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We introduce Mann-type extragradient methods for a general system of variational inequalities with solutions of a multivalued
variational inclusion and common fixed points of a countable family of nonexpansive mappings in real smooth Banach spaces.
Here the Mann-type extragradient methods are based on Korpelevich’s extragradient method and Mann iteration method. We
first consider and analyze a Mann-type extragradient algorithm in the setting of uniformly convex and 2-uniformly smooth
Banach space and then another Mann-type extragradient algorithm in a smooth and uniformly convex Banach space. Under
suitable assumptions, we derive some weak and strong convergence theorems.The results presented in this paper improve, extend,
supplement, and develop the corresponding results announced in the earlier and very recent literature.

1. Introduction

Let 𝑋 be a real Banach space whose dual space is denoted by
𝑋
∗.The normalized duality mapping 𝐽 : 𝑋 → 2

𝑋
∗

is defined
by

𝐽 (𝑥) = {𝑥
∗

∈ 𝑋
∗

: ⟨𝑥, 𝑥
∗

⟩ = ‖𝑥‖
2

=
󵄩󵄩󵄩󵄩𝑥
∗󵄩󵄩󵄩󵄩

2

} , ∀𝑥 ∈ 𝑋,

(1)

where ⟨⋅, ⋅⟩ denotes the generalized duality pairing. It is an
immediate consequence of the Hahn-Banach theorem that
𝐽(𝑥) is nonempty for each 𝑥 ∈ 𝑋. Let 𝐶 be a nonempty
closed convex subset of 𝑋. A mapping 𝑇 : 𝐶 → 𝐶 is called
nonexpansive if ‖𝑇𝑥 − 𝑇𝑦‖ ≤ ‖𝑥 − 𝑦‖ for every 𝑥, 𝑦 ∈ 𝐶.
The set of fixed points of 𝑇 is denoted by Fix(𝑇). We use the
notation⇀ to indicate the weak convergence and the one →

to indicate the strong convergence. A mapping 𝐴 : 𝐶 → 𝑋

is said to be as follows:
(i) accretive if for each 𝑥, 𝑦 ∈ 𝐶 there exists 𝑗(𝑥 − 𝑦) ∈

𝐽(𝑥 − 𝑦) such that
⟨𝐴𝑥 − 𝐴𝑦, 𝑗 (𝑥 − 𝑦)⟩ ≥ 0; (2)

(ii) 𝛼-strongly accretive if for each 𝑥, 𝑦 ∈ 𝐶 there exists
𝑗(𝑥 − 𝑦) ∈ 𝐽(𝑥 − 𝑦) such that

⟨𝐴𝑥 − 𝐴𝑦, 𝑗 (𝑥 − 𝑦)⟩ ≥ 𝛼
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩

2

, (3)

for some 𝛼 ∈ (0, 1);
(iii) 𝛽-inverse-strongly-accretive if for each 𝑥, 𝑦 ∈ 𝐶 there

exists 𝑗(𝑥 − 𝑦) ∈ 𝐽(𝑥 − 𝑦) such that

⟨𝐴𝑥 − 𝐴𝑦, 𝑗 (𝑥 − 𝑦)⟩ ≥ 𝛽
󵄩󵄩󵄩󵄩𝐴𝑥 − 𝐴𝑦

󵄩󵄩󵄩󵄩

2

, (4)

for some 𝛽 > 0;
(iv) 𝜆-strictly pseudocontractive if for each 𝑥, 𝑦 ∈ 𝐶 there

exists 𝑗(𝑥 − 𝑦) ∈ 𝐽(𝑥 − 𝑦) such that

⟨𝐴𝑥 − 𝐴𝑦, 𝑗 (𝑥 − 𝑦)⟩ ≤
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩

2

− 𝜆
󵄩󵄩󵄩󵄩𝑥 − 𝑦 − (𝐴𝑥 − 𝐴𝑦)

󵄩󵄩󵄩󵄩

2

,

(5)

for some 𝜆 ∈ (0, 1).
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Let 𝑈 = {𝑥 ∈ 𝑋 : ‖𝑥‖ = 1} denote the unite sphere of 𝑋.
A Banach space 𝑋 is said to be uniformly convex if for each
𝜖 ∈ (0, 2], there exists 𝛿 > 0 such that for all 𝑥, 𝑦 ∈ 𝑈

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 ≥ 𝜖 󳨐⇒

󵄩󵄩󵄩󵄩𝑥 + 𝑦
󵄩󵄩󵄩󵄩

2
≤ 1 − 𝛿. (6)

It is known that a uniformly convex Banach space is reflexive
and strictly convex. A Banach space𝑋 is said to be smooth if
the limit

lim
𝑡→0

󵄩󵄩󵄩󵄩𝑥 + 𝑡𝑦
󵄩󵄩󵄩󵄩 − ‖𝑥‖

𝑡

(7)

exists for all 𝑥, 𝑦 ∈ 𝑈; in this case, 𝑋 is also said to have
a Gáteaux differentiable norm. Moreover, it is said to be
uniformly smooth if this limit is attained uniformly for 𝑥, 𝑦 ∈

𝑈. The norm of 𝑋 is said to be the Fréchet differential if for
each 𝑥 ∈ 𝑈, this limit is attained uniformly for 𝑦 ∈ 𝑈. In the
meantime, we define a function 𝜌 : [0,∞) → [0,∞) called
the modulus of smoothness of𝑋 as follows:

𝜌 (𝜏) = sup {1
2
(
󵄩󵄩󵄩󵄩𝑥 + 𝑦

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩) − 1 :

𝑥, 𝑦 ∈ 𝑋, ‖𝑥‖ = 1,
󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩 = 𝜏} .

(8)

It is known that 𝑋 is uniformly smooth if and only if
lim
𝜏→0

𝜌(𝜏)/𝜏 = 0. Let 𝑞 be a fixed real number with 1 < 𝑞 ≤

2. Then a Banach space𝑋 is said to be 𝑞-uniformly smooth if
there exists a constant 𝑐 > 0 such that 𝜌(𝜏) ≤ 𝑐𝜏

𝑞 for all 𝜏 > 0.
As pointed out in [1], no Banach space is 𝑞-uniformly smooth
for 𝑞 > 2. In addition, it is also known that 𝐽 is single-valued
if and only if𝑋 is smooth, whereas if𝑋 is uniformly smooth,
then 𝐽 is norm-to-norm uniformly continuous on bounded
subsets of𝑋.

Very recently, Cai and Bu [2] considered the following
general system of variational inequalities (GSVI) in a real
smooth Banach space 𝑋, which involves finding (𝑥

∗

, 𝑦
∗

) ∈

𝐶 × 𝐶 such that

⟨𝜇
1
𝐵
1
𝑦
∗

+ 𝑥
∗

− 𝑦
∗

, 𝐽 (𝑥 − 𝑥
∗

)⟩ ≥ 0, ∀𝑥 ∈ 𝐶,

⟨𝜇
2
𝐵
2
𝑥
∗

+ 𝑦
∗

− 𝑥
∗

, 𝐽 (𝑥 − 𝑦
∗

)⟩ ≥ 0, ∀𝑥 ∈ 𝐶,

(9)

where 𝐶 is a nonempty, closed, and convex subset of 𝑋;
𝐵
1
, 𝐵
2
: 𝐶 → 𝑋 are two nonlinear mappings, and 𝜇

1
and 𝜇

2

are two positive constants. Here the set of solutions of GSVI
(9) is denoted by GSVI(𝐶, 𝐵

1
, 𝐵
2
). In particular, if 𝑋 = 𝐻,

a real Hilbert space, then GSVI (9) reduces to the following
GSVI of finding (𝑥∗, 𝑦∗) ∈ 𝐶 × 𝐶 such that

⟨𝜇
1
𝐵
1
𝑦
∗

+ 𝑥
∗

− 𝑦
∗

, 𝑥 − 𝑥
∗

⟩ ≥ 0, ∀𝑥 ∈ 𝐶,

⟨𝜇
2
𝐵
2
𝑥
∗

+ 𝑦
∗

− 𝑥
∗

, 𝑥 − 𝑦
∗

⟩ ≥ 0, ∀𝑥 ∈ 𝐶,

(10)

where 𝜇
1
and 𝜇

2
are two positive constants. The set of

solutions of problem (10) is still denoted by GSVI(𝐶, 𝐵
1
, 𝐵
2
).

