)

ℎ ⋅ V)
(1,𝜆)

𝜑
𝛼
−1 (1
(1,𝛼𝜆𝛼

−1
)
)

= 1
(1,𝛼)

⋅ (ℎ ⋅ V)
(0)

⊗ 1
(2,𝜆)

(ℎ ⋅ V)
(1,𝜆)

= (ℎ ⋅ V)
(0)

⊗ (ℎ ⋅ V)
(1,𝜆)

(22)

as required.
Conversely, suppose that𝑉 is crossed in the sense of (18).

We first note that

V
(0)

⊗ V
(1,𝜆)

= 1
(2,𝛼)

⋅ V
(0)

⊗ 1
(3,𝜆)

V
(1,𝜆)

𝑆
−1

𝜑
𝛼
−1 (1
(1,𝛼𝜆
−1
𝛼
−1
)
)

= 1
󸀠

(1,𝛼)
1
(2,𝛼)

⋅ V
(0)

⊗ 1
󸀠

(2,𝜆)
V
(1,𝜆)

𝑆
−1

× 𝜑
𝛼
−1 (1
(1,𝛼𝜆
−1
𝛼
−1
)
)

= 1
󸀠

(1,𝛼)
⋅ (1
(2,𝛼)

⋅ V
(0)
)

⊗ 1
󸀠

(2,𝜆)
[V
(1,𝜆)

𝑆
−1

𝜑
𝛼
−1 (1
(1,𝛼𝜆
−1
𝛼
−1
)
)]

∈ 𝑉⊗
𝑡𝛼𝜆
𝐻
𝜆
.

(23)

To show that (21) is satisfied, for all ℎ ∈ 𝐻
𝛼𝜆
, we do the

following calculations:

(ℎ
(2,𝛼)

⋅ V)
(0)

⊗ (ℎ
(2,𝛼)

⋅ V)
(1,𝜆)

𝜑
𝛼
−1 (ℎ
(1,𝛼𝜆𝛼

−1
)
)

= ℎ
(3,𝛼)

⋅ V
(0)

⊗ ℎ
(4,𝜆)

V
(1,𝜆)

𝑆
−1

𝜑
𝛼
−1 (ℎ
(2,𝛼𝜆
−1
𝛼
−1
)
)

× 𝜑
𝛼
−1 (ℎ
(1,𝛼𝜆𝛼

−1
)
)

= ℎ
(2,𝛼)

⋅ V
(0)

⊗ ℎ
(3,𝜆)

V
(1,𝜆)

𝜑
𝛼
−1𝑆
−1

(𝜀
𝑠

𝛼𝜆
−1
𝛼
−1 (ℎ
(1,1)

))

= ℎ
(2,𝛼)

1
󸀠

(2,𝛼)
⋅ V
(0)

⊗ ℎ
(3,𝜆)

V
(1,𝜆)

𝜑
𝛼
−1𝑆
−1

(1
(1,𝛼𝜆
−1
𝛼
−1
)
)

× 𝜀 (ℎ
(1,1)

1
󸀠

(1,1)
1
(2,1)

)

= ℎ
(1,𝛼)

1
(2,𝛼)

⋅ V
(0)

⊗ ℎ
(2,𝜆)

V
(1,𝜆)

𝜑
𝛼
−1𝑆
−1

(1
(1,𝛼𝜆
−1
𝛼
−1
)
)

= ℎ
(1,𝛼)

1
󸀠

(1,𝛼)
1
(2,𝛼)

⋅ V
(0)

⊗ ℎ
(2,𝜆)

1
󸀠

(2,𝜆)
V
(1,𝜆)

𝑆
−1

× 𝜑
𝛼
−1 (1
(1,𝛼𝜆
−1
𝛼
−1
)
)

= ℎ
(1,𝛼)

1
(2,𝛼)

⋅ V
(0)

⊗ ℎ
(2,𝜆)

1
(3,𝜆)

V
(1,𝜆)

𝑆
−1

× 𝜑
𝛼
−1 (1
(1,𝛼𝜆
−1
𝛼
−1
)
)

= ℎ
(1,𝛼)

⋅ V
(0)

⊗ ℎ
(2,𝜆)

V
(1,𝜆)

.

(24)

This completes the proof.

Proposition 3. If (𝑉, 𝜌
𝑉

) ∈ WYD
𝛼
(𝐻), (𝑊, 𝜌

𝑊

) ∈

WYD
𝛽
(𝐻), then 𝑉⊗

𝑡𝛼𝛽
𝑊 = Δ

𝛼,𝛽
(1
𝛼𝛽
) ⋅ (𝑉 ⊗ 𝑊) ∈

WYD
𝛼𝛽
(𝐻) with the action and coaction structures as

follows:

ℎ ⋅ (V ⊗ 𝑤) = ℎ
(1,𝛼)

⋅ V ⊗ ℎ
(2,𝛽)

⋅ 𝑤,

𝜌
𝑉⊗𝑡
𝛼𝛽
𝑊

𝜆
(V ⊗ 𝑤) = V

(0)
⊗ 𝑤
(0)

⊗ 𝑤
(1,𝜆)

𝜑
𝛽
−1 (V
(1,𝛽𝜆𝛽

−1
)
) ,

(25)

for all ℎ ∈ 𝐻
𝛼𝛽
, 𝜆 ∈ 𝜋, V ⊗ 𝑤 ∈ 𝑉⊗

𝑡𝛼𝛽
𝑊.

Proof. It is easy to prove that 𝑉⊗
𝑡𝛼𝛽
𝑊 is a left 𝐻

𝛼𝛽
-module,

and the proof of coassociativity of 𝑉⊗
𝑡𝛼𝛽
𝑊 is similar to the

Hopf group coalgebra case. For all V ⊗ 𝑤 ∈ 𝑉⊗
𝑡𝛼𝛽
𝑊, we have

(id
𝑉⊗𝑡
𝛼𝛽
𝑊

⊗ 𝜀) ∘ 𝜌
𝑉⊗𝑡
𝛼𝛽
𝑊

1
(V ⊗ 𝑤)

= 𝜀 (𝑤
(1,1)

𝜑
𝛽
−1(1
󸀠

)
(2,1)

)

× 𝜀 (𝜑
𝛽
−1(1
󸀠

)
(1,1)

𝜑
𝛽
−1 (V
(1,1)

)) V
(0)

⊗ 𝑤
(0)



Abstract and Applied Analysis 5

= 𝜀 ((1
(2,𝛽)

⋅ 𝑤)
(1,1)

𝜑
𝛽
−1 (1
(1,1)

) 𝜑
𝛽
−1 (1
󸀠

(2,1)
))

× 𝜀 (𝜑
𝛽
−1 (1
󸀠

(1,1)
) 𝜑
𝛽
−1 (V
(1,1)

)) V
(0)

⊗ (1
(2,𝛽)

⋅ 𝑤)
(0)

= 𝜀 (1
(5,1)

𝑤
(1,1)

𝑆
−1

𝜑
𝛽
−1 (1
(3,1)

) 𝜑
𝛽
−1 (1
(2,1)

))

× 𝜀 (1
(1,1)

