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This paper considers the locations of multiple facilities in the space 𝑅𝑝, with the aim of minimizing the sum of weighted distances
between facilities and regional customers, where the proximity between a facility and a regional customer is evaluated by the closest
distance. Due to the fact that facilities are usually allowed to be sited in certain restricted areas, some locational constraints are
imposed to the facilities of our problem. In addition, since the symmetry of distances is sometimes violated in practical situations,
the gauge is employed in this paper instead of the frequently used norms for measuring both the symmetric and asymmetric
distances. In the spirit of the Cooper algorithm (Cooper, 1964), a new location-allocation heuristic algorithm is proposed to solve
this problem. In the location phase, the single-source subproblem with regional demands is reformulated into an equivalent linear
variational inequality (LVI), and then, a projection-contraction (PC) method is adopted to find the optimal locations of facilities,
whereas in the allocation phase, the regional customers are allocated to facilities according to the nearest center reclassification
(NCR). The convergence of the proposed algorithm is proved under mild assumptions. Some preliminary numerical results are
reported to show the effectiveness of the new algorithm.

1. Introduction

Due to the large number of practical applications in various
fields such as marketing, urban planning, supply chain man-
agement, and transportation, the continuous facility location
problem has aroused the attention of many researchers ever
since the pioneering work [1, 2]. For a comprehensive review
on this topic, see, for example, [3, 4]. More specifically, the
continuous facility location problem in a space is to seek the
optimal locations for facilities serving customers (also called
demand points), with certain objectives such as minimizing
the sum of distances between facilities and customers.

The vast majority of literature treats the locations of
facilities and customers as points in a space. Hence, the
distances between facilities and customers are just the
point-to-point distance without any ambiguity. In practical
applications, however, regional demand arises frequently in
such scenarios as uncertain demand, mobile demand, or
cumbersome discrete situation whose number of demand

points is extremely large. For such scenarios, many authors
(e.g., [5–11]) promote that the regional customer, that is, the
locations of customers are geometrically connected regions
rather than points, should be considered. Therefore, in this
paper, we consider the case of regional customer.

The question to be emphasized here, however, is how to
measure the proximity from a regional customer to a facility.
In the literature, different kinds of distances have been used
to measure the required proximity. For example, the average
distance evaluated by the proximity between the facility and
some mean point in the interior of a regional customer (e.g.,
[10–13]) and the farthest distance measured by the proximity
between the facility and the farthest point on the boundary
of a regional customer (e.g., [8, 9, 14, 15]). Definitely, the
regional customers are treated by the average fashion when
the average distance is considered, while the farthest distance
realizes the worst-off nature in the sense that the regional
customers are represented by their respective farthest points.
In some real-life applications, however, the best-off nature is
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of importance in facility location; see, for example, [6, 16, 17].
To realize precisely the desired best-off nature, we need to
consider the closest distance; that is, the proximity from a
regional customer to a facility is evaluated by the closest
distance to this facility. Thus, in this paper, we consider the
closest distance to measure such a proximity. Note that the
three kinds of distances have been well justified in [14, 15] and
the reader can be referred to them for more details.

Focusing on the real-life applications with vast eyes, the
regional customers and the closest distances are highly essen-
tial to be considered.An example is about the communication
networkwhere several central servers are required to be sited.
The demand points on the network are partially connected
forming groups, each containing a large number of demand
points. The points in the same group are connected to one
another, and thus, each group becomes a regional customer
in the plane. The servers need to be connected to the closest
points in each regional customer, and the rest of the regional
customer will be connected to the servers through that con-
nection. Hence, the regional customers and the closest dis-
tances need to be used in the locations of these central servers.
For more applications, we refer to, for example, [6, 15, 16].

As amatter of fact, in the literature of facility location, the
distance is usually measured by norms such as 𝑙𝑝-norms and
block norms. References [3, 18] discuss the approximations
about the weighted 𝑙𝑝-norms based on statistical evidence.
References [19, 20] investigate the use of block norms to
obtain good approximation of actual distances. As it is
known, the symmetry property of the norm assures that
the distance from one point to another is always equal to
the distance back. Nevertheless, as one of the first in-depth
studies of mathematical location problems, [21] highlights
the fact that in numerous real situations the symmetry
of the distance is violated, for example, transportation in
rush-hour traffic, flight in the presence of wind, navigation
in the presence of currents, transportation on an inclined
terrain, and so forth. For about two decades after the work
of [21], however, no further research on this topic seems
to be published, and only in the recent twenty years have
the asymmetric distance problems started to attract the
researchers’ interest, for example, [22–28].

In this paper, we are interested in the locations ofmultiple
facilities in the space 𝑅

𝑝 with the aim of minimizing the
sumofweighted distance between these facilities and regional
customers, where the distance between a facility and a
regional customer is evaluated by the closest distance. In
addition, we formulate this problem in a quite general way
with the aim of enhancing its practical applicability. First,
we recognize that, usually, not all the points in the space
𝑅

𝑝 are possible locations; that is, new facilities are often
allowed to be sited within the confines of the restricted areas.
Therefore, we introduce locational constraints so that both
the unconstrained and constrained problems are taken into
consideration in this paper. Second, since the distance in
many practical situations is not necessarily symmetric, the
gauge is used to measure the distance instead of the widely
used norms. With the more general distance measuring
function used, both the symmetric and asymmetric distances
can be considered in our problem.

The rest of this paper is organized as follows. Section 2
states the formulation of our problem, which is shown to
be nonconvex and NP-hard. The spirit of the well-known
location-allocation heuristic algorithm, which consists of a
location phase and an allocation phase in each iteration,
is also discussed in this section. In Section 3, the sub-
problems arising in location phase and allocation phase
are solved. More specifically, for the subproblem arising
in allocation phase, the regional customers are allocated
to facilities according to the nearest reclassification (NCR)
heuristic, whereas for the single-source subproblem arising in
location phase, the relationship between the subproblem and
a monotone linear variational inequality (LVI) is firstly built,
and then, a projection-contraction (PC) method is adopted
to find the optimal location of the facility. A new location-
allocation heuristic algorithm is proposed in Section 4 for
solving our targeted problem, and its convergence is proved
in Section 5. Preliminary numerical results are reported in
Section 6 to verify the efficiency of the proposed algorithm.
Finally, some conclusions are drawn in Section 7.

2. Model Description

This paper focuses on finding locations in the space 𝑅𝑝 for𝑚
facilities, with the objective to minimize the sum of weighted
closest distances between these facilities and 𝑛 regional
customers. Note that the minisum single-source models with
closest distance have been well justified in [6, 16] where the
distances are particularly measured by 𝑙1-norm and 𝑙2-norm,
respectively. In ourmulti-sourcemodel, however, the gauge is
used to measure the distances between facilities and regional
customers, and thus, both the symmetric distance (including
the 𝑙1-norm used in [16] and the 𝑙2-norm used in [6]) and the
asymmetric distance are considered.

Let 𝐵 be a compact convex set in 𝑅
𝑝, and let the interior

of 𝐵 contain the origin; then, the gauge of 𝐵 is defined by

𝛾 (𝑥) = inf {𝜆 > 0 |
𝑥

𝜆
∈ 𝐵} , ∀𝑥 ∈ 𝑅

𝑝
. (1)

𝐵 is called the unit ball of 𝛾(⋅) due to

𝐵 = {𝑥 ∈ 𝑅
𝑝
| 𝛾 (𝑥) ≤ 1} . (2)

This way to define a gauge from a compact convex set was
first introduced by Minkowski [29]. The gauge 𝛾(⋅) satisfies
the following properties:

(1) 𝛾(𝑥) ≥ 0 and 𝛾(𝑥) = 0 ⇔ 𝑥 = 0;

(2) 𝛾(𝑡𝑥) = 𝑡𝛾(𝑥) for any 𝑡 ≥ 0;

(3) 𝛾(𝑥 + 𝑦) ≤ 𝛾(𝑥) + 𝛾(𝑦) for any 𝑥 and 𝑦 ∈ 𝑅
𝑝.

It follows from (2) and (3) that any gauge 𝛾(𝑥) is a convex
function of 𝑥. The distance measuring function can be
derived from a gauge by

𝐷(𝑥, 𝑦) = 𝛾 (𝑦 − 𝑥) . (3)
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When 𝐵 is symmetric around the origin, according to the
definition of (1), we have

𝛾 (−𝑥) = 𝛾 (𝑥) , ∀𝑥 ∈ 𝑅
𝑝
. (4)

Combining (3) and (4), it follows that

𝐷(𝑥, 𝑦) = 𝐷 (𝑦, 𝑥) , (5)

whichmeans that the distancemeasured by 𝛾(⋅) is symmetric.
On the contrary, when 𝐵 is not symmetric around the
origin, (4) does not hold any more, and thus, the distance
measured by the gauge 𝛾(⋅) is asymmetric. Thus, when
different compact convex sets are used as unit balls, different
gauges (symmetric or asymmetric) can be generated and
employed to measure distances in location problems, which
depends on the requirements of practical applications.

LetΛ = {𝐴𝑗 ⊂ 𝑅
𝑝
| 𝑗 = 1, . . . , 𝑛}denote the set of regional

customers, and let 𝑥𝑖(𝑖 = 1, . . . , 𝑚) be the location of the 𝑖th
facility. Each regional customer 𝐴𝑗 is simply assumed to be
closed and convex. We denote the closest point in 𝐴𝑗 to the
facility 𝑥𝑖 by

𝑎𝑗 (𝑥𝑖) := argmin {𝐷 (𝑞, 𝑥𝑖) | 𝑞 ∈ 𝐴𝑗}

= argmin {𝛾 (𝑥𝑖 − 𝑞) | 𝑞 ∈ 𝐴𝑗} .

(6)

Then, the closest distance between the facility 𝑥𝑖 and the
regional customer 𝐴𝑗, denoted by 𝑑𝑗(𝑥𝑖), can be represented
by

𝑑𝑗 (𝑥𝑖) := min
𝑞∈𝐴𝑗

𝐷(𝑞, 𝑥𝑖) = 𝛾 (𝑥𝑖 − 𝑎𝑗 (𝑥𝑖)) . (7)

When the gauge is used tomeasure distances, we have the
following proposition for 𝑎𝑗(𝑥) and 𝑑𝑗(𝑥) which is similar to
that in [16].

Proposition 1. Let 𝑥 be the location of a facility; then, the
closest point 𝑎𝑗(𝑥) in (6) is well defined, and the closest distance
𝑑𝑗(𝑥) in (7) is a convex function of 𝑥.

Proof. Since 𝐴𝑗 is a convex set and 𝛾(⋅) is a convex function,
(6) is a convex problem, and thus, 𝑎𝑗(𝑥) is well defined.

