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A Lotka-Volterra competition model with cross-diffusions under homogeneous Dirichlet boundary condition is considered, where
cross-diffusions are included in such a way that the two species run away from each other because of the competition between them.
Using the method of upper and lower solutions, sufficient conditions for the existence of positive solutions are provided when the
cross-diffusions are sufficiently small. Furthermore, the investigation of nonexistence of positive solutions is also presented.

1. Introduction

In this paper, we deal with the following Lotka-Volterra
competition model with cross-diffusions:

−Δ (𝑢 + 𝛼V) = 𝑢 (𝑎 − 𝑢 − 𝑐V) , 𝑥 ∈ Ω,

−Δ (𝛽𝑢 + V) = V (𝑏 − V − 𝑑𝑢) , 𝑥 ∈ Ω,

𝑢 = V = 0, 𝑥 ∈ 𝜕Ω,

(1)

where Ω is a bounded domain in R𝑁 with smooth boundary
𝜕Ω and all parameters 𝑎, 𝑏, 𝑐, 𝑑, 𝛼, 𝛽 are positive constants.
𝑢 and V stand for the densities of the two competitors; 𝑎
and 𝑏 are the intrinsic growth rates of 𝑢 and V, respectively;
𝑐 and 𝑑 are the competitive parameters between the two
species; Here 𝛼 and 𝛽 are referred to as cross-diffusions.
Cross-diffusions express the two species run away from each
other because of the competition between them. In this paper,
the boundary condition is under homogeneous Dirichlet
boundary condition which in biologically means that the
boundary is not suitable for both species and they will all die
on the boundary, and this is an ideal case.

In order to describe the meaning of cross-diffusions in
this model (1) from the biological point, we give the general
model with intrinsic diffusion and cross-diffusion:

𝜕𝑢

𝜕𝑡

= div {𝑘
11 (
𝑢, V) ∇𝑢 + 𝑘12 (𝑢, V) ∇V} + 𝑓 (𝑢, V) ,

𝜕V

𝜕𝑡

= div {𝑘
21 (
𝑢, V) ∇𝑢 + 𝑘22 (𝑢, V) ∇V} + 𝑔 (𝑢, V) ,

(2)

where 𝑢 and V stand for the densities of the two species,
intrinsic diffusion parameters 𝑘

11
(𝑢, V), 𝑘

22
(𝑢, V) > 0, cross-

diffusion parameters 𝑘
12
(𝑢, V), 𝑘

21
(𝑢, V),

𝐽

𝑢
= − {𝑘

11 (
𝑢, V) ∇𝑢 + 𝑘12 (𝑢, V) ∇V} ,

𝐽V = − {𝑘21 (𝑢, V) ∇𝑢 + 𝑘22 (𝑢, V) ∇V}
(3)

can be seen as the out-flux vector of 𝑢 and V at 𝑥. The
cross-diffusion parameters 𝑘

12
(𝑢, V), 𝑘

21
(𝑢, V) ≥ 0 imply

that the two competitors 𝑢 and V diffuse in the direction
of lower contrary of their competitor to avoid each other.
𝑓(𝑢, V), 𝑔(𝑢, V) are response function and in this paper the
classical Logistic Type is considered and 𝛼, 𝛽 ≥ 0. More
biological meaning of the system can be seen in [1–3].

The method of upper and lower solutions is a useful
tool to study the existence of solutions of elliptic systems.
However, there are many difficulties in investigating the
existences of positive solutions of strongly coupled elliptic
systems. Recently, by changing general strongly coupled
elliptic systems into weakly coupled ones, the author in paper
[4] gives the method to judge the solutions existence of
elliptic systems by using the Schauder theorem. Furthermore,
the method can be used to solve the existence of solutions
of strongly coupled elliptic systems. In [5] Ko and Ryu



2 Abstract and Applied Analysis

investigate Lotka-Volterra prey-predator model with cross-
diffusion:

−Δ𝑢 = 𝑢 (𝑎

1
− 𝑢 − 𝑏

12
V) , 𝑥 ∈ Ω,

−𝐷Δ𝑢 − ΔV = V (𝑎
2
+ 𝑏

21
𝑢 − V) , 𝑥 ∈ Ω,

𝑢 = V = 0, 𝑥 ∈ 𝜕Ω.

