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This paper investigates the consensus problem for second-order leader-follower nonlinearmultiagent systemswith general network
topologies. A pinning control algorithm is proposed, where it includes time-varying delay information. By using the information of
delay-partition and delay-distribution and constructing an appropriate Lyapunov-Krasovskii functional, the consensus criteria are
derived to achieve leader-follower consensus for multiagent systems, which are in the form of linear inequalities that can be solved
by employing the semidefinite programme method. Moreover, this paper addresses what kind of agents and how many agents
should be pinned. Two numerical examples are presented to further demonstrate the effectiveness of the proposed approach.

1. Introduction

The coordinated and cooperative control of multiple autono-
mous vehicles is a problem which has been much researched
in recent years due to its applications in the formation control
of unmanned air vehicles, the cooperative control of mobile
robots, the design of distributed sensor networks, and so on.
Particularly, consensus in multiagent systems, which means
all the agents can reach an agreement on certain concern or
interest, has been extensively studied in the past few years [1–
8].

A particularly interesting topic is the consensus of a group
of agents with a leader, where the leader is a special agent
whose motion is independent of all the other agents and
thus is followed by all the other ones, and such a problem is
commonly called leader-following consensus problem [9–13].
Leader-following consensus problem is investigated in [9],
and the corresponding conclusion is that if all the agents are
jointly connected with their leader, their states would con-
verge to that of the leader. Reference [11] provides a rigorous
proof for the consensus using an extension of LaSalle’s invari-
ance principle. A neighbor-based observer design approach is
proposed in [12] and discusses a group of mobile agents with
an active leadermovingwith an unknown velocity. In [13], the

leader-following consensus problem is considered by design-
ing distributed controllers using local information to ensure
that all the agents follow the leader. It is well known that
time delay often causes undesirable dynamic behaviors such
as oscillation, performance degradation, and instability of the
network [14–16]; therefore, various approaches to consensus
analysis for multiagent systems with time delay have been
investigated in the literature [17, 18]. In [17], two different
cases of coupling topologies are investigated for coordination
problem of multiagent system with time-varying coupling
delays. Reference [18] studies the leader-following consensus
for a multiagent system with a varying-velocity leader and
time-varying delays. However, less consideration has been
paid to the delay-dependent consensus conditions for mul-
tiagent systems with time-varying delays. It is noted that
all physical systems are nonlinear in nature [19] and that
even different agents may have different dynamics. It is very
challenging task to discuss consensus problem of nonlinear
multiagent systems [20, 21]. Reference [21] proposes leader-
following consensus algorithms based on pinning control for
second-order nonlinear multiagent systems and provides a
pinned-agent selection scheme to determine what kind of
followers and howmany followers should be pinned. Consid-
ering that it is practically impossible to apply control actions
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to all agents in a large-scale multiagent system, and some
authors develop consensus algorithms based on pinning
control [22–25]. It is well known that pinning control is an
effective method to solve the problem of nonlinear system, it
would be beneficial to apply these control techniques to study
the consensus problem of multiagent system. In many practi-
cal systems, such as networked control systems, the probabil-
ity distribution of the time delay in the interval is an impor-
tant characteristic for the network conditions, and its proba-
bility distribution can be measured by the statistical method
[26–28]. Therefore, the information of probability distribu-
tion of the delay should be employed in the model. To the
best of the authors’ knowledge, no result has been reported
for the consensus problem for second-order leader-follower
nonlinear multiagent systems via pinning control, when both
the information of variation range of the time delay and the
information of variation probability of the time delay in an
interval can be observed, which motivates the present study.

Motivated by the above discussions, in this paper, we
investigate the consensus problem for second-order leader-
follower nonlinear multiagent systems. Based on the proba-
bility distribution of delay, a new type of multiagent system
model with stochastic parameters in the coefficient matri-
ces is proposed. A pinning control algorithm is proposed,
and the delay-partition-dependent and delay-distribution-
dependent consensus criteria are derived by combining
delay-partitioning method and Lyapunov-Krasovskii func-
tional method. Moreover, this paper addresses what kind of
agents and how many agents should be pinned.

The main contributions of this paper can be summarized
as follows. (1) Based on the probability distribution of delay,
a novel multiagent system model with stochastic parameters
in the coefficient matrices is introduced. (2)The new pinning
control algorithm is proposed, and this paper gives what kind
of agents and how many agents should be pinned.

The rest of this paper is organized as follows. In
Section 2, problem formulation and preliminaries are briefly
outlined. In Section 3, the consensus criteria are derived to
achieve leader-follower consensus for multiagent systems. In
Section 4, two simulation examples are provided to show the
advantages of the obtained results, and some conclusions are
drawn in Section 5.

Notation. The notation used in the paper is fairly standard.
R𝑛 denotes the 𝑛-dimensional Euclidean space, and R𝑛×𝑚 is
a set of real 𝑛 × 𝑚 matrices. The notation 𝑋 > 0 (resp., 𝑋 <

0), for 𝑋 ∈ R𝑛×𝑛, means that the matrix 𝑋 is real symmetric
positive definite (resp., negative definite). diag{⋅ ⋅ ⋅ } stands for
a block-diagonal matrix. ‖ ⋅ ‖ denotes the Euclidean norm in
R𝑛. The superscript “𝑇” stands for matrix transposition. 𝐸{⋅}
stands for mathematical expectation.The Kronecker product
of matrices 𝑄 ∈ R𝑚×𝑛 and 𝑅 ∈ R𝑝×𝑞 is a matrix in R𝑚𝑝×𝑛𝑞

and denoted as 𝑄 ⊗ 𝑅. In this paper, if not explicitly stated,
matrices are assumed to have compatible dimensions.

2. Preliminaries

Let 𝑔 = {V, 𝜀, 𝐴} be a weighted diagraph of order𝑁, with the
set of nodes V = {V

1
, V
2
, . . . , V

𝑁
}, an edge set 𝜀 ⊆ V × V, and

a weighted adjacency matrix 𝐴 = (𝑎
𝑖𝑗
)
𝑁×𝑁

with nonnegative
elements, directed edge 𝑒

𝑖𝑗
in network 𝑔, is denoted by the

ordered pair of nodes (V
𝑖
, V
𝑗
), which means that node V

𝑗

can receive information from node V
𝑖
. The elements of the

adjacencymatrix𝐴 are defined as 𝑎
𝑖𝑗
> 0 if and only if there is

a directed edge (V
𝑗
, V
𝑖
) in 𝑔; otherwise 𝑎

𝑖𝑗
= 0. We assume that

𝑎
𝑖𝑖
= 0 for all 𝑖 ∈ V. The neighbor set of node 𝑖 is defined by

𝑁
𝑖
= {𝑗 ∈ V | (V

𝑗
, V
𝑖
) ∈ 𝜀}, and the in-degree and out-degree

of node 𝑖 are defined as

degin (𝑖) =
𝑁

∑

𝑗=1,𝑗 ̸= 𝑖

𝑎
𝑖𝑗
, degout (𝑖) =

𝑁

∑

𝑗=1,𝑗 ̸= 𝑖

𝑎
𝑗𝑖
. (1)

A diagraph is called balanced if degin(𝑖) = degout(𝑖) for all
𝑖 ∈ V.

The Laplacian matrix 𝐿 = (𝑙
𝑖𝑗
)
𝑁×𝑁

associated with the
adjacency matrix 𝐴 is defined as

𝑙
𝑖𝑗
= −𝑎
𝑖𝑗

(𝑖 ̸= 𝑗)

𝑙
𝑖𝑖
= −

𝑁

∑

𝑗=1,𝑗 ̸= 𝑖

𝑙
𝑖𝑗

(𝑖, 𝑗 = 1, 2, . . . , 𝑁)

(2)

which ensures the diffusion property that ∑𝑁
𝑗=1

𝑙
𝑖𝑗
= 0.

A directed path from node V
𝑖
to V
𝑗
in 𝑔 is a sequence

of edges ((V
𝑖
, V
𝑖1
), (V
𝑖1
, V
𝑖2
), . . . , (V

𝑖𝑙
, V
𝑗
)) in the directed graph

which is strongly connected if for any two distinct nodes V
𝑗

and V
𝑖
, there exists a directed path form node V

𝑗
to V
𝑖
. A

directed graph has a directed spanning tree if there exists at
least one node called root which has a directed path to all
other nodes.