Now, we prove that 𝑑𝑗(𝑥) is a convex function of 𝑥 as
follows. Let 𝑥 and 𝑦 be two points in 𝑅

𝑝 and 𝜆 ∈ [0, 1]; then,
due to 𝑎𝑗(𝑥) and 𝑎𝑗(𝑦) in𝐴𝑗 and the convexity of𝐴𝑗, it follows
that 𝜆𝑎𝑗(𝑥) + (1 − 𝜆)𝑎𝑗(𝑦) ∈ 𝐴𝑗, and thus, we have

𝑑𝑗 (𝜆𝑥 + (1 − 𝜆) 𝑦)

= min
𝑎∈𝐴𝑗

𝐷(𝑎, 𝜆𝑥 + (1 − 𝜆) 𝑦)

≤ 𝐷 (𝜆𝑎𝑗 (𝑥) + (1 − 𝜆) 𝑎𝑗 (𝑦) , 𝜆𝑥 + (1 − 𝜆) 𝑦)

= 𝛾 (𝜆𝑥 + (1 − 𝜆) 𝑦 − (𝜆𝑎𝑗 (𝑥) + (1 − 𝜆) 𝑎𝑗 (𝑦)))

= 𝛾 (𝜆 (𝑥 − 𝑎𝑗 (𝑥)) + (1 − 𝜆) (𝑦 − 𝑎𝑗 (𝑦)))

≤ 𝛾 (𝜆 (𝑥 − 𝑎𝑗 (𝑥)))+𝛾 ((1 − 𝜆) (𝑦 − 𝑎𝑗 (𝑦)))

= 𝜆𝛾 (𝑥 − 𝑎𝑗 (𝑥)) + (1 − 𝜆) 𝛾 (𝑦 − 𝑎𝑗 (𝑦))

= 𝜆𝑑𝑗 (𝑥) + (1 − 𝜆) 𝑑𝑗 (𝑦) .

(8)

Therefore, 𝑑𝑗(𝑥) is convex with respect to 𝑥, and the proof is
complete.

Based on the notations introduced above, now the
constrained multi-source location problem (abbreviated as
CMLP) we consider in this paper takes the following formu-
lation:

CMLP: min
𝑋,𝑊

𝑛

∑

𝑗=1

𝑚

∑

𝑖=1

𝑤𝑖𝑗𝑑𝑗 (𝑥𝑖) =

𝑛

∑

𝑗=1

𝑚

∑

𝑖=1

𝑤𝑖𝑗𝛾 (𝑥𝑖 − 𝑎𝑗 (𝑥𝑖))

s.t.
𝑚

∑

𝑖=1

𝑤𝑖𝑗 = 𝑠𝑗, 𝑗 = 1, 2, . . . , 𝑛,

𝑥𝑖 ∈ Π𝑖, 𝑖 = 1, 2, . . . , 𝑚,

(9)

where 𝑠𝑗 ≥ 0 is the given demand required by the 𝑗th
customer,𝑋 = (𝑥

𝑇

1
, . . . , 𝑥

𝑇

𝑚
)

𝑇 is the variable of the locations of
facilities to be determined,𝑊 = (𝑤𝑖𝑗)𝑚×𝑛 is the undetermined
variable of 𝑤𝑖𝑗 which denotes the unknown allocation from
the 𝑖th facility to the 𝑗th customer, and Π𝑖 is the locational
constraint for the 𝑖th facility which is assumed to be a convex
and closed set in 𝑅

𝑝.
More explanations are required for our model (9). First,

the locational constraint Π𝑖 in (9) can also be chosen as
𝑅

𝑝, and if all Π𝑖(𝑖 = 1, . . . , 𝑚) are 𝑅
𝑝, the CMLP (9) is

a unconstrained problem, and thus, both the constrained
and unconstrained problems are considered in our model.
Second, mark that the minisum models analyzed in [6, 16]
are two special cases of CMLP (9), where 𝑚 = 1, Π𝑖 = 𝑅

𝑝,
and 𝛾(𝑥) is particularly 𝑙1-norm in [16] and Euclidean norm
in [6].

It is noted that, with the presupposition that each facility
is capable of providing sufficient services for the targeted
customers, each customer is ultimately served only by the
nearest facility in order tominimize the total sum of weighted
distances.Therefore, the mathematical model CMLP also has
the following form:

CMLP󸀠: min
𝑋∈Π

𝐶 (𝑋) =

𝑛

∑

𝑗=1

𝑠𝑗 min
1≤𝑖≤𝑚

𝑑𝑗 (𝑥𝑖)

=

𝑛

∑

𝑗=1

𝑠𝑗 min
1≤𝑖≤𝑚

𝛾 (𝑥𝑖 − 𝑎𝑗 (𝑥𝑖)) ,

(10)

whereΠ is the cartesian product of locational constraints; that
is, Π = Π1 × ⋅ ⋅ ⋅ × Π𝑚.
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When all 𝐴𝑗 are points not regions and all Π𝑖 are 𝑅
𝑝,

CMLP (9) reduces to the well-known multi-source Weber
problem (MWP) which has wide applications in operations
research, marketing, urban planning, and so forth; see, for
example, [3, 30, 31]. Recall the fact that the multi-source
Weber problem is nonconvex [32] and NP-hard [33], and
therefore, heuristics algorithms are extremely popular and
highly appreciated for overcoming the difficulty caused by its
nonconvexity and NP-hardness; see, for example, [3, 30, 34–
37]. In particular, the classical location-allocation heuristic,
also called the Cooper algorithm, has received much atten-
tion ever since it was presented originally by Cooper in [34]
forMWP, whose attractive characteristic is that each iteration
consists of a location phase and an allocation phase. Now, as
a more general problem of MWP, CMLP is also nonconvex
and NP-hard. Hence, in this paper, we are interested in
applying the location-allocation heuristic to solve the CMLP
(9). Accordingly, some location subproblems and allocation
subproblems occur. To clarify it, let M = {1, 2, . . . , 𝑚}, N =

{1, 2, . . . , 𝑛}, and then Λ = {𝐴𝑗 : 𝑗 ∈ N}. At the (𝑘 − 1)th
iteration, let {Λ𝑘−1

1
, Λ

𝑘−1

2
, . . . , Λ

𝑘−1

𝑚
} be the disjoint partition of

Λ in the sense that ∪𝑚

𝑖=1
Λ

𝑘−1

𝑖
= Λ and Λ

𝑘−1

𝑖
∩ Λ

𝑘−1

𝑗
= 0 (for

𝑖 ̸= 𝑗), and each Λ
𝑘−1

𝑖
(𝑖 = 1, . . . , 𝑚) in the partition is called

one cluster. Then, at the 𝑘th iteration, the location phase
finds the candidates of locations of facilities (denoted by
𝑥

𝑘

1
, 𝑥

𝑘

2
, . . . , 𝑥

𝑘

𝑚
) by solving the following𝑚 constrained single-

source location problems (CSLP) with the closest distance
under gauge for each cluster Λ𝑘−1

𝑖
, 𝑖 = 1, . . . , 𝑚:

CSLP:

𝑥
𝑘

𝑖
= argmin

𝑥∈Π𝑖

{

{

{

𝐶
𝑘

𝑖
(𝑥) := ∑

{𝑗∈N:𝐴𝑗∈Λ𝑘−1
𝑖 }

𝑠𝑗𝛾 (𝑥 − 𝑎𝑗 (𝑥))

= ∑

{𝑗∈N:𝐴𝑗∈Λ𝑘−1
𝑖 }

𝑠𝑗min
𝑞𝑗∈𝐴𝑗

𝛾 (𝑥 − 𝑞𝑗)
}

}

}

.

(11)

After the location phase, the allocation phase then revises the
current partition of Λ to generate a new disjoint partition
of Λ = {Λ

𝑘

1
, Λ

𝑘

2
, . . . , Λ

𝑘

𝑚
} by the following nearest center

reclassification (NCR) heuristic (see [38]): for some customer
𝐴𝑗 ∈ Λ

𝑘−1

ℎ
(𝑗 ∈ {1, 2, . . . , 𝑛} and ℎ ∈ {1, 2, . . . , 𝑚}), if 𝑥𝑘

𝑙
(𝑙 ̸= ℎ)

is the nearest point for𝐴𝑗 among all𝑥𝑘

𝑖
computed by (11), then

Λ
𝑘

ℎ
= Λ

𝑘−1

ℎ
\ {𝐴𝑗} andΛ

𝑘

𝑙
= Λ

𝑘−1

𝑙
∪ {𝐴𝑗}. If 𝑥

𝑘

𝑖
solved by (11) is

the nearest facility for each regional customer inΛ
𝑘−1

𝑖
for any

𝑖 ∈ {1, 2, . . . , 𝑚}, then 𝑥
𝑘

𝑖
(𝑖 = 1, 2, . . . , 𝑚) are the desirable

locations of facilities and stop. Otherwise, we set 𝑘 = 𝑘 + 1

and repeat the iterations.

3. The Subproblems in Location and
Allocation Phases

In this section, we will discuss the subproblems arising in the
location phase and allocation phase.The allocation phase will

partition the customers to 𝑚 clusters by the nearest center
reclassification (NCR) heuristic, and the location phase will
find the optimal location for each cluster by solving𝑚 CSLPs
(11).

3.1. Nearest Center Reclassification for Allocation of Customers.
The implementation of NCR heuristic to allocate regional
customers can be executed by the following framework; see
[38] for more details about this heuristic.

Algorithm 2 (the implementation of NCR). Given an initial
partition Λ

0
= {Λ

0

1
, Λ

0

2
, . . . , Λ

0

𝑚
}.

For 𝑘 = 1, 2, . . ., do.
Step 1. Set 𝑡 = 0 (𝑡 stores the number of reassignments);
Step 2. Compute the facility 𝑥𝑘

𝑖
of Λ𝑘−1

𝑖
by solving CSLP (11),

for 𝑖 = 1, 2, . . . , 𝑚;
Step 3. For 𝑗 = 1, 2, . . . , 𝑛 do:

𝑑𝑖𝑗 := 𝛾(𝑥
𝑘

𝑖
− 𝑎𝑗(𝑥

𝑘

𝑖
)) for 𝑖 = 1, . . . , 𝑚;

if 𝐴𝑗 ∈ Λ
𝑘−1

ℎ
and 𝑑𝑙𝑗 = min𝑖=1,...,𝑚; 𝑖 ̸= ℎ{𝑑𝑖𝑗} < 𝑑ℎ𝑗,

then Λ
𝑘

ℎ
= Λ

𝑘−1

ℎ
\ {𝐴𝑗}, Λ

𝑘

𝑙
= Λ

𝑘−1

𝑙
∪ {𝐴𝑗};

𝑡 = 𝑡 + 1.