Recently, Ceng et al. [3] transformed problem (10) into a
fixed point problem in the following way.

Lemma 1 (see [3]). For given 𝑥, 𝑦 ∈ 𝐶, (𝑥, 𝑦) is a solution of
problem (10) if and only if 𝑥 is a fixed point of the mapping
𝐺 : 𝐶 → 𝐶 defined by

𝐺 (𝑥) = 𝑃
𝐶
[𝑃
𝐶
(𝑥 − 𝜇

2
𝐵
2
𝑥) − 𝜇

1
𝐵
1
𝑃
𝐶
(𝑥 − 𝜇

2
𝐵
2
𝑥)] ,

∀𝑥 ∈ 𝐶,

(11)

where 𝑦 = 𝑃
𝐶
(𝑥−𝜇
2
𝐵
2
𝑥) and𝑃

𝐶
is the the projection of𝐻 onto

𝐶.

In particular, if the mappings 𝐵
𝑖
: 𝐶 → 𝐻 is 𝛽

𝑖
-inverse

strongly monotone for 𝑖 = 1, 2, then the mapping𝐺 is nonex-
pansive provided 𝜇

𝑖
∈ (0, 2𝛽

𝑖
) for 𝑖 = 1, 2.

Define the mapping 𝐺 : 𝐶 → 𝐶 as follows:

𝐺 (𝑥) := Π
𝐶
(𝐼 − 𝜇

1
𝐵
1
)Π
𝐶
(𝐼 − 𝜇

2
𝐵
2
) 𝑥, ∀𝑥 ∈ 𝐶. (12)

The fixed point set of 𝐺 is denoted by Ω.
Let 𝐶𝐵(𝑋) be the family of all nonempty, closed and

bounded subsets of a real smooth Banach space 𝑋. Also, we
denote by𝐻(⋅, ⋅) the Hausdorff metric on 𝐶𝐵(𝑋) defined by

𝐻(𝐴, 𝐵) := max{sup
𝑥∈𝐵

inf
𝑦∈𝐴

𝑑 (𝑥, 𝑦) , sup
𝑥∈𝐴

inf
𝑦∈𝐵

𝑑 (𝑥, 𝑦)} ,

∀𝐴, 𝐵 ∈ 𝐶𝐵 (𝑋) .

(13)

Let 𝑇 and 𝐹 : 𝑋 → 𝐶𝐵(𝑋) be two multivalued mappings,
let 𝐴 : 𝐷(𝐴) ⊂ 𝑋 → 2

𝑋 be an 𝑚-accretive mapping, let
𝑔 : 𝑋 → 𝐷(𝐴) be a single-valued mapping, and let 𝑁(⋅, ⋅) :

𝑋 × 𝑋 → 𝑋 be a nonlinear mapping. Then for any given
V ∈ 𝑋, 𝜆 > 0, Chidume et al. [4] introduced and studied
the multivalued variational inclusion (MVVI) of finding 𝑥 ∈

𝐷(𝐴) such that (𝑥, 𝑤, 𝑘) is a solution of the following:

V ∈ 𝑁 (𝑤, 𝑘) + 𝜆𝐴 (𝑔 (𝑥)) , ∀𝑤 ∈ 𝑇𝑥, 𝑘 ∈ 𝐹𝑥. (14)

If V = 0 and 𝜆 = 1, then the MVVI (14) reduces to the
problem of finding 𝑥 ∈ 𝐷(𝐴) such that (𝑥, 𝑤, 𝑘) is a solution
of the following:

0 ∈ 𝑁 (𝑤, 𝑘) + 𝐴 (𝑔 (𝑥)) , ∀𝑤 ∈ 𝑇𝑥, 𝑘 ∈ 𝐹𝑥. (15)

We denote by Γ the set of such solutions 𝑥 for MVVI (15).
The authors [4] first established an existence theorem for

MVVI (14) in smooth Banach space 𝑋 and then proved that
the sequence generated by their iterative algorithm converges
strongly to a solution of MVVI (15).

Theorem 2 (see [4, Theorem 3.2]). Let 𝑋 be a real smooth
Banach space. Let 𝑇 and 𝐹 : 𝑋 → 𝐶𝐵(𝑋), let 𝐴 : 𝐷(𝐴) ⊂

𝑋 → 2
𝑋 be three multivalued mappings, let 𝑔 : 𝑋 → 𝐷(𝐴)

be a single-valued mapping, and let𝑁(⋅, ⋅) : 𝑋 × 𝑋 → 𝑋 be a
single-valued continuous mapping satisfying the following con-
ditions:

(C1) 𝐴 ∘ 𝑔 : 𝑋 → 2
𝑋 is𝑚-accretive and𝐻-uniformly con-

tinuous;
(C2) 𝑇 : 𝑋 → 𝐶𝐵(𝑋) is𝐻-uniformly continuous;
(C3) 𝐹 : 𝑋 → 𝐶𝐵(𝑋) is𝐻-uniformly continuous;
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(C4) the mapping 𝑥 󳨃→ 𝑁(𝑥, 𝑦) is 𝜙-strongly accretive and
𝜇-𝐻-Lipschitz with respect to the mapping 𝑇, where 𝜙 :

[0,∞) → [0,∞) is a strictly increasing function with
𝜙(0) = 0;

(C5) the mapping 𝑦 󳨃→ 𝑁(𝑥, 𝑦) is accretive and 𝜉-𝐻-
Lipschitz with respect to the mapping 𝐹.

For arbitrary 𝑥
0
∈ 𝐷(𝐴) define the sequence {𝑥

𝑛
} iteratively by

𝑥
𝑛+1

= 𝑥
𝑛
− 𝜎
𝑛
(𝑁 (𝑤

𝑛
, 𝑘
𝑛
) + 𝑢
𝑛
) , 𝑢

𝑛
∈ 𝐴 (𝑔 (𝑥

𝑛
)) , (16)

where {𝑢
𝑛
} is defined by

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑢
𝑛+1

󵄩󵄩󵄩󵄩 ≤ (1 + 𝜀)𝐻 (𝐴 (𝑔 (𝑥
𝑛+1

)) , 𝐴 (𝑔 (𝑥
𝑛
))) ,

∀𝑛 ≥ 0,

(17)

for any 𝑤
𝑛
∈ 𝑇𝑥
𝑛
, 𝑘
𝑛
∈ 𝐹𝑥
𝑛
and some 𝜀 > 0, where {𝜎

𝑛
} is a

positive real sequence such that lim
𝑛→∞

𝜎
𝑛
= 0 and ∑∞

𝑛=0
𝜎
𝑛
=

∞. Then, there exists 𝑑 > 0 such that for 0 < 𝜎
𝑛
≤ 𝑑, for all

𝑛 ≥ 0, {𝑥
𝑛
} converges strongly to 𝑥 ∈ Γ; and for any 𝑤 ∈ 𝑇𝑥,

𝑘 ∈ 𝐹𝑥, (𝑥, 𝑤, 𝑘) is a solution of the MVVI (15).