The dynamics of the virtual leader is described by the
following second-order nonlinear system:

𝑥̇
𝑟
(𝑡) = V

𝑟
(𝑡) ,

V̇
𝑟
(𝑡) = 𝑓 (𝑡, 𝑥

𝑟
(𝑡) , V
𝑟
(𝑡)) ,

(3)

where 𝑥
𝑟
(𝑡) = (𝑥

𝑟1
(𝑡), 𝑥
𝑟2
(𝑡), . . . , 𝑥

𝑟𝑛
(𝑡))
𝑇

∈ R𝑛 and V
𝑟
(𝑡) =

(V
𝑟1
(𝑡), V
𝑟2
(𝑡), . . . , V

𝑟𝑛
(𝑡))
𝑇

∈ R𝑛 are the position and velocity
states of the virtual leader, respectively. 𝑓(𝑡, 𝑥

𝑟
(𝑡), V
𝑟
(𝑡)) =

(𝑓
1
(𝑡, 𝑥
𝑟
(𝑡), V
𝑟
(𝑡)), 𝑓

2
(𝑡, 𝑥
𝑟
(𝑡), V
𝑟
(𝑡)), . . . , 𝑓

𝑛
(𝑡, 𝑥
𝑟
(𝑡), V
𝑟
(𝑡)))
𝑇 is

a nonlinear vector-valued continuous bounded function.
The second-order dynamics of multiagent systems con-

sisting of𝑁-coupled autonomous agents is given as follows:

𝑥̇
𝑖
(𝑡) = V

𝑖
(𝑡) + 𝑢

1𝑖
(𝑡) ,

V̇
𝑖
(𝑡) = 𝑓 (𝑡, 𝑥

𝑖
(𝑡) , V
𝑖
(𝑡)) + 𝑢

2𝑖
(𝑡) (𝑖 = 1, 2, . . . , 𝑁) ,

(4)

where 𝑥
𝑖
(𝑡) = (𝑥

𝑖1
(𝑡), 𝑥
𝑖2
(𝑡), . . . , 𝑥

𝑖𝑛
(𝑡))
𝑇

∈ R𝑛 and V
𝑖
(𝑡) =

(V
𝑖1
(𝑡), V
𝑖2
(𝑡), . . . , V

𝑖𝑛
(𝑡))
𝑇

∈ R𝑛 are the position and velocity
states of agent 𝑖, respectively. 𝑢

1𝑖
(𝑡) and 𝑢

2𝑖
(𝑡) are the control

inputs for agent 𝑖 to be designed.

Definition 1. The multiagent systems (4) are said to achieve
second-order leader-following consensus if, for any initial
conditions, the state of each following agent 𝑖 (𝑖 = 1, 2, . . . , 𝑁)
satisfies

lim
𝑡→∞

󵄩
󵄩
󵄩
󵄩
𝑥
𝑖
(𝑡) − 𝑥

𝑟
(𝑡)
󵄩
󵄩
󵄩
󵄩
= 0 lim

𝑡→∞

󵄩
󵄩
󵄩
󵄩
V
𝑖
(𝑡) − V

𝑟
(𝑡)
󵄩
󵄩
󵄩
󵄩
= 0. (5)
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Motivated by the coupling rule used in [17], the consensus
algorithm is designed based on pinning control such that all
agents in nonlinearmultiagent systems (4) can asymptotically
follow the virtual leader (3). Without loss of generality, rear-
range the order of all agents, and the sort method will be
given in Section 3. Let the first 𝑙 (1 ≤ 𝑙 < 𝑁) agents in
multiagent systems (4) be controlled, and the controllers have
the following form:

𝑢
1𝑖
(𝑡) = − ∑

𝑗∈𝑁𝑖

𝑎
𝑖𝑗
{(𝑥
𝑖
(𝑡) − 𝑥

𝑗
(𝑡))

+ (𝑥
𝑖
(𝑡 − 𝜏 (𝑡)) − 𝑥

𝑗
(𝑡 − 𝜏 (𝑡)))}

− 𝛿
𝑖
{ (𝑥
𝑖
(𝑡) − 𝑥

𝑟
(𝑡))

+ (𝑥
𝑖
(𝑡 − 𝜏 (𝑡)) − 𝑥

𝑟
(𝑡 − 𝜏 (𝑡)))}

𝑢
2𝑖
(𝑡) = − ∑

𝑗∈𝑁𝑖

𝑎
𝑖𝑗
{(V
𝑖
(𝑡) − V

𝑗
(𝑡))

+ (V
𝑖
(𝑡 − 𝜏 (𝑡)) − V

𝑗
(𝑡 − 𝜏 (𝑡)))}

− 𝛿
𝑖
{ (V
𝑖
(𝑡) − V

𝑟
(𝑡))

+ (V
𝑖
(𝑡 − 𝜏 (𝑡)) − V

𝑟
(𝑡 − 𝜏 (𝑡)))} ,

(6)

where the local feedback gains satisfy 𝛿
𝑖
> 0 (𝑖 = 1, 2, . . . , 𝑙)

and 𝛿
𝑖
= 0 (𝑖 = 𝑙 + 1, 𝑙 + 2, . . . , 𝑁). Also 𝜏(𝑡) ∈ [0, 𝜏] is the

bounded time-varying delay, and 𝜏 is a positive scalar.
For notational convenience, we define

𝑥 (𝑡) = (𝑥
𝑇

1
(𝑡) , 𝑥
𝑇

2
(𝑡) , . . . , 𝑥

𝑇

𝑁
(𝑡))

𝑇

∈ R
𝑁𝑛

,

V (𝑡) = (V𝑇
1
(𝑡) , V𝑇
2
(𝑡) , . . . , V𝑇

𝑁
(𝑡))

𝑇

∈ R
𝑁𝑛

,

1
𝑁
= (1, 1, . . . , 1)

𝑇

∈ R
𝑁

,

𝐹 (𝑡, 𝑥 (𝑡) , V (𝑡))

= (𝑓
𝑇

(𝑡, 𝑥
1
(𝑡) , V
1
(𝑡)) , 𝑓

𝑇

(𝑡, 𝑥
2
(𝑡) , V
2
(𝑡)) , . . . ,

𝑓
𝑇

(𝑡, 𝑥
𝑁
(𝑡) , V
𝑁
(𝑡)))

𝑇

∈ R
𝑁𝑛

𝛿 = diag {𝛿
1
, 𝛿
2
, . . . , 𝛿

𝑙
, 0, . . . , 0} ∈ R

𝑁×𝑁

.

(7)

Let 𝜉(𝑡) = 𝑥(𝑡) − 1
𝑁
⊗ 𝑥
𝑟
(𝑡), 𝜂(𝑡) = V(𝑡) − 1

𝑁
⊗ V
𝑟
(𝑡).

Combining (3) and (4), one has

̇
𝜉 (𝑡) = 𝑥̇ (𝑡) − 1

𝑁
⊗ 𝑥̇
𝑟
(𝑡)

= V (𝑡) − [(𝐿 + 𝛿) ⊗ 𝐼
𝑛
] (𝜉 (𝑡) + 𝜉 (𝑡 − 𝜏 (𝑡)))

− 1
𝑁
⊗ V
𝑟
(𝑡)

= 𝜂 (𝑡) − [(𝐿 + 𝛿) ⊗ 𝐼
𝑛
] (𝜉 (𝑡) + 𝜉 (𝑡 − 𝜏 (𝑡))) ,

̇𝜂 (𝑡) = V̇ (𝑡) − 1
𝑁
⊗ V̇
𝑟
(𝑡)

= 𝐹 (𝑡, 𝑥 (𝑡) , V (𝑡)) − 1
𝑁
⊗ 𝑓 (𝑡, 𝑥

𝑟
(𝑡) , V
𝑟
(𝑡))

− [(𝐿 + 𝛿) ⊗ 𝐼
𝑛
] (𝜂 (𝑡) + 𝜂 (𝑡 − 𝜏 (𝑡))) .