Step 4. If 𝑡 = 0, then the iteration terminates with {𝑥𝑘

1
, . . . , 𝑥

𝑘

𝑚
}

being the desirable locations for facilities and the customers
in Λ

𝑘−1

𝑖
being served by 𝑥𝑘

𝑖
(𝑖 = 1, . . . , 𝑚).

3.2. The Variational Inequality Approach for CSLP (11).
According to the spirit of location-allocation heuristic algo-
rithm, our central task for the CMLP is to solve CSLP (11)
in location phase by an efficient means. Recall that the CSLP
is a generalized problem of the minisummodels discussed in
[6, 16], whereΠ𝑖 = 𝑅

𝑝 and the gauge 𝛾(⋅) are the particular 𝑙1-
norm in [16] and 𝑙2-norm in [6]. For themodel under 𝑙1-norm
in [16], by taking advantage of the piecewise linearity of the
objective function, this model can be reduced to a standard
minisum problem which can be easily solved by obtaining a
median point for each coordinate separately. For theminisum
model under 𝑙2-norm in [6], an efficient Weiszfeld-type
method is proposed, and the convergence of this method is
analyzed. Similar to Weiszfeld procedure [2], one problem
of the proposed method is that the singular case, that is, the
current iterate happens to be within some location of regional
customers, may occur during its implementation. Due to the
use of the gradient of objective function in the iteration, this
method will terminate unexpectedly once the singular case
occurs. In order to tackle the undesirable singular case and
make theWeiszfeld-typemethod computational effective, the
authors suggest to ignore the gradient of ‖𝑥−𝑎𝑗(𝑥)‖ if 𝑥 ∈ 𝐴𝑗

and then add an extra descent check and a boundary check to
the iteration. As pointed out byTheorem 1 in [6], however, the
sequence generated by the proposed Weiszfeld-type method
is possible to be convergent to a nonoptimal point which is
on the boundary of the regional customer.

In this section, a variational inequality approach is pro-
posed to solve the general CSLP (11), where the locational
constraints are imposed to the facility and the gauge is
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used as distance measuring function. Note that the study
of variational inequality has received much attention due
to its various applications arising in engineering, operations
research, economics, transportation, and so forth; see, for
example, [39–45]. Specifically, the CSLP (11) considered in
this paper is first reformulated into an equivalent linear vari-
ational inequality (LVI), and then, a projection-contraction
(PC) method is adopted to solve the LVI. Consequently,
a sequence will be generated by the variational inequality
approach, which is shown to be convergent to the optimal
location of the facility 𝑥

𝑘

𝑖
of (11) even in the singular case.

In addition, the closest points to the facility and the dual
vectors with respect to the gauge can also be obtained from
the generated sequence.

For convenience and succinctness, with the assumption
that Λ𝑘−1

𝑖
contains 𝑑 customers, throughout this section, we

ignore some superscripts and subscripts in (11) and consider
the simplified model of (11) without confusion:

MCSLP: 𝑥=argmin
𝑥∈Π

{

{

{

𝐶 (𝑥) :=

𝑑

∑

𝑗=1

𝑠𝑗𝛾 (𝑥−𝑎𝑗 (𝑥))
}

}

}

. (12)

According to Proposition 1, it follows that CSLP (11), or
equivalently MCSLP (12), is convex problem of 𝑥.

3.2.1. LVI Reformulation of MCSLP. For the gauge 𝛾(⋅) in (12)
which is defined by (1), there exists a dual gauge, 𝛾𝑑

(⋅), defined
by

𝛾
𝑑
(𝑧) = max {𝑧𝑇

𝑥 | 𝛾 (𝑥) ≤ 1} . (13)

Let 𝐵𝑑 be the unit ball of the dual gauge 𝛾𝑑
(⋅), which is also

convex and compact and exactly the polar set of 𝐵. The dual
gauge of 𝛾𝑑

(⋅) is again 𝛾(⋅), that is,

𝛾 (𝑥) = max {𝑧𝑇
𝑥 | 𝛾

𝑑
(𝑧) ≤ 1} , (14)

which can also be rewritten as

𝛾 (𝑥) = max
𝑧∈𝐵𝑑

𝑧
𝑇
𝑥. (15)

For more details about gauge and dual gauge, as well as their
unit balls, the readers can be referred to [27].

According to (15), MCSLP (12) is equivalent to the
following min-max problem:

min
𝑥∈Π

max
𝑧𝑗∈𝐵𝑑𝑠𝑗

𝑑

∑

𝑗=1

𝑧
𝑇

𝑗
(𝑥 − 𝑎𝑗 (𝑥)) , (16)

where each 𝑧𝑗 is a vector in 𝐵
𝑑

𝑠𝑗
= {𝜉 ∈ 𝑅

𝑝
| 𝛾

𝑑
(𝜉) ≤ 𝑠𝑗}. Since

𝑎𝑗(𝑥) is the closest point to 𝑥 in𝐴𝑗, we can introduce 𝑦𝑗 ∈ 𝐴𝑗

to replace 𝑎𝑗(𝑥). Hence, (16) is equivalent to

min
𝑥∈Π,𝑦𝑗∈𝐴𝑗

max
𝑧𝑗∈𝐵𝑑𝑠𝑗

𝑑

∑

𝑗=1

𝑧
𝑇

𝑗
(𝑥 − 𝑦𝑗) . (17)

Denote

𝑦 = (𝑦
𝑇

1
, . . . , 𝑦

𝑇

𝑑
)

𝑇

, 𝑧 = (𝑧
𝑇

1
, . . . , 𝑧

𝑇

𝑑
)

𝑇

,

𝐴 = 𝐴1 × ⋅ ⋅ ⋅ × 𝐴𝑑, B
𝑑
= 𝐵

𝑑

𝑠1
× ⋅ ⋅ ⋅ × 𝐵

𝑑

𝑠𝑑
,

(18)

and let (𝑥∗
, 𝑦

∗
, 𝑧

∗
) ∈ Π×𝐴×B𝑑 be the solution of (17); then,

it follows that (𝑥∗
, 𝑦

∗
, 𝑧

∗
) is the saddle point of the objective

function∑
𝑑

𝑗=1
𝑧

𝑇

𝑗
(𝑥 − 𝑦𝑗); that is,

𝑑

∑

𝑗=1

𝑧
𝑇

𝑗
(𝑥

∗
− 𝑦

∗

𝑗
) ≤

𝑑

∑

𝑗=1

𝑧
∗𝑇

𝑗
(𝑥

∗
− 𝑦

∗

𝑗
) ≤

𝑑

∑

𝑗=1

𝑧
∗𝑇

𝑗
(𝑥 − 𝑦𝑗) ,

∀ (𝑥, 𝑦, 𝑧) ∈ Π × 𝐴 ×B
𝑑
.

(19)

Thus, (𝑥
∗
, 𝑦

∗
, 𝑧

∗
) is the solution of the following linear

variational inequality:

𝑥
∗
∈ Π, 𝑦

∗
∈ 𝐴, 𝑧

∗
∈ B

𝑑
,

(𝑥 − 𝑥
∗
)

𝑇
(

𝑑

∑

𝑗=1

𝑧
∗

𝑗
) ≥ 0, ∀𝑥 ∈ Π,

(𝑦𝑗 − 𝑦
∗

𝑗
)

𝑇

(−𝑧
∗

𝑗
) ≥ 0, ∀𝑦𝑗 ∈ 𝐴𝑗,

(𝑧𝑗 − 𝑧
∗

𝑗
)

𝑇

(− (𝑥
∗
− 𝑦

∗

𝑗
)) ≥ 0, ∀𝑧𝑗 ∈ 𝐵

𝑑

𝑠𝑗
.

(20)

A compact form of (20) is

LVI (Ω,𝑀, 𝑞) : 𝑢
∗
∈ Ω, (𝑢 − 𝑢

∗
)

𝑇
(𝑀𝑢

∗
+ 𝑞) ≥ 0,

∀𝑢 ∈ Ω,

(21)

where 𝑢 = (𝑥
𝑇
, 𝑦

𝑇
, 𝑧

𝑇
)

𝑇, Ω = Π × 𝐴 ×B𝑑,

𝑀 = (
0 𝑁

−𝑁
𝑇

0
) ,

𝑁 = (

(

𝐼2 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝐼2

−𝐼2 0 ⋅ ⋅ ⋅ 0

0 d d
...

... d d 0

0 ⋅ ⋅ ⋅ 0 −𝐼2

)

)

, 𝑞 = 0.

(22)

Note that 𝑀 in (22) is a skew-symmetric matrix, then
it is positive semidefinite, and thus, the linear variational
inequality (21)-(22) is monotone.

Based on the deduction above, we know that if
(𝑥

∗
, 𝑦

∗
, 𝑧

∗
) is the solution of (17), that is, 𝑥∗ is the solution of

the MCSLP (12), then (𝑥
∗
, 𝑦

∗
, 𝑧

∗
) will be the solution of the

LVI (21)-(22). Further, we can prove that theMCSLP (12) and
the LVI (21)-(22) are equivalent in the following theorem.

Theorem 3. The MCSLP (12) and the LVI (21)-(22) are
equivalent in the sense that they have the same solution of
𝑥 ∈ Π.
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Proof. Since the MCSLP (12) is equivalent to (17), we need to
prove that (17) and the LVI (21)-(22) are equivalent. In the
following, we will prove that (𝑥∗

, 𝑦
∗
, 𝑧

∗
) is a solution of (17)

if and only if (𝑥∗
, 𝑦

∗
, 𝑧

∗
) is a solution of LVI (21)-(22).

Let (𝑥∗
, 𝑦

∗
, 𝑧

∗
) be the solution of (17); then, according to

the deduction above, we know that (𝑥∗
, 𝑦

∗
, 𝑧

∗
) is the solution

of LVI (21)-(22).
On the other hand, let (𝑥∗

, 𝑦
∗
, 𝑧

∗
) be the solution of LVI

(21)-(22) and 𝜙(𝑥, 𝑦, 𝑧) = ∑
𝑑

𝑗=1
𝑧

𝑇

𝑗
(𝑥−𝑦𝑗); then, the inequality

(19) is true, which means that (𝑥∗
, 𝑦

∗
, 𝑧

∗
) is the saddle point

of 𝜙(𝑥, 𝑦, 𝑧).
Note that (𝑥∗

, 𝑦
∗
, 𝑧

∗
) is the saddle point of 𝜙(𝑥, 𝑦, 𝑧) if

and only if (𝑥∗
, 𝑦

∗
, 𝑧

∗
) ∈ Ω and

max
𝑧∈B𝑑

𝜙 (𝑥
∗
, 𝑦

∗
, 𝑧) = 𝜙 (𝑥

∗
, 𝑦

∗
, 𝑧

∗
)

= min
𝑥∈Π,𝑦∈𝑌

𝜙 (𝑥, 𝑦, 𝑧
∗
) ,

(23)

which implies that

min
𝑥∈Π,𝑦∈𝑌

max
𝑧∈B𝑑

𝜙 (𝑥, 𝑦, 𝑧) ≤ max
𝑧∈B𝑑

𝜙 (𝑥
∗
, 𝑦

∗
, 𝑧)

= 𝜙 (𝑥
∗
, 𝑦

∗
, 𝑧

∗
)

= min
𝑥∈Π,𝑦∈𝑌

𝜙 (𝑥, 𝑦, 𝑧
∗
)

≤ max
𝑧∈B𝑑

min
𝑥∈Π,𝑦∈𝑌

𝜙 (𝑥, 𝑦, 𝑧) .

