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The Optimal Variational Method (OVM) is introduced and applied for calculating approximate periodic solutions of “truly
nonlinear oscillators”.Themain advantage of this procedure consists in that it provides a convenient way to control the convergence
of approximate solutions in a very rigorous way and allows adjustment of convergence regions where necessary.This approach does
not depend upon any small or large parameters. A very good agreement was found between approximate and numerical solution,
which proves that OVM is very efficient and accurate.

1. Introduction

It is known that the study of nonlinear differential equations
is restricted to a variety of special classes of equations and
the method of solution usually involves one or more tech-
niques to achieve analytical approximations to the solutions.
Many researchers have recently paid much attention to find
and develop approximate solutions. Perturbation methods
have been successfully employed to determine approximate
solutions to weakly nonlinear problems [1–3]. But the use of
perturbation theory in many problems is invalid or it simply
breaks down for parameters beyond a certain specified range.
Therefore, new analytical techniques should be developed to
overcome these shortcomings. Such a new technique should
work over a large range of parameters and yield accurate
analytical approximate solutions beyond the coverage and
ability of the classical perturbation methods. There has been
a great need for effective algorithms to avoid the work
required by traditional techniques, but it is difficult to obtain
convergent results in the cases of strong nonlinearity.

Recently, many new approaches have been proposed for
this purpose, such as various modified Lindstedt-Poincare
methods [4], some linearizationmethods [5, 6], the Adomian
decomposition method [7], the optimal homotopy asymp-
totic method [8, 9], the optimal variational iteration method

[10], the energy balance method [11], and so on. A varia-
tional principle for nonlinear oscillations by constructing the
Hamiltonian was studied in [11]. Variational principles have
a great importance in physics and engineering since they
establish connections between these disciplines and their
applications are useful in devising various approximate tech-
niques. Variational methods have been and continue to be
popular tools for nonlinear analysis. They combine physical
insights into the nature of the solution of the problem and
the solutions obtained using possible trial functions are the
best. It is known that computing a Lagrangian for dynamical
systems with more general Newtonian forces is nowadays
applicable only to systems with force derivable from a
potential function (basically, conservative systems). Strictly
speaking, conservative dynamical systems do not exist in
our Newtonian environment. As a result, the Lagrangian
representation of conservative Newtonian systems is in gen-
eral only a crude approximation of physical reality. The
problem of the existence of a Lagrangian, Hamiltonian, or
Routhian can be studied today with a variety of modern
and sophisticated mathematical tools which include the use
of functional analysis, prolongation theory, and differential
geometry, to cite only a few. This question is called “Inverse
Problem in Newtonian Mechanics” [12] and consists in
the identification of the methods for the construction of a
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Lagrangian, Hamiltonian, or Routhian form given equations
of motion.

In this paper we construct accurate approximations to
periodic solutions and frequencies of the so-called truly
nonlinear oscillator (TNO). Following Mickens and Oyedeji
[13, 14], the most general form of a TNO is given by the
following differential equation:

�̈� + 𝑔 (𝑥) = ℎ𝑓 (𝑥, �̇�) , 𝑥 (0) = 𝐴, �̇� (0) = 0, (1)

where the dot denotes the derivative with respect to variable
𝑡, 𝐴 is a positive arbitrary parameter, and the functions 𝑔(𝑥)

and 𝑓(𝑥, �̇�) have the properties:

𝑔 (−𝑥) = −𝑔 (𝑥) ,

𝑓 (−𝑥, −�̇�) = −𝑓 (𝑥, �̇�) ,

(2)

and 𝑔(𝑥) does not have for small 𝑥 a dominant term
proportional to 𝑥.

In the present work, we consider 𝑔(𝑥) = 𝑎𝑥

1/3
+ 𝑏𝑥

3,
𝑓(𝑥, �̇�) = 0 and therefore the truly nonlinear oscillator is
modeled by the following nonlinear differential equation:

�̈� + 𝑎𝑥

1/3
+ 𝑏𝑥

3
= 0

(3)

subject to initial conditions

𝑥 (0) = 𝐴, �̇� (0) = 0, (4)

where 𝑎, 𝑏, and 𝐴 are known parameters.
In (3), there exists no small or large parameter.