(8)

Based on (8), the augment system can be obtained as fol-
lows:

[

̇
𝜉 (𝑡)

̇𝜂 (𝑡)

]

𝑇

= [

− (𝐿 + 𝛿) ⊗ 𝐼
𝑛

𝐼
𝑁𝑛

0 − (𝐿 + 𝛿) ⊗ 𝐼
𝑛

] [

𝜉 (𝑡)

𝜂 (𝑡)
]

+ [

− (𝐿 + 𝛿) ⊗ 𝐼
𝑛

0

0 − (𝐿 + 𝛿) ⊗ 𝐼
𝑛

] [

𝜉 (𝑡 − 𝜏 (𝑡))

𝜂 (𝑡 − 𝜏 (𝑡))
]

+ [

0

𝐹 (𝑡, 𝑥 (𝑡) , V (𝑡)) − 1
𝑁
⊗ 𝑓 (𝑡, 𝑥

𝑟
(𝑡) , V
𝑟
(𝑡))

] .

(9)

Setting

𝑒 (𝑡) = [

𝜉 (𝑡)

𝜂 (𝑡)
] 𝐴 = [

− (𝐿 + 𝛿) 𝐼
𝑁

0 − (𝐿 + 𝛿)
] ,

𝐹 = [

0

𝐹

] 𝐴
𝜏
= [

− (𝐿 + 𝛿) 0

0 − (𝐿 + 𝛿)
] ,

𝐹 = 𝐹 (𝑡, 𝑥 (𝑡) , V (𝑡)) − 1
𝑁
⊗ 𝑓 (𝑡, 𝑥

𝑟
(𝑡) , V
𝑟
(𝑡)) ,

(10)

then the system (9) can be rewritten in the following compact
form:

̇𝑒 (𝑡) = (𝐴 ⊗ 𝐼
𝑛
) 𝑒 (𝑡) + (𝐴

𝜏
⊗ 𝐼
𝑛
) 𝑒 (𝑡 − 𝜏 (𝑡)) + 𝐹. (11)

Remark 2. In many practical systems, such as networked
control systems, the probability distribution of the delay in
the interval is an important characteristic. Inspired by [26–
28], in this paper, it is assumed that the probability of the delay
appearing in some intervals can be observed. Then new mul-
tiagent systems with stochastic time-varying delays can be
proposed.

For a given positive integer𝑀 and a partition 0 = 𝜏
0
<

𝜏
1
< 𝜏
2
⋅ ⋅ ⋅ < 𝜏

𝑀
= 𝜏, we assume that the probabilities of

𝜏(𝑡) ∈ [𝜏
𝑖−1
, 𝜏
𝑖
) (𝑖 = 1, 2, . . . , 𝑁) are known. Define the set

Ω
𝑖
= {𝑡 : 𝜏 (𝑡) ∈ [𝜏

𝑖−1
, 𝜏
𝑖
)} (𝑖 = 1, 2, . . . ,𝑀) . (12)

It can easily be seen that ⋃Ω
𝑖
= 𝑅
+, Ω
𝑖
⋂Ω
𝑗
= 𝜙 (𝑖 ̸= 𝑗).

Define

𝜏
𝑖
(𝑡) = {

𝜏 (𝑡) 𝑡 ∈ Ω
𝑖

0 𝑡 ∈Ω
𝑖

𝛽
𝑖
(𝑡) = {

1 𝑡 ∈ Ω
𝑖

0 𝑡 ∈Ω
𝑖
.

(13)

Assumption 3. Stochastic variable 𝛽(𝑡) := [𝛽
1
(𝑡), 𝛽
2
(𝑡), . . . ,

𝛽
𝑁
(𝑡)]
𝑇 is a distributed sequence with

Prob {𝛽
𝑖
(𝑡) = 1} = 𝐸 {𝛽

𝑖
(𝑡)} = 𝛽

𝑖

𝑀

∑

𝑖=1

𝛽
𝑖
= 1. (14)

Remark 4. By some computations, we derived from
Assumption 3 that

𝐸(𝛽
𝑖
(𝑡) − 𝛽

𝑖
)
2

= 𝛽
𝑖
(1 − 𝛽

𝑖
)

𝐸 {𝛽
𝑖
(𝑡) − 𝛽

𝑖
} = 0 (𝑖 = 1, 2, . . . ,𝑀)

𝐸 {(𝛽
𝑖
(𝑡) − 𝛽

𝑖
) (𝛽
𝑗
(𝑡) − 𝛽

𝑗
)} = −𝛽

𝑖
𝛽
𝑗

(𝑖, 𝑗 = 1, 2, . . . ,𝑀; 𝑖 ̸= 𝑗) .

(15)
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By using the new functions 𝛽
𝑖
(𝑡) (𝑖 = 1, 2, . . . ,𝑀), system

(11) can be rewritten as

̇𝑒 (𝑡) = [A +

𝑀−1

∑

𝑖=1

(𝛽
𝑖
(𝑡) − 𝛽

𝑖
)A
𝜏𝑖
] 𝜉 (𝑡) + 𝐹, (16)

where

A = [𝐴, 𝛽
1
𝐴
𝜏
, 0, 𝛽
2
𝐴
𝜏
, 0, . . . , 0, 𝛽

𝑀−1
𝐴
𝜏
, 0, 𝛽
𝑀
𝐴
𝜏
] ⊗ 𝐼
𝑛

A
𝜏𝑖
= [0
𝑁,(2𝑖−1)𝑁

, 𝐴
𝜏
, 0
𝑁,(2𝑀−2𝑖−1)𝑁

, −𝐴
𝜏
] ,

𝜉
𝑇

(𝑡) = [𝑒
𝑇

(𝑡) , 𝑒
𝑇

(𝑡 − 𝜏
1
(𝑡)) , 𝑒

𝑇

(𝑡 − 𝜏
1
) ,

𝑒
𝑇

(𝑡 − 𝜏
2
(𝑡)) , . . . , 𝑒

𝑇

(𝑡 − 𝜏
𝑀−1

) , 𝑒
𝑇

(𝑡 − 𝜏
𝑀
(𝑡))] .

(17)

Let 𝐶([−𝜏, 0];R𝑛) denote the family of continuous func-
tions 𝜑 from [−𝜏, 0] to R𝑛. It is not difficult to show that,
given any 𝜑 ∈ 𝐶([−𝜏, 0];R𝑛), the system (16) has a unique
continuous solution 𝑒(𝑡) on 𝑡 ≥ −𝜏. Clearly, 𝑒(𝑡) is a
continuous R𝑛-valued stochastic process on 𝑡 ∈ [−𝜏, 0]. Let
𝑒
𝑡
= {𝑒(𝑡 + 𝜃) : −𝜏 ≤ 𝜃 ≤ 0} for 𝑡 ≥ 0. Then {𝑒

𝑡
}

is a 𝐶([−𝜏, 0];R𝑛)-valued Markov process. Its infinitesimal
operator 𝐿, acting on functional 𝑉 : 𝐶([−𝜏, 0];R𝑛) ×

[0, +∞) → R, is defined by

𝐿𝑉 (𝑒
𝑡
, 𝑡) = lim

Δ→0
+

1

Δ

[𝐸 (𝑉 (𝑒
𝑡+Δ,𝑡+Δ

) | 𝑒
𝑡
) − 𝑉 (𝑒

𝑡
, 𝑡)] . (18)

The following lemmas and assumption are needed to
derive our main results.

Lemma 5. For matrices 𝐴, 𝐵, 𝐶, and 𝐷 with appropriate
dimensions and a positive scalar𝛼, by the definition of Kroneck-
er product, the following properties can be proved:

(𝛼𝐴) ⊗ 𝐵 = 𝐴 ⊗ (𝛼𝐵) ,

(𝐴 + 𝐵) ⊗ 𝐶 = 𝐴 ⊗ 𝐶 + 𝐵 ⊗ 𝐶,

(𝐴 ⊗ 𝐵) (𝐶 ⊗ 𝐷) = (𝐴𝐶) ⊗ (𝐵𝐷) ,

(𝐴 ⊗ 𝐵)
𝑇

= 𝐴
𝑇

⊗ 𝐵
𝑇

.