(24)

On the other hand, let 𝑧󸀠 be any vector inB𝑑; then, we have

min
𝑥∈Π,𝑦∈𝑌

𝜙 (𝑥, 𝑦, 𝑧
󸀠
) ≤ min

𝑥∈Π,𝑦∈𝑌
max
𝑧∈B𝑑

𝜙 (𝑥, 𝑦, 𝑧) . (25)

We choose 𝑧󸀠 in (25) as the maximum point of the left term
over 𝑧󸀠

∈ B𝑑; then,

max
𝑧∈B𝑑

min
𝑥∈Π,𝑦∈𝑌

𝜙 (𝑥, 𝑦, 𝑧) ≤ min
𝑥∈Π,𝑦∈𝑌

max
𝑧∈B𝑑

𝜙 (𝑥, 𝑦, 𝑧) . (26)

Combining (24) and (26), it follows that all terms in (24) are
equal, and therefore,

𝜙 (𝑥
∗
, 𝑦

∗
, 𝑧

∗
) = min

𝑥∈Π,𝑦∈𝑌
max
𝑧∈B𝑑

𝜙 (𝑥, 𝑦, 𝑧) , (27)

which implies that (𝑥∗
, 𝑦

∗
, 𝑧

∗
) is the solution of (17).

Remark 4. It is worth pointing out that the equivalence
between theMCSLP (12) and the linear variational inequality
(21)-(22) can also be obtained by the duality theory and
the variable 𝑧𝑗 and the set 𝐵𝑑

𝑠𝑗
(𝑗 = 1, . . . , 𝑑) in (16) are,

respectively, the dual vector and dual ball in the space 𝑅
𝑝

which satisfy 𝑧𝑗 ∈ 𝐵
𝑑

𝑠𝑗
.

The norms especially 𝑙1, 𝑙2, and 𝑙∞ are frequently used to
measure distances in the literature; see, for example, [18, 19].
It should be noted that the gauge used in this paper is an
extension of norms which include 𝑙1, 𝑙2, and 𝑙∞. When the

gauge 𝛾(⋅) is chosen as the 𝑙1, 𝑙2, and 𝑙∞-norm, the dual gauge
𝛾

𝑑
(⋅) will be the 𝑙∞, 𝑙2, and 𝑙1-norm, respectively. Let

𝐵𝑠𝑗 ,2
= {𝜉 ∈ 𝑅

𝑝
|
󵄩󵄩󵄩󵄩𝜉
󵄩󵄩󵄩󵄩2

≤ 𝑠𝑗} , B2 = 𝐵𝑠1 ,2
× ⋅ ⋅ ⋅ × 𝐵𝑠𝑑 ,2

,

(28)

where ‖ ⋅ ‖2 is the Euclidean norm; then, as a particular case
of our single-source location problem (11), the problem under
𝑙2-normanalyzed in [6] can be reformulated into the LVI (21)-
(22) in whichB𝑑 is equal toB2 and Π = 𝑅

𝑝.
Further let

𝐵𝑠𝑗 ,1
= {𝜉 ∈ 𝑅

𝑝
|
󵄩󵄩󵄩󵄩𝜉
󵄩󵄩󵄩󵄩1

≤ 𝑠𝑗} ,

𝐵𝑠𝑗 ,∞
= {𝜉 ∈ 𝑅

𝑝
|
󵄩󵄩󵄩󵄩𝜉
󵄩󵄩󵄩󵄩∞

≤ 𝑠𝑗} ,

(29)

where ‖ ⋅ ‖1 and ‖ ⋅ ‖∞ are the 𝑙1, 𝑙∞-norm, respectively, and

B1 = 𝐵𝑠1 ,1
× ⋅ ⋅ ⋅ × 𝐵𝑠𝑑 ,1

, B∞ = 𝐵𝑠1 ,∞
× ⋅ ⋅ ⋅ × 𝐵𝑠𝑑 ,∞

.

(30)

Then, the CSLP (11) under 𝑙1-norm (the minisum model dis-
cussed in [16]) and the CSLP under 𝑙∞-norm are equivalent
to the LVI (21)-(22), where B𝑑 is, respectively, equal to B∞

andB1 and the locational constraints Π are both 𝑅
𝑝.

3.2.2. A Projection-Contraction Method for LVI (21)-(22).
Among numerous effective numerical algorithms for solv-
ing VI, especially LVI, one famous one is the projection-
contraction (PC) method which was originally proposed by
Uzawa [46]. The attractive characteristics of the PC method,
for example, simpleness and effectiveness, have motivated
further development on VI especially in computational
aspects; see, for example, [39, 47–49]. In this section, we
will summarize some concepts and results about linear varia-
tional inequalities and then adopt the projection-contraction
method in [48] for solving LVI (21)-(22). More details about
the proposed PC method can be referred to [48].

Let𝑊 be a nonempty closed convex set of 𝑅Q. For a given
V ∈ 𝑅

Q, the projection of V onto 𝑊 denoted by 𝑃𝑊(V) is the
unique solution of the following problem:

𝑃𝑊 (V) = argmin {‖𝑢 − V‖2 | 𝑢 ∈ 𝑊} . (31)

A basic proposition of the projection mapping on a closed
convex set is

(V − 𝑃𝑊 (V))
𝑇
(𝑢 − 𝑃𝑊 (V)) ≤ 0, ∀V ∈ 𝑅

Q
, ∀𝑢 ∈ 𝑊. (32)

It is well known (see, e.g., [50]) that for any 𝛽 > 0, 𝑢∗ is
the solution of LVI(Ω,𝑀, 𝑞) if and only if

𝑒 (𝑢
∗
, 𝛽) := 𝑢

∗
− 𝑃Ω [𝑢

∗
− 𝛽 (𝑀𝑢

∗
+ 𝑞)] = 0. (33)

In the literature of variational inequalities, 𝑒(𝑢, 𝛽) is usually
called the error bound of LVI, and it quantitatively measures
how much 𝑢 fails to be the solution of LVI(Ω,𝑀, 𝑞). There-
fore, 𝑒(𝑢, 𝛽) can serve as the stopping criterion for solving
LVI(Ω,𝑀, 𝑞) iteratively.
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Let

𝑒 (𝑢) = 𝑒 (𝑢, 1) , 𝑔 (𝑢) = 𝑀
𝑇
𝑒 (𝑢) + (𝑀𝑢 + 𝑞) ,

𝜑 (𝑢) = 𝑒(𝑢)
𝑇
(𝑀𝑢 + 𝑞) ,

(34)

and Ω
∗ be the set of solutions of LVI(Ω,𝑀, 𝑞); then, for the

positive semidefinite (not necessarily symmetric) matrix 𝑀,
the following theorem can be obtained.

Theorem 5 (Lemma 1 and Theorem 2 in [48]). Let 𝑢 ∈ Ω,
𝑢

∗
∈ Ω

∗, 𝑔(𝑢), and 𝜑(𝑢) be defined as (34). Then, it holds that

(𝑢 − 𝑢
∗
)

𝑇
𝑔 (𝑢) ≥ 𝜑 (𝑢) ≥ ‖𝑒 (𝑢)‖

2

2
. (35)

For 𝑢 ∈ Ω \ Ω
∗, it follows from Theorem 5 that −𝑔(𝑢)

is a descent direction of the unknown function ‖𝑢 − 𝑢
∗
‖

2

2
.

We state the projection-contractionmethod in [48] as follows
which is used to solve the LVI (21)-(22).

Algorithm 6 (the projection-contraction method for LVI
(21)-(22)).
Step 0. Let 𝜀 > 0, 𝛽 = 1, 𝛼1, 𝛼2 (𝛼1 > 𝛼2) and 𝑢

0
∈ Ω. Set

𝑘 = 0.
Step 1. Calculate 𝑒(𝑢𝑘

). If ‖𝑒(𝑢𝑘
)‖ < 𝜀, stop.

Step 2. Calculate 𝑔(𝑢𝑘
) and set 𝛼(𝑢𝑘

) as

𝛼 (𝑢
𝑘
) =

󵄩󵄩󵄩󵄩󵄩
𝑒 (𝑢

𝑘
)
󵄩󵄩󵄩󵄩󵄩

2

󵄩󵄩󵄩󵄩𝑒 (𝑢
𝑘) + 𝑀𝑇𝑒 (𝑢𝑘)

󵄩󵄩󵄩󵄩

2
. (36)

Step 3. Calculate 𝑢𝑘+1 as

𝑢
𝑘+1

= 𝑃Ω [𝑢
𝑘
− 𝜌𝛼 (𝑢

𝑘
) 𝑔 (𝑤

𝑘
)] , 𝜌 ∈ (0, 2) . (37)

Step 4. Adjust 𝛽 as follows

𝛽 =

{{{{{{

{{{{{{

{

3

2
𝛽 √𝛼 (𝑢𝑘) ≥ 𝛼1,

2

3
𝛽 √𝛼 (𝑢𝑘) ≤ 𝛼2,

𝛽 otherwise,

(38)

and set

𝑀 = 𝛽𝑀, 𝑞 = 𝛽𝑞. (39)

Let 𝑘 = 𝑘 + 1 and go to Step 1.

Remark 7. In Step 4 of Algorithm 6, the parameter 𝛽 is self-
adaptive during the iterations according to the value of 𝛼(𝑢𝑘

).
Note that 𝑀 is skew-symmetric, and thus, 𝛼(𝑢𝑘

) can also be
rewritten as

𝛼 (𝑢
𝑘
) =

󵄩󵄩󵄩󵄩󵄩
𝑒 (𝑢

𝑘
)
󵄩󵄩󵄩󵄩󵄩

2

(
󵄩󵄩󵄩󵄩𝑒 (𝑢

𝑘)
󵄩󵄩󵄩󵄩

2
+
󵄩󵄩󵄩󵄩𝑀

𝑇𝑒 (𝑢𝑘)
󵄩󵄩󵄩󵄩

2
)

, (40)

which is shown to be in [0, 1]. It follows from (39)-(40) that
the two terms ‖𝑒(𝑢𝑘

)‖
2

and ‖𝑀
𝑇
𝑒(𝑢

𝑘
)‖

2

in the denominator
of 𝛼(𝑢𝑘

) are balanced by the self-adaptive parameter 𝛽.