(4)

Here 𝐷 may be positive or negative. Using the developing
method of upper and lower solutions in [4], the author gave
a sufficient conditions for the existence of positive solutions
to (4). Inspired by the paper [5], we investigate the existence
and nonexistence of positive solutions to (1).

The main goal of this paper is to provide sufficient
conditions for the existence of positive solutions to (1) when
the cross-diffusions𝛼 and𝛽 are small.More precisely, we have
the following theorem. Let 𝜆

1
> 0 be the principal eigenvalue

of−Δunder homogeneousDirichlet boundary condition. It is
well known that the principal eigenfunction 𝜙 corresponding
to 𝜆
1
does not change sign in Ω and ||𝜙||

∞
= 1.

Theorem 1. Ifmin{𝑎−𝑐𝑏, 𝑏−𝑑𝑎} > 𝜆
1
, then there exist positive

constants 𝛼 = 𝛼(𝑎, 𝑏, 𝑐, 𝑑, Ω), 𝛽 = 𝛽(𝑎, 𝑏, 𝑐, 𝑑, Ω), when 𝛼 <
𝛼, 𝛽 < 𝛽, (1) has at least one positive solution.

For 𝛼 = 𝛽 = 0, (1) is the Lotka-Volterra competition
model under homogeneous Dirichlet boundary condition. In
[6, 7], the authors use differentmethods to prove the existence
of positive solutions, a sufficient condition for the existence
is min{𝑎 − 𝑐𝑏, 𝑏 − 𝑑𝑎} > 𝜆

1
. The conclusion implies that

weakly cross-diffusion does not affect the existence of positive
solution.

This paper is organized as follows. In Section 2, the
existence theorem of solutions for a general class of strongly
coupled elliptic systems is presented using the method of
upper and lower solutions. In Section 3, sufficient conditions
for the existence and nonexistence of positive solutions of (1)
are investigated. Moreover, we give the corresponding results
simply if the competitive system only has one cross-diffusion.

2. The Existence Theorem of Solutions for
a Class of Strongly Coupled Elliptic Systems

In this section, we presented the existence theorem of solu-
tions for a general class of strongly coupled elliptic systems:

−Δ𝐴 (𝑢, V) = 𝑓1 (𝑢, V) , 𝑥 ∈ Ω,

−Δ𝐵 (𝑢, V) = 𝑓2 (𝑢, V) , 𝑥 ∈ Ω,

𝑢 = V = 0, 𝑥 ∈ 𝜕Ω.

(5)

Here let 𝐴, 𝐵, 𝑓
1
, 𝑓

2
satisfy the following hypotheses condi-

tions.

(H1) 𝑈,𝑉 are domain in R2, (0, 0) ∈ 𝑈. (𝐴, 𝐵) is a 𝐶2
function about (𝑢, V) from𝑈 to𝑉,𝐴(0, 0) = 𝐵(0, 0) =
0, and have a continuous inverse (𝐴∗, 𝐵∗) ∈ 𝐶2(𝑉, 𝑈).
Then for all (𝑢, V) ∈ 𝑈, let

𝑤 = 𝐴 (𝑢, V) , 𝑧 = 𝐵 (𝑢, V) . (6)

There exists only one (𝑤, 𝑧) ∈ 𝑉, satisfying

𝑢 = 𝐴

∗
(𝑤, 𝑧) , V = 𝐵

∗
(𝑤, 𝑧) . (7)

(H2) The function 𝐴∗ is increasing in 𝑤 and decreasing in
𝑧; 𝐵∗ is decreasing in 𝑤 and increasing in 𝑧.

(H3) The functions 𝑓
1
(𝑢, V), 𝑓

2
(𝑢, V) are Lipschitz continu-

ous in 𝑈, and there exist positive constants 𝑀
1
,𝑀

2

such that for all (𝑢, V) ∈ 𝑈, the function 𝑓
1
(𝑢, V) +

𝑀

1
𝐴(𝑢, V) is increasing in 𝑢; the function 𝑓

2
(𝑢, V) +

𝑀

2
𝐵(𝑢, V) is increasing in V.

According to the hypothesis (H1), (5) can be rewritten as
the following equal PDE equations:

−Δ𝑤 +𝑀

1
𝑤 = 𝑓

1 (
𝑢, V) + 𝑀1𝐴 (𝑢, V) , 𝑥 ∈ Ω,

−Δ𝑧 +𝑀

2
𝑧 = 𝑓

2 (
𝑢, V) + 𝑀2𝐵 (𝑢, V) , 𝑥 ∈ Ω,

𝑢 = 𝐴

∗
(𝑤, 𝑧) , V = 𝐵

∗
(𝑤, 𝑧) , 𝑥 ∈ Ω,

𝑤 = 𝑧 = 0, 𝑥 ∈ 𝜕Ω.