(19)

Lemma 6. Let𝑅 ∈ R𝑛×𝑛 satisfy𝑅 > 0. If aR𝑛-valued function
𝑥(𝑡) is integral on the interval [𝑎, 𝑏], then

−∫

𝑏

𝑎

𝑥
𝑇

(𝑠) 𝑅𝑥 (𝑠) 𝑑𝑠 ≤ −

1

𝑏 − 𝑎

∫

𝑏

𝑎

𝑥
𝑇

(𝑠) 𝑑𝑠 𝑅∫

𝑏

𝑎

𝑥 (s) 𝑑𝑠.

(20)

Assumption 7. For the nonlinear function 𝑓(𝑡, ⋅, ⋅) and for all
𝑥, V, 𝑦, 𝑧 ∈ R𝑛, there exist nonnegative constants 𝜌

1
and 𝜌

2
,

such that the following inequality holds:

󵄩
󵄩
󵄩
󵄩
𝑓 (𝑡, 𝑥, V) − 𝑓 (𝑡, 𝑦, 𝑧)󵄩󵄩󵄩

󵄩

2

≤ 𝜌
1

󵄩
󵄩
󵄩
󵄩
𝑥 − 𝑦

󵄩
󵄩
󵄩
󵄩

2

+ 𝜌
2
‖V − 𝑧‖2. (21)

3. Main Results

Theorem 8. Suppose that Assumption 7 holds. Second-order
leader-following consensus is achieved under the pinning con-
trollers (6), if for some given positive scalars 𝜏

𝑖
and 𝛽

𝑖
∈

[0, 1] (𝑖 = 1, 2, . . . ,𝑀) there exist some positive matrices P =

diag{𝑃, 𝑃}, Q
𝑖
= diag{𝑄

𝑖
, 𝑄
𝑖
} (𝑖 = 1, 2, . . . ,𝑀 − 1), R

𝑗
=

diag{𝑅
𝑗
, 𝑅
𝑗
} (𝑗 = 1, 2, . . . ,𝑀 + 1) and a positive 𝛼 > 0 such

that the following linear matrix inequality holds:

Φ =

[

[

[

[

[

[

[

[

[

[

[

Φ
11

∗ ∗ ∗ ⋅ ⋅ ⋅ ∗ ∗

Φ
21

Φ
22

∗ ∗ ⋅ ⋅ ⋅ ∗ ∗

0 0 Φ
33

∗ ⋅ ⋅ ⋅ ∗ ∗

Φ
41

0 Φ
43

Φ
44

⋅ ⋅ ⋅ ∗ ∗

...
...

...
... d

...
...

Φ
2𝑀,1

0 0 0 ⋅ ⋅ ⋅ Φ
2𝑀,2𝑀

∗

0 Φ
2𝑀+1,2

0 Φ
2𝑀+1,4

⋅ ⋅ ⋅ Φ
2𝑀+1,2𝑀

Φ
2𝑀+1,2𝑀+1

]

]

]

]

]

]

]

]

]

]

]

< 0, (22)

where

Φ
11
= [

Ω
1
+ 𝛼𝜌
1
𝐼
𝑁

𝑃 − (𝐿 + 𝛿)
𝑇

Δ

𝑃 − Δ (𝐿 + 𝛿) Ω
1
+ 𝛼𝜌
1
𝐼
𝑁

] ,

Φ
21
= [

Ω
2
−𝛽
1
(𝐿 + 𝛿)

𝑇

Δ

0 Ω
2

] ,

Φ
22
=
[

[

[

𝛽
1
(𝐿 + 𝛿)

𝑇

Δ (𝐿 + 𝛿) −

𝑅
1

𝜏
1

0

0 𝛽
1
(𝐿 + 𝛿)

𝑇

Δ (𝐿 + 𝛿) −

𝑅
1

𝜏
1

]

]

]

,

Φ
33
=

[

[

[

[

−𝑄
1
−

𝑅
2

𝜏
2
− 𝜏
1

0

0 −𝑄
1
−

𝑅
2

𝜏
2
− 𝜏
1

]

]

]

]

,

Φ
41
= [

Ω
3
−𝛽
2
(𝐿 + 𝛿)

𝑇

Δ

0 Ω
3

] ,

Φ
43
=

[

[

[

[

𝑅
2

𝜏
2
− 𝜏
1

0

0

𝑅
2

𝜏
2
− 𝜏
1

]

]

]

]

,

Φ
44

=
[

[

[

𝑅
2

𝜏
2
− 𝜏
1

+ 𝛽
2
(𝐿 + 𝛿)

𝑇

Δ (𝐿 + 𝛿) 0

0

𝑅
2

𝜏
2
− 𝜏
1

+ 𝛽
2
(𝐿 + 𝛿)

𝑇

Δ (𝐿 + 𝛿)

]

]

]

,

Φ
2𝑀,1

= [
Ω
4
−𝛽
𝑀
(𝐿 + 𝛿)

𝑇

Δ

0 Ω
4

] ,



Abstract and Applied Analysis 5

Φ
2𝑀,2𝑀

= [

Ω
5

0

0 Ω
5

] ,

Φ
2𝑀+1,2

= [

𝑃 − Δ (𝐿 + 𝛿) 0

0 𝑃 − Δ (𝐿 + 𝛿)
] ,

Φ
2𝑀+1,4

= [

−𝛽
1
Δ (𝐿 + 𝛿) 0

0 −𝛽
1
Δ (𝐿 + 𝛿)

] ,

Φ
2𝑀+1,2𝑀

= [

−𝛽
𝑀
Δ (𝐿 + 𝛿) 0

0 −𝛽
𝑀
Δ (𝐿 + 𝛿)

] ,

Φ
2𝑀+1,2𝑀+1

= [

−𝛼𝐼
𝑁
+ Δ 0

0 −𝛼𝐼
𝑁
+ Δ

] ,

Δ =

𝑀

∑

𝑖=1

(𝜏
𝑖
− 𝜏
𝑖−1
) 𝑅
𝑖
+ 𝜏
𝑀
𝑅
𝑀+1

,

Ω
1
= −𝑃 (𝐿 + 𝛿) − (𝐿 + 𝛿)

𝑇

𝑃 +

𝑀−1

∑

𝑖=1

𝑄
𝑖
−

𝑅
1

𝜏
1

−

𝑅
𝑀+1

𝜏
𝑀

+ (𝐿 + 𝛿)
𝑇

Δ (𝐿 + 𝛿) ,

Ω
2
= −𝛽
1
(𝐿 + 𝛿)

𝑇

𝑃 +

𝑅
1

𝜏
1

+ 𝛽
1
(𝐿 + 𝛿)

𝑇

Δ (𝐿 + 𝛿) ,

Ω
3
= −𝛽
2
(𝐿 + 𝛿)

𝑇

𝑃 + 𝛽
2
(𝐿 + 𝛿)

𝑇

Δ (𝐿 + 𝛿) ,

Ω
4
= −𝛽
𝑀
(𝐿 + 𝛿)

𝑇

𝑃 +

𝑅
𝑀+1

𝜏
𝑀

+ 𝛽
𝑀
(𝐿 + 𝛿)

𝑇

Δ (𝐿 + 𝛿) ,

Ω
5
= −

𝑅
𝑀+1

𝜏
𝑀

−

𝑅
𝑀

𝜏
𝑀
− 𝜏
𝑀−1

+ (𝛽
𝑀
− 2

𝑀−1

∑

𝑖,𝑗=1;𝑖 ̸= 𝑗

𝛽
𝑖
𝛽
𝑗
)(𝐿 + 𝛿)

𝑇

Δ (𝐿 + 𝛿) .

(23)

Proof. Consider the following Lyapunov function candidate:

𝑉 (𝑡, 𝑒
𝑡
) = 𝑉
1
(𝑡, 𝑒
𝑡
) + 𝑉
2
(𝑡, 𝑒
𝑡
) + 𝑉
3
(𝑡, 𝑒
𝑡
) , (24)

where
𝑉
1
(𝑡, 𝑒
𝑡
) = 𝑒
𝑇

(𝑡) (P ⊗ 𝐼
𝑛
) 𝑒 (𝑡) ,

𝑉
2
(𝑡, 𝑒
𝑡
) =

𝑀−1

∑

𝑖=1

∫

𝑡

𝑡−𝜏𝑖

𝑒
𝑇

(𝑠) (Qi ⊗ 𝐼𝑛) 𝑒 (𝑠) 𝑑𝑠,

𝑉
3
(𝑡, 𝑒
𝑡
) =

𝑀

∑

𝑖=1

∫

𝑡−𝜏𝑖−1

𝑡−𝜏𝑖

∫

𝑡

𝑠

̇𝑒
𝑇

(V) (R
𝑖
⊗ 𝐼
𝑛
) ̇𝑒 (V) 𝑑V 𝑑𝑠

+ ∫

𝑡

𝑡−𝜏𝑀

̇𝑒
𝑇

(V) (R
𝑀+1

⊗ 𝐼
𝑛
) ̇𝑒 (V) 𝑑V 𝑑𝑠.