Theorem 8 (Theorem 3 in [48]). Let 𝑢∗ be a solution of LVI
(21)-(22); then, the sequence {𝑢

𝑘
} generated by Algorithm 6

satisfies

󵄩󵄩󵄩󵄩󵄩
𝑢

𝑘+1
− 𝑢

∗󵄩󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩󵄩
𝑢

𝑘
− 𝑢

∗󵄩󵄩󵄩󵄩󵄩

2

−
𝜌 (2 − 𝜌)

󵄩󵄩󵄩󵄩𝐼 +𝑀𝑇󵄩󵄩󵄩󵄩

2

󵄩󵄩󵄩󵄩󵄩
𝑒 (𝑢

𝑘
)
󵄩󵄩󵄩󵄩󵄩

2

. (41)

As a result, {𝑒(𝑢
𝑘
)} converges to zero, and thus, all

accumulation points of {𝑢𝑘
} are the solutions of LVI (21)-

(22). However, it follows from (41) that ‖𝑢
𝑘+1

− 𝑢
∗
‖ ≤

‖𝑢
𝑘
−𝑢

∗
‖, which implies that {𝑢𝑘

} has only one accumulation
point. Thus, the sequence {𝑢𝑘

} generated by Algorithm 6 will
converge to the optimal solution of LVI (21)-(22).

4. A Location-Allocation Heuristic
for CMLP (9)

Recall the fact that for the well-known multi-source Weber
problem (MWP), heuristics algorithms are extremely popular
and frequently used for overcoming its nonconvexity and
NP-hardness. In particular, the location-allocation heuristic
algorithm has drawn much attention ever since its presen-
tation by Cooper [34]. Note that the targeted CMLP (9) is
an extension of the MWP and it is harder than MWP, and
thus, in this paper, we also focus on applying the location-
allocation heuristic algorithm for solving the CMLP in the
spirit of Cooper’s work.

Our previous analysis indicates that each iteration of the
location-allocation heuristic algorithm to be presented con-
sists of an allocation phase and a location phase. The alloca-
tion task generates a new disjoint partition of all the regional
customers according to the principle of NCR as in the Cooper
algorithm, and the location phase identifies the optimal loca-
tions for the current partition of customers via implementing
the variational inequality approach for solving𝑚 CSLPs.

Mark that the CMLP (9) differs fromMWPmainly in that
the customers are represented by regions rather than points.
Consequently, the CSLPs involved in the location phase are
constrained location problems with regional demand and
closest distances under gauge. No doubt that the numerical
implementation of the heuristic algorithm to be presented is
expected to bemore complicated than the location-allocation
algorithms forMWP.Therefore, how to accelerate the conver-
gence of the proposed heuristic deserves further considera-
tion. To achieve this objective, we here consider a particular
strategy for the initial partition of regional customers or the
initial locations of facilities. In practical implementation, we
suggest to choose the solution of the following constrained
multi-sourceWeber problem (CMWP) as the initial locations
of facilities for CMLP:

CMWP: min
(𝑥1 ,...,𝑥𝑚)∈Π1×⋅⋅⋅×Π𝑚

𝐶
󸀠
(𝑋) =

𝑛

∑

𝑗=1

𝑠𝑗 min
1≤𝑖≤𝑚

𝛾 (𝑥𝑖 − 𝑔𝑗) ,

(42)

where 𝑔𝑗’s are geometric centers of the regional customers.
Then, we apply the NCR to determine an initial partition
of regional customers according to the solution of (42). For
solving the constrainedmulti-sourceWeber problem (42), we
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employ the location-allocation heuristic algorithm in [35].
As we will show by numerical experiments, this initialization
strategy can accelerate the convergence of the proposed
algorithm greatly.

In the spirit of Cooper’s work, the newheuristic algorithm
is ready to be presented for solving the targeted CMLP (9),
and its iterative framework can be elaborated as follows.

Algorithm 9 (a location-allocation heuristic algorithm for
CMLP). Initialization: Solve (42) by the location-allocation
heuristic in [35] and use its heuristic solutions as the ini-
tial locations of facilities (𝑥0

1
, 𝑥

0

2
, . . . , 𝑥

0

𝑚
). Then, the initial

partition of regional customers, which is denoted by Λ
0
=

{Λ
0

1
, Λ

0

2
, . . . , Λ

0

𝑚
}, is generated by the spirit of NCR heuristic

(Step 3 in Algorithm 2). Set 𝑘 = 1.
Step 1 (location phase). Solve the involved CSLP (11) and find
the location of facility𝑥𝑘

𝑖
forΛ𝑘−1

𝑖
by the variational inequality

approach. Denote𝑋𝑘
= (𝑥

𝑘 𝑇

1
, . . . , 𝑥

𝑘 𝑇

𝑚
)

𝑇.
Step 2 (allocation phase). Update the partition of regional
customers Λ from Λ

𝑘−1

𝑖
to Λ

𝑘

𝑖
based on the spirit of NCR

heuristic.
Step 3 If ‖𝑋𝑘

− 𝑋
𝑘−1

‖ < 𝜀, the current locations and partition
are heuristic locations of facilities and heuristic partition of
customers. Otherwise, set 𝑘 = 𝑘 + 1 and go to Step 1.

Remark 10. At the (𝑘 + 1)th iteration, it is recommended to
use 𝑥𝑘

𝑖
(and the corresponding 𝑦 and 𝑧) in Step 1 as the initial

iterate in the variational inequality approach for solving 𝑥𝑘+1

𝑖

(𝑖 = 1, . . . , 𝑚), considering the fact that Λ𝑘

𝑖
usually differs

from Λ
𝑘−1

𝑖
slightly in practical implementation.

Remark 11. Compared to the main body of the proposed
location-allocation heuristic algorithm, the workload of the
initialization is relatively less. However, this initialization
strategy can reduce its number of iterations and computing
time, which will be verified by the numerical experiments
to be reported in Section 6.2. Hence, the convergence of the
proposed algorithm is accelerated greatly by this initialization
strategy.

5. Convergence of the Proposed
Heuristic Algorithm

In this section, we analyze the convergence of the proposed
location-allocation heuristic (Algorithm 9). For simplifica-
tion of our discussion, some notations are introduced as
follows. Let 𝐴 = 𝐴1 × ⋅ ⋅ ⋅ × 𝐴𝑛, and recallΠ = Π1 × ⋅ ⋅ ⋅ × Π𝑚.
For any 𝑋 = (𝑥

𝑇

1
, . . . , 𝑥

𝑇

𝑚
)

𝑇
∈ Π and 𝐶 = (𝑐

𝑇

1
, . . . , 𝑐

𝑇

𝑛
)

𝑇
∈ 𝐴,

we can define an ordered pair (𝑋, 𝐶) and we can also define
the function 𝜔(𝑋, 𝐶), in the current partition of customers as
follows:

𝜔 (𝑋, 𝐶) =

𝑚

∑

𝑖=1

𝑛

∑

𝑗=1

𝑤𝑖𝑗𝛾 (𝑥𝑖 − 𝑐𝑗)

=

𝑚

∑

𝑖=1

∑

{𝑗∈N:𝐴𝑗∈Λ 𝑖}

𝑠𝑗𝛾 (𝑥𝑖 − 𝑐𝑗) ,

(43)

which represents the objective functional value of CMLP (9)
at (𝑋, 𝐶).

During the implementation ofAlgorithm9,we denote the
mapL : Π × 𝐴 → Π × 𝐴 as the location operation in Step 1
and the mapA : Π×𝐴 → Π × 𝐴 as the allocation operation
in the Step 2. It follows that

L (𝑋
𝑘
, 𝐶

𝑘
) = (𝑋

𝑘+1
, 𝐶

𝑘
) ,

A (𝑋
𝑘+1

, 𝐶
𝑘
) = (𝑋

𝑘+1
, 𝐶

𝑘+1
) ,

(44)

where𝑋𝑘 and𝑋𝑘+1 are, respectively, the locations of facilities
in the 𝑘th and (𝑘 + 1)th iteration, 𝐶𝑘 is the variable of the
closest points to 𝑋

𝑘 in the partition of Λ𝑘, 𝐶𝑘 is the closest
points to the new𝑋

𝑘+1 in the partition of Λ𝑘, and 𝐶
𝑘+1 is the

closest points to the new 𝑋
𝑘+1 in the new partition of Λ𝑘+1.

Then, the iterate scheme of the location-allocation heuristic
is

(𝑋
𝑘+1

, 𝐶
𝑘+1

) = AL (𝑋
𝑘
, 𝐶

𝑘
) . (45)

Let 𝑆(𝑋0
, 𝐶

0
) denote the iterative sequence generated by

the location-allocation heuristic for CMLP with the initial
iterate (𝑋0

, 𝐶
0
). During the implementation of the proposed

heuristic algorithm, we choose the initial iterate in location
phase for solving CSLP as Remark 10 indicates. We first give
the following proposition which reveals the monotonicity of
the generated sequence 𝑆(𝑋0

, 𝐶
0
).

Proposition 12. 𝑆(𝑋0
, 𝐶

0
) is strictly monotone in the sense

that 𝜔(𝑋𝑘+1
, 𝐶

𝑘+1
) < 𝜔(𝑋

𝑘
, 𝐶

𝑘
) if𝑋𝑘+1

̸= 𝑋
𝑘.

Proof. Since 𝑋𝑘+1
̸= 𝑋

𝑘, there exists at least one 𝑖 ∈ M such
that 𝑥𝑘+1

𝑖
̸= 𝑥

𝑘

𝑖
. For such 𝑖’s according to the following convex

optimization problem

𝑥
𝑘+1

𝑖

= argmin
𝑥∈Π𝑖

{

{

{

𝐶
𝑘+1

𝑖
(𝑥) = ∑

{𝑗∈N:𝐴𝑗∈Λ𝑘
𝑖}

𝑠𝑗𝛾 (𝑥 − 𝑎𝑗 (𝑥))
}

}

}

,

(46)

we have

𝜔 (𝑋
𝑘+1

, 𝐶
𝑘
) ≤ 𝜔 (𝑋

𝑘
, 𝐶

𝑘
) . (47)

Based onRemark 10, we know that if𝑥𝑘

𝑖
is the solution of (46),

then 𝑥𝑘+1

𝑖
will be equal to 𝑥𝑘

𝑖
.Therefore, 𝑥𝑘+1

𝑖
̸= 𝑥

𝑘

𝑖
implies that

𝑥
𝑘

𝑖
is not the solution of (46), and thus, 𝐶𝑘+1

𝑖
(𝑥

𝑘+1
) < 𝐶

𝑘

𝑖
(𝑥

𝑘
).