(8)

Remark 2. According to the hypothesis (H1), (5) can also be
equal to the following weakly coupled elliptic equations:

−Δ𝑤 = 𝑓

1
(𝐴

∗
(𝑤, 𝑧) , 𝐵

∗
(𝑤, 𝑧)) := 𝑔1 (

𝑤, 𝑧) , 𝑥 ∈ Ω,

−Δ𝑧 = 𝑓

2
(𝐴

∗
(𝑤, 𝑧) , 𝐵

∗
(𝑤, 𝑧)) := 𝑔2 (

𝑤, 𝑧) , 𝑥 ∈ Ω,

𝑤 = 𝑧 = 0, 𝑥 ∈ 𝜕Ω.

(9)

In its pure form, (9) is simpler than (8). However, due
to the complicity of mixed functions 𝑔

1
(𝑤(𝑥), 𝑧(𝑥)) and

𝑔

2
(𝑤(𝑥), 𝑧(𝑥)), it is difficult to find the solutions of (9)

directly. Therefore, we discuss (8).
Assume functions 𝑢, V, 𝑢, V ∈ 𝐶(Ω), 𝑤, 𝑧, 𝑤, 𝑧 ∈

𝐶

𝛼
(Ω) ⋂ 𝐶

2
(Ω), the values of functions (𝑢, V) and (𝑢, V) are

in𝑉 and the values of functions (𝑤, 𝑧) and (𝑤, 𝑧) are in𝑈. To
describe easily, let

𝑈 = {𝑢 ∈ 𝐶 (Ω) : 𝑢 (𝑥) ≤ 𝑢 (𝑥) ≤ 𝑢 (𝑥)} ,

𝑉 = {𝑢 ∈ 𝐶 (Ω) : V (𝑥) ≤ V (𝑥) ≤ V (𝑥)} .
(10)

According the definition of upper and lower solutions in
[4] and conditions (H1)–(H3), we give the definition of upper
and lower solutions of (5).

Definition 3. A pair of functions ((𝑢, V, 𝑤, 𝑧), (𝑢, V, 𝑤, 𝑧)) are
called upper and lower solutions of (9) provided that they
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satisfy the relation (𝑢, V, 𝑤, 𝑧) ≥ (𝑢, V, 𝑤, 𝑧), and for all (𝑢, V) ∈
𝑈 × 𝑉, satisfy the following inequalities:

−Δ𝑤 +𝑀

1
𝑤 ≥ 𝑓

1 (
𝑢, V) + 𝑀1𝐴 (𝑢, V) , 𝑥 ∈ Ω,

−Δ𝑧 +𝑀

2
𝑧 ≥ 𝑓

2 (
𝑢, V) + 𝑀2𝐵 (𝑢, V) , 𝑥 ∈ Ω,

−Δ𝑤 +𝑀

1
𝑤 ≤ 𝑓

1
(𝑢, V) + 𝑀

1
𝐴 (𝑢, V) , 𝑥 ∈ Ω,

−Δ𝑧 +𝑀

2
𝑧 ≤ 𝑓

2
(𝑢, V) + 𝑀

2
𝐵 (𝑢, V) , 𝑥 ∈ Ω,

𝑢 ≥ 𝐴

∗
(𝑤, 𝑧) , V ≥ 𝐵

∗
(𝑤, 𝑧) , 𝑥 ∈ Ω,

𝑢 ≤ 𝐴

∗
(𝑤, 𝑧) , V ≤ 𝐵

∗
(𝑤, 𝑧) , 𝑥 ∈ Ω,

𝑤 ≥ 0 ≥ 𝑤, 𝑧 ≥ 0 ≥ 𝑧, 𝑥 ∈ 𝜕Ω.

(11)

We can have the following conclusion from [4, Theorem
2.1].

Proposition 4. Assume that (8) has coupled upper and lower
solutions ((𝑢, V, 𝑤, 𝑧), (𝑢, V, 𝑤, 𝑧)), then there exists at least one
solution (𝑢, V, 𝑤, 𝑧), satisfying the relation

(𝑢, V, 𝑤, 𝑧) ≤ (𝑢, V, 𝑤, 𝑧) ≤ (𝑢, V, 𝑤, 𝑧) . (12)

Furthermore, (𝑢, V) is the solution of (5).