2. Basic Idea of Optimal Variational
Method and Solution

In order to develop an application of the OVM, we consider
the following differential equation:

�̈� + 𝑔 (𝑥) = 0 (5)

with the initial conditions given by (4) and 𝑔being an
arbitrary odd function.

Introducing a new independent variable 𝜏 and a new
unknown 𝑥(𝑡) as

𝜏 = Ω𝑡, 𝑥 (𝑡) = 𝐴𝑢 (𝜏) , (6)

whereΩ is the frequency of the system (5), then this becomes

Ω

2
𝑢


+ 𝐴

−1
𝑔 (𝐴𝑢) = 0, (7)

where prime denotes derivative with respect to the new
variable 𝜏.

The initial conditions (4) become

𝑢 (0) = 1, 𝑢


(0) = 0. (8)

The variational principle for (7) can be easily established
if there exists a function

𝐽 = ∫

𝜋/2

0

𝐿 (𝜏, 𝑢, 𝑢


) 𝑑𝜏,

(9)

which admits as extremals the solutions of (7) and (8) where
𝐿 is the Lagrangian of the system (7):

𝐿 (𝜏, 𝑢, 𝑢


) = −

1

2

Ω

2
𝑢

2

+ 𝐴

−1
𝐺 (𝑢) . (10)

The function 𝐺(𝑢) is given by the equation

𝑑𝐺 (𝑢)

𝑑𝑢

= 𝑔 (𝐴𝑢) .
(11)

We assume that the approximate periodic solutions of (7)
and (8) can be expressed as

𝑢 (𝜏) =

𝑚

∑

𝑘=1

𝐶

𝑘
cos (2𝑘 − 1) 𝜏, (12)

where 𝐶

𝑘
are arbitrary unknowns at this moment and 𝑚 is a

positive integer number. Choosing the solution (12) has been
made in accordance to the properties (2).

Substituting (12) into (9) results in

𝐽 (𝐶

1
, 𝐶

2
, . . . , 𝐶

𝑚
, Ω) = ∫

𝜋/2

0

[−

1

2

Ω

2
𝑢

2
+ 𝐴

−1
𝐺 (𝑢)] 𝑑𝜏.

(13)

Applying the Ritz method [9], we require

𝜕𝐽

𝜕𝐶

1

=

𝜕𝐽

𝜕𝐶

2

= ⋅ ⋅ ⋅ =

𝜕𝐽

𝜕𝐶

𝑚

= 0. (14)

From (14) and from the initial condition (8
1
) which

becomes

𝐶

1
+ 𝐶

2
+ ⋅ ⋅ ⋅ + 𝐶

𝑚
= 1 (15)

we can obtain optimally the parameters 𝐶

𝑖
, 𝑖 = 1, 2, . . . , 𝑚,

and the frequency Ω.
We remark that the choice of the approximate solution

(12) is not unique. We can alternatively choose another
expression of the approximate periodic solution in the form

𝑢 (𝜏) =

𝑚

∑

𝑘=1

𝐶

∗

𝑘
cos (4𝑘 − 1) 𝜏 (16)

and so on. With the parameters 𝐶

𝑖
(called convergence-

control parameters) and the frequencyΩ known, the approx-
imate periodic solutions is well determined.