V
(1,1)

) V
(0)

⊗ 1
(4,𝛽)

⋅ 𝑤
(0)

= 𝜀 (1
(4,1)

𝑤
(1,1)

𝜑
𝛽
−1𝑆
−1

(𝜀
𝑠

1
(1
(2,1)

))) 𝜀 (1
(1,1)

V
(1,1)

) V
(0)

⊗ 1
(3,𝛽)

⋅ 𝑤
(0)

= 𝜀 (1
(4,1)

𝑤
(1,1)

𝜀
𝑡

1
𝑆
−1

𝜑
𝛽
−1 (1
(2,1)

)) 𝜀 (1
(1,1)

V
(1,1)

) V
(0)

⊗ 1
(3,𝛽)

⋅ 𝑤
(0)

= 𝜀 ((1
(2,𝛽)

⋅ 𝑤)
(1,1)

) 𝜀 (1
(1,1)

V
(1,1)

) V
(0)

⊗ (1
(2,𝛽)

⋅ 𝑤)
(0)

= 𝜀 ((1
(2,𝛼)

⋅ V)
(1,1)

𝜑
𝛼
−1 (1
(1,1)

)) (1
(2,𝛼)

⋅ V)
(0)

⊗ 1
(3,𝛽)

⋅ 𝑤

= 𝜀 (1
(3,1)

V
(1,1)

𝜑
𝛼
−1𝑆
−1

𝜀
𝑠

1
(1
(1,1)

)) 1
(2,𝛼)

⋅ V
(0)

⊗ 1
(4,𝛽)

⋅ 𝑤

= 𝜀 ((1
(1,𝛼)

⋅ V)
(1,1)

) (1
(1,𝛼)

⋅ V)
(0)

⊗ 1
(2,𝛽)

⋅ 𝑤

= V ⊗ 𝑤.

(26)

This shows that𝑉⊗
𝑡𝛼𝛽
𝑊 is satisfing counitary condition (17).

Then, we check the equivalent form of crossed conditions
(20) and (21). In fact, for all ℎ ∈ 𝐻

𝛼𝛽𝜆
, V ⊗ 𝑤 ∈ 𝑉⊗

𝑡𝛼𝛽
𝑊, we

have

(ℎ
(2,𝛼𝛽)

⋅ (V ⊗ 𝑤))
(0)

⊗ (ℎ
(2,𝛼𝛽)

⋅ (V ⊗ 𝑤))
(1,𝜆)

𝜑
(𝛼𝛽)
−1 (ℎ
(1,𝛼𝛽𝜆𝛽

−1
𝛼
−1
)
)

= (ℎ
(2,𝛼)

⋅ V)
(0)

⊗ (ℎ
(3,𝛽)

⋅ 𝑤)
(0)

⊗ (ℎ
(3,𝛽)

⋅ 𝑤)
(1,𝜆)

𝜑
𝛽
−1 ((ℎ
(2,𝛼)

⋅ V)
(1,𝛽𝜆𝛽

−1
)
)

𝜑
𝛽
−1
𝛼
−1 (ℎ
(1,𝛼𝛽𝜆𝛽

−1
𝛼
−1
)
)

= ℎ
(3,𝛼)

⋅ V
(0)

⊗ ℎ
(6,𝛽)

⋅ 𝑤
(0)

⊗ ℎ
(7,𝜆)

𝑤
(1,𝜆)

𝑆
−1

𝜑
𝛽
−1 (ℎ
(5,𝛽𝜆
−1
𝛽
−1
)
)

𝜑
𝛽
−1 (ℎ
(4,𝛽𝜆𝛽

−1
)
V
(1,𝛽𝜆𝛽

−1
)
) 𝜑
𝛽
−1𝜑
𝛼
−1𝑆
−1

× (ℎ
(2,𝛼𝛽𝜆

−1
𝛽
−1
𝛼
−1
)
) 𝜑
𝛽
−1
𝛼
−1 (ℎ
(1,𝛼𝛽𝜆𝛽

−1
𝛼
−1
)
)

= ℎ
(3,𝛼)

⋅ V
(0)

⊗ ℎ
(6,𝛽)

⋅ 𝑤
(0)

⊗ ℎ
(7,𝜆)

𝑤
(1,𝜆)

𝑆
−1

𝜑
𝛽
−1 (ℎ
(5,𝛽𝜆
−1
𝛽
−1
)
)

𝜑
𝛽
−1 (ℎ
(4,𝛽𝜆𝛽

−1
)
V
(1,𝛽𝜆𝛽

−1
)
) 𝜑
𝛽
−1
𝛼
−1𝑆
−1

× (𝑆 (ℎ
(1,𝛼𝛽𝜆𝛽

−1
𝛼
−1
)
) ℎ
(2,𝛼𝛽𝜆

−1
𝛽
−1
𝛼
−1
)
)

= ℎ
(1,𝛼)

1
(2,𝛼)

⋅ V
(0)

⊗ ℎ
(4,𝛽)

⋅ 𝑤
(0)

⊗ ℎ
(5,𝜆)

𝑤
(1,𝜆)

𝑆
−1

𝜑
𝛽
−1 (ℎ
(3,𝛽𝜆
−1
𝛽
−1
)
)

𝜑
𝛽
−1 (ℎ
(2,𝛽𝜆𝛽

−1
)
V
(1,𝛽𝜆𝛽

−1
)
) 𝜑
𝛽
−1
𝛼
−1𝑆
−1

(1
(1,𝛼𝛽𝜆

−1
𝛽
−1
𝛼
−1
)
)

= ℎ
(1,𝛼)

1
(2,𝛼)

⋅ V
(0)

⊗ ℎ
(4,𝛽)

⋅ 𝑤
(0)

⊗ ℎ
(5,𝜆)

𝑤
(1,𝜆)

𝑆
−1

𝜑
𝛽
−1 (ℎ
(3,𝛽𝜆
−1
𝛽
−1
)
)

𝜑
𝛽
−1 (ℎ
(2,𝛽𝜆𝛽

−1
)
1
(3,𝛽𝜆𝛽

−1
)
V
(1,𝛽𝜆𝛽

−1
)
𝑆
−1

×𝜑
𝛼
−1 (1
(1,𝛼𝛽𝜆

−1
𝛽
−1
𝛼
−1
)
))

= ℎ
(1,𝛼)

⋅ V
(0)

⊗ ℎ
(3,𝛽)

⋅ 𝑤
(0)

⊗ ℎ
(4,𝜆)

𝑤
(1,𝜆)

× 𝜑
𝛽
−1𝑆
−1

(𝜀
𝑠

𝛽𝜆
−1
𝛽
−1 (ℎ
(2,1)

)) 𝜑
𝛽
−1 (V
(1,𝛽𝜆𝛽

−1
)
)

= ℎ
(1,𝛼)

⋅ V
(0)

⊗ ℎ
(2,𝛽)

1
󸀠

(1,𝛽)
1
(2,𝛽)

⋅ 𝑤
(0)

⊗ ℎ
(3,𝜆)

1
󸀠

(2,𝜆)
𝑤
(1,𝜆)