Next, if 𝑢, V, 𝑢, V satisfy

𝑢 = 𝐴

∗
(𝑤, 𝑧) , V = 𝐵

∗
(𝑤, 𝑧) ,

𝑢 = 𝐴

∗
(𝑤, 𝑧) , V = 𝐵

∗
(𝑤, 𝑧) ,

(13)

then

𝑤 = 𝐴 (𝑢, V) , 𝑧 = 𝐵 (𝑢, V) ,

𝑤 = 𝐴 (𝑢, V) , 𝑧 = 𝐵 (𝑢, V) ,
(14)

(11) can be rewritten as

−Δ𝐴 (𝑢, V) + 𝑀
1
𝐴 (𝑢, V) ≥ 𝑓

1 (
𝑢, V) + 𝑀1𝐴 (𝑢, V) , 𝑥 ∈ Ω,

−Δ𝐵 (𝑢, V) + 𝑀
2
𝐵 (𝑢, V) ≥ 𝑓

2 (
𝑢, V) + 𝑀2𝐵 (𝑢, V) , 𝑥 ∈ Ω,

−Δ𝐴 (𝑢, V) + 𝑀
1
𝐴 (𝑢, V) ≤ 𝑓

1
(𝑢, V) + 𝑀

1
𝐴 (𝑢, V) , 𝑥 ∈ Ω,

−Δ𝐵 (𝑢, V) + 𝑀
2
𝐵 (𝑢, V) ≤ 𝑓

2
(𝑢, V) + 𝑀

2
𝐵 (𝑢, V) , 𝑥 ∈ Ω,

𝐴 (𝑢, V) ≥ 0 ≥ 𝐴 (𝑢, V) , 𝐵 (𝑢, V) ≥ 0 ≥ 𝐵 (𝑢, V) , 𝑥 ∈ 𝜕Ω.

(15)

Synthetically, we have the following result.

Theorem 5. If there is a pair of functions ((𝑢, V), (𝑢, V)),
satisfying

(𝑢, V, 𝐴 (𝑢, V) , 𝐵 (𝑢, V)) ≥ (𝑢, V, 𝐴 (𝑢, V) , 𝐵 (𝑢, V)) , (16)

and for all (𝑢, V) ∈ 𝑈 × 𝑉, (15) is satisfied, then (5) has at
least one solution (𝑢, V), satisfying the relation (𝑢, V) ≤ (𝑢, V) ≤
(𝑢, V).

To make sure the upper and lower solutions reasonable,
we give the following two lemmas; more details can be found
in [8, 9].

Lemma 6. If the functions 𝑢, V ∈ 𝐶1(Ω) satisfy 𝑢|
𝜕Ω
= V|
𝜕Ω
=

0, 𝑢|

Ω
> 0, (𝜕𝑢/𝜕𝜈)|

𝜕Ω
< 0, 𝜈 is the outer unit normal vector

of 𝜕Ω, then there exists positive constant 𝜀, such that 𝑢(𝑥) >
𝜀V(𝑥), for all 𝑥 ∈ Ω.

For the equation:

−Δ𝑢 = 𝑢 (𝑎 − 𝑢) , 𝑥 ∈ Ω,

𝑢 = 0, 𝑥 ∈ 𝜕Ω.

(17)

Lemma 7. If 𝑎 > 𝜆
1
, then (17) has a unique positive solution

𝜃

𝑎
satisfying 𝜃

𝑎
≤ 𝑎. In addition, 𝜃

𝑎
is increasing with respect

to 𝑎.

3. A Lotka-Volterra Competition Model with
Two Cross-Diffusions

In this section, the existence of positive solutions of (1)
corresponding to 𝛼 ≥ 0, 𝛽 ≥ 0, is investigated by applying
Theorem 5 to proveTheorem 1.

Proof. We seek some positive constants 𝑅,𝐾, 𝛿, 𝑅, 𝐾 > 𝜆

1

sufficiently large and 𝛿 sufficiently small, Lemma 6 may
guarantee the existence of 𝜃

𝑅
and 𝜃
𝐾
. It can be easily known

from Hopf boundary lemma:

𝜕𝜙

𝜕𝜈

(𝑥) < 0,

𝜕𝜃

𝑅

𝜕𝜈

(𝑥) < 0,

𝜕𝜃

𝐾

𝜕𝜈

(𝑥) < 0, ∀𝑥 ∈ 𝜕Ω.