It follows that

𝜔 (𝑋
𝑘+1

, 𝐶
𝑘
) < 𝜔 (𝑋

𝑘
, 𝐶

𝑘
) . (48)

On the other hand, based on the principle of NCR in the
allocation phase of Algorithm 9, we also have

𝜔 (𝑋
𝑘+1

, 𝐶
𝑘+1

) ≤ 𝜔 (𝑋
𝑘+1

, 𝐶
𝑘
) . (49)
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By Combining (48) and (49), it follows that

𝜔 (𝑋
𝑘+1

, 𝐶
𝑘+1

) < 𝜔 (𝑋
𝑘
, 𝐶

𝑘
) . (50)

The proof is complete.

Based on the monotonicity of the generated sequence
𝑆(𝑋

0
, 𝐶

0
), the following theorem can be proved.

Theorem 13. Let {𝑆𝑘} := 𝑆(𝑋
0
, 𝐶

0
). Then, the generated

sequence {𝑆𝑘} satisfies that

(1) 𝜔(𝑆𝑘) → 𝜔(𝑆) for some 𝑆 ∈ Π × 𝐴,
(2) all accumulation points of {𝑆𝑘} have the same objective

functional values.

Proof. After a finite number of iterations, if 𝑋𝐽+1
= 𝑋

𝐽,
then the iterates after 𝑆𝐽 will be constant, and thus, {𝑆𝑘} is
convergent to (𝑋

𝐽
, 𝐶

𝐽
) ∈ Π × 𝐴, and the two assertions are

both true.
Below, we will discuss the case that 𝑋𝑘+1

̸= 𝑋
𝑘 for any

𝑘 ∈ 𝑁. First, we prove the first assertion. Since 𝑆𝑘 ∈ Π × 𝐴

and Π × 𝐴 is a compact space, it follows from the Bolzano-
Weierstrass theorem that there exists a subsequence of {𝑆𝑘}

which, say {𝑆𝑘}𝐾, converges to an element 𝑆 ∈ Π × 𝐴; that is,

lim
𝐾 → ∞

{𝑆𝑘}𝐾
󳨀→ 𝑆, 𝑆 ∈ Π × 𝐴. (51)

Note that 𝜔(𝑋, 𝐶) is a continuous function according to (43);
then,

lim
𝐾 → ∞

𝜔 ({𝑆𝑘}𝐾
) 󳨀→ 𝜔 (𝑆) , 𝑆 ∈ Π × 𝐴. (52)

Due to that {𝜔(𝑆𝑘)} is a monotone sequence (Proposition 12)
and has lower bound, then {𝜔(𝑆𝑘)} is convergent. Thus, any
subsequence of {𝜔(𝑆𝑘)} will be convergent to the same value.
Note that {𝜔({𝑆𝑘}𝐾)} is a subsequence of {𝜔(𝑆𝑘)} and it is
convergent to 𝜔(𝑆); then, it follows that

lim
𝑘 → ∞

𝜔 (𝑆𝑘) 󳨀→ 𝜔 (𝑆) , 𝑆 ∈ Π × 𝐴. (53)

The second assertion can easily be proved. Let 𝑃 be an
accumulation point of {𝑆𝑘}; then, there exists one subse-
quence {𝑆𝑘}𝐾󸀠 which converges to𝑃, and due to the continuity
of 𝜔(𝑋, 𝐶), we have

𝜔 ({𝑆𝑘}𝐾󸀠
) 󳨀→ 𝜔 (𝑃) . (54)

The first assertion has shown that {𝜔(𝑆𝑘)} is convergent, and
note that {𝜔({𝑆𝑘}𝐾󸀠)} is a subsequence of {𝜔(𝑆𝑘)}; then, it
follows that

𝜔 (𝑃) = lim
𝐾󸀠→ ∞

𝜔 ({𝑆𝑘}𝐾󸀠
) = lim

𝑘 → ∞
𝜔 (𝑆𝑘) . (55)

Thus, all accumulation points of {𝑆𝑘} have the same objective
functional values equal to lim𝑘 → ∞𝜔(𝑆𝑘).

Lemma 14. L : Π × 𝐴 → Π × 𝐴 which is defined in (44) is
a closed map over Π × 𝐴.

Proof. Note that the CSLP (11) is a convex problem, then

argmin
𝑥∈Π𝑖

{

{

{

∑

{𝑗∈N:𝐴𝑗∈Λ𝑘−1
𝑖 }

𝑠𝑗min
𝑞𝑗∈𝐴𝑗

𝛾 (𝑥𝑖 − 𝑞𝑗)
}

}

}

,

𝑖 = 1, 2, . . . , 𝑚,

(56)

are continuous. Since Π × 𝐴 is a compact space and also a
Hausdorff space and every continuous map from a compact
space to aHausdorff space is closed, it follows thatL is closed
over Π × 𝐴.

Lemma 15. Let 𝜐0 be a given vector in Π × 𝐴 and Δ := {𝜐 ∈

Π × 𝐴 | 𝜔(𝜐) ≤ 𝜔(𝜐0)}. Then, Δ is a compact set.

Proof. It is known that every closed subset of a compact space
is also compact, and therefore, it is enough to prove that Δ is
a closed set.

For any sequence {𝜐𝑘}with 𝜐𝑘 ∈ Δ, sinceΠ×𝐴 is compact,
according to Bolzano-Weierstrass, there exists a convergent
subsequence {𝜐𝑘}𝐾 of {𝜐𝑘} such that

lim
𝐾 → ∞

{𝜐𝑘}𝐾
󳨀→ 𝜐. (57)

Due to the continuity of 𝜔, it follows that

lim
𝐾 → ∞

𝜔 ({𝜐𝑘}𝐾
) = 𝜔 (𝜐) . (58)

On the other hand, {𝜐𝑘}𝐾 ∈ Δ implies

𝜔 ({𝜐𝑘}𝐾
) ≤ 𝜔 (𝜐0) . (59)

By combining (58), (59), and the continuity of 𝜔, the follow-
ing inequality is obtained:

𝜔 (𝜐) ≤ 𝜔 (𝜐0) , (60)

and accordingly, 𝜐 ∈ Δ. This means that Δ is closed, and the
proof is complete.

Now, we are ready to prove the convergence of the
proposed location-allocation heuristic (Algorithm 9). Let
Ξ ⊆ Π × 𝐴 be the nonempty local solution set of CMLP
(9). Recall that in the location-allocation Cooper algorithm
for MWP, if 𝑋𝐽+1

= 𝑋
𝐽 occurs after a finite number of

iterations, the iterates after 𝑋
𝐽 will be constant. Then, no

further improvement is possible forMWP, and it follows from
[32, 34] that the𝑋𝐽 is a local solution ofMWP. Similarly, in the
proposed location-allocation heuristic algorithm for CMLP,
if 𝑋𝐽+1

= 𝑋
𝐽 occurs, the iterates after 𝑆𝐽 = (𝑋

𝐽
, 𝐶

𝐽
) will

also be constant. Then, exactly as in the location-allocation
Cooper algorithm for MWP, no further improvement is
possible for CMWP, and a local solution, namely, 𝑆𝐽, is
obtained. Hence in this case, {𝑆𝑘} is convergent to the 𝑆𝐽 ∈ Ξ.
However, it is not assured that 𝑋𝐽+1

= 𝑋
𝐽 always occurs

during the implementation of Algorithm 9, and therefore,
we assume that 𝑋𝑘+1

̸= 𝑋
𝑘 for any 𝑘 ∈ 𝑁 and prove the

convergence in this case.
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Theorem 16. Assume that 𝑋𝑘+1
̸= 𝑋

𝑘 for any 𝑘 ∈ 𝑁; then, all
the accumulation points of the sequence {𝑆𝑘} belong to Ξ.

Proof. Let 𝑆 be an accumulation point of {𝑆𝑘}. Due to 𝑆𝑘 ∈ Π×

𝐴 and the compactness ofΠ×𝐴, we know that (1) 𝑆 ∈ Π×𝐴

and (2) there exists a subsequence {𝑆𝑘}𝐾 which is convergent
to 𝑆. According toTheorem 13, we know that

lim
𝑘 → ∞

𝜔 (𝑆𝑘) = 𝜔 (𝑆) , 𝑆 ∈ Π × 𝐴. (61)

So, it is enough to prove 𝑆 ∈ Ξ. We prove this by
contradiction. Assume that 𝑆 ∉ Ξ; that is, 𝑆 is not a solution,
and we consider the subsequence {𝑆𝑘+1}𝐾. Denote Δ = {𝜐 ∈

Π × 𝐴 | 𝜔(𝜐) ≤ 𝜔(𝑆0)}. Due to Proposition 12, it follows that
for all 𝑘 ∈ 𝑁 we have (𝑋𝑘+1

, 𝐶
𝑘
) ∈ Δ and (𝑋

𝑘+1
, 𝐶

𝑘+1
) ∈ Δ.

According to Lemma 15, Δ is compact, and thus, there exists
𝐾

󸀠
⊂ 𝐾 such that

lim
𝐾󸀠→ ∞

(𝑋
𝑘+1

, 𝐶
𝑘
)

𝐾󸀠
= 𝜐1, lim

𝐾󸀠→ ∞

(𝑋
𝑘+1

, 𝐶
𝑘+1

)
𝐾󸀠

= 𝜐2.

(62)

According to Lemma 14, the map L is closed at 𝑆 ∈ Π × 𝐴;
then, it follows that 𝜐1 = L(𝑆). Further, due to 𝑆 ∉ Ξ, V1 will
be not equal to 𝑆. Otherwise, we can choose 𝑆 as the initial
iterate of the location-allocation heuristic algorithm, then,
the sequence generated by the algorithm will be constant. It
follows from the first case (i.e., 𝑋𝐽+1

= 𝑋
𝐽) that 𝑆 will be a

local solution, which contradicts with 𝑆 ∉ Ξ. Therefore, we
can obtain V1 ̸= 𝑆. Together with the monotone proposition
ofL (48), we have the inequality

𝜔 (𝜐1) < 𝜔 (𝑆) . (63)

On the other hand, note thatA(𝑋
𝑘+1

, 𝐶
𝑘
) = (𝑋

𝑘+1
, 𝐶

𝑘+1
);

then, by the monotonicity ofA (49), it follows that

𝜔(𝑋
𝑘+1

, 𝐶
𝑘+1

)
𝐾󸀠

≤ 𝜔(𝑋
𝑘+1

, 𝐶
𝑘
)

𝐾󸀠
, (64)

and thus, by taking the limit for (64) and by the continuity
of 𝜔, we know 𝜔(𝜐2) ≤ 𝜔(𝜐1). Combining this with (63), we
obtain

𝜔 (𝜐2) < 𝜔 (𝑆) . (65)

However, note that 𝜐2 and 𝑆 are two accumulation points of
{𝑆𝑘}, and according to the second assertion of Theorem 13,
𝜔(𝜐2) = 𝜔(𝑆), which will contradict with (65). Therefore, our
assumption is wrong, and thus, 𝑆 ∈ Ξ.