Let 𝐶 be a nonempty closed convex subset of a real
smooth Banach space𝑋 and letΠ

𝐶
be a sunny nonexpansive

retraction from 𝑋 onto 𝐶. Motivated and inspired by the
research going on this area, we introduce Mann-type extra-
gradient methods for finding solutions of the GSVI (9) which
are also ones of the MVVI (15) and common fixed points
of a countable family of nonexpansive mappings. Here the
Mann-type extragradientmethods are based onKorpelevich’s
extragradient method and Mann iteration method. We first
consider and analyze a Mann-type extragradient algorithm
in the setting of uniformly convex and 2-uniformly smooth
Banach space, and then another Mann-type extragradient
algorithm in a smooth and uniformly convex Banach space.
Under suitable assumptions, we derive some weak and strong
convergence theorems. The results presented in this paper
improve, extend, supplement, and develop the corresponding
results announced in the earlier and very recent literature; see
for example, [2–10].

2. Preliminaries

Let 𝑋 be a real Banach space with dual 𝑋∗. We denote by 𝐽
the normalized duality mapping from𝑋 to 2𝑋

∗

defined by

𝐽 (𝑥) = {𝑥
∗

∈ 𝑋
∗

: ⟨𝑥, 𝑥
∗

⟩ = ‖𝑥‖
2

=
󵄩󵄩󵄩󵄩𝑥
∗󵄩󵄩󵄩󵄩

2

} , (18)

where ⟨⋅, ⋅⟩ denotes the generalized duality pairing.Through-
out this paper the single-valued normalized duality map is
still denoted by 𝐽. Unless otherwise stated, we assume that𝑋
is a smooth Banach space with dual𝑋∗.

A multivalued mapping 𝐴 : 𝐷(𝐴) ⊆ 𝑋 → 2
𝑋 is said to

be as follows:

(i) accretive, if

⟨𝑢 − V, 𝐽 (𝑥 − 𝑦)⟩ ≥ 0, ∀𝑢 ∈ 𝐴𝑥, V ∈ 𝐴𝑦; (19)

(ii) 𝑚-accretive, if𝐴 is accretive and (𝐼 + 𝑟𝐴)(𝐷(𝐴)) = 𝑋,
for all 𝑟 > 0, where 𝐼 is the identity mapping;

(iii) 𝜁-inverse strongly accretive, if there exists a constant
𝜁 > 0 such that

⟨𝑢 − V, 𝐽 (𝑥 − 𝑦)⟩ ≥ 𝜁‖𝑢 − V‖2, ∀𝑢 ∈ 𝐴𝑥, V ∈ 𝐴𝑦; (20)

(iv) 𝜙-strongly accretive, if there exists a strictly increasing
continuous function 𝜙 : [0,∞) → [0,∞) with
𝜙(0) = 0 such that

⟨𝑢 − V, 𝐽 (𝑥 − 𝑦)⟩ ≥ 𝜙 (
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩)
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩 ,

∀𝑢 ∈ 𝐴𝑥, V ∈ 𝐴𝑦;

(21)

(v) 𝜙-expansive, if

‖𝑢 − V‖ ≥ 𝜙 (
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩) , ∀𝑢 ∈ 𝐴𝑥, V ∈ 𝐴𝑦. (22)

It is easy to see that if 𝐴 is 𝜙-strongly accretive, then 𝐴 is
𝜙-expansive.

A mapping 𝑇 : 𝑋 → 𝐶𝐵(𝑋) is said to be 𝐻-uniformly
continuous, if for any given 𝜀 > 0 there exists a 𝛿 > 0 such
that whenever ‖𝑥 − 𝑦‖ < 𝛿 then𝐻(𝑇𝑥, 𝑇𝑦) < 𝜀.

A mapping𝑁 : 𝑋 ×𝑋 → 𝑋 is 𝜙-strongly accretive, with
respect to 𝑇 : 𝑋 → 𝐶𝐵(𝑋), in the first argument if

⟨𝑁 (𝑢, 𝑧) − 𝑁 (V, 𝑧) , 𝐽 (𝑥 − 𝑦)⟩

≥ 𝜙 (
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩)
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩 , ∀𝑢 ∈ 𝑇𝑥, V ∈ 𝑇𝑦.

(23)

Amapping 𝑆 : 𝑋 → 2
𝑋 is called lower semicontinuous if

𝑆
−1

(𝑉) := {𝑥 ∈ 𝑋 : 𝑆𝑥 ∩ 𝑉 ̸= 0} is open in𝑋whenever𝑉 ⊂ 𝑌

is open.
We list some propositions and lemmas that will be used

in the sequel.

Proposition 3 (see [11]). Let {𝜆
𝑛
} and {𝑏

𝑛
} be sequences of

nonnegative numbers and {𝛼
𝑛
} ⊂ (0, 1) a sequence satisfying

the conditions that {𝜆
𝑛
} is bounded, ∑∞

𝑛=0
𝛼
𝑛
= ∞, and 𝑏

𝑛
→

0, as 𝑛 → ∞. Let the recursive inequality

𝜆
2

𝑛+1
≤ 𝜆
2

𝑛
− 2𝛼
𝑛
𝜓 (𝜆
𝑛+1

) + 2𝛼
𝑛
𝑏
𝑛
𝜆
𝑛+1

, ∀𝑛 ≥ 0, (24)

be given where 𝜓 : [0,∞) → [0,∞) is a strictly increasing
function such that it is positive on (0,∞) and 𝜓(0) = 0. Then
𝜆
𝑛
→ 0, as 𝑛 → ∞.

Proposition4 (see [12]). Let𝑋 be a real smooth Banach space.
Let 𝑇 and 𝐹 : 𝑋 → 2

𝑋 be two multivalued mappings, and let
𝑁(⋅, ⋅) : 𝑋 × 𝑋 → 𝑋 be a nonlinear mapping satisfying the
following conditions:

(i) the mapping 𝑥 󳨃→ 𝑁(𝑥, 𝑦) is 𝜙-strongly accretive with
respect to the mapping 𝑇;

(ii) the mapping 𝑦 󳨃→ 𝑁(𝑥, 𝑦) is accretive with respect to
the mapping 𝐹.

Then the mapping 𝑆 : 𝑋 → 2
𝑋 defined by 𝑆𝑥 = 𝑁(𝑇𝑥, 𝐹𝑥) is

𝜙-strongly accretive.
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Proposition 5 (see [13]). Let𝑋 be a real Banach space and let
𝑆 : 𝑋 → 2

𝑋

\ {0} be a lower semicontinuous and 𝜙-strongly
accretive mapping; then for any 𝑥 ∈ 𝑋, 𝑆𝑥 is a one-point set;
that is, 𝑆 is a single-valued mapping.

Recall that a Banach space 𝑋 is said to satisfy Opial’s
condition, if whenever {𝑥

𝑛
} is a sequence in 𝑋 which

converges weakly to 𝑥 as 𝑛 → ∞, then

lim sup
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
󵄩󵄩󵄩󵄩 < lim sup
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑦
󵄩󵄩󵄩󵄩 ,

∀𝑦 ∈ 𝑋 with 𝑥 ̸= 𝑦.

(25)

Lemma6 (Demiclosedness principle; see [14, Lemma2]). Let
𝐶 be a nonempty closed convex subset of a reflexive Banach
space 𝑋 that satisfies Opial’s condition and suppose that 𝑇 :

𝐶 → 𝑋 is nonexpansive.Then themapping 𝐼−𝑇 is demiclosed
at zero, that is, 𝑥

𝑛
⇀ 𝑥 and 𝑥

𝑛
−𝑇𝑥
𝑛
→ 0 imply 𝑥 = 𝑇𝑥; that

is, 𝑥 ∈ Fix(𝑇).