(18)

Observe that min{𝑎 − 𝑐𝑏, 𝑏 − 𝑑𝑎} > 𝜆
1
, using Lemma 7, we

can have 𝑅,𝐾, 𝛿, 𝑎 < 𝑅 < (𝑏 − 𝜆
1
)/𝑑, 𝑏 < 𝐾 < (𝑎 − 𝜆

1
)/𝑐,

satisfying the following three conditions:

(i) 𝛿𝜙(𝑥) < 𝜃
𝑅
(𝑥), 𝛿𝜙(𝑥) < 𝜃

𝐾
(𝑥), for all 𝑥 ∈ Ω;

(ii) (𝜕(𝜃
𝑅
− 𝛿𝜙)/𝜕𝜈)(𝑥) < 0, (𝜕(𝜃

𝐾
− 𝛿𝜙)/𝜕𝜈)(𝑥) < 0;

(iii) 𝛿 < min{𝑎 − 𝜆
1
− 𝑐𝐾, 𝑏 − 𝜆

1
− 𝑑𝑅}.

Let𝑀
1
= 2𝑅+𝑐𝐾, 𝑀

2
= 2𝐾+𝑑𝑅. Using Lemma 7 again,

there exist 𝛼 = 𝛼(𝑎, 𝑏, 𝑐, 𝑑, Ω) < 1, 𝛽 = 𝛽(𝑎, 𝑏, 𝑐, 𝑑, Ω) < 1,
for all (𝜌, 𝜏) ∈ [0, 𝛼) × [0, 𝛽), for all 𝑥 ∈ Ω, satisfying

(iv) 𝜃
𝑅
− 𝛿𝜙 > 𝜌(𝜃

𝐾
− 𝛿𝜙), 𝜃

𝐾
− 𝛿𝜙 > 𝜏(𝜃

𝑅
− 𝛿𝜙);

(v) (𝑅 − 𝑎)𝜃
𝑅
> 𝜌[𝑀

1
𝜃

𝐾
− (𝑀

1
+ 𝜆

1
)𝛿𝜙], (𝐾 − 𝑏)𝜃

𝐾
>

𝜏[𝑀

2
𝜃

𝑅
− (𝑀

2
+ 𝜆

1
)𝛿𝜙];

(vi) (𝑎 − 𝜆
1
− 𝛿 − 𝑐𝐾)𝛿𝜙 > 𝜌[(𝐾 +𝑀

1
− 𝜃

𝐾
)𝜃

𝐾
−𝑀

1
𝛿𝜙];

(vii) (𝑏 − 𝜆
1
− 𝛿 − 𝑑𝑅)𝛿𝜙 > 𝜏[(𝑅 +𝑀

2
− 𝜃

𝑅
)𝜃

𝑅
−𝑀

2
𝛿𝜙].

We will verify 𝛼, 𝛽 satisfying Theorem 5. Suppose that
(𝛼, 𝛽) ∈ [0, 𝛼) × [0, 𝛽). Then we construct a pair of upper and
lower solutions of the form

(𝑢, V) = (𝜃𝑅, 𝜃𝐾) , (𝑢, V) = (𝛿𝜙, 𝛿𝜙) , (19)
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where 𝛿 satisfies conditions (i)–(iii). Let

𝐴 (𝑢, V) = 𝑢 + 𝛼V, 𝐵 (𝑢, V) = 𝛽𝑢 + V. (20)

Then

𝐴

∗
(𝑤, 𝑧) =

𝑤 − 𝛼𝑧

1 − 𝛼𝛽

, 𝐵

∗
(𝑤, 𝑧) =

𝑧 − 𝛽𝑤

1 − 𝛼𝛽

. (21)

By simply computing, (H1) and (H2) are satisfied, where𝑈 =

[0, 𝑅] × [0, 𝐾], 𝑉 = [0, 𝑅 + 𝛼𝐾] × [0, 𝐾 + 𝛽𝑅].
Note

𝑓

1 (
𝑢, V) = 𝑢 (𝑎 − 𝑢 − 𝑐V) , 𝑓

2 (
𝑢, V) = V (𝑏 − V − 𝑑𝑢) .