As a result, we have the following convergence theo-
rem for the sequence generated by the proposed location-
allocation algorithm.

Theorem 17. The sequence 𝑆(𝑋
0
, 𝐶

0
) generated by the pro-

posed location-allocation heuristic algorithm either converges
to a point in Ξ or all accumulation points of 𝑆(𝑋0

, 𝐶
0
) belong

to Ξ.

6. Numerical Results

This section reports some preliminary numerical results to
verify the theoretical assertions proved in previous sections.
Section 3.1, reports some numerical results of the proposed
variational inequality approach for the CSLP (11) (or equiva-
lently (12)) which includes (1) the results of the comparison
between our approach and the Weiszfeld-type method by
solving the example in [6] and some randomly generated
unconstrained examples under Euclidean distances and (2)

the results of our approach for solving some randomly gen-
erated constrained examples under a gauge. These numerical
results demonstrate the efficiency of the proposed variational
inequality approach for CSLP. In the second subsection, we
apply the proposed location-allocation heuristic algorithm to
solve some randomly generated examples of the CMLP (9).
In particular, the effectiveness of the initialization strategy
adopted in this heuristic for accelerating convergence will be
justified. All the programming codes are written by Matlab
2012b and were run on an ASUS notebook (Intel Core2 Duo
T6670 2.20GHz).

6.1. Numerical Results of Variational Inequality Approach for
CSLP. When applying the variational inequality approach
for solving CSLP and MCSLP (12), theoretically, the initial
iteration 𝑢

0 in Algorithm 6 can be chosen arbitrarily inΩ. In
practical implementation, however, we choose 𝑢0 judiciously
similar to the initialization strategy in the location-allocation
heuristic: let 𝑔𝑗 (𝑗 = 1, . . . , 𝑑) be the centers of regional
customers, solve the following single-source Weber problem
(SWP):

𝑥
∗
= argmin

𝑥∈Π

{

{

{

𝑑

∑

𝑗=1

𝛾 (𝑥 − 𝑔𝑗)
}

}

}

(66)

by the projection-contraction method in [35], and then use
its solution as the initial iterate for Algorithm 6. We call this
the initialization strategy of variational inequality approach.
In addition, throughout our experiments of VI approach, the
𝛼1 and 𝛼2 in Algorithm 6 are chosen as 1 and 0, respectively.

We first solve the example given in [16] by the pro-
posed variational inequality approach and theWeiszfeld-type
method in [16].

Example 18. Here, 𝑑 = 5; that is, there are five regional
customers, and all customers are unit squares whose sides
are parallel to the axes. The geometric centers of the five
customers are (0.5, 0.5), (4.5, 0.5), (0.5, 2.5), (2.5, 2.5), and
(4.5, 2.5), and 𝑠𝑗 = 1, 𝑗 = 1, . . . , 5.

In order to clarify the comparison of two methods, we
choose the same stopping criterion as ‖𝑥𝑘+1

− 𝑥
𝑘
‖ ≤ 10

−4

(throughout this section, ‖ ⋅ ‖ is the 𝑙∞-norm). We test this
example for 100 times with the same initial iterate for the two
methods which is randomly generated in [0, 5] × [0, 3], and
the numerical results including the location of new facility,
the closest points to the facility, number of iterations, and
computing time in units of second are reported in Table 1.
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Table 1: Numerical results for Example 1 given in [16].

Main results VI approach Weiszfeld-type method
𝑥 (2.5000, 1.9484) (2.5000, 1.9484)
𝑎1(𝑥) (1.0000, 1.0000) (1.0000, 1.0000)
𝑎2(𝑥) (4.0000, 1.0000) (4.0000, 1.0000)
𝑎3(𝑥) (4.0000, 2.0000) (4.0000, 2.0000)
𝑎4(𝑥) (2.5000, 2.0000) (2.5000, 2.0000)
𝑎5(𝑥) (1.0000, 2.0000) (1.0000, 2.0000)
Objective value 6.6027 6.6027
Number of iterations 32.81/23.77 237.60
CPU 0.0124 0.0610
“32.81/23.77” means 32.81 Iter. for initialization and 23.77 Iter. for VI
approach.

According to Table 1, it follows that both methods
can get the optimal location of the new facility. Though
our variational inequality approach needs smaller iteration
numbers and less computing time, bothmethods are efficient
for solving Example 1 given in [6].

Recall that the sequence generated by the Weiszfeld-type
method in [16] is possible to be convergent to a nonoptimal
point on the boundary of the regional customer, as indicated
in [16]. The variational inequality approach, however, can
obtain the optimal location of the new facility, which is
guaranteed by the theoretical analysis in Section 3.2. To
illustrate this, we compare two methods by solving the
following particular example.

Example 19. Similar to Example 18, the number of customers
𝑑 = 5, and all customers are unit squares whose edges are
parallel to the axes. Let 𝑑1 be the distance between any two
neighboring customers, and we set 𝑑1 equal to 1, 0.1, 0.01, and
0.001, respectively. The weights 𝑠𝑗 (𝑗 = 1, . . . , 5) are randomly
generated in the area of regional customers.

Note that in Example 19 the parameter 𝑑1 reflects how
close the customers are away from its neighborhoods.We test
this example for a large number of times with the stopping
criterion ‖𝑥𝑘+1

−𝑥
𝑘
‖ ≤ 10

−4, and the average numerical results
are reported in Table 2. In this table, each row reports the
average results by testing Example 19 for one hundred times.
The column of “No. of Iter.0” gives the average iteration times
of initialization in the variational inequality approach, and
the column of “No. of Iter.” reports the average iteration times
of bothmethods.The two columns of “CPU” give the average
computing time in units of second for variational inequality
approach (including the computing time for initialization)
and Weiszfeld-type method, respectively. The columns of
“Obj.” give the average objective functional value obtained by
the two methods, and the column of “Impro. Percent” gives
the improvement percentage in objective functional values
of the VI approach to Weiszfeld-type method. Remark that
the convergence of VI approach to the optimal location of
new facility is guaranteed, and then the column of “Freq.
Num.” reports the frequency among one hundred times that
the Weiszfeld-type method can get the same solution as

VI approach; that is, it does not converge to the nonoptimal
solution on the boundary of the customer.

According to Table 2, it follows that both the VI approach
and the Weiszfeld-type method are efficient for solving this
particular example, and both of them need a small number
of iterations and little computing time. In comparison of
two methods, we can find that VI approach needs more
iteration times and computing time than Weiszfeld-type
method. From the column of “Impro. Percent,” however,
we can conclude that VI approach can obtain a better
solution (in fact, the solution obtained by VI approach is
the optimal location of new facility) than Weiszfeld-type
method. In addition, according to the last column, we find
that when 𝑑1 decreases, that is, the customers become closer
and closer, the frequency thatWeiszfeld-typemethod obtains
the optimal solution gets smaller and smaller. When 𝑑1 is
0.001, which implies that the customers are quite close to
the neighborhoods, this frequency is totally less than 20. In
other words, for this particular example with 𝑑1 = 0.001,
the sequence generated byWeiszfeld-typemethod has a great
possibility (more than 80%) to be convergent to a nonoptimal
solution which is on the boundary of the customer. On the
contrary, when 𝑑1 is 1, which means that the customers are
enough far away from one another, Weiszfeld-type method
can obtain the optimal location of facility in most cases, and
the frequency even exceeds 90.

Since our main effort in this paper is to solve the general
location problem under gauge and locational constraint, it
is necessary to apply the variational inequality approach to
solve some CSLPs. In particular, we test a large number of
randomly generated CSLPs with the number of customers 𝑑
from 10 to 2000. In the experiments, all regional customers
are assumed to be square units, and their edges are parallel to
the coordinate axes.The geometric centers of all regional cus-
tomers are randomly generated in [−100, 100]

2; the weights
of the regional customer are all randomly chosen in (1,5);
the locational constraint is ‖𝑥 − 𝑂‖ ≤ 𝑟, where the center
𝑂 is randomly generated in [−100, 100]

2, and the radius 𝑟
is randomly generated in (1,5); the stopping criterion of VI
approach is chosen as

󵄩󵄩󵄩󵄩󵄩
𝑥

𝑘+1
− 𝑥

𝑘󵄩󵄩󵄩󵄩󵄩
≤ 10

−4
,

󵄩󵄩󵄩󵄩󵄩
𝑒 (𝑢

𝑘+1
)
󵄩󵄩󵄩󵄩󵄩
≤ 10

−4
,

(67)

and the initial iterate is randomly generated in [−100, 100]
2;

the gauge 𝛾(⋅) is generated with the unit ball set as

9(𝑥 +
2

3
)

2

+ 12𝑦
2
= 16. (68)

For each 𝑑, we test one hundred randomly generated CSLPs,
and the average numerical results are reported in Table 3.
To illustrate the effect of the initialization strategy of VI
approach, we also report the results of VI approach without
the initialization strategy. The columns of “VI approach
with Initial.” and “VI approach without Initial.,” respectively,
report the average number of iterations and average comput-
ing time of variational inequality approach with and without
the initialization strategy.
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Table 2: Numerical results of VI approach and Weiszfeld-type method for Example 19.

𝑑1

VI approach Weiszfeld-type method Impro. Freq.
No. of Iter.0 No. of Iter. CPU Obj. No. of Iter. CPU Obj. percent num.

1

25.11 59.96 0.015 15.4465 52.99 0.0117 15.5664 0.78 90
25.04 58.97 0.015 15.1803 27.28 0.0055 15.2926 0.74 92
25.35 60.89 0.015 15.3693 31.11 0.0070 15.4834 0.74 92
25.24 59.80 0.015 15.0924 35.45 0.0080 15.1961 0.69 90
23.61 55.13 0.014 14.6321 34.27 0.0069 14.7055 0.50 93

0.1

32.95 278.26 0.060 4.2157 28.59 0.0082 4.6791 10.99 63
32.11 270.81 0.059 4.0864 60.38 0.0135 4.4318 8.45 66
34.07 301.67 0.067 4.2248 36.63 0.0081 4.6001 8.88 63
34.16 278.24 0.065 4.1189 34.03 0.0067 4.4854 8.89 63
32.63 280.00 0.062 4.0842 38.20 0.0069 4.3619 6.80 64

0.01

33.11 427.34 0.089 3.0633 25.85 0.0063 3.8005 24.07 28
35.28 407.61 0.086 3.0615 39.92 0.0087 3.7669 23.04 25
39.26 382.82 0.080 3.1259 26.53 0.0064 3.6954 18.22 29
35.46 425.33 0.089 2.9975 35.06 0.0077 3.6500 21.77 35
32.96 437.24 0.091 3.0691 57.90 0.0130 3.6925 20.31 33

0.001

35.44 151.52 0.035 3.0477 18.88 0.0045 3.8310 25.70 15
36.87 140.58 0.032 3.0224 17.20 0.0048 3.7128 22.84 14
33.43 91.72 0.022 2.9797 17.53 0.0042 3.9617 32.96 17
33.79 115.79 0.027 2.9600 15.20 0.0044 3.7221 25.75 19
37.19 96.08 0.022 3.1936 16.47 0.0047 4.1362 29.52 18

Table 3: Numerical results of VI approach for CSLP (12).