𝑆
−1

𝜑
𝛽
−1 (1
(1,𝛽𝜆
−1
𝛽
−1
)
) ,

𝜑
𝛽
−1 (V
(1,𝛽𝜆𝛽

−1
)
)

= ℎ
(1,𝛼)

⋅ V
(0)

⊗ ℎ
(2,𝛽)

⋅ 𝑤
(0)

⊗ ℎ
(3,𝜆)

𝑤
(1,𝜆)

𝜑
𝛽
−1 (V
(1,𝛽𝜆𝛽

−1
)
)

= ℎ
(1,𝛼𝛽)

⋅ (V ⊗ 𝑤)
(0)

⊗ ℎ
(2,𝜆)

(V ⊗ 𝑤)
(1,𝜆)

,

1
(1,𝛼𝛽)

⋅ (V ⊗ 𝑤)
(0)

⊗ 1
(2,𝜆)

(V ⊗ 𝑤)
(1,𝜆)

= 1
(1,𝛼𝛽)

⋅ (V
(0)

⊗ 𝑤
(0)
) ⊗ 1
(2,𝜆)

𝑤
(1,𝜆)

𝜑
𝛽
−1 (V
(1,𝛽𝜆𝛽

−1
)
)

= 1
(1,𝛼)

⋅ V
(0)

⊗ 1
(2,𝛽)

⋅ 𝑤
(0)

⊗ 1
(3,𝜆)

𝑤
(1,𝜆)

𝜑
𝛽
−1 (V
(1,𝛽𝜆𝛽

−1
)
)

= 1
(1,𝛼)

⋅ V
(0)

⊗ 1
(2,𝛽)

1
󸀠

(1,𝛽)
⋅ 𝑤
(0)

⊗ 1
󸀠

(2,𝜆)
𝑤
(1,𝜆)

× 𝜑
𝛽
−1 (V
(1,𝛽𝜆𝛽

−1
)
)

= 1
(1,𝛼)

⋅ V
(0)

⊗ 1
(2,𝛽)

⋅ 𝑤
(0)

⊗ 𝑤
(1,𝜆)

𝜑
𝛽
−1 (V
(1,𝛽𝜆𝛽

−1
)
)

= V
(0)

⊗ 𝑤
(0)

⊗ 𝑤
(1,𝜆)

𝜑
𝛽
−1 (V
(1,𝛽𝜆𝛽

−1
)
)

= (V ⊗ 𝑤)
(0)

⊗ (V ⊗ 𝑤)
(1,𝜆)

.

(27)

This finishes the proof.

Proposition 4. Let (𝑉, 𝜌𝑉) ∈ WYD
𝛼
(𝐻), and let 𝛽 ∈ 𝜋. Set

𝛽

𝑉 = 𝑉 as vector space, with action and coaction structures
defined by

ℎ ⊳
𝛽V =
𝛽

(𝜑
𝛽
−1 (ℎ) ⋅ V), ∀ℎ ∈ 𝐻

𝛽𝛼𝛽
−1 ,
𝛽V ∈
𝛽

𝑉,

𝜌
𝛽𝑉

𝜆
(
𝛽V) =

𝛽

(V
(0)
) ⊗ 𝜑
𝛽
(V
(1,𝛽
−1
𝜆𝛽)

)

:= V
⟨0⟩

⊗ V
⟨1,𝜆⟩

, ∀
𝛽V ∈
𝛽

𝑉 .

(28)

Then,
𝛽

𝑉 ∈ WYD
𝛽𝛼𝛽
−1(𝐻).
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Proof. Obviously, 𝛽𝑉 is a left𝐻
𝛽𝛼𝛽
−1-module, and conditions

(16) and (17) are straightforward. Then, it remains to show
that conditions (20) and (21) hold. For all 𝛽V ∈

𝛽

𝑉, we have

1
(1,𝛽𝛼𝛽

−1
)
⊳ V
⟨0⟩

⊗ 1
(2,𝜆)

V
⟨1,𝜆⟩

=
𝛽

(𝜑
𝛽
−1 (1
(1,𝛽𝛼𝛽

−1
)
) ⋅ V
(0)
) ⊗1
(2,𝜆)

𝜑
𝛽
(V
(1,𝛽
−1
𝜆𝛽)

)

=
𝛽

(1
(1,𝛼)

⋅ V
(0)
) ⊗ 𝜑
𝛽
(1
(2,𝜆)

) 𝜑
𝛽
(V
(1,𝛽
−1
𝜆𝛽)

)

= V
⟨0⟩

⊗ V
⟨1,𝜆⟩

.

(29)

Next, for all ℎ ∈ 𝐻
𝛽𝛼𝛽
−1
𝜆
, 𝛽V ∈

𝛽

𝑉, we get

(ℎ
(2,𝛽𝛼𝛽

−1
)
⊳
𝛽V)
⟨0⟩

⊗ (ℎ
(2,𝛽𝛼𝛽

−1
)
⊳
𝛽V)
⟨1,𝜆⟩

× 𝜑
𝛽𝛼
−1
𝛽
−1 (ℎ
(1,𝛽𝛼𝛽

−1
𝜆𝛽𝛼
−1
𝛽
−1
)
)

=

𝛽

((𝜑
𝛽
−1 (ℎ
(2,𝛽𝛼𝛽

−1
)
) ⋅ V)
(0)

)

⊗ 𝜑
𝛽
((𝜑
𝛽
−1 (ℎ
(2,𝛽𝛼𝛽

−1
)
) ⋅ V)
(1,𝛽
−1
𝜆𝛽)

) ,

𝜑
𝛽𝛼
−1
𝛽
−1 (ℎ
(1,𝛽𝛼𝛽

−1
𝜆𝛽𝛼
−1
𝛽
−1
)
)

=

𝛽

((𝜑
𝛽
−1(ℎ)
(2,𝛼)

⋅ V)
(0)

)

⊗ 𝜑
𝛽
((𝜑
𝛽
−1(ℎ)
(2,𝛼)

⋅ V)
(1,𝛽
−1
𝜆𝛽)

× 𝜑
𝛼
−1 (𝜑
𝛽
−1(ℎ)
(1,𝛼𝛽
−1
𝜆𝛽𝛼
−1
)
))

=
𝛽

(𝜑
𝛽
−1(ℎ)
(1,𝛼)

⋅ V
(0)
)

⊗ 𝜑
𝛽
(𝜑
𝛽
−1(ℎ)
(2,𝛽
−1
𝜆𝛽)

V
(1,𝛽
−1
𝜆𝛽)

)

=
𝛽

(𝜑
𝛽
−1 (ℎ
(1,𝛽𝛼𝛽

−1
)
) ⋅ V
(0)
)

⊗ 𝜑
𝛽
(𝜑
𝛽
−1 (ℎ
(2,𝜆)

) V
(1,𝛽
−1
𝜆𝛽)

)

= ℎ
(1,𝛽𝛼𝛽

−1
)
⊳
𝛽

(V
(0)
)

⊗ 𝜑
𝛽
(𝜑
𝛽
−1 (ℎ
(2,𝜆)

) V
(1,𝛽
−1
𝜆𝛽)

)

= ℎ
(1,𝛽𝛼𝛽

−1
)
⊳
𝛽V
⟨0⟩

⊗ ℎ
(2,𝜆)

V
⟨1,𝜆⟩

.