(22)

And for all (𝑢, V) ∈ 𝑈, we have

[𝑓

1 (
𝑢, V) + 𝑀1𝐴 (𝑢, V)]𝑢 = 𝑎 − 2𝑢 − 𝑐V +𝑀1

≥ −2𝑅 − 𝑐𝐾 +𝑀

1
= 0,

[𝑓

2 (
𝑢, V) + 𝑀2𝐵 (𝑢, V)]V = 𝑏 − 2V − 𝑑𝑢 +𝑀2

≥ −2𝐾 − 𝑑𝑅 +𝑀

2
= 0.

(23)

So (H3) is satisfied; observer that 𝑢|
𝜕Ω

= V|
𝜕Ω

= 𝑢|

𝜕Ω
=

V|
𝜕Ω

= 0, (𝑢, V) ≥ (𝑢, V) and (iv) and (15) and the boundary
conditions of (16) can be checked. Therefore, if we want to
obtain the existence of solutions through [4, Theorem 2.1], we
should only verify for all (𝑢, V) ∈ 𝑈 × 𝑉,

−Δ𝐴 (𝑢, V) + 𝑀
1
𝐴 (𝑢, V) ≥ 𝑓

1 (
𝑢, V) + 𝑀1𝐴 (𝑢, V) , 𝑥 ∈ Ω,

−Δ𝐵 (𝑢, V) + 𝑀
2
𝐵 (𝑢, V) ≥ 𝑓

2 (
𝑢, V) + 𝑀2𝐵 (𝑢, V) , 𝑥 ∈ Ω,

−Δ𝐴 (𝑢, V) + 𝑀
1
𝐴 (𝑢, V) ≤ 𝑓

1
(𝑢, V) + 𝑀

1
𝐴 (𝑢, V) , 𝑥 ∈ Ω,

−Δ𝐵 (𝑢, V) + 𝑀
2
𝐵 (𝑢, V) ≤ 𝑓

2
(𝑢, V) + 𝑀

2
𝐵 (𝑢, V) , 𝑥 ∈ Ω.

(24)

Because𝑓
1
is decreasing in V,𝑓

2
is decreasing in 𝑢, and𝐴(𝑢, V)

is increasing in V, 𝐵(𝑢, V) is increasing in 𝑢, only to verify the
following inequations:

−Δ𝐴 (𝑢, V) + 𝑀
1
𝐴 (𝑢, V) ≥ 𝑓

1
(𝑢, V) + 𝑀

1
𝐴 (𝑢, V) , 𝑥 ∈ Ω,

−Δ𝐵 (𝑢, V) + 𝑀
2
𝐵 (𝑢, V) ≥ 𝑓

2
(𝑢, V) + 𝑀

2
𝐵 (𝑢, V) , 𝑥 ∈ Ω,

−Δ𝐴 (𝑢, V) + 𝑀
1
𝐴 (𝑢, V) ≤ 𝑓

1
(𝑢, V) + 𝑀

1
𝐴 (𝑢, V) , 𝑥 ∈ Ω,

−Δ𝐵 (𝑢, V) + 𝑀
2
𝐵 (𝑢, V) ≤ 𝑓

2
(𝑢, V) + 𝑀

2
𝐵 (𝑢, V) , 𝑥 ∈ Ω.

(25)

It is easy to check (25) by (v), (vi), and (vii). So from
[4, Theorem 2.1], (1) has a solution (𝑢, V), in addition (𝑢, V) ≥
(𝑢, V) ≥ (𝑢, V) > (0, 0).

In the end, before investigating the nonexistence of
positive solutions of (1), we give its priori bound of positive
solutions.

Theorem 8. Any positive solutions (𝑢, V) of (1) have a priori
bound; that is

𝑢 (𝑥) ≤

𝑏

𝑑

, V (𝑥) ≤
𝑎

𝑐

.

(26)

Proof. Let 𝑤 = 𝑢 + 𝛼V, 𝑧 = 𝛽𝑢 + V; then

𝑢 =

𝑤 − 𝛼𝑧

1 − 𝛼𝛽

, V =
𝑧 − 𝛽𝑤

1 − 𝛼𝛽

. (27)

Equation (1) can be rewritten as

−Δ𝑤 =

𝑤 − 𝛼𝑧

1 − 𝛼𝛽

(𝑎 −

𝑤 − 𝛼𝑧

1 − 𝛼𝛽

− 𝑐

𝑧 − 𝛽𝑤

1 − 𝛼𝛽

) , 𝑥 ∈ Ω,

−Δ𝑧 =

𝑧 − 𝛽𝑤

1 − 𝛼𝛽

(𝑏 −

𝑧 − 𝛽𝑤

1 − 𝛼𝛽

− 𝑑

𝑤 − 𝛼𝑧

1 − 𝛼𝛽

) , 𝑥 ∈ Ω,

(𝑤, 𝑧) = (0, 0) , 𝑥 ∈ 𝜕Ω.