(25)

Taking time derivative of 𝑉
𝑖
(𝑡, 𝑒
𝑡
) (𝑖 = 1, 2, 3) along the

trajectory (16) yields

𝐿𝑉
1
(𝑡, 𝑒
𝑡
) = 2𝑒

𝑇

(𝑡) (P ⊗ 𝐼
𝑛
)A𝜉 (𝑡) + 2𝑒

𝑇

(𝑡) (P ⊗ 𝐼
𝑛
) 𝐹

= 2𝑒
𝑇

(𝑡) (P ⊗ 𝐼
𝑛
)A𝜉 (𝑡) + 2𝑒

𝑇

(𝑡)

× (P [ 0
𝐼
𝑁

] ⊗ 𝐼
𝑛
)𝐹,

(26)

𝐿𝑉
2
(𝑡, 𝑒
𝑡
) =

𝑀−1

∑

𝑖=1

[𝑒
𝑇

(𝑡) (Qi ⊗ 𝐼𝑛) 𝑒 (𝑡)

− 𝑒
𝑇

(𝑡 − 𝜏
𝑖
) (Qi ⊗ 𝐼𝑛) 𝑒 (𝑡 − 𝜏𝑖)] ,

(27)

𝐿𝑉
3
(𝑡, 𝑒
𝑡
) = ̇𝑒
𝑇

(𝑡) (Δ ⊗ 𝐼
𝑛
) ̇𝑒 (𝑡)

−

𝑀

∑

𝑖=1

∫

𝑡−𝜏𝑖−1

𝑡−𝜏𝑖

̇𝑒
𝑇

(𝑠) (R
𝑖
⊗ 𝐼
𝑛
) ̇𝑒 (𝑠) 𝑑𝑠

− ∫

𝑡

𝑡−𝜏𝑀

̇𝑒
𝑇

(𝑠) (R
𝑀+1

⊗ 𝐼
𝑛
) ̇𝑒 (𝑠) 𝑑𝑠,

(28)

where Δ = ∑𝑀
𝑖=1
(𝜏
𝑖
− 𝜏
𝑖−1
)R
𝑖
+ 𝜏
𝑀
R
𝑀+1

By Lemma 6, the following inequalities hold:

− ∫

𝑡−𝜏𝑖−1

𝑡−𝜏𝑖

̇𝑒
𝑇

(𝑠) (R
𝑖
⊗ 𝐼
𝑛
) ̇𝑒 (𝑠) 𝑑𝑠

≤ −

1

𝜏
𝑖
− 𝜏
𝑖−1

∫

𝑡−𝜏𝑖−1

𝑡−𝜏𝑖

̇𝑒
𝑇

(𝑠) 𝑑𝑠 (R
𝑖
⊗ 𝐼
𝑛
) ∫

𝑡−𝜏𝑖−1

𝑡−𝜏𝑖

̇𝑒 (𝑠) 𝑑𝑠

≤ −

1

𝜏
𝑖
− 𝜏
𝑖−1

∫

𝑡−𝜏𝑖−1

𝑡−𝜏𝑖(𝑡)

̇𝑒
𝑇

(𝑠) 𝑑𝑠 (R
𝑖
⊗ 𝐼
𝑛
) ∫

𝑡−𝜏𝑖−1

𝑡−𝜏𝑖(𝑡)

̇𝑒 (𝑠) 𝑑𝑠

= −

1

𝜏
𝑖
− 𝜏
𝑖−1

𝜉
𝑇

(𝑡)

[

[

[

[

0
4(𝑖−1)𝑁𝑛,2𝑁𝑛

𝐼
2𝑁𝑛

−𝐼
2𝑁𝑛

0
4(𝑀−𝑖)𝑁𝑛,2𝑁𝑛

]

]

]

]

× (R
𝑖
⊗ 𝐼
𝑛
)

[

[

[

[

0
4(𝑖−1)𝑁𝑛,2𝑁𝑛

𝐼
2𝑁𝑛

−𝐼
2𝑁𝑛

0
4(𝑀−𝑖)𝑁𝑛,2𝑁𝑛

]

]

]

]

𝑇

𝜉 (𝑡) ,

− ∫

𝑡

𝑡−𝜏𝑀

̇𝑒
𝑇

(𝑠) (R
𝑀+1

⊗ 𝐼
𝑛
) ̇𝑒 (𝑠) 𝑑𝑠

≤ −

1

𝜏
𝑀

∫

𝑡

𝑡−𝜏𝑀

̇𝑒
𝑇

(𝑠) 𝑑𝑠 (R
𝑀+1

⊗ 𝐼
𝑛
) ∫

𝑡

𝑡−𝜏𝑀

̇𝑒 (𝑠) 𝑑𝑠

≤ −

1

𝜏
𝑀

∫

𝑡

𝑡−𝜏𝑀(𝑡)

̇𝑒
𝑇

(𝑠) 𝑑𝑠 (R
𝑀+1

⊗ 𝐼
𝑛
) ∫

𝑡

𝑡−𝜏𝑀(𝑡)

̇𝑒 (𝑠) 𝑑𝑠

= −

1

𝜏
𝑀

𝜉
𝑇

(𝑡)
[

[

𝐼
2𝑁𝑛

0
4(𝑀−1)𝑁𝑛,2𝑁𝑛

−𝐼
2𝑁𝑛

]

]

× (R
𝑀+1

⊗ 𝐼
𝑛
)
[

[

𝐼
2𝑁𝑛

0
4(𝑀−1)𝑁𝑛,2N𝑛
−𝐼
2𝑁𝑛

]

]

𝑇

𝜉 (𝑡) .

(29)

From (16) and (28), we can obtain

̇𝑒
𝑇

(𝑡) (Δ ⊗ 𝐼
𝑛
) ̇𝑒 (𝑡)

= 𝜉
𝑇

(𝑡) (A
𝑇

+

𝑀−1

∑

𝑖=1

(𝛽
𝑖
(𝑡) − 𝛽

𝑖
)A
𝑇

𝜏𝑖
)
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× (Δ ⊗ 𝐼
𝑛
)(A +

𝑀−1

∑

𝑖=1

(𝛽
𝑖
(𝑡) − 𝛽

𝑖
)A
𝜏𝑖
)𝜉 (𝑡)

+ 2𝜉
𝑇

(𝑡) (A
𝑇

+

𝑀−1

∑

𝑖=1

(𝛽
𝑖
(𝑡) − 𝛽

𝑖
)A
𝑇

𝜏𝑖
)(Δ ⊗ 𝐼

𝑛
) 𝐹

+ 𝐹
𝑇

(Δ ⊗ 𝐼
𝑛
) 𝐹

= 𝜉
𝑇

(𝑡)A
𝑇

ΔA𝜉 (𝑡) + 2
𝑀−1

∑

𝑖=1

(𝛽
𝑖
(𝑡) − 𝛽

𝑖
) 𝜉
𝑇

(𝑡)

×A
𝑇

(Δ ⊗ 𝐼
𝑛
)A
𝜏𝑖
𝜉 (𝑡)

+ 2∑

𝑖 ̸= 𝑗

(𝛽
𝑖
(𝑡) − 𝛽

𝑖
) (𝛽
𝑗
(𝑡) − 𝛽

𝑗
) 𝜉
𝑇

(𝑡)A
𝑇

𝜏𝑖
(Δ ⊗ 𝐼

𝑛
)A
𝜏𝑖
𝜉 (𝑡)

+ 2

𝑀−1

∑

𝑖=1

(𝛽
𝑖
(𝑡) − 𝛽

𝑖
)
2

𝜉
𝑇

(𝑡)A
𝑇

𝜏𝑖
(Δ ⊗ 𝐼

𝑛
)A
𝜏𝑖
𝜉 (𝑡)

+ 2𝜉
𝑇

(𝑡) (A
𝑇

+

𝑀−1

∑

𝑖=1

(𝛽
𝑖
(𝑡) − 𝛽

𝑖
)A
𝑇

𝜏𝑖
)(Δ ⊗ 𝐼

𝑛
) 𝐹 + 𝐹

𝑇

𝐹.