The following lemma is an immediate consequence of the
subdifferential inequality of the function (1/2)‖ ⋅ ‖2.

Lemma 7. In a real smooth Banach space 𝑋, there holds the
inequality

󵄩󵄩󵄩󵄩𝑥 + 𝑦
󵄩󵄩󵄩󵄩

2

≤ ‖𝑥‖
2

+ 2⟨𝑦, 𝐽 (𝑥 + 𝑦)⟩, ∀𝑥, 𝑦 ∈ 𝑋. (26)

Let𝐷 be a subset of 𝐶 and letΠ be a mapping of 𝐶 into𝐷.
Then Π is said to be sunny if

Π [Π (𝑥) + 𝑡 (𝑥 − Π (𝑥))] = Π (𝑥) , (27)

whenever Π(𝑥) + 𝑡(𝑥 − Π(𝑥)) ∈ 𝐶 for 𝑥 ∈ 𝐶 and 𝑡 ≥ 0. A
mapping Π of 𝐶 into itself is called a retraction if Π2 = Π. If
a mapping Π of 𝐶 into itself is a retraction, then Π(𝑧) = 𝑧 for
every 𝑧 ∈ 𝑅(Π), where 𝑅(Π) is the range of Π. A subset 𝐷 of
𝐶 is called a sunny nonexpansive retract of 𝐶 if there exists a
sunny nonexpansive retraction from 𝐶 onto 𝐷. The following
lemma concerns the sunny nonexpansive retraction.

Lemma 8 (see [15]). Let𝐶 be a nonempty closed convex subset
of a real smooth Banach space 𝑋. Let 𝐷 be a nonempty subset
of 𝐶. Let Π be a retraction of 𝐶 onto 𝐷. Then the following are
equivalent:

(i) Π is sunny and nonexpansive;
(ii) ‖Π(𝑥) − Π(𝑦)‖

2

≤ ⟨𝑥 − 𝑦, 𝐽(Π(𝑥) − Π(𝑦))⟩, for all
𝑥, 𝑦 ∈ 𝐶;

(iii) ⟨𝑥 − Π(𝑥), 𝐽(𝑦 − Π(𝑥))⟩ ≤ 0, for all 𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷.

It is well known that if 𝑋 = 𝐻 a Hilbert space, then
a sunny nonexpansive retraction Π

𝐶
is coincident with the

metric projection from 𝑋 onto 𝐶; that is, Π
𝐶

= 𝑃
𝐶
. If 𝐶

is a nonempty closed convex subset of a strictly convex and
uniformly smooth Banach space 𝑋 and if 𝑇 : 𝐶 → 𝐶 is
a nonexpansive mapping with the fixed point set Fix(𝑇) ̸= 0,
then the set Fix(𝑇) is a sunny nonexpansive retract of 𝐶. The
following result is an easy consequence of Lemma 8.

Lemma 9. Let 𝐶 be a nonempty closed convex subset of a
smooth Banach space 𝑋. Let Π

𝐶
be a sunny nonexpansive

retraction from𝑋 onto𝐶 and let 𝐵
1
, 𝐵
2
: 𝐶 → 𝑋 be nonlinear

mappings. For given 𝑥∗, 𝑦∗ ∈ 𝐶, (𝑥
∗

, 𝑦
∗

) is a solution of GSVI
(9) if and only if 𝑥∗ = Π

𝐶
(𝑦
∗

−𝜇
1
𝐵
1
𝑦
∗

), where 𝑦∗ = Π
𝐶
(𝑥
∗

−

𝜇
2
𝐵
2
𝑥
∗

).

In terms of Lemma 9, we observe that

𝑥
∗

= Π
𝐶
[Π
𝐶
(𝑥
∗

− 𝜇
2
𝐵
2
𝑥
∗

) − 𝜇
1
𝐵
1
Π
𝐶
(𝑥
∗

− 𝜇
2
𝐵
2
𝑥
∗

)] ,

(28)

which implies that 𝑥∗ is a fixed point of the mapping 𝐺.
Throughout this paper, the set of fixed points of the mapping
𝐺 is denoted by Ω.

Lemma 10 (see [16]). Given a number 𝑟 > 0. A real Banach
space 𝑋 is uniformly convex if and only if there exists a
continuous strictly increasing function 𝜑 : [0,∞) → [0,∞),
𝜑(0) = 0, such that

󵄩󵄩󵄩󵄩𝜆𝑥 + (1 − 𝜆) 𝑦
󵄩󵄩󵄩󵄩

2

≤ 𝜆‖𝑥‖
2

+ (1 − 𝜆)
󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩

2

− 𝜆 (1 − 𝜆) 𝜑 (
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩) ,

(29)

for all 𝜆 ∈ [0, 1], and 𝑥, 𝑦 ∈ 𝑋 such that ‖𝑥‖ ≤ 𝑟 and ‖𝑦‖ ≤ 𝑟.

Lemma 11 (see [17]). Let𝐶 be a nonempty closed convex subset
of a Banach space 𝑋. Let 𝑆

0
, 𝑆
1
, . . . be a sequence of mappings

of𝐶 into itself. Suppose that∑∞
𝑛=1

sup{‖𝑆
𝑛
𝑥−𝑆
𝑛−1

𝑥‖ : 𝑥 ∈ 𝐶} <

∞.Then for each 𝑦 ∈ 𝐶, {𝑆
𝑛
𝑦} converges strongly to some point

of 𝐶. Moreover, let 𝑆 be a mapping of 𝐶 into itself defined by
𝑆𝑦 = lim

𝑛→∞
𝑆
𝑛
𝑦 for all𝑦 ∈ 𝐶.Then lim

𝑛→∞
sup{‖𝑆𝑥−𝑆

𝑛
𝑥‖ :

𝑥 ∈ 𝐶} = 0.

3. Mann-Type Extragradient Algorithms in
Uniformly Convex and 2-Uniformly Smooth
Banach Spaces

In this section, we introduce Mann-type extragradient algo-
rithms in uniformly convex and 2-uniformly smooth Banach
spaces and show weak and strong convergence theorems. We
will use some useful lemmas in the sequel.

Lemma 12 (see [2, Lemma 2.8]). Let 𝐶 be a nonempty closed
convex subset of a real 2-uniformly smooth Banach space 𝑋.
Let the mapping 𝐵

𝑖
: 𝐶 → 𝑋 be 𝛼

𝑖
-inverse-strongly accretive.

Then, we have
󵄩󵄩󵄩󵄩(𝐼 − 𝜇

𝑖
𝐵
𝑖
) 𝑥 − (𝐼 − 𝜇

𝑖
𝐵
𝑖
) 𝑦

󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩

2

+ 2𝜇
𝑖
(𝜇
𝑖
𝜅
2

− 𝛼
𝑖
)
󵄩󵄩󵄩󵄩𝐵𝑖𝑥 − 𝐵

𝑖
𝑦
󵄩󵄩󵄩󵄩

2

,

∀𝑥, 𝑦 ∈ 𝐶,

(30)

for 𝑖 = 1, 2, where 𝜇
𝑖
> 0. In particular, if 0 < 𝜇

𝑖
≤ 𝛼
𝑖
/𝜅
2, then

𝐼 − 𝜇
𝑖
𝐵
𝑖
is nonexpansive for 𝑖 = 1, 2.

Lemma 13 (see [2, Lemma 2.9]). Let 𝐶 be a nonempty closed
convex subset of a real 2-uniformly smooth Banach space 𝑋.
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LetΠ
𝐶
be a sunny nonexpansive retraction from𝑋 onto 𝐶. Let

the mapping 𝐵
𝑖
: 𝐶 → 𝑋 be 𝛼

𝑖
-inverse-strongly accretive for

𝑖 = 1, 2. Let 𝐺 : 𝐶 → 𝐶 be the mapping defined by

𝐺𝑥 = Π
𝐶
[Π
𝐶
(𝑥 − 𝜇

2
𝐵
2
𝑥) − 𝜇

1
𝐵
1
Π
𝐶
(𝑥 − 𝜇

2
𝐵
2
𝑥)] ,

∀𝑥 ∈ 𝐶.