𝑑
VI approach with Initial. VI approach without Initial.

No. of Iter.0 No. of Iter. CPU No. of Iter. CPU
10 26.59 20.30 0.0108 25.26 0.0080
20 24.51 32.80 0.0239 38.20 0.0193
50 27.25 57.69 0.0847 64.89 0.0762
100 25.09 92.53 0.2664 106.84 0.2442
200 29.83 145.97 1.2196 170.66 1.3389
500 27.97 224.74 13.7783 252.99 15.9382
1000 26.71 259.03 56.8598 284.54 62.0384
2000 23.12 281.59 245.5680 346.52 295.2305

According to Table 3, it is easy to conclude that the
variational inequality approach is effective for solving CSLP
under gauge considering the difficulty of this problem. In
addition, the number of iterations of “VI approach with
Initial.” is less than that of “VI approach without Initial.,”
which shows that the initialization strategy can accelerate
the convergence of the variational inequality approach. This
strategy, however, does not necessarily reduce the computing
time of VI approach, especially when 𝑑 is small, for example,
𝑑 = 10, 20, 50, and 100, which can be explained as follows.
When the number of customers 𝑑 is small, the variational
inequality problem is small scale, and thus, it can be solved in
a short time. In this case, the computational workload of ini-
tialization plays an important role in the total workload, and
therefore, the computing time of “VI approach with Initial.” is
greater than that of “VI approach without Initial.” due to the

computational iterations for initialization.With 𝑑 increasing,
the scale of VI problem as well as the number of iterations
becomes larger. Then, in the comparison of the workload of
VI approach, the workload of initialization can almost be
ignored, and therefore, the computing time of “VI approach
with Initial.” will be smaller than that of “VI approachwithout
Initial.” As a matter of fact, Table 3 reveals the computational
necessity of the initialization strategy of variational inequality
approach for large-scale CSLP; for example, the iteration
number and computing time are reduced about 1/5 by the
initialization strategy when 𝑑 = 2000.

6.2. Numerical Results of Heuristic Algorithm for CMLP. This
subsection applies the proposed location-allocation heuristic
algorithm (Algorithm 9) to solve a large number of CMLPs
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Table 4: Numerical results of location-allocation heuristic for CMLP.

𝑛 𝑚
Algorithm 9 with Initial. Algorithm 9 without Initial.

Iter.0 Iter.0-PC Iter. Iter.-PC CPU Iter. Iter.-PC CPU

100

2 2.83 73.33 1.20 289.00 0.4868 3.04 176.70 0.7018
4 3.61 99.88 1.29 176.80 0.2652 2.65 218.47 0.4992
6 4.55 99.05 1.53 121.75 0.1710 3.50 130.96 0.2580
8 3.60 126.23 1.82 149.37 0.2250 3.02 170.32 0.2836
10 3.84 138.61 2.26 257.51 0.3212 4.65 240.48 0.5118

200

2 3.24 81.22 1.24 1620.80 5.4664 3.49 1192.33 11.4596
4 4.01 112.96 1.71 447.08 1.2932 4.37 433.10 2.5694
6 4.65 141.10 2.23 262.97 0.7958 3.88 305.75 1.4538
8 4.26 130.25 2.65 246.80 0.6268 4.83 287.12 1.1734
10 4.67 171.65 2.68 281.40 0.5866 4.46 346.18 1.0232

500

2 4.03 82.35 1.63 1998.20 64.5468 4.26 1815.90 139.2036
4 4.66 104.28 2.27 1304.48 12.3492 5.25 1445.82 26.5510
6 5.27 133.55 2.62 727.13 5.3322 7.60 875.26 18.2956
8 7.60 169.97 2.84 549.60 2.8050 5.24 429.83 3.8626
10 5.42 187.95 3.47 508.13 2.3742 5.02 507.70 3.3946

1000

2 4.49 56.69 1.91 718.17 93.2321 5.63 1587.31 365.6085
4 4.81 80.60 2.10 1376.13 46.2636 5.49 1576.85 113.8830
6 6.84 96.75 3.43 683.35 16.1398 7.65 1344.53 57.7762
8 7.20 161.50 3.28 563.69 9.3570 6.06 760.93 20.0896
10 6.63 171.89 4.05 615.07 7.5880 6.47 700.53 12.9448

(9) and also verifies the necessity of the initialization strategy
in Algorithm 9. In the experiments, we again generate a large
number of CMLPs with unit square customers and assume
that the edges of these regions are parallel to the coordinate
axes. The geometric centers of all the demand regions are
randomly generated in [−100 100]

2, and all the demands,
𝑠𝑗 (𝑗 = 1, 2, . . . , 𝑛), are randomly generated in [ 1 10 ]. The
gauge 𝛾(⋅) is also defined with the unit ball set as (68). We
test the scenario with 𝑛 = 100, 200, 500, and 1000 and 𝑚 =

2, 4, 6, 8, and 10; the locational constraints are ‖𝑥 − 𝑂𝑗‖ ≤

𝑟𝑗 (𝑗 = 1, . . . , 𝑚), where the radius 𝑟𝑗 is randomly generated
in [1, 10], and the center 𝑂𝑗 is given in advance as follows:

𝑚 = 2 : 𝑂1 = (−50, 0)
𝑇
, 𝑂2 = (50, 0)

𝑇
;

𝑚 = 4 : 𝑂1 = (−50, −50)
𝑇
, 𝑂2 = (50, −50)

𝑇
,

𝑂3 = (−50, 50)
𝑇
, 𝑂4 = (50, 50)

𝑇
;

𝑚 = 6 : 𝑂1 = (−50, −50)
𝑇
, 𝑂2 = (0, −50)

𝑇
,

𝑂3 = (50, −50)
𝑇
, 𝑂4 = (−50, 50)

𝑇
,

𝑂5 = (0, 50)
𝑇
, 𝑂6 = (50, 50)

𝑇
;

𝑚 = 8 : 𝑂1 = (−50, −50)
𝑇
, 𝑂2 = (0, −50)

𝑇
,

𝑂3 = (50, −50)
𝑇
, 𝑂4 = (−50, 50)

𝑇
,

𝑂5 = (0, 50)
𝑇
, 𝑂6 = (50, 50)

𝑇
,

𝑂7 = (−25, 0)
𝑇
, 𝑂8 = (25, 0)

𝑇
;

𝑚 = 10 : 𝑂1 = (−50, −50)
𝑇
, 𝑂2 = (0, −50)

𝑇
,

𝑂3 = (50, −50)
𝑇
, 𝑂4 = (−50, 50)

𝑇
,

𝑂5 = (0, 50)
𝑇
, 𝑂6 = (50, 50)

𝑇
,

𝑂7 = (−60, 0)
𝑇
, 𝑂8 = (−20, 0)

𝑇
,

𝑂9 = (20, 0)
𝑇
, 𝑂10 = (60, 0)

𝑇
.

(69)

The initial locations of facilities are randomly generated in
[−100 100]

2, and the stopping criterion used in Algorithms
6 and 9 is chosen as

󵄩󵄩󵄩󵄩󵄩
𝑥

𝑘+1
− 𝑥

𝑘󵄩󵄩󵄩󵄩󵄩
< 10

−4
. (70)

To show the significance of the initialization strategy,
we compare the numerical performance of the location-
allocation heuristic algorithm with initialization strategy
(denoted by “Algorithm 9 with Initial.”) and without this
initialization strategy (denoted by “Algorithm 9 without
Initial.”). In the initialization step of Algorithm 9, the
location-allocation algorithm in [35] is adopted to solve
the corresponding CMWP (42), where a PC method is
proposed to solve the subproblems in location phase, and
the numbers of iterations of the algorithm in [35] (denoted
by “Iter0”) and the average iteration numbers of PC method
in one iteration of the algorithm (denoted by “Iter0-PC”)
are reported. The columns of “Iter.” and “CPU,” respectively,
report the number of iterations and computing time of
Algorithm9with andwithout initialization strategy. Since the
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efficiency ofAlgorithm9 ismainly determined by the number
of iterations of the variational inequality approach, we also
report the average number of iterations of Algorithm 6 in
one iteration of Algorithm 9 (denoted by “Iter.-PC”). For each
given pair (𝑛,𝑚), we test the CMLP for 100 times, and the
computational performance is reported in Table 4.

It follows from Table 4 that the proposed location-
allocation heuristic, with or without the initialization strat-
egy, is capable of tackling the CMLP (9) efficiently, even
for large-scale cases. Also, the necessity of the initialization
strategy is evident. In fact, this strategy reduces both the
number of iterations and the computing time by about 50%.

Another interesting fact obtained from Table 4 deserves
further illustration. Recall that with the number of new facil-
ities (𝑚) increasing, the number of subproblems (CSLPs) in
location phase increases too. According to Table 4, however,
we find that for fixed number of customers (𝑛), with 𝑚

increasing, the number of iterations for solving 𝑚 CSLPs in
one iteration of Algorithm 9 does not increase but almost
decreases with𝑚, especially for large-scale CMLP.This can be
illustrated roughly as follows. For fixed 𝑛, when 𝑚 increases,
the average number of customers in eachΛ𝑘

𝑖
becomes smaller,

which implies that the scale of the involved CSLP (11) in
location phase is smaller. According to Table 3, it follows that
we need smaller number of iterations for small-scale CSLP,
and thus, the total number of iterations for solving 𝑚 CSLPs
decreases. Similarly, due to the same reason, the computing
time for solving CMLP also decreases with 𝑚 increasing, as
reported in the column of “CPU” in Table 4.

7. Conclusion

In this paper, we are interested in the locations of multiple
facilities in the space 𝑅

𝑝 with regional demands, where
the closest distance is used to measure the proximities
between facilities and customers. With locational constraints
introduced for the locations of new facilities and with the
gauge used as the distance measuring function, the prob-
lem considered in this paper has much more applications
in practice. Due to its nonconvexity and NP-hardness, a
new location-allocation heuristic algorithm is proposed to
solve this problem, and its convergence is proved under
mild assumptions. Some preliminary numerical experiments
are reported to verify the computational efficiency of the
proposed algorithm.
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