(30)

This completes the proof of the proposition.

Remark 5. Let (𝑉, 𝜌
𝑉

) ∈ WYD
𝛼
(𝐻) and let (𝑊, 𝜌

𝑊

) ∈

WYD
𝛽
(𝐻); then we have 𝑠𝑡𝑉 =

𝑠

(
𝑡

𝑉) as an object in
WYD

𝑠𝑡𝛼𝑡
−1
𝑠
−1(𝐻) and 𝑠(𝑉⊗

𝑡𝛼𝛽
𝑊) =

𝑠

𝑉⊗
𝑡
𝑠𝛼𝛽𝑠
−1

𝑠

𝑊 as an
object inWYD

𝑠𝛼𝛽𝑠
−1(𝐻).

Proposition 6. Let (𝑉, 𝜌
𝑉

) ∈ WYD
𝛼
(𝐻); (𝑊, 𝜌

𝑊

) ∈

WYD
𝛽
(𝐻). Set 𝑉𝑊 =

𝛼

𝑊 as an object inWYD
𝛼𝛽𝛼
−1(𝐻).

Define the map

𝑐
𝑉,𝑊

: 𝑉 ⊗𝑊 󳨀→
𝑉

𝑊⊗𝑉,

𝑐
𝑉,𝑊

(V ⊗ 𝑤) =
𝛼

(𝑆
𝛽
−1 (V
(1,𝛽
−1
)
) ⋅ 𝑤) ⊗V

(0)
.

(31)

Then, 𝑐
𝑉,𝑊

is 𝐻-linear, 𝐻-colinear and satisfies the following
conditions:

𝑐
𝑉⊗𝑊,𝑈

= (𝑐
𝑉,

𝑊

𝑈
⊗ id
𝑊
) ∘ (id

𝑉
⊗ 𝑐
𝑊,𝑈

) ,

𝑐
𝑉,𝑊⊗𝑈

= (id𝑉
𝑊

⊗ 𝑐
𝑉,𝑈

) ∘ (𝑐
𝑉,𝑊

⊗ id
𝑈
) .

(32)

Furthermore, 𝑐𝛾
𝑉,
𝛾
𝑊

= 𝑐
𝑉,𝑊

, for all 𝛾 ∈ 𝜋.

Proof. Firstly, we need to show that 𝑐
𝑉,𝑊

is well defined.
Indeed, we have

𝑐
𝑉⋅𝑊

(1
(1,𝛼)

⋅ V ⊗ 1
(2,𝛽)

⋅ 𝑤)

=

𝛼

(𝑆
𝛽
−1 ((1
(1,𝛼)

⋅ V)
(1,𝛽
−1
)
) 1
(2,𝛽)

⋅ 𝑤) ⊗(1
(1,𝛼)

⋅ V)
(0)

=
𝛼

(𝑆
𝛽
−1 (V
(1,𝛽
−1
)
𝑆
−1

𝜑
𝛼
−1 (1
(1,𝛼𝛽𝛼

−1
)
))

× 𝑆
𝛽
−1 (1
(3,𝛽
−1
)
) 1
(4,𝛽)

⋅ 𝑤) ⊗ 1
(2,𝛼)

⋅ V
(0)

=
𝛼

(𝑆
𝛽
−1𝑆
−1

𝜑
𝛼
−1 (1
(1,𝛼𝛽𝛼

−1
)
)

× 𝑆
𝛽
−1 (V
(1,𝛽
−1
)
) 𝜀
𝑠

𝛽
(1
(3,1)

) ⋅ 𝑤) ⊗ 1
(2,𝛼)

⋅ V
(0)

=
𝛼

(𝑆
𝛽
−1𝑆
−1

𝜑
𝛼
−1 (1
(1,𝛼𝛽𝛼

−1
)
) 𝑆
𝛽
−1 (1
(3,𝛽
−1
)
V
(1,𝛽
−1
)
) ⋅ 𝑤)

⊗ 1
(2,𝛼)

⋅ V
(0)

=
𝛼

(𝑆
𝛽
−1 (V
(1,𝛽
−1
)
) ⋅ 𝑤) ⊗ V

(0)

= 𝑐
𝑉,𝑊

(V ⊗ 𝑤) .

(33)

Secondly, we prove that 𝑐
𝑉,𝑊

is𝐻-linear. For all ℎ ∈ 𝐻
𝛼𝛽
,

we compute

𝑐
𝑉,𝑊

(ℎ ⋅ (V ⊗ 𝑤))

=

𝛼

(𝑆
𝛽
−1 ((ℎ
(1,𝛼)

⋅ V)
(1,𝛽
−1
)
) ℎ
(2,𝛽)

⋅ 𝑤) ⊗ (ℎ
(1,𝛼)

⋅ V)
(0)

=
𝛼

(𝑆
𝛽
−1 (ℎ
(3,𝛽
−1
)
V
(1,𝛽
−1
)
𝑆
−1

𝜑
𝛼
−1 (ℎ
(1,𝛼𝛽𝛼

−1
)
)) ℎ
(4,𝛽)

⋅ 𝑤)

⊗ ℎ
(2,𝛼)

⋅ V
(0)

=
𝛼

(𝑆
𝛽
−1 (V
(1,𝛽
−1
)
𝑆
−1

𝜑
𝛼
−1 (ℎ
(1,𝛼𝛽𝛼

−1
)
)) 𝜀
𝑠

𝛽
(ℎ
(3,1)

) ⋅ 𝑤)

⊗ ℎ
(2,𝛼)

⋅ V
(0)

=
𝛼

(𝑆
𝛽
−1 (V
(1,𝛽
−1
)
𝑆
−1

𝜑
𝛼
−1 (ℎ
(1,𝛼𝛽𝛼

−1
)
))

× 𝑆
𝛽
−1 (1
(2,𝛽
−1
)
) ⋅ 𝑤) ⊗ ℎ

(2,𝛼)
1
(1,𝛼)

⋅ V
(0)
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=
𝛼

(𝑆
𝛽
−1 (1
(3,𝛽
−1
)
V
(1,𝛽
−1
)
𝑆
−1

𝜑
𝛼
−1 (1
(1,𝛼𝛽𝛼

−1
)
)

× 𝑆
−1

𝜑
𝛼
−1 (ℎ
(1,𝛼𝛽𝛼

−1
)
)) ⋅ 𝑤) ⊗ ℎ

(2,𝛼)
1
(2,𝛼)

⋅ V
(0)

=
𝛼

(𝑆
𝛽
−1 (V
(1,𝛽
−1
)
𝑆
−1

𝜑
𝛼
−1 (ℎ
(1,𝛼𝛽𝛼

−1
)
)) ⋅ 𝑤)

⊗ ℎ
(2,𝛼)

⋅ V
(0)

=
𝛼

(𝜑
𝛼
−1 (ℎ
(1,𝛼𝛽𝛼

−1
)
) 𝑆
𝛽
−1 (V
(1,𝛽
−1
)
) ⋅ 𝑤) ⊗ ℎ

(2,𝛼)
⋅ V
(0)

= ℎ
(1,𝛼𝛽𝛼

−1
)
⊳
𝛼

(𝑆
𝛽
−1 (V
(1,𝛽
−1
)
) ⋅ 𝑤) ⊗ ℎ

(2,𝛼)
⋅ V

= ℎ ⋅ 𝑐
𝑉,𝑊

(V ⊗ 𝑤)

(34)
as required.