(28)

Since (𝑢, V) > (0, 0), it easily follows that𝑤−𝛼𝑧 > 0, 𝑧−𝛽𝑤 >
0. Assume that 𝑧(𝑥) attains its positive maximum at 𝑥

0
∈ Ω,

then

𝑎 (1 − 𝛼𝛽) − 𝑤 (𝑥

0
) + 𝛼𝑧 (𝑥

0
) − 𝑐𝑧 (𝑥

0
) + 𝑐𝛽𝑤 (𝑥

0
) > 0

𝑎 (1 − 𝛼𝛽) − 𝑐𝑧 (𝑥

0
) + 𝑐𝛽𝛼𝑧 (𝑥

0
) > 0,

𝑧 (𝑥) ≤ 𝑧 (𝑥0
) ≤

𝑎

𝑐

(29)

so that

V = 𝑧 − 𝛽𝑢 ≤ 𝑧 (𝑥
0
) ≤

𝑎

𝑐

. (30)

Similarly, we can obtain the desired result

𝑢 ≤

𝑏

𝑑

.

(31)

Theorem 9. If one of the following conditions:

(i) 𝑏 ≤ 𝑎𝑑, 𝜆
1
≥ (𝑏 + 𝑐𝛽(𝑏/𝑑))/(1 − 𝛼𝛽);

(ii) (1 − (𝛼 + 𝛽)/2)𝜆
1
≥ max{𝑎, 𝑏};

is satisfied, then (1) with 𝛼 < 𝛼, 𝛽 < 𝛽 has no positive solution.

Proof. Multiplying 𝑢 and V to the first and second equations
in (1), and integrating these equations onΩ, we have

∫

Ω

|∇𝑢|

2
𝑑𝑥 + 𝛼∫

Ω

∇𝑢∇V𝑑𝑥 = ∫
Ω

𝑢

2
(𝑎 − 𝑢 − 𝑐V) 𝑑𝑥,

𝛼∫

Ω

|∇V|
2
𝑑𝑥 + ∫

Ω

∇𝑢∇V𝑑𝑥 = ∫
Ω

𝑢V (𝑎 − 𝑢 − 𝑐V) 𝑑𝑥,

𝛽∫

Ω

|∇𝑢|

2
𝑑𝑥 + ∫

Ω

∇𝑢∇V𝑑𝑥 = ∫
Ω

𝑢V (𝑏 − V − 𝑑𝑢) 𝑑𝑥,

∫

Ω

|∇V|
2
𝑑𝑥 + 𝛽∫

Ω

∇𝑢∇V𝑑𝑥 = ∫
Ω

V
2
(𝑏 − V − 𝑑𝑢) 𝑑𝑥.

(32)
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(i) Suppose, by contradiction that (1) has a positive
solution (𝑢, V), then the second and fourth equations in (32)
yield

∫

Ω

V
3
𝑑𝑥 + 𝛽∫

Ω

𝑢V (𝑎 − 𝑢) 𝑑𝑥

= − (1 − 𝛼𝛽)∫

Ω

|∇V|
2
𝑑𝑥 + 𝛽∫

Ω

𝑐𝑢V
2
𝑑𝑥

+ ∫

Ω

V
2
(𝑏 − 𝑑𝑢) 𝑑𝑥.

(33)

Since 𝑢 ≤ 𝑏/𝑑 by Theorem 8, the left-hand side of (33)
must be positive. On the other hand, the Poincare inequality,
‖∇V‖2
𝐿
2 ≥ 𝜆1

‖V‖2
𝐿
2 , for V ∈ 𝑊12 (Ω) and the given assumption

shows the following contradiction:

− (1 − 𝛼𝛽)∫

Ω

|∇V|
2
𝑑𝑥 + 𝛽∫

Ω

𝑐𝑢V
2
𝑑𝑥 + ∫

Ω

V
2
(𝑏 − 𝑑𝑢) 𝑑𝑥

≤ − [(1 − 𝛼𝛽) 𝜆

1
− 𝑐𝛽

𝑏

𝑑

− 𝑏]∫

Ω

V
2
𝑑𝑥 ≤ 0.