(30)

Taking the mathematical expectation on both sides of
(30) yields

𝐸 { ̇𝑒
𝑇

(𝑡) (Δ ⊗ 𝐼
𝑛
) ̇𝑒 (𝑡)}

= 𝜉
𝑇

(𝑡)(A
𝑇

(Δ ⊗ 𝐼
𝑛
)A − 2

𝑀−1

∑

𝑖,𝑗=1;𝑖 ̸= 𝑗

𝛽
𝑖
𝛽
𝑗
A
𝑇

𝜏𝑖
(Δ ⊗ 𝐼

𝑛
)A
𝜏𝑖

+

𝑀−1

∑

𝑖=1

𝛽
𝑖
(1 − 𝛽

𝑖
)A
𝑇

𝜏𝑖
(Δ ⊗ 𝐼

𝑛
)A
𝜏𝑖
)𝜉 (𝑡)

+ 2𝜉
𝑇

(𝑡)A
𝑇

(Δ ⊗ 𝐼
𝑛
) [

0

𝐼
𝑁

]𝐹 + 𝐹

𝑇

𝐹.

(31)

By Assumption 3, we can obtain the following inequality:

𝐹

𝑇

𝐹 =
󵄩
󵄩
󵄩
󵄩
𝐹 (𝑡, 𝑥 (𝑡) , V (𝑡)) − 1

𝑁
⊗ 𝑓 (𝑡, 𝑥

𝑟
(𝑡) , V
𝑟
(𝑡))

󵄩
󵄩
󵄩
󵄩

2

=

𝑁

∑

𝑖=1

󵄩
󵄩
󵄩
󵄩
𝑓 (𝑡, 𝑥

𝑖
(𝑡) , V
𝑖
(𝑡)) − 𝑓 (𝑡, 𝑥

𝑟
(𝑡) , V
𝑟
(𝑡))

󵄩
󵄩
󵄩
󵄩

2

≤ 𝜌
1

𝑁

∑

𝑖=1

󵄩
󵄩
󵄩
󵄩
𝑥
𝑖
(𝑡) − 𝑥

𝑟
(𝑡)
󵄩
󵄩
󵄩
󵄩

2

+ 𝜌
2

𝑁

∑

𝑖=1

󵄩
󵄩
󵄩
󵄩
V
𝑖
(𝑡) − V

𝑟
(𝑡)
󵄩
󵄩
󵄩
󵄩

2

= 𝜌
1

󵄩
󵄩
󵄩
󵄩
𝑥 (𝑡) − 1

𝑁
⊗ 𝑥
𝑟
(𝑡)
󵄩
󵄩
󵄩
󵄩

2

+ 𝜌
2

󵄩
󵄩
󵄩
󵄩
V (𝑡) − 1

𝑁
⊗ V
𝑟
(𝑡)
󵄩
󵄩
󵄩
󵄩

2

= 𝜌
1
𝜉
𝑇

(𝑡) 𝜉 (𝑡) + 𝜌
2
𝜂
𝑇

(𝑡) 𝜂 (𝑡)

= 𝑒
𝑇

(𝑡) [

𝜌
1
𝐼
𝑁𝑛

0

0 𝜌
2
𝐼
𝑁𝑛

] 𝑒 (𝑡) .

(32)

For a given 𝛼 > 0, the following inequality holds based on
(32):

𝛼𝑒
𝑇

(𝑡) [

𝜌
1
𝐼
𝑁𝑛

0

0 𝜌
2
𝐼
𝑁𝑛

] 𝑒 (𝑡) − 𝛼𝐹

𝑇

𝐹 ≥ 0. (33)

It follows from (26)–(33) that

𝐿𝑉 (𝑡, 𝑒
𝑡
)

≤ 2𝑒
𝑇

(𝑡) (P ⊗ 𝐼
𝑛
)A𝜉 (𝑡) + 2𝑒

T
(𝑡) (P [ 0

𝐼
𝑁

] ⊗ 𝐼
𝑛
)𝐹

+

𝑀−1

∑

𝑖=1

{𝑒
𝑇

(𝑡) (Qi ⊗ 𝐼𝑛) 𝑒 (𝑡) − 𝑒
𝑇

(𝑡 − 𝜏
𝑖
) (Qi ⊗ 𝐼𝑛) 𝑒 (𝑡 − 𝜏𝑖)}

+ ̇𝑒
𝑇

(𝑡) (Δ ⊗ 𝐼
𝑛
) ̇𝑒 (𝑡)

−

𝑀

∑

𝑖=1

1

𝜏
𝑖
− 𝜏
𝑖−1

𝜉
𝑇

(𝑡)

[

[

[

[

0
4(𝑖−1)𝑁𝑛,2𝑁𝑛

𝐼
2𝑁𝑛

−𝐼
2𝑁𝑛

0
4(𝑀−𝑖)𝑁𝑛,2𝑁𝑛

]

]

]

]

× (R
𝑖
⊗ 𝐼
𝑛
)

[

[

[

[

0
4(𝑖−1)𝑁𝑛,2𝑁𝑛

𝐼
2𝑁𝑛

−𝐼
2𝑁𝑛

0
4(𝑀−𝑖)𝑁𝑛,2𝑁𝑛

]

]

]

]

𝑇

𝜉 (𝑡)

−

1

𝜏
𝑀

𝜉
𝑇

(𝑡)
[

[

𝐼
2𝑁𝑛

0
4(𝑀−1)𝑁𝑛,2𝑁𝑛

−𝐼
2𝑁𝑛

]

]

× (R
𝑀+1

⊗ 𝐼
𝑛
)
[

[

𝐼
2𝑁𝑛

0
4(𝑀−1)𝑁𝑛,2𝑁𝑛

−𝐼
2𝑁𝑛

]

]

𝑇

𝜉 (𝑡)

+ 𝛼𝑒
𝑇

(𝑡) [

𝜌
1
𝐼
𝑁𝑛

0

0 𝜌
2
𝐼
𝑁𝑛

] 𝑒 (𝑡) − 𝛼𝐹

𝑇

𝐹

= 𝜉
𝑇

(𝑡) (Ψ ⊗ 𝐼
𝑛
) 𝜉 (𝑡) + 2𝑒

𝑇

(𝑡) (P [ 0
𝐼
𝑁

] ⊗ 𝐼
𝑛
)𝐹

+ 2𝜉
𝑇

(𝑡)A
𝑇

(Δ ⊗ 𝐼
𝑛
) [

0

𝐼
𝑁

]𝐹

+ 𝛼𝑒
𝑇

(𝑡) [

𝜌
1
𝐼
𝑁𝑛

0

0 𝜌
2
𝐼
𝑁𝑛

] 𝑒 (𝑡) + (1 − 𝛼) 𝐹

𝑇

𝐹,

(34)

where

Ψ =

[

[

[

[

[

[

[

[

[

Φ
11

∗ ∗ ∗ ⋅ ⋅ ⋅ ∗

Φ
21

Φ
22

∗ ∗ ⋅ ⋅ ⋅ ∗

0 0 Φ
33

∗ ⋅ ⋅ ⋅ ∗

Φ
41

0 Φ
43

Φ
44

⋅ ⋅ ⋅ ∗

...
...

...
... d

...
Φ
2𝑀,1

0 0 0 ⋅ ⋅ ⋅ Φ
2𝑀,2𝑀

]

]

]

]

]

]

]

]

]

Φ
11
= Φ
11
− 𝛼 [

𝜌
1
𝐼
𝑁𝑛

0

0 𝜌
2
𝐼
𝑁𝑛

] .