Finally, we check that 𝑐
𝑉,𝑊

is satisfing the 𝐻-colinear
condition. In fact,

𝜌

𝑉

𝑊⊗𝑉

𝜆
∘ 𝑐
𝑉,𝑊

(V ⊗ 𝑤)

=

𝛼

((𝑆
𝛽
−1 (V
(1,𝛽
−1
)
) ⋅ 𝑤)

(0)

) ⊗ V
(0)(0)

⊗ V
(0)(1,𝜆)

(𝑆
𝛽
−1 (V
(1,𝛽
−1
)
) ⋅ 𝑤)

(1,𝜆)

=

𝛼

(𝑆
𝛽
−1(V
(1,𝛽
−1
)
)
(2,𝛽)

⋅ 𝑤
(0)
) ⊗ V

(0)(0)

⊗ V
(0)(1,𝜆)

𝑆
𝛽
−1(V
(1,𝛽
−1
)
)
(3,𝜆)

𝑤
(1,𝜆)

𝑆
−1

𝜑
𝛽
−1

(𝑆
𝛽
−1(V
(1,𝛽
−1
)
)
(1,𝛽𝜆
−1
𝛽
−1
)

)

=
𝛼

(𝑆
𝛽
−1 (V
(3,𝛽
−1
)
) ⋅ 𝑤
(0)
) ⊗ V
(0)

⊗ V
(1,𝜆)

𝑆
𝜆
−1 (V
(2,𝜆
−1
)
)

× 𝑤
(1,𝜆)

𝑆
−1

𝜑
𝛽
−1𝑆
𝛽𝜆𝛽
−1 (V
(4,𝛽𝜆𝛽

−1
)
)

=
𝛼

(𝑆
𝛽
−1 (V
(2,𝛽
−1
)
) ⋅ 𝑤
(0)
) ⊗ V
(0)

⊗ 𝜀
𝑡

𝜆
(V
(1,1)

)

× 𝑤
(1,𝜆)

𝜑
𝛽
−1 (V
(3,𝛽𝜆𝛽

−1
)
)

=
𝛼

(𝑆
𝛽
−1 (1
(2,𝛽
−1
)
V
(1,𝛽
−1
)
) ⋅ 𝑤
(0)
) ⊗ V
(0)

⊗ 𝑆
𝜆
−1 (1
(1,𝜆
−1
)
) 𝑤
(1,𝜆)

𝜑
𝛽
−1 (V
(2,𝛽𝜆𝛽

−1
)
)

=
𝛼

(𝑆
𝛽
−1 (1
(2,𝛽
−1
)
V
(1,𝛽
−1
)
) ⋅ 𝑤
(0)
) ⊗ V
(0)

⊗ 𝑆
𝜆
−1 (1
(1,𝜆
−1
)
) 𝑤
(1,𝜆)

𝜑
𝛽
−1𝑆
−1

𝑆
𝛽𝜆𝛽
−1 (1
(3,𝛽𝜆𝛽

−1
)
) 𝜑
𝛽
−1 (V
(2,𝛽𝜆𝛽

−1
)
)

=
𝛼

(𝑆
𝛽
−1 (V
(1,𝛽
−1
)
) 𝑆
𝛽
−1(1)
(2,𝛽)

⋅ 𝑤
(0)
)

⊗ V
(0)

⊗ 𝑆
𝛽
−1(1)
(3,𝜆)

𝑤
(1,𝜆)

,

𝜑
𝛽
−1𝑆
−1

(𝑆
𝛽
−1(1)
(1,𝛽𝜆
−1
𝛽
−1
)
) 𝜑
𝛽
−1 (V
(2,𝛽𝜆𝛽

−1
)
)

=
𝛼

(𝑆
𝛽
−1 (V
(1,𝛽
−1
)
) ⋅ 𝑤
(0)
) ⊗ V
(0)

⊗ 𝑤
(1,𝜆)

𝜑
𝛽
−1 (V
(2,𝛽𝜆𝛽

−1
)
)

= (𝑐
𝑉,𝑊

⊗ id
𝐻𝜆

) (V
(0)

⊗ 𝑤
(0)

⊗ 𝑤
(1,𝜆)

𝜑
𝛽
−1

× (V
(1,𝛽𝜆𝛽

−1
)
))

= (𝑐
𝑉,𝑊

⊗ id
𝐻𝜆

) ∘ 𝜌
𝑉⊗𝑊

𝜆
(V ⊗ 𝑤) .

(35)

The rest of proof is easy to get and we omit it.

Lemma 7. The map 𝑐
𝑉,𝑊

defined by (31) is bijective with
inverse

𝑐
−1

𝑉,𝑊
:
𝑉

𝑊⊗𝑉 󳨀→ 𝑉 ⊗𝑊,

𝑐
−1

𝑉,𝑊
(
𝛼

𝑤⊗ V) = V
(0)

⊗ V
(1,𝛽)

⋅ 𝑤,

(36)

for all V ∈ 𝑉,
𝛼

𝑤 ∈
𝑉

𝑊.

Proof. Firstly, we prove 𝑐
−1

𝑉,𝑊
∘ 𝑐
𝑉,𝑊

= id
𝑉⊗𝑊

. For all V ∈ 𝑉,
𝑤 ∈ 𝑊, we have

𝑐
−1

𝑉,𝑊
∘ 𝑐
𝑉,𝑊

(V ⊗ 𝑤)

= V
(0)(0)

⊗ V
(0)(1,𝛽)

𝑆
𝛽
−1 (V
(1,𝛽
−1
)
) ⋅ 𝑤

= V
(0)

⊗ 𝜀
𝑡

𝛽
(V
(1,1)

) ⋅ 𝑤 = 1
(1,𝛼)

⋅ V
(0)

⊗ 1
(2,𝛽)

𝜀
𝑡

𝛽
(V
(1,1)

) ⋅ 𝑤

= 1
(1,𝛼)

𝑆
−1

𝜀
𝑡

𝛼
−1 (V
(1,1)

) ⋅ V
(0)

⊗ 1
(2,𝛽)

⋅ 𝑤

= 𝜀 (1
󸀠

(2,1)
V
(1,1)

) 1
(1,𝛼)

1
󸀠

(1,𝛼)
⋅ V
(0)

⊗ 1
(2,𝛽)

⋅ 𝑤

= 1
(1,𝛼)

⋅ V ⊗ 1
(2,𝛽)

⋅ 𝑤 = V ⊗ 𝑤.