(34)

(ii) A contraction argument is also used assuming that (1)
has a positive solution (𝑢, V). Adding the first equation to the
fourth equation, and then subtracting 𝑎 ∫

Ω
𝑢

2
𝑑𝑥 + 𝑏 ∫

Ω
V2𝑑𝑥

from the both sides, the following identity is obtained:

∫

Ω

|∇𝑢|

2
𝑑𝑥 + (𝛼 + 𝛽)∫

Ω

∇𝑢∇V𝑑𝑥

+ ∫

Ω

|∇V|
2
𝑑𝑥 − 𝑎∫

Ω

𝑢

2
𝑑𝑥 − 𝑏∫

Ω

V
2
𝑑𝑥

= −∫

Ω

𝑢

2
(𝑢 + 𝑐V) 𝑑𝑥 − ∫

Ω

V
2
(V + 𝑑𝑢) 𝑑𝑥.

(35)

Since 2∇𝑢∇V = |∇(𝑢 + V)|2 − |∇𝑢|2 − |∇V|2 and (1 − (𝛼 +
𝛽)/2)𝜆

1
≥ max{𝑎, 𝑏}, the Poincare inequality shows that the

left-hand side of (35) must be nonnegative, more precisely,

∫

Ω

|∇𝑢|

2
𝑑𝑥 + (𝛼 + 𝛽)∫

Ω

∇𝑢∇V𝑑𝑥

+ ∫

Ω

|∇V|
2
𝑑𝑥 − 𝑎∫

Ω

𝑢

2
𝑑𝑥 − 𝑏∫

Ω

V
2
𝑑𝑥

= (1 −

𝛼 + 𝛽

2

)∫

Ω

|∇𝑢|

2
𝑑𝑥 +

𝛼 + 𝛽

2

∫

Ω

|∇ (𝑢 + V)|
2
𝑑𝑥

+ (1 −

𝛼 + 𝛽

2

)∫

Ω

|∇V|
2
𝑑𝑥 − 𝑎∫

Ω

𝑢

2
𝑑𝑥 − 𝑏∫

Ω

V
2
𝑑𝑥

≥ [(1 −

𝛼 + 𝛽

2

)𝜆

1
− 𝑎]∫

Ω

𝑢

2
𝑑𝑥 +

𝛼 + 𝛽

2

⋅ ∫

Ω

|∇ (𝑢 + V)|
2
𝑑𝑥+[(1 −

𝛼 + 𝛽

2

)𝜆

1
− 𝑏]∫

Ω

V
2
𝑑𝑥

≥ [(1 −

𝛼 + 𝛽

2

)𝜆

1
− 𝑎]∫

Ω

𝑢

2
𝑑𝑥

+ [(1 −

𝛼 + 𝛽

2

)𝜆

1
− 𝑏]∫

Ω

V
2
𝑑𝑥 ≥ 0.

(36)

However, this results in a contradiction since the right-hand
side of (35) is clearly strictly negative by the positivity of 𝑢
and V.

Remark 10. Before closing this section, more sufficient con-
ditions of the nonexistence of positive solutions of (1) with
𝛼 + 𝛽 > 0, 𝛼𝛽 = 0 are investigated. Take 𝛼 = 0, 𝛽 > 0 for
example, then (1) may be reduced as

−Δ𝑢 = 𝑢 (𝑎 − 𝑢 − 𝑐V) , 𝑥 ∈ Ω,

−Δ (𝛽𝑢 + V) = V (𝑏 − V − 𝑑𝑢) , 𝑥 ∈ Ω,

(𝑢, V) = (0, 0) , 𝑥 ∈ 𝜕Ω.

(37)

Using the same method, we can obtain that (37) has no posi-
tive solution, if one of the following conditions is satisfied:

(i) 𝜆
1
≥ 𝑏 + 𝛽𝑐𝑎;

(ii) 𝜆
1
≥ 𝑎;

(iii) (1 − 𝛽/2)𝜆
1
≥ max{𝑎, 𝑏};

(iv) 𝑐 < 1 < 𝑎/𝑏 and (1 − 𝑑)/𝛽 ≤ 𝜆
1
/(𝑏 + 𝛽𝑎) ≤ 1.
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