(35)
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Let 𝜁(𝑡) = [𝜉𝑇(𝑡), 𝐹𝑇]𝑇, and the inequality (34) can further
be written as

𝐿𝑉 (𝑡, 𝑒
𝑡
) ≤ 𝜁
𝑇

(𝑡) {[

Ψ ∗

Γ Φ
2𝑀+1,2𝑀+1

] ⊗ 𝐼
𝑛
} 𝜁 (𝑡)

= 𝜁
𝑇

(𝑡) (Φ ⊗ 𝐼
𝑛
) 𝜁 (𝑡) < 0,

(36)

where

Γ = [0, Φ
2𝑀+1,2

, Φ
2𝑀+1,4

, . . . , 0, Φ
2𝑀+1,2𝑀

] . (37)

From (22), we have 𝐿𝑉(𝑡, 𝑒
𝑡
) < 0. That is, ‖𝜉(𝑡)‖ → 0,

‖ 𝜂(𝑡) ‖→ 0 as 𝑡 → ∞. Therefore, the states of pinning-
controlled multiagent systems (4) globally asymptotically
approach state of virtual leader (3). That is, ‖𝑥

𝑖
(𝑡) − 𝑥

𝑟
(𝑡)‖ →

0, ‖V
𝑖
(𝑡) − V

𝑟
(𝑡)‖ → 0 as 𝑡 → ∞. So the second-order

leader-following consensus in pinning-controlled multiagent
systems (4) is achieved. The proof is completed.

Remark 9. It can be seen fromTheorem 8 that the feasibility
of (22) dependents on not only 𝜏

𝑖
and 𝛿 but also the

probability distribution of the delay 𝛽
𝑖
, andmore information

of time delays is involved (22).

Let us consider one special case. When 𝑓(𝑡, ⋅, ⋅) ≡ 0, then
the virtual leader (3) reduces to

𝑥̇
𝑟
(𝑡) = V

𝑟
(𝑡) V̇

𝑟
(𝑡) = 0, (38)

which indicates that the reference velocity is constant.
Each agent in multiagent systems is described by

𝑥̇
𝑖
(𝑡) = V

𝑖
(𝑡) + 𝑢

1𝑖
(𝑡) ,

V̇
𝑖
(𝑡) = 𝑢

2𝑖
(𝑡) (𝑖 = 1, 2, . . . , 𝑁) .

(39)

The pinning controllers are given as follows:

𝑢
1𝑖
(𝑡)

= −∑

𝑗∈𝑁𝑖

𝑎
𝑖𝑗
{(𝑥
𝑖
(𝑡) − 𝑥

𝑗
(𝑡)) + (𝑥

𝑖
(𝑡 − 𝜏 (𝑡)) − 𝑥

𝑗
(𝑡 − 𝜏 (𝑡)))}

− 𝛿
𝑖
{(𝑥
𝑖
(𝑡) − 𝑥

𝑟
(𝑡)) − (𝑥

𝑖
(𝑡 − 𝜏 (𝑡)) − 𝑥

𝑟
(𝑡 − 𝜏 (𝑡)))}

𝑢
2𝑖
(𝑡)

= −∑

𝑗∈𝑁𝑖

𝑎
𝑖𝑗
{(V
𝑖
(𝑡) − V

𝑗
(𝑡)) − (V

𝑖
(𝑡 − 𝜏 (𝑡)) − V

𝑗
(𝑡 − 𝜏 (𝑡)))}

− 𝛿
𝑖
{(V
𝑖
(𝑡) − V

𝑟
(𝑡)) − (V

𝑖
(𝑡 − 𝜏 (𝑡)) − V

𝑟
(𝑡 − 𝜏 (𝑡)))} ,

(40)

where the parameters 𝛿
𝑖
are defined in Section 2.

Let 𝜉(𝑡) = 𝑥(𝑡) − 1
𝑁
⊗ 𝑥
𝑟
(𝑡), 𝜂(𝑡) = V(𝑡) − 1

𝑁
⊗ V
𝑟
(𝑡). Then

we can obtain from (38)–(40) that

̇𝑒 (𝑡) = (𝐴 ⊗ 𝐼
𝑛
) 𝑒 (𝑡) + (𝐴

𝜏
⊗ 𝐼
𝑛
) 𝑒 (𝑡 − 𝜏 (𝑡)) . (41)

From Theorem 8 and its proof, we have the following
corollary.

Corollary 10. For some given positive scalars 𝛽
𝑖
∈ [0, 1] (𝑖 =

1, 2, . . . ,𝑀), there exist some positive matrices P = diag{𝑃, 𝑃},
Q
𝑖
= diag{𝑄

𝑖
, 𝑄
𝑖
} (𝑖 = 1, 2, . . . ,𝑀−1),R

𝑗
= diag{𝑅

𝑗
, 𝑅
𝑗
} (𝑗 =

1, 2, . . . ,𝑀+1) such that the following linear matrix inequality
holds:

[

[

[

[

[

[

[

[

[

Φ
11

∗ ∗ ∗ ⋅ ⋅ ⋅ ∗

Φ
21

Φ
22

∗ ∗ ⋅ ⋅ ⋅ ∗

0 0 Φ
33

∗ ⋅ ⋅ ⋅ ∗

Φ
41

0 Φ
43

Φ
44

⋅ ⋅ ⋅ ∗

...
...

...
... d

...
Φ
2𝑀,1

0 0 0 ⋅ ⋅ ⋅ Φ
2𝑀,2𝑀

]

]

]

]

]

]

]

]

]

< 0. (42)

Then the second-order leader-following consensus is achieved
under the adaptive pinning controllers (40). That is, 𝑥

𝑖
(𝑡) →

𝑥
𝑟
(0) + V

𝑟
(0)𝑡 and V

𝑖
(𝑡) → V

𝑟
(0), as 𝑡 → ∞.

Up to this point, a question arises naturally: how to
choose a set of pinned agents such that pinning conditions
(22) and (42) are satisfied?

Proposition 11 (see [21]). For a diagraph 𝑔, let V and𝐷 denote
the node set of𝑔 and the pinned-node set, respectively. All nodes
in V/𝐷 should have access to the pinned-node set𝐷. That is, for
any node 𝑖 ∈ V/𝐷, one can always find node 𝑗 ∈ 𝐷 such that
there exists a directed path from node 𝑗 to node 𝑖.

According to Proposition 11, we give the following pro-
cedure to select a set of pinning-agents and to design the
parameters 𝛿

𝑖
(𝑖 = 1, 2, . . . , 𝑙).

(1) Define a degree-difference vector degdif(𝑖) = degout −
degin(𝑖) (𝑖 = 1, 2, . . . , 𝑁).

(2) Pick all agents with zero in-degrees as pinned agents,
and rearrange the remaining agents in descending
order according to their degree-differences.

(3) Find theminimumnumber of agents 𝑙
0
which satisfies

(22) or (42), and let 𝑙 = 𝑙
0
.

(4) From Theorem 8 and Corollary 10, by using LMI
Toolbox in MATLAB, we can obtain 𝛿

𝑖
(𝑖 =

1, 2, . . . , 𝑙
0
).

(5) If 𝛿
𝑖
(𝑖 = 1, 2, . . . , 𝑙

0
) is not good enough for practical

use, add more agents to the pinned-agent set, and
repeat STEP (4) until we find proper 𝛿

𝑖
.

4. Numerical Results

In this section, two numerical examples are given to verify the
effectiveness of the proposed pinning control techniques.

Example 12. Weconsidermultiagent systems consisting of six
agents described by

𝑥̇
𝑖
(𝑡) = V

𝑖
(𝑡) + 𝑢

1𝑖
(𝑡) ,

V̇
𝑖
(𝑡) = 𝑓 (𝑡, 𝑥

𝑖
(𝑡) , V
𝑖
(𝑡)) + 𝑢

2𝑖
(𝑡) (𝑖 = 1, 2, . . . , 6) ,

(43)
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Table 1: The allowable upper bound of time delay for different𝑀.