(37)

Secondly, we check 𝑐
𝑉,𝑊

∘ 𝑐
−1

𝑉,𝑊
= id 𝑉

𝑊⊗𝑉
as follows:

𝑐
𝑉,𝑊

∘ 𝑐
−1

𝑉,𝑊
(
𝛼

𝑤⊗V)

=
𝛼

(𝑆
𝛽
−1 (V
(0)(1,𝛽

−1
)
) V
(1,𝛽)

⋅ 𝑤) ⊗V
(0)(0)

=
𝛼

(𝜑
𝛼
−1 (1
(1,𝛼𝛽𝛼

−1
)
) 𝑆
𝛽
−1 (V
(0)(1,𝛽

−1
)
) V
(1,𝛽)

⋅ 𝑤)

⊗ 1
(2,𝛼)

⋅ V
(0)(0)

=
𝛼

(𝜑
𝛼
−1 (1
(1,𝛼𝛽𝛼

−1
)
) 𝜀
𝑠

𝛽
(V
(1,1)

) ⋅ 𝑤) ⊗1
(2,𝛼)

⋅ V
(0)

=
𝛼

(𝜑
𝛼
−1 (1
(1,𝛼𝛽𝛼

−1
)
𝜀
𝑠

𝛼𝛽𝛼
−1𝜑
𝛼
(V
(1,1)

)) ⋅ 𝑤) ⊗1
(2,𝛼)

⋅ V
(0)

=
𝛼

(𝜑
𝛼
−1 (1
(1,𝛼𝛽𝛼

−1
)
) ⋅ 𝑤) ⊗1

(2,𝛼)

× 𝑆
𝛼
−1𝜀
𝑠

𝛼
(𝜑
𝛼
(V
(1,1)

)) ⋅ V
(0)
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=
𝛼

(𝜑
𝛼
−1 (1
(1,𝛼𝛽𝛼

−1
)
) ⋅ 𝑤) ⊗ 1

(2,𝛼)
𝜀
𝑡

𝛼
𝜑
𝛼
𝑆 (V
(1,1)

) ⋅ V
(0)

=
𝛼

(𝜑
𝛼
−1 (1
(1,𝛼𝛽𝛼

−1
)
) ⋅ 𝑤) ⊗1

(2,𝛼)

× 𝜀 (𝜑
𝛼
−1 (1
󸀠

(1,1)
) 𝑆 (V
(1,1)

)) 1
󸀠

(2,𝛼)
⋅ V
(0)

=
𝛼

(𝜑
𝛼
−1 (1
(1,𝛼𝛽𝛼

−1
)
) ⋅ 𝑤) ⊗ 1

(2,𝛼)
𝜀𝑆 (V
(1,1)

) ⋅ V
(0)

= 1
(1,𝛼𝛽𝛼

−1
)
⊳
𝛼

𝑤⊗1
(2,𝛼)

⋅ V

=
𝛼

𝑤⊗ V.
(38)

This completes the proof.

Define WYD(𝐻) = ∐
𝛼∈𝜋

WYD
𝛼
(𝐻), the disjoint

union of the categories WYD
𝛼
(𝐻) for all 𝛼 ∈ 𝜋. If we

endow WYD(𝐻) with tensor product as in Proposition 3,
then WYD(𝐻) becomes a monoidal category. The unit is
𝐻
𝑇

= {𝐻
𝑡

𝛼
:= 𝜀
𝑡

𝛼
(𝐻
1
)}
𝛼∈𝜋

.
The group homomorphism 𝜓 : 𝐺 → aut(WYD(𝐻));

𝛽 → 𝜓
𝛽
is given on components as

𝜓
𝛽
: WYD

𝛼
(𝐻) 󳨀→ WYD

𝛽𝛼𝛽
−1 (𝐻) , (39)

where the functor 𝜓
𝛽
acts as follows: given a morphism 𝑓 :

(𝑉, 𝜌
𝑉

) → (𝑊, 𝜌
𝑊

), for any V ∈ 𝑉, we set ( 𝛽𝑓)( 𝛽V) =

𝛽

(𝑓(V)).
The braiding in WYD(𝐻) is given by the family {𝑐

𝑉,𝑊
}

as shown in Proposition 6. Then, we have the following
theorem.

Theorem 8. For a weak crossed Hopf group coalgebra 𝐻,
WYD(𝐻) is a braided 𝑇-category over group 𝜋.

Example 9. Let 𝐻 be a weak Hopf algebra, 𝐺 a finite group,
and 𝑘(𝐺) the dual Hopf algebra of the group algebra 𝑘𝐺.

Then, have the weak Hopf group coalgebra 𝑘(𝐺) ⊗𝐻; the
multiplication in 𝑘(𝐺) ⊗ 𝐻 is given by

(𝑝
𝛼
⊗ ℎ) (𝑝

𝛽
⊗ 𝑔) = 𝑝

𝛼
𝑝
𝛽
⊗ ℎ𝑔, (40)

for all 𝑝
𝛼
, 𝑝
𝛽

∈ 𝑘(𝐺), ℎ, 𝑔 ∈ 𝐻, and the comultiplication,
counit, and antipode are given by

Δ
𝑢,V (𝑝𝛼 ⊗ ℎ) = ∑

𝑢V=𝛼
(𝑝
𝑢
⊗ ℎ
1
) ⊗ (𝑝V ⊗ ℎ

2
) ,

𝜀 (𝑝
𝛼
⊗ ℎ) = 𝛿

𝛼,1
𝜀 (ℎ) ,

𝑆 (𝑝
𝛼
⊗ ℎ) = 𝑝

𝛼
−1 ⊗ 𝑆 (ℎ) .

(41)

Moreover, 𝑘(𝐺) ⊗ 𝐻 is a weak crossed Hopf group
coalgebra with the following crossing:

Φ
𝛽
(𝑝
𝛼
⊗ ℎ) = 𝑝

𝛽
−1
𝛼𝛽

⊗ ℎ. (42)

ByTheorem 8,WYD(𝑘(𝐺)⊗𝐻) is a braided 𝑇-category.

4. Braided 𝑇-Categories over Weak Long
Dimodule Categories

In this section, we introduce the notion of a (left-right)
weak 𝛼-Long dimodule over a weak crossed Hopf group
coalgebra𝐻 and prove that the category

𝐻
WL𝐻 is a braided

𝑇-subcategory of Yetter-Drinfel’d category WYD(𝐻 ⊗ 𝐻)

when 𝐻 is a quasitriangular and coquasitriangular weak
crossed Hopf group coalgebra.