The validity of the proposed approach is illustrated on the
TNOgiven by (3). Using the transformations (6), equation (3)
can be written in the form

Ω

2
𝑢


+ 𝑎𝐴

−2/3
𝑢

1/3
+ 𝑏𝐴

2
𝑢

3
= 0

(17)

and the Lagrangian becomes

𝐿 (𝜏, 𝑢, 𝑢


) = −

1

2

Ω

2
𝑢

2
+

3

4

𝑎𝐴

−2/3
𝑢

4/3
+

1

4

𝑏𝐴

2
𝑢

4
. (18)

If we consider 𝑚 = 3 into (12), then the approximate
periodic solutions become

𝑢 (𝜏) = 𝐶

1
cos 𝜏 + 𝐶

2
cos 3𝜏 + 𝐶

3
cos 5𝜏. (19)
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Figure 1: Comparison between the approximate solution (27) and
numerical solution of (3) in the case 𝑎 = 𝑏 = 1, 𝐴 = 5, red solid
line: numerical integration results, blue dashed line: approximate
solution.
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Figure 2: Comparison between the approximate solution (29) and
numerical solution of (3) in the case 𝑎 = 𝑏 = 1, 𝐴 = 10, red solid
line: numerical integration results, blue dashed line: approximate
solution.

Now, substituting (19) into (18) and (13), we have succes-
sively

∫

𝜋/2

0

𝑢

2
𝑑𝜏 =

𝜋

4

(𝐶

2

1
+ 9𝐶

2

2
+ 25𝐶

2

3
) ,

∫

𝜋/2

0

𝑢

4
𝑑𝜏 =

𝜋

16

[3 (𝐶

4

1
+ 𝐶

4

2
+ 𝐶

4

3
)

+ 12 (𝐶

2

1
𝐶

2

2
+ 𝐶

2

1
𝐶

2

3
+ 𝐶

2

2
𝐶

2

3
)

+4𝐶

3

1
𝐶

2
+ 12𝐶

2

1
𝐶

2
𝐶

3
+ 12𝐶

1
𝐶

2

2
𝐶

3
] .

(20)

To calculate the middle term 𝑢

4/3 into (18) we use the
series expansion [15]:

cos1/3𝜏 = 𝛼 (cos 𝜏 −

1

5

cos 3𝜏 +

1

10

cos 5𝜏

−

7

110

cos 7𝜏 +

1

22

cos 9𝜏

−

13

374

cos 11𝜏 + ⋅ ⋅ ⋅) ,

(21)

where 𝛼 = 1.15959526696393. If we denote 𝐻(𝑢) = 𝑢

4/3

where 𝑢 is given by (19), then using the relation

𝐻 (𝑢

0
+ ℎ) = 𝐻 (𝑢

0
) +

ℎ

1!

𝐻

1
(𝑢

0
) +

ℎ

2

2!

𝐻

11
(𝑢

0
) + ⋅ ⋅ ⋅

(22)

with 𝑢

0
= 𝐶

1
cos 𝜏, ℎ = 𝐶

2
cos 3𝜏 + 𝐶

3
cos 5𝜏, we can write

successively

𝑢

4/3
= (𝐶

1
cos 𝜏)

4/3

+

4

3

(𝐶

2
cos 3𝜏 + 𝐶

3
cos 5𝜏)

× (𝐶

1
cos 𝜏)

1/3

+ ⋅ ⋅ ⋅

= 𝛼𝐶

4/3

1
cos 𝜏

× (cos 𝜏 −

1

5

cos 3𝜏 +

1

10

cos 5𝜏 −

7

110

cos 7𝜏 + ⋅ ⋅ ⋅)

+

4𝛼𝐶

1/3

1

3

(𝐶

2
cos 3𝜏 + 𝐶

3
cos 5𝜏)

× (cos 𝜏 −

1

5

cos 3𝜏 +

1

10

cos 5𝜏 −

7

110

cos 7𝜏 + ⋅ ⋅ ⋅)

= 𝛼𝐶

1/3

1
[

1

2

𝐶

1
−

2

15

𝐶

2
+

1

15

𝐶

3

+ (

2

5

𝐶

1
−

2

3

𝐶

2
−

3

5

𝐶

3
) cos 2𝜏

+ (−

1

20

𝐶

1
+

103

165

𝐶

2
+

126

165

𝐶

3
) cos 4𝜏

+ ⋅ ⋅ ⋅ ] ,

(23)

∫

𝜋/2

0

𝑢

4/3
𝑑𝜏 =

𝜋𝛼𝐶

1/3

1

2

(

1

2

𝐶

1
−

2

15

𝐶

2
+

1

15

𝐶

3
) .