System Pinning nodes 𝑀 = 1 𝑀 = 2 𝑀 = 3

Nonlinear system 6, 2, 4 0.3207 0.3363 0.3626

Linear system 6, 2, 4 0.3287 0.3463 0.3787

1
2

3 4

56

Figure 1: The topology structure of the six agents.

where

𝑓 (𝑡, 𝑥
𝑖
(𝑡) , V
𝑖
(𝑡)) = 2 cos (2𝑡) −

√5

5

sin (𝑥
𝑖
(𝑡)) −

√10

5

V
𝑖
(𝑡)

𝑢
1𝑖
(𝑡)

= −∑

𝑗∈𝑁𝑖

𝑎
𝑖𝑗
[(𝑥
𝑖
(𝑡) − 𝑥

𝑗
(𝑡)) − (𝑥

𝑖
(𝑡 − 𝜏 (𝑡)) − 𝑥

𝑗
(𝑡 − 𝜏 (𝑡)))]

− 𝛿
𝑖
[(𝑥
𝑖
(𝑡) − 𝑥

𝑟
(𝑡)) − (𝑥

𝑖
(𝑡 − 𝜏 (𝑡)) − 𝑥

𝑟
(𝑡 − 𝜏 (𝑡)))]

𝑢
2𝑖
(𝑡)

= −∑

𝑗∈𝑁𝑖

𝑎
𝑖𝑗
[(V
𝑖
(𝑡) − V

𝑗
(𝑡)) − (V

𝑖
(𝑡 − 𝜏 (𝑡)) − V

𝑗
(𝑡 − 𝜏 (𝑡)))]

− 𝛿
𝑖
[(V
𝑖
(𝑡) − V

𝑟
(𝑡)) − (V

𝑖
(𝑡 − 𝜏 (𝑡)) − V

𝑟
(𝑡 − 𝜏 (𝑡)))] ,

(44)

where 𝑥
𝑖
(𝑡) ∈ R and V

𝑖
(𝑡) ∈ R are the position and velocity

states of agent 𝑖, respectively.
The interaction diagraph of multiagent systems (43) is

shown in Figure 1.We examinewhat agents should be pinned,
and note that agent 6 has zero in-degree and that the out-
degree of agents 2 is bigger than their in-degree. According
to Proposition 11, agent 6 should be pinned first. Because its
state is not affected by others, agent 2 can be chosen as pinned
candidates, furthermore. Based on the pinned-agent selection
scheme, we rearrange six agents and the new order is 6, 2, 4,
5, 3, 1. By some calculation, we can obtain 𝜌

1
= 0.1, 𝜌

2
= 0.2,

for given𝑀, 𝜏
𝑖
(𝑖 = 1, 2, . . . ,𝑀 − 1) and 𝛽

𝑗
(𝑗 = 1, 2, . . . ,𝑀)

(when𝑀 = 1, let 𝜏
0
= 0; when𝑀 = 2, let 𝜏

0
= 0, 𝜏

1
= 0.1,

𝛽
1
= 0.1, 𝛽

2
= 0.9; when𝑀 = 3, let 𝜏

0
= 0, 𝜏
1
= 0.1, 𝜏

2
= 0.2,

𝛽
1
= 0.1, 𝛽

2
= 0.1, 𝛽

3
= 0.8 ). By employing the LMI Toolbox

inTheorem 8, we can obtain Table 1, it can be seen that (1) the
minimum number of pinned agents is three, and we chose
agents 6, 2, and 4 as pinned agents; (2) the allowable upper
bound 𝜏 increases with increasing𝑀. If we can obtain more
information of time delay, it will lead to a larger allowable
upper bound of time delay. When we chose agents 6, 2, and 4

0 2 4 6 8 10

2

1.5

1

0.5

t

0

−0.5

−1

x
i(
t)
(i
=
1
,2
,.
..
,6
)

Figure 2: The position curves 𝑥
𝑖
(𝑡) (𝑖 = 1, 2, . . . , 6) for nonlinear

multiagent systems (43) with 𝜏
0
= 0, 𝜏

1
= 0.3.

0 2 4 6 8 10

2

1.5

1

0.5

0

−0.5

−1

−1.5

t

�
i(
t)
(i
=
1
,2
,.
..
,6
)

Figure 3: The velocity curves V
𝑖
(𝑡) (𝑖 = 1, 2, . . . , 6) for nonlinear

multiagent systems (43) with 𝜏
0
= 0, 𝜏

1
= 0.3.

as pinned agents, the evolutions of positions and velocities of
six agents are shown in Figures 2, 3, 4, and 5.

Example 13. We consider the following multiagent systems
consisting of six agents described by

𝑥̇
𝑖
(𝑡) = V

𝑖
(𝑡) + 𝑢

1𝑖
(𝑡)

V̇
𝑖
(𝑡) = 𝑢

2𝑖
(𝑡) (𝑖 = 1, 2, . . . , 6) ,

(45)

where

𝑢
1𝑖
(𝑡)

= −∑

𝑗∈𝑁𝑖

𝑎
𝑖𝑗
[(𝑥
𝑖
(𝑡) − 𝑥

𝑗
(𝑡)) − (𝑥

𝑖
(𝑡 − 𝜏 (𝑡)) − 𝑥

𝑗
(𝑡 − 𝜏 (𝑡)))]

− 𝛿
𝑖
[(𝑥
𝑖
(𝑡) − 𝑥

𝑟
(𝑡)) − (𝑥

𝑖
(𝑡 − 𝜏 (𝑡)) − 𝑥

𝑟
(𝑡 − 𝜏 (𝑡)))]
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2 4 6 8 10

1.5
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0
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Figure 4: The position curves 𝑥
𝑖
(𝑡) (𝑖 = 1, 2, . . . , 6) for nonlinear

multiagent systems (43) with 𝜏
0
= 0, 𝜏

1
= 0.2, 𝜏

2
= 0.3, 𝛽

1
= 0.1,

and 𝛽
2
= 0.9.
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Figure 5: The velocity curves V
𝑖
(𝑡) (𝑖 = 1, 2, . . . , 6) for nonlinear

multiagent systems (43) with 𝜏
0
= 0, 𝜏

1
= 0.2, 𝜏

2
= 0.3, 𝛽

1
= 0.1, and

𝛽
2
= 0.9.

𝑢
2𝑖
(𝑡)

= −∑

𝑗∈𝑁𝑖

𝑎
𝑖𝑗
[(V
𝑖
(𝑡) − V

𝑗
(𝑡)) − (V

𝑖
(𝑡 − 𝜏 (𝑡)) − V

𝑗
(𝑡 − 𝜏 (𝑡)))]

− 𝛿
𝑖
[(V
𝑖
(𝑡) − V

𝑟
(𝑡)) − (V

𝑖
(𝑡 − 𝜏 (𝑡)) − V

𝑟
(𝑡 − 𝜏 (𝑡)))] ,

(46)

where 𝑥
𝑖
(𝑡) ∈ R and V

𝑖
(𝑡) ∈ R are the position and velocity

states of agent 𝑖, respectively.
Similar to Example 12, by using the LMI Toolbox in

Corollary 10, we can obtain Table 1. When we chose agents
6, 2, and 4 as pinned agents, the evolutions of positions and
velocities of six agents are shown in Figures 6, 7, 8, and 9.
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Figure 6: The velocity curves V
𝑖
(𝑡) (𝑖 = 1, 2, . . . , 6) for nonlinear

multiagent systems (45) with 𝜏
0
= 0, 𝜏

1
= 0.3.
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Figure 7: The velocity curves V
𝑖
(𝑡) (𝑖 = 1, 2, . . . , 6) for nonlinear

multiagent systems (45) with 𝜏
0
= 0, 𝜏

1
= 0.3.

5. Conclusions

By employing the information of the probability distribution
of the time delay, this paper investigates the consensus prob-
lem for second-order leader-follower nonlinear multiagent
systems with general network topologies. Different from
the common assumptions on the time delay in the existing
literatures, it is assumed in this paper that the delay is random
and its probability distribution is known a prior. Based on
graph theory, a pinning control algorithm is proposed, and
the consensus criteria are derived to achieve leader-follower
consensus for multiagent systems with nonlinear second-
order dynamics. Moreover, this paper addresses what kind of
agents and how many agents should be pinned.
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Figure 8: The position curves 𝑥
𝑖
(𝑡) (𝑖 = 1, 2, . . . , 6) for nonlinear

multiagent systems (45) with 𝜏
0
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Figure 9: The velocity curves V
𝑖
(𝑡) (𝑖 = 1, 2, . . . , 6) for nonlinear

multiagent systems (45) with 𝜏
0
= 0, 𝜏

1
= 0.2, 𝜏

2
= 0.3, 𝛽

1
= 0.1, and

𝛽
2
= 0.9.
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