Definition 10. Let𝐻 be a weak crossed Hopf group coalgebra
over 𝜋. For a fixed element 𝛼 ∈ 𝜋, a (left-right) weak 𝛼-Long
dimodule is a couple 𝑉 = (𝑉, 𝜌

𝑉

= {𝜌
𝑉

𝜆
}
𝜆∈𝜋

), where 𝑉 is a
left 𝐻

𝛼
-module and, for any 𝜆 ∈ 𝜋, 𝜌𝑉

𝜆
: 𝑉 → 𝑉 ⊗ 𝐻

𝜆
is

a 𝑘-linear morphism, such that

(1) 𝑉 is coassociative in the sense that, for any 𝜆
1
, 𝜆
2
∈ 𝜋,

we have

(id
𝑉
⊗ Δ
𝜆1 ,𝜆2

) ∘ 𝜌
𝑉

𝜆1𝜆2

= (𝜌
𝑉

𝜆1

⊗ id
𝐻𝜆2

) ∘ 𝜌
𝑉

𝜆2

; (43)

(2) 𝑉 is counitary in the sense that

(id
𝑉
⊗ 𝜀) ∘ 𝜌

𝑉

1
= id
𝑉
; (44)

(3) 𝑉 satisfies the following compatible condition:

𝜌
𝑉

𝜆
(𝑥 ⋅ V) = 𝑥 ⋅ V

(0)
⊗ V
(1,𝜆)

; (45)

where 𝑥 ∈ 𝐻
𝛼
and V ∈ 𝑉.

Now, we can form the category
𝐻
WL𝐻
𝛼
of (left-right)

weak 𝛼-Long dimodules where the composition of mor-
phisms of weak 𝛼-Long dimodules is the standard compo-
sition of the underlying linear maps.

Let
𝐻
WL𝐻 = ∐

𝛼∈𝜋 𝐻
WL𝐻
𝛼
, the disjoint union of the

categories
𝐻
WL𝐻
𝛼
for all 𝛼 ∈ 𝜋.

Proposition 11. Thecategory
𝐻
WL𝐻 is amonoidal category.

Moreover, for any 𝛼, 𝛽 ∈ 𝐺, let 𝑉 ∈
𝐻
WL𝐻
𝛼

and let
𝑊∈
𝐻
WL𝐻
𝛽
. Set

𝑉⊗̃𝑊 = {V ⊗ 𝑤 ∈ 𝑉 ⊗𝑊 | V ⊗ 𝑤

= 1
(1,𝛼)

⋅ V ⊗ 1
(2,𝛽)

⋅ 𝑤

= 𝜀 (𝑤
(1,1)

𝜑
𝛽
−1 (V
(1,1)

)) V
(0)

⊗ 𝑤
(0)
} .

(46)

Then, 𝑉 ⊗̃𝑊∈
𝐻
WL𝐻
𝛼
with the following structures:

𝑥 ⋅ (V ⊗ 𝑤) = 𝑥
(1,𝛼)

⋅ V ⊗ 𝑥
(2,𝛽)

⋅ 𝑤,

𝜌
𝑉⊗̃𝑊

𝜆
(V ⊗ 𝑤) = V

(0)
⊗ 𝑤
(0)

⊗ 𝑤
(1,𝜆)

𝜑
𝛽
−1 (V
(1,𝛽𝜆𝛽

−1
)
) ,

(47)

for all 𝑥 ∈ 𝐻
𝛼𝛽
, V ⊗ 𝑤 ∈ 𝑉⊗̃𝑊.

Proof. It is straightforward.
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Let (𝐻, 𝜎, 𝑅) be a coquasitriangular and quasitriangular
weak crossed Hopf group coalgebra with crossing 𝜑. Define a
family of vector spaces 𝐻 ⊗ 𝐻 = {(𝐻 ⊗ 𝐻)

𝛼
= 𝐻
1
⊗ 𝐻
𝛼
}
𝛼∈𝜋

,
where, the 𝐻 on the left we consider its coquasitriangular
structure and for the right one we consider its quasitriangular
structure.Then,𝐻⊗𝐻 is aweak crossedHopf group coalgebra
with the natural tensor product and the crossing Φ = {id ⊗

𝜑
𝛼
}
𝛼∈𝜋

.

Theorem 12. Let (𝐻, 𝜎, 𝑅) be a weak crossed Hopf group
coalgebra with coquasitriangular structure 𝜎 and quasitrian-
gular structure 𝑅. Then, the category

𝐻
WL𝐻 is a braided

𝑇-subcategory of Yetter-Drinfel’d category WYD(𝐻 ⊗ 𝐻)

under the following action and coaction given by

𝛿
𝑉

𝜆
(V) = 𝑎

𝛼
⋅ V
(0)

⊗ V
(1,1)

⊗ 𝑆
−1

(𝑏
𝜆
−1) =: V

[0]
⊗ V
[1,𝜆]

,

(ℎ ⊗ 𝑥) ⊳
𝛼
V = 𝜎 (ℎ, V

(1,1)
) 𝑥 ⋅ V
(0)
,

(48)

where ℎ ⊗ 𝑥 ∈ (𝐻 ⊗ 𝐻)
𝛼
, ℎ ∈ 𝐻

1
, 𝑥 ∈ 𝐻

𝛼
, V ∈ 𝑉, and

𝑉∈
𝐻
WL𝐻
𝛼
.

The braiding on
𝐻
WL𝐻, 𝜏

𝑉,𝑊
: 𝑉 ⊗ 𝑊 →

𝑉

𝑊⊗𝑉 is
given by

𝜏
𝑉,𝑊

(V ⊗ 𝑤) = 𝜎 (𝑆 (V
(1,1)

) , 𝑤
(1,1)

)
𝛼

(𝑏
𝛽
⋅ 𝑤
(0)
) ⊗ 𝑎
𝛼
⋅ V
(0)
,

(49)

for all 𝑉∈
𝐻
WL𝐻
𝛼
,𝑊∈

𝐻
WL𝐻
𝛽
.

Proof. Obviously,𝑉 is a left (𝐻⊗𝐻)
𝛼
-module.Then, we show

that𝑉 satisfies the conditions inDefinition 1. First, we need to
check that𝑉 is coassociative. In fact, for all V ∈ 𝑉 ∈

𝐻
WL𝐻
𝛼

and 𝜆
1
, 𝜆
2
∈ 𝜋

(id
𝑉
⊗ Δ
𝜆1 ,𝜆2

) ∘ 𝛿
𝑉

𝜆1𝜆2
(V)

= 𝑎
𝛼
⋅ V
(0)

⊗ V
(1,1)

⊗ 𝑆
−1

(𝑏
𝜆
−1

2
𝜆
−1

1
(2,𝜆
−1

1
)
)

⊗ V
(2,1)

⊗ 𝑆
−1

(𝑏
𝜆
−1

2
𝜆
−1

1
(1,𝜆
−1

2
)
)

= 𝑎
𝛼
𝑎
󸀠

𝛼
⋅ V
(0)

⊗ V
(1,1)

⊗ 𝑆
−1

(𝑏
𝜆
−1

1

)

⊗ V
(2,1)

⊗ 𝑆
−1

(𝑏
󸀠

𝜆
−1

2

)

= 𝑎
𝛼
⋅ (𝑎
󸀠

𝛼
⋅ V
(0)
)
(0)

⊗ (𝑎
󸀠

𝛼
⋅ V
(0)
)
(1,1)

⊗ 𝑆
−1

(𝑏
𝜆
−1

1

) ⊗ V
(1,1)

⊗ 𝑆
−1

(𝑏
󸀠

𝜆
−1

2

)

= (𝛿
𝑉

𝜆1

⊗ id
(𝐻⊗𝐻)𝜆2

) (𝑎
󸀠

𝛼
⋅ V
(0)

⊗ V
(1,1)

⊗ 𝑆
−1

(𝑏
󸀠

𝜆
−1

2

))

= (𝛿
𝑉

𝜆1

⊗ id
(𝐻⊗𝐻)𝜆2

) ∘ 𝛿
𝑉

𝜆2
(V) .