(24)

Substituting (19) and (24) into (13) we obtain
2𝐽

𝜋

= −

1

4

Ω

2
(𝐶

2

1
+ 9𝐶

2

2
+ 25𝐶

2

3
)

+

𝑎𝛼𝐶

1/3

1

40𝐴

2/3
(15𝐶

1
− 4𝐶

2
+ 2𝐶

3
)

+

𝑏𝐴

2

32

[3 (𝐶

4

1
+ 𝐶

4

2
+ 𝐶

4

3
)

+ 12 (𝐶

2

1
𝐶

2

2
+ 𝐶

2

1
𝐶

2

3
+ 𝐶

2

2
𝐶

2

3
)

+4𝐶

3

1
𝐶

2
+ 12𝐶

2

1
𝐶

2
𝐶

3
+ 12𝐶

1
𝐶

2

2
𝐶

3
] .

(25)

From (25), (14), and (15) we can obtain the unknowns 𝐶

1
,

𝐶

2
, 𝐶
3
, and Ω.

We remark that with the approximation given by (19),
there are four things to be calculated: the optimal values
of the convergence-control parameters 𝐶

1
, 𝐶

2
, 𝐶

3
, and the

frequency Ω. As it can be seen, the complexity of the
equations is such that only numerical solutions can be found
for particular values of the parameters 𝑎, 𝑏, and 𝐴, which will
be further developed.
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Figure 3: Comparison between the approximate solution (31) and
numerical solution of (3) in the case 𝑎 = 𝑏 = 2, 𝐴 = 5, red solid
line: numerical integration results, blue dashed line: approximate
solution.
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Figure 4: Comparison between the approximate solution (33) and
numerical solution of (3) in the case 𝑎 = 𝑏 = 2, 𝐴 = 10, red solid
line: numerical integration results, blue dashed line: approximate
solution.

3. Numerical Examples

In order to show the validity and accuracy of the OVM, we
consider the following cases.

(1) In the first case we consider 𝑎 = 𝑏 = 1 and 𝐴 = 5 and
we obtain

𝐶

1
= 0.956942, 𝐶

2
= 0.041274,

𝐶

3
= 0.0017835, Ω = 4.287825.

(26)

The approximate solution of (3) becomes

𝑥 (𝑡) = 4.78471 cosΩ𝑡 + 0.20637 cos 3Ω𝑡

+ 0.0089175 cos 5Ω𝑡.

(27)

The value of Ω obtained by numerical integration is
Ω

𝑁
= 4.281323.

(2) In the second case, for 𝑎 = 𝑏 = 1 and 𝐴 = 10 we have

𝐶

1
= 0.955367, 𝐶

2
= 0.0427864,

𝐶

3
= 0.00184695, Ω = 8.489069,

(28)
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Figure 5: Comparison between the approximate solution (35) and
numerical solution of (3) in the case 𝑎 = 𝑏 = 3, 𝐴 = 5, red solid
line: numerical integration results, blue dashed line: approximate
solution.
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Figure 6: Comparison between the approximate solution and
numerical solution of (37) in the case 𝑎 = 𝑏 = 3, 𝐴 = 10, red solid
line: numerical integration results, blue dashed line: approximate
solution.

and therefore the approximate solution becomes

𝑥 (𝑡) = 9.55367 cosΩ𝑡

+ 0.427864 cos 3Ω𝑡 + 0.0184695 cos 5Ω𝑡.

(29)

In this case, the value of Ω obtained by numerical
integration is Ω

𝑁
= 8.485057.

(3) In the third case, we consider 𝑎 = 𝑏 = 2 and 𝐴 = 5

and thus

𝐶

1
= 0.956797, 𝐶

2
= 0.0414033,

𝐶

3
= 0.00179965, Ω = 6.063427.

(30)

The approximate solution of (3) can be written as

𝑥 (𝑡) = 4.783985 cosΩ𝑡

+ 0.2070165 cos 3Ω𝑡 + 0.00899825 cos 5Ω𝑡.

(31)

The result of numerical integration for the frequency
Ω is in this case Ω

𝑁
= 6.059008.



Journal of Applied Mathematics 5

(4) In the case 𝑎 = 𝑏 = 2 and 𝐴 = 10 we get

𝐶

1
= 0.955313, 𝐶

2
= 0.0428326,

𝐶

3
= 0.00185462, Ω = 12.00502,

(32)

and the approximate solution of (3) will be

𝑥 (𝑡) = 9.55313 cosΩ𝑡

+ 0.428326 cos 3Ω𝑡 + 0.0185462 cos 5Ω𝑡.

(33)

By numerical integration, we get in this case the
frequency Ω

𝑁
= 12.003983.

(5) For 𝑎 = 𝑏 = 3 and 𝐴 = 5, we obtain

𝐶

1
= 0.956908, 𝐶

2
= 0.0413049,

𝐶

3
= 0.00178722, Ω = 7.426642,

(34)

and the approximate solution of (3) becomes

𝑥 (𝑡) = 4.78454 cosΩ𝑡

+ 0.2065245 cos 3Ω𝑡 + 0.00893611 cos 5Ω𝑡.

(35)

In this case the numerical integration result for the
frequency is Ω

𝑁
= 7.434185.

(6) In the last case, we consider 𝑎 = 𝑏 = 3 and 𝐴 = 10

and therefore

𝐶

1
= 0.955363, 𝐶

2
= 0.0427894,

𝐶

3
= 0.0018479, Ω = 14.703456,

(36)

and the approximate solution of (3) becomes

𝑥 (𝑡) = 9.55363 cosΩ𝑡

+ 0.427894 cos 3Ω𝑡 + 0.018479 cos 5Ω𝑡.

(37)

For comparison purposes, the frequency of the system
obtained directly by numerical integration is Ω

𝑁
=

14.705077.

Figures 1, 2, 3, 4, 5, and 6 present a comparison between
the present solutions (27)–(37), respectively, and the numer-
ical integration results for (3) and (4). Thus, it is easier
to emphasize the accuracy of the obtained results, since
within these graphical representations, the analytical results
obtained through OVM are nearly identical with numerical
ones. Also, the approximate frequencies obtained by OVM
are in very good agreement with those obtained by numerical
integration, which also proves the validity of the approximate
results.

4. Conclusions

In this paper we introduce the Optimal Variational Method
to propose a new analytic approximate periodic solution to
TNO. Our procedure is valid even if the nonlinear equation
does not contain small or large parameters. OVM provides
us with a simple and rigorous way to control and adjust
the convergence of a solution through several convergence-
control parameters 𝐶

𝑖
whose values are optimally deter-

mined. This new method is very rapid and effective, and we
prove it by comparing the approximate periodic solutions
and frequencies obtained through the proposedmethod with
numerical integration results. An excellent agreement has
been demonstrated between the analytical and numerical
integration results, and also for large values of the initial
amplitudes, which validates the effectiveness of the proposed
method. The proposed procedure can also be used to find
analytical approximate solutions to other classes of conser-
vative oscillators.

The main advantage of the method consists in that it
provides us with a great freedom in choosing the approximate
periodic solution dependent on an arbitrary number of
initially unknown parameters. It is interesting to remark
that unlike other known approximate methods applicable
for such problems (such as the harmonic balance method,
the multiple scales method, and so on), the frequency Ω

of the system is not obtained imposing some conditions
to avoid secular terms, which is a usual procedure within
other methods, but this frequency results directly from the
conditions tominimize the residual functional along with the
initial conditions.
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