(31)

If 0 < 𝜇
𝑖
≤ 𝛼
𝑖
/𝜅
2 for 𝑖 = 1, 2, then𝐺 : 𝐶 → 𝐶 is nonexpansive.

Theorem 14. Let 𝑋 be a uniformly convex and 2-uniformly
smooth Banach space satisfying Opial’s condition and let𝐶 be a
nonempty closed convex subset of𝑋 such that𝐶±𝐶 ⊂ 𝐶. LetΠ

𝐶

be a sunny nonexpansive retraction from 𝑋 onto 𝐶. Let 𝑇 and
𝐹 : 𝑋 → CB(𝑋) and let 𝐴 : 𝐶 → 2

𝐶 be three multivalued
mappings, let 𝑔 : 𝑋 → 𝐶 be a single-valued mapping, and let
𝑁(⋅, ⋅) : 𝑋 × 𝑋 → 𝐶 be a single-valued continuous mapping
satisfying conditions (𝐶1)–(𝐶5) in Theorem 2 and

(C6) 𝑁(𝑇𝑥, 𝐹𝑥) + 𝐴(𝑔(𝑥)) : 𝑋 → 2
𝐶

\ {0} is 𝜁-inverse
strongly accretive with 𝜁 ≥ 𝜅

2.

Let 𝐵
𝑖
: 𝐶 → 𝑋 be 𝛼

𝑖
-inverse strongly accretive for 𝑖 = 1, 2.

Let {𝑆
𝑖
}
∞

𝑖=0
be a countable family of nonexpansivemappings of𝐶

into itself such thatΔ := ⋂
∞

𝑖=0
Fix(𝑆
𝑖
)∩Ω∩Γ ̸= 0, whereΩ is the

fixed point set of the mapping 𝐺 = Π
𝐶
(𝐼 − 𝜇

1
𝐵
1
)Π
𝐶
(𝐼 − 𝜇

2
𝐵
2
)

with 0 < 𝜇
𝑖
< 𝛼
𝑖
/𝜅
2 for 𝑖 = 1, 2. Assume that {𝛼

𝑛
}, {𝛽
𝑛
}, and

{𝜎
𝑛
} are sequences in [0, 1] such that

(i) 0 < lim inf
𝑛→∞

𝛼
𝑛
≤ lim sup

𝑛→∞
𝛼
𝑛
< 1;

(ii) 0 < lim inf
𝑛→∞

𝛽
𝑛
≤ lim sup

𝑛→∞
𝛽
𝑛
< 1;

(iii) 0 < lim inf
𝑛→∞

𝜎
𝑛
≤ lim sup

𝑛→∞
𝜎
𝑛
< 1.

For arbitrary 𝑥
0
∈ 𝐶 define the sequence {𝑥

𝑛
} iteratively by

𝑦
𝑛
= 𝛽
𝑛
𝑆
𝑛
𝑥
𝑛
+ (1 − 𝛽

𝑛
)Π
𝐶
(𝐼 − 𝜇

1
𝐵
1
)

× Π
𝐶
(𝐼 − 𝜇

2
𝐵
2
) 𝑥
𝑛
,

𝑥
𝑛+1

= 𝛼
𝑛
[𝑥
𝑛
− 𝜎
𝑛
(𝑁 (𝑤

𝑛
, 𝑘
𝑛
) + 𝑢
𝑛
)] + (1 − 𝛼

𝑛
) 𝑦
𝑛
,

𝑢
𝑛
∈ 𝐴 (𝑔 (𝑥

𝑛
)) , ∀𝑛 ≥ 0,

(32)

where {𝑢
𝑛
} is defined by

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑢
𝑛+1

󵄩󵄩󵄩󵄩 ≤ (1 + 𝜀)𝐻 (𝐴 (𝑔 (𝑥
𝑛+1

)) , 𝐴 (𝑔 (𝑥
𝑛
))) ,

∀𝑛 ≥ 0,

(33)

for any 𝑤
𝑛

∈ 𝑇𝑥
𝑛
, 𝑘
𝑛

∈ 𝐹𝑥
𝑛
and some 𝜀 > 0. Assume

that ∑∞
𝑛=0

sup
𝑥∈𝐷

‖𝑆
𝑛+1

𝑥 − 𝑆
𝑛
𝑥‖ < ∞ for any bounded subset

𝐷 of 𝐶 and let 𝑆 be a mapping of 𝐶 into itself defined by
𝑆𝑥 = lim

𝑛→∞
𝑆
𝑛
𝑥 for all 𝑥 ∈ 𝐶 and suppose that Fix(𝑆) =

⋂
∞

𝑖=0
Fix(𝑆
𝑖
). Then {𝑥

𝑛
} converges weakly to some 𝑥 ∈ Δ, and

for any 𝑤 ∈ 𝑇𝑥, 𝑘 ∈ 𝐹𝑥, (𝑥, 𝑤, 𝑘) is a solution of the MVVI
(15).

Proof. First of all, let us show that for any V ∈ 𝐶, 𝜆 > 0,
there exists a point 𝑥 ∈ 𝐶 such that (𝑥, 𝑤, 𝑘) is a solution

of the MVVI (14), for any 𝑤 ∈ 𝑇𝑥 and 𝑘 ∈ 𝐹𝑥. Indeed,
following the argument idea in the proof of Chidume et al.
[4, Theorem 3.1], we put 𝑉𝑥 := 𝑁(𝑇𝑥, 𝐹𝑥) for all 𝑥 ∈ 𝑋.
Then by Proposition 4, 𝑉 is 𝜙-strongly accretive. Since 𝑇

and 𝐹 are𝐻-uniformly continuous and𝑁(⋅, ⋅) is continuous,
𝑉𝑥 is continuous and hence lower semicontinuous. Thus, by
Proposition 5 𝑉𝑥 is single-valued. Moreover, since 𝑉 is 𝜙-
strongly accretive and by assumption 𝐴 ∘ 𝑔 : 𝑋 → 2

𝐶

is 𝑚-accretive, we have that 𝑉 + 𝜆𝐴 ∘ 𝑔 is an 𝑚-accretive
and 𝜙-strongly accretive mapping, and hence by Cioranescu
[18, page 184] for any 𝑥 ∈ 𝑋 we have (𝑉 + 𝜆𝐴 ∘ 𝑔)(𝑥) is
closed and bounded. Therefore, by Morales [19], 𝑉 + 𝜆𝐴 ∘ 𝑔

is surjective. Hence, for any V ∈ 𝑋 and 𝜆 > 0 there exists
𝑥 ∈ 𝐷(𝐴) = 𝐶 such that V ∈ 𝑉𝑥 + 𝜆𝐴(𝑔(𝑥)) = 𝑁(𝑤, 𝑘) +

𝜆𝐴(𝑔(𝑥)), where 𝑤 ∈ 𝑇𝑥 and 𝑘 ∈ 𝐹𝑥. In addition, in terms
of Proposition 5 we know that 𝑉 + 𝜆𝐴 ∘ 𝑔 is a single-valued
mapping. Assume that𝑁(𝑇𝑥, 𝐹𝑥) + 𝜆𝐴(𝑔(𝑥)) : 𝑋 → 𝐶 is 𝜁-
inverse strongly accretive with 𝜁 ≥ 𝜅

2. Then by Lemma 12, we
conclude that the mapping 𝑥 󳨃→ 𝑥 − (𝑁(𝑇𝑥, 𝐹𝑥) + 𝜆𝐴(𝑔(𝑥)))

is nonexpansive. Meantime, by Lemma 13 we know that 𝐺 :

𝐶 → 𝐶 is also nonexpansive.
Without loss of generality we may assume that V = 0 and

𝜆 = 1. Let 𝑝 ∈ Δ and let 𝑟 > 0 be sufficiently large such that
𝑥
0
∈ 𝐵
𝑟
(𝑝) =: 𝐵. Then 𝑝 ∈ 𝐷(𝐴) = 𝐶 such that 0 ∈ 𝑁(𝑤, 𝑘) +

𝐴 ∘ 𝑔(𝑝) for any 𝑤 ∈ 𝑇𝑝 and 𝑘 ∈ 𝐹𝑝. Let 𝑀 := sup{‖𝑢‖ :

𝑢 ∈ 𝑁(𝑤, 𝑘) + 𝐴(𝑔(𝑥)), 𝑥 ∈ 𝐵, 𝑤 ∈ 𝑇𝑥, 𝑘 ∈ 𝐹𝑥}. Then as
𝐴 ∘ 𝑔, 𝑇 and 𝐹 are 𝐻-uniformly continuous on 𝑋, for 𝜀

1
:=

𝜙(𝑟)/8(1 + 𝜀), and 𝜀
2
:= 𝜙(𝑟)/8𝜇(1 + 𝜀), 𝜀

3
:= 𝜙(𝑟)/8𝜉(1 + 𝜀),

there exist 𝛿
1
, 𝛿
2
, 𝛿
3
> 0 such that for any 𝑥, 𝑦 ∈ 𝑋, ‖𝑥 − 𝑦‖ <

𝛿
1
, ‖𝑥−𝑦‖ < 𝛿

2
and ‖𝑥−𝑦‖ < 𝛿

3
imply𝐻(𝐴∘𝑔(𝑥), 𝐴∘𝑔(𝑦)) <

𝜀
1
,𝐻(𝑇𝑥, 𝑇𝑦) < 𝜀

2
and𝐻(𝐹𝑥, 𝐹𝑦) < 𝜀

3
, respectively.

Let us show that 𝑥
𝑛
∈ 𝐵 for all 𝑛 ≥ 0. We show this by

induction. First, 𝑥
0
∈ 𝐵 by construction. Assume that 𝑥

𝑛
∈ 𝐵.

We show that 𝑥
𝑛+1

∈ 𝐵. If possible we assume that 𝑥
𝑛+1

∉ 𝐵,
then ‖𝑥

𝑛+1
− 𝑝‖ > 𝑟. Further from (32) it follows that

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝
󵄩󵄩󵄩󵄩 =

󵄩󵄩󵄩󵄩𝛽𝑛𝑆𝑛𝑥𝑛 + (1 − 𝛽
𝑛
)Π
𝐶
(𝐼 − 𝜇

1
𝐵
1
)Π
𝐶

× (𝐼 − 𝜇
2
𝐵
2
) 𝑥
𝑛
− 𝑝

󵄩󵄩󵄩󵄩

≤ 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑆𝑛𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩 + (1 − 𝛽

𝑛
)
󵄩󵄩󵄩󵄩𝐺𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

≤ 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩 + (1 − 𝛽

𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩 ,

(34)

and hence

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑝
󵄩󵄩󵄩󵄩

2

= ⟨𝛼
𝑛
[𝑥
𝑛
− 𝑝 − 𝜎

𝑛
(𝑁 (𝑤

𝑛
, 𝑘
𝑛
) + 𝑢
𝑛
)]

+ (1 − 𝛼
𝑛
) (𝑦
𝑛
− 𝑝) , 𝐽 (𝑥

𝑛+1
− 𝑝)⟩

= ⟨𝛼
𝑛
(𝑥
𝑛
− 𝑝) + (1 − 𝛼

𝑛
)

× (𝑦
𝑛
− 𝑝) , 𝐽 (𝑥

𝑛+1
− 𝑝)⟩

− 𝛼
𝑛
𝜎
𝑛
⟨𝑁 (𝑤

𝑛
, 𝑘
𝑛
) + 𝑢
𝑛
, 𝐽 (𝑥
𝑛+1

− 𝑝)⟩
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≤
󵄩󵄩󵄩󵄩𝛼𝑛 (𝑥𝑛 − 𝑝) + (1 − 𝛼

𝑛
) (𝑦
𝑛
− 𝑝)

󵄩󵄩󵄩󵄩

×
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑝

󵄩󵄩󵄩󵄩

− 𝛼
𝑛
𝜎
𝑛
⟨𝑁 (𝑤

𝑛
, 𝑘
𝑛
) + 𝑢
𝑛
, 𝐽 (𝑥
𝑛+1

− 𝑝)⟩

≤ (𝛼
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩 + (1 − 𝛼

𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩)

×
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑝

󵄩󵄩󵄩󵄩

− 𝛼
𝑛
𝜎
𝑛
⟨𝑁 (𝑤

𝑛
, 𝑘
𝑛
) + 𝑢
𝑛
, 𝐽 (𝑥
𝑛+1

− 𝑝)⟩

=
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑝
󵄩󵄩󵄩󵄩

− 𝛼
𝑛
𝜎
𝑛
⟨𝑁 (𝑤

𝑛
, 𝑘
𝑛
) + 𝑢
𝑛
, 𝐽 (𝑥
𝑛+1

− 𝑝)⟩

≤
1

2
(
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑝

󵄩󵄩󵄩󵄩

2

)

− 𝛼
𝑛
𝜎
𝑛
⟨𝑁 (𝑤

𝑛
, 𝑘
𝑛
) + 𝑢
𝑛
, 𝐽 (𝑥
𝑛+1

− 𝑝)⟩ ,

(35)

which immediately yields

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑝
󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

− 2𝛼
𝑛
𝜎
𝑛
⟨𝑁 (𝑤

𝑛
, 𝑘
𝑛
) + 𝑢
𝑛
, 𝐽 (𝑥
𝑛+1

− 𝑝)⟩

=
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

− 2𝛼
𝑛
𝜎
𝑛
⟨𝑁 (𝑤

𝑛+1
, 𝑘
𝑛+1

) + 𝑢
𝑛+1

, 𝐽 (𝑥
𝑛+1

− 𝑝)⟩

− 2𝛼
𝑛
𝜎
𝑛
⟨𝑁 (𝑤

𝑛
, 𝑘
𝑛
)

+ 𝑢
𝑛
− (𝑁 (𝑤

𝑛+1
, 𝑘
𝑛+1

) + 𝑢
𝑛+1

) ,

𝐽 (𝑥
𝑛+1

− 𝑝)⟩ .

(36)

Since 𝑁(⋅, ⋅) is 𝜙-strongly accretive with respect to 𝑇 and
𝐴(𝑔(⋅)) is accretive, we deduce from (36) that

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑝
󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

− 2𝛼
𝑛
𝜎
𝑛
𝜙 (

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑝
󵄩󵄩󵄩󵄩)
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑝

󵄩󵄩󵄩󵄩

+ 2𝛼
𝑛
𝜎
𝑛
[
󵄩󵄩󵄩󵄩𝑁 (𝑤

𝑛+1
, 𝑘
𝑛+1

) − 𝑁 (𝑤
𝑛
, 𝑘
𝑛
)
󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩𝑢𝑛+1 − 𝑢

𝑛

󵄩󵄩󵄩󵄩]
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑝

󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

− 2𝛼
𝑛
𝜎
𝑛
𝜙 (

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑝
󵄩󵄩󵄩󵄩)
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑝

󵄩󵄩󵄩󵄩

+ 2𝛼
𝑛
𝜎
𝑛
[
󵄩󵄩󵄩󵄩𝑁 (𝑤

𝑛+1
, 𝑘
𝑛+1

) − 𝑁 (𝑤
𝑛+1

, 𝑘
𝑛
)
󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩𝑁 (𝑤

𝑛+1
, 𝑘
𝑛
) − 𝑁 (𝑤

𝑛
, 𝑘
𝑛
)
󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩𝑢𝑛+1 − 𝑢

𝑛

󵄩󵄩󵄩󵄩]
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑝

󵄩󵄩󵄩󵄩 .

(37)

Again from (32) we have that

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑝
󵄩󵄩󵄩󵄩

≤ 𝛼
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝 − 𝜎
𝑛
(𝑁 (𝑤

𝑛
, 𝑘
𝑛
) + 𝑢
𝑛
)
󵄩󵄩󵄩󵄩

+ (1 − 𝛼
𝑛
)
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝

󵄩󵄩󵄩󵄩

≤ 𝛼
𝑛
[
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩 + 𝜎
𝑛

󵄩󵄩󵄩󵄩𝑁 (𝑤
𝑛
, 𝑘
𝑛
) + 𝑢
𝑛

󵄩󵄩󵄩󵄩]

+ (1 − 𝛼
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

≤ 𝛼
𝑛
[𝑟 + 𝜎

𝑛
𝑀] + (1 − 𝛼

𝑛
) 𝑟

≤ 2𝑟.

(38)

Also, from Proposition 5, 𝑉𝑥 = 𝑁(𝑇𝑥, 𝐹𝑥) is a single-valued
mapping; that is, for any 𝑘, 𝑘󸀠 ∈ 𝐹𝑥 and 𝑤,𝑤

󸀠

∈ 𝑇𝑥 we have
𝑁(𝑤, 𝑘) = 𝑁(𝑤, 𝑘

󸀠

) and 𝑁(𝑤, 𝑘) = 𝑁(𝑤
󸀠

, 𝑘). On the other
hand, it follows from Nadler [20] that, for 𝑘

𝑛+1
∈ 𝐹𝑥
𝑛+1

and
𝑤
𝑛+1

∈ 𝑇𝑥
𝑛+1

, there exist 𝑘󸀠
𝑛
∈ 𝐹𝑥
𝑛
and 𝑤󸀠

𝑛
∈ 𝑇𝑥
𝑛
such that

󵄩󵄩󵄩󵄩󵄩
𝑘
𝑛+1

− 𝑘
󸀠

𝑛

󵄩󵄩󵄩󵄩󵄩
≤ (1 + 𝜀)𝐻 (𝐹𝑥

𝑛+1
, 𝐹𝑥
𝑛
) ,

󵄩󵄩󵄩󵄩󵄩
𝑤
𝑛+1

− 𝑤
󸀠

𝑛

󵄩󵄩󵄩󵄩󵄩
≤ (1 + 𝜀)𝐻 (𝑇𝑥

𝑛+1
, 𝑇𝑥
𝑛
) ,

(39)

respectively. Therefore, from (37) and (33), we have that

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑝
󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

− 2𝛼
𝑛
𝜎
𝑛
𝜙 (𝑟) 𝑟

+ 2𝛼
𝑛
𝜎
𝑛
[
󵄩󵄩󵄩󵄩󵄩
𝑁 (𝑤
𝑛+1

, 𝑘
𝑛+1

) − 𝑁 (𝑤
𝑛+1

, 𝑘
󸀠

𝑛
)
󵄩󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩󵄩
𝑁 (𝑤
𝑛+1

, 𝑘
𝑛
) − 𝑁 (𝑤

󸀠

𝑛
, 𝑘
𝑛
)
󵄩󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩𝑢𝑛+1 − 𝑢

𝑛

󵄩󵄩󵄩󵄩 ] 2𝑟

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

− 2𝛼
𝑛
𝜎
𝑛
𝜙 (𝑟) 𝑟

+ 2𝛼
𝑛
𝜎
𝑛
[𝜉 (1 + 𝜀)𝐻 (𝐹𝑥

𝑛+1
, 𝐹𝑥
𝑛
)

+ 𝜇 (1 + 𝜀)𝐻 (𝑇𝑥
𝑛+1

, 𝑇𝑥
𝑛
)

+ (1 + 𝜀)𝐻 (𝐴 (𝑔 (𝑥
𝑛+1

)) , 𝐴 (𝑔 (𝑥
𝑛
)))] 2𝑟

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

− 2𝛼
𝑛
𝜎
𝑛
𝜙 (𝑟) 𝑟

+ 2𝛼
𝑛
𝜎
𝑛
[
𝜙 (𝑟)

8
+
𝜙 (𝑟)

8
+
𝜙 (𝑟)

8
] 2𝑟

=
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

− 2𝛼
𝑛
𝜎
𝑛
𝜙 (𝑟) 𝑟

+ 𝛼
𝑛
𝜎
𝑛

3

2
𝜙 (𝑟) 𝑟 ≤

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

.

(40)

So, we get ‖𝑥
𝑛+1

− 𝑝‖ ≤ 𝑟, a contradiction. Therefore, {𝑥
𝑛
} is

bounded.
Let us show that lim

𝑛→∞
‖𝑥
𝑛
−𝑦
𝑛
‖ = 0 and lim

𝑛→∞
‖𝑥
𝑛
−

𝑥
𝑛+1

‖ = 0.



Abstract and Applied Analysis 7

Indeed, utilizing Lemma 10 and the nonexpansivity of the
mapping 𝑥 󳨃→ 𝑥−(𝑁(𝑇𝑥, 𝐹𝑥)+𝐴(𝑔(𝑥))), we obtain from (32)
that for all 𝑛 ≥ 0

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑝
󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩𝛼𝑛 [𝑥𝑛 − 𝑝 − 𝜎

𝑛
(𝑁 (𝑤

𝑛
, 𝑘
𝑛
) + 𝑢
𝑛
)]

+ (1 − 𝛼
𝑛
) (𝑦
𝑛
− 𝑝)

󵄩󵄩󵄩󵄩

2

≤ 𝛼
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝 − 𝜎
𝑛
(𝑁 (𝑤

𝑛
, 𝑘
𝑛
) + 𝑢
𝑛
)
󵄩󵄩󵄩󵄩

2

+ (1 − 𝛼
𝑛
)
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

− 𝛼
𝑛
(1 − 𝛼

𝑛
) 𝜑

× (
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑦

𝑛
− 𝜎
𝑛
(𝑁 (𝑤

𝑛
, 𝑘
𝑛
) + 𝑢
𝑛
)
󵄩󵄩󵄩󵄩)

= 𝛼
𝑛

󵄩󵄩󵄩󵄩(1 − 𝜎
𝑛
) (𝑥
𝑛
− 𝑝)

+ 𝜎
𝑛
[𝑥
𝑛
− (𝑁 (𝑤

𝑛
, 𝑘
𝑛
) + 𝑢
𝑛
) − 𝑝]

󵄩󵄩󵄩󵄩

2

+ (1 − 𝛼
𝑛
)
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

− 𝛼
𝑛
(1 − 𝛼

𝑛
) 𝜑

× (
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑦

𝑛
− 𝜎
𝑛
(𝑁 (𝑤

𝑛
, 𝑘
𝑛
) + 𝑢
𝑛
)
󵄩󵄩󵄩󵄩)

≤ 𝛼
𝑛
[(1 − 𝜎

𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

+ 𝜎
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − (𝑁 (𝑤
𝑛
, 𝑘
𝑛
) + 𝑢
𝑛
) − 𝑝

󵄩󵄩󵄩󵄩

2

− 𝜎
𝑛
(1 − 𝜎

𝑛
) 𝜑
1
(
󵄩󵄩󵄩󵄩𝑁 (𝑤

𝑛
, 𝑘
𝑛
) + 𝑢
𝑛

󵄩󵄩󵄩󵄩) ]

+ (1 − 𝛼
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

− 𝛼
𝑛
(1 − 𝛼

𝑛
) 𝜑

× (
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑦

𝑛
− 𝜎
𝑛
(𝑁 (𝑤

𝑛
, 𝑘
𝑛
) + 𝑢
𝑛
)
󵄩󵄩󵄩󵄩)

≤ 𝛼
𝑛
[(1 − 𝜎

𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

+ 𝜎
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

− 𝜎
𝑛
(1 − 𝜎

𝑛
) 𝜑
1
(
󵄩󵄩󵄩󵄩𝑁 (𝑤

𝑛
, 𝑘
𝑛
) + 𝑢
𝑛

󵄩󵄩󵄩󵄩) ]

+ (1 − 𝛼
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

− 𝛼
𝑛
(1 − 𝛼

𝑛
) 𝜑

× (
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑦

𝑛
− 𝜎
𝑛
(𝑁 (𝑤

𝑛
, 𝑘
𝑛
) + 𝑢
𝑛
)
󵄩󵄩󵄩󵄩)

= 𝛼
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

− 𝛼
𝑛
𝜎
𝑛
(1 − 𝜎

𝑛
) 𝜑
1

× (
󵄩󵄩󵄩󵄩𝑁 (𝑤

𝑛
, 𝑘
𝑛
) + 𝑢
𝑛

󵄩󵄩󵄩󵄩)

+ (1 − 𝛼
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

− 𝛼
𝑛
(1 − 𝛼

𝑛
) 𝜑

× (
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑦

𝑛
− 𝜎
𝑛
(𝑁 (𝑤

𝑛
, 𝑘
𝑛
) + 𝑢
𝑛
)
󵄩󵄩󵄩󵄩)

=
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

− 𝛼
𝑛
𝜎
𝑛
(1 − 𝜎

𝑛
) 𝜑
1
(
󵄩󵄩󵄩󵄩𝑁 (𝑤

𝑛
, 𝑘
𝑛
) + 𝑢
𝑛

󵄩󵄩󵄩󵄩)

− 𝛼
𝑛
(1 − 𝛼

𝑛
) 𝜑

× (
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑦

𝑛
− 𝜎
𝑛
(𝑁 (𝑤

𝑛
, 𝑘
𝑛
) + 𝑢
𝑛
)
󵄩󵄩󵄩󵄩)

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

.

(41)

It is easy to see that the limit lim
𝑛→∞

‖𝑥
𝑛
− 𝑝‖ exists.

Meantime, it can be readily seen from (41) that

𝛼
𝑛
𝜎
𝑛
(1 − 𝜎

𝑛
) 𝜑
1
(
󵄩󵄩󵄩󵄩𝑁 (𝑤

𝑛
, 𝑘
𝑛
) + 𝑢
𝑛

󵄩󵄩󵄩󵄩)

+ 𝛼
𝑛
(1 − 𝛼

𝑛
) 𝜑

× (
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑦

𝑛
− 𝜎
𝑛
(𝑁 (𝑤

𝑛
, 𝑘
𝑛
) + 𝑢
𝑛
)
󵄩󵄩󵄩󵄩)

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑝

󵄩󵄩󵄩󵄩

2

,

(42)

which together with conditions (i) and (iii) and the existence
of lim

𝑛→∞
‖𝑥
𝑛
− 𝑝‖, implies that

lim
𝑛→∞

𝜑
1
(
󵄩󵄩󵄩󵄩𝑁 (𝑤

𝑛
, 𝑘
𝑛
) + 𝑢
𝑛

󵄩󵄩󵄩󵄩) = 0,

lim
𝑛→∞

𝜑 (
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑦

𝑛
− 𝜎
𝑛
(𝑁 (𝑤

𝑛
, 𝑘
𝑛
) + 𝑢
𝑛
)
󵄩󵄩󵄩󵄩) = 0.

(43)

Utilizing the properties of 𝜑 and 𝜑
1
, we get

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑁 (𝑤
𝑛
, 𝑘
𝑛
) + 𝑢
𝑛

󵄩󵄩󵄩󵄩 = 0,

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑦
𝑛
− 𝜎
𝑛
(𝑁 (𝑤

𝑛
, 𝑘
𝑛
) + 𝑢
𝑛
)
󵄩󵄩󵄩󵄩 = 0.

(44)

Note that

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑦
𝑛

󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑦

𝑛
− 𝜎
𝑛
(𝑁 (𝑤

𝑛
, 𝑘
𝑛
) + 𝑢
𝑛
)
󵄩󵄩󵄩󵄩

+ 𝜎
𝑛

󵄩󵄩󵄩󵄩𝑁 (𝑤
𝑛
, 𝑘
𝑛
) + 𝑢
𝑛

󵄩󵄩󵄩󵄩 .

(45)

So, we have

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑦
𝑛

󵄩󵄩󵄩󵄩 = 0. (46)

Also, observe that

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥
𝑛

󵄩󵄩󵄩󵄩 ≤ 𝛼
𝑛
𝜎
𝑛

󵄩󵄩󵄩󵄩𝑁 (𝑤
𝑛
, 𝑘
𝑛
) + 𝑢
𝑛

󵄩󵄩󵄩󵄩

+ (1 − 𝛼
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑦

𝑛

󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑁 (𝑤

𝑛
, 𝑘
𝑛
) + 𝑢
𝑛

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑦

𝑛

󵄩󵄩󵄩󵄩 .

(47)

Thus, from (44) and (46) it follows that

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥
𝑛

󵄩󵄩󵄩󵄩 = 0. (48)

Let us show that lim
𝑛→∞

‖𝑥
𝑛
− 𝐺𝑥
𝑛
‖ = lim

𝑛→∞
‖𝑥
𝑛
−

𝑆𝑥
𝑛
‖ = 0.
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Indeed, for simplicity, put 𝑞 = Π
𝐶
(𝑝 − 𝜇

2
𝐵
2
𝑝), 𝑢
𝑛

=

Π
𝐶
(𝑥
𝑛
− 𝜇
2
𝐵
2
𝑥
𝑛
) and V

𝑛
= Π
𝐶
(𝑢
𝑛
− 𝜇
1
𝐵
1
𝑢
𝑛
). Then V

𝑛
= 𝐺𝑥
𝑛

for all 𝑛 ≥ 0. From Lemma 12 we have

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑞
󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩Π𝐶(𝑥𝑛 − 𝜇

2
𝐵
2
𝑥
𝑛
) − Π
𝐶
(𝑝 − 𝜇

2
𝐵
2
𝑝)
󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝 − 𝜇

2
(𝐵
2
𝑥
𝑛
− 𝐵
2
𝑝)
󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

− 2𝜇
2
(𝛼
2
− 𝜅
2

𝜇
2
)

×
󵄩󵄩󵄩󵄩𝐵2𝑥𝑛 − 𝐵

2
𝑝
󵄩󵄩󵄩󵄩

2

,

(49)

󵄩󵄩󵄩󵄩V𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩Π𝐶(𝑢𝑛 − 𝜇

1
𝐵
1
𝑢
𝑛
) − Π
𝐶
(𝑞 − 𝜇

1
𝐵
1
𝑞)
󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑞 − 𝜇

1
(𝐵
1
𝑢
𝑛
− 𝐵
1
𝑞)
󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑞

󵄩󵄩󵄩󵄩

2

− 2𝜇
1
(𝛼
1
− 𝜅
2

𝜇
1
)

×
󵄩󵄩󵄩󵄩𝐵1𝑢𝑛 − 𝐵

1
𝑞
󵄩󵄩󵄩󵄩

2

.

(50)

Substituting (49) for