(50)

Next, one directly shows that counitary condition (17) holds
as follows:

(id
𝑉
⊗ 𝜀) ∘ 𝛿

𝑉

1
(V) = 𝑎

𝛼
⋅ V
(0)
𝜀 (𝑚
(1,1)

) 𝜀𝑆
−1

(𝑏
1
)

= 𝑎
𝛼
⋅ V𝜀 (𝑏

1
) = 1
𝛼
⋅ V = V.

(51)

Then, we have to prove that crossed condition (18) is
satisfied. For all ℎ ∈ 𝐻

1
, 𝑥 ∈ 𝐻

𝛼
, and V ∈ 𝑉∈

𝐻
WL𝐻
𝛼
, we

have
(ℎ ⊗ 𝑥)

(2,𝛼)
⋅ V
[0]

⊗ (ℎ ⊗ 𝑥)
(3,𝜆)

× V
[1,𝜆]

𝑆
−1

Φ
𝛼
−1 ((ℎ ⊗ 𝑥)

(1,𝛼𝜆
−1
𝛼
−1
)
)

= 𝜎 (ℎ
(2,1)

, (𝑎
𝛼
⋅ V
(0)
)
(1,1)

) 𝑥
(2,𝛼)

⋅ (𝑎
𝛼
⋅ V
(0)
)
(0)

⊗ ℎ
(3,1)

V
(1,1)

𝑆
−1

(ℎ
(1,1)

) ⊗ 𝑥
(3,𝜆)

,

𝑆
−1

(𝑏
𝜆
−1) 𝑆
−1

𝜓
𝛼
−1 (𝑥
(1,𝛼𝜆
−1
𝛼
−1
)
)

= 𝜎 (ℎ
(2,1)

, V
(1,1)

) 𝑥
(2,𝛼)

𝑎
𝛼
⋅ V
(0)

⊗ ℎ
(3,1)

V
(2,1)

𝑆
−1

(ℎ
(1,1)

) ⊗ 𝑥
(3,𝜆)

𝑆
−1

(𝑏
𝜆
−1) ,

𝑆
−1

𝜓
𝛼
−1 (𝑥
(1,𝛼𝜆
−1
𝛼
−1
)
)

= 𝜎 (ℎ
(3,1)

, V
(2,1)

) 𝑥
(2,𝛼)

𝑎
𝛼
⋅ V
(0)

⊗ V
(1,1)

ℎ
(2,1)

𝑆
−1

(ℎ
(1,1)

) ⊗ 𝑥
(3,𝜆)

,

𝑆
−1

(𝜓
𝛼
−1 (𝑥
(1,𝛼𝜆
−1
𝛼
−1
)
) 𝑏
𝜆
−1)

= 𝜎 (ℎ
(2,1)

, V
(2,1)

) 𝑎
𝛼
𝑥
(1,𝛼)

⋅ V
(0)

⊗ V
(1,1)

𝑆
−1

𝜀
𝑡

1
(ℎ
(1,1)

)

⊗ 𝑥
(3,𝜆)

𝑆
−1

(𝑏
𝜆
−1 (𝑥
(2,𝜆
−1
)
))

= 𝜎 (ℎ
(2,1)

, V
(2,1)

) 𝑎
𝛼
𝑥
(1,𝛼)

⋅ V
(0)

⊗ V
(1,1)

𝑆
−1

𝜀
𝑡

1
(ℎ
(1,1)

)

⊗ 𝑆
−1

𝜀
𝑡

𝜆
−1 (𝑥
(2,1)

) 𝑆
−1

(𝑏
𝜆
−1)

= 𝜎 (1
󸀠

(2,1)
ℎ, V
(2,1)

) 𝑎
𝛼
1
(1,𝛼)

𝑥 ⋅ V
(0)

⊗ V
(1,1)

1
󸀠

(1,1)

⊗ 𝑆
−1

(1
(2,𝜆
−1
)
) 𝑆
−1

(𝑏
𝜆
−1)

= 𝜎 (1
󸀠

(2,1)
, V
(2,1)

) 𝜎 (ℎ, V
(3,1)

) 𝑎
𝛼
1
(1,𝛼)

𝑥 ⋅ V
(0)

⊗ V
(1,1)

1
󸀠

(1,1)
⊗ 𝑆
−1

(𝑏
𝜆
−11
(2,𝜆
−1
)
)

= 𝜀 (V
(2,1)

1
(2,1)

) 𝜎 (ℎ, V
(3,1)

) 𝑎
𝛼
𝑥 ⋅ V
(0)

⊗ V
(1,1)

1
(1,1)

⊗ 𝑆
−1

(𝑏
𝜆
−1)

= 𝜎 (ℎ, V
(2,1)

) 𝑎
𝛼
𝑥 ⋅ V
(0)

⊗ V
(1,1)

⊗ 𝑆
−1

(𝑏
𝜆
−1)

= 𝜎 (ℎ, V
(1,1)

) 𝑎
𝛼
⋅ (𝑥 ⋅ V

(0)
)
(0)

⊗ (𝑥 ⋅ V
(0)
)
(1,1)

⊗ 𝑆
−1

(𝑏
𝜆
−1)

= 𝛿
𝑉

𝜆
((ℎ ⊗ 𝑥) ⊳

𝛼
V) .

(52)

Finally, it follows from Proposition 6, the braiding on
WYD(𝐻 ⊗ 𝐻), that the braiding on

𝐻
WL𝐻 is as the

following:

𝜏
𝑉,𝑊

(V ⊗ 𝑤) =
𝛼

(𝑆
𝛽
−1 (V
[1,𝛽
−1
]
)) ⊳
𝛽
𝑤⊗V
[0]

= 𝜎 (𝑆 (V
(1,1)

) , 𝑤
(1,1)

)
𝛼

(𝑏
𝛽
⋅ 𝑤
(0)
) ⊗𝑎
𝛼
⋅ V
(0)
,

(53)

for all 𝑉∈
𝐻
WL𝐻
𝛼
,𝑊∈
𝐻
WL𝐻
𝛽
, V ∈ 𝑉, and 𝑤 ∈ 𝑊.

This completes the proof.



10 Abstract and Applied Analysis

Acknowledgments

The work was partially supported by the NNSF of China
(no. 11326063), NSF for Colleges and Universities in Jiangsu
Province (no. 12KJD110003), NNSF of China (no. 11226070),
and NJAUF (no. LXY2012 01019, LXYQ201201103).

References

[1] V. G. Turaev, “Homotopy field theory in dimension 3 and
crossed group categories,” http://arxiv.org/abs/math/0005291.

[2] P. J. Freyd and D. N. Yetter, “Braided compact closed categories
with applications to low-dimensional topology,” Advances in
Mathematics, vol. 77, no. 2, pp. 156–182, 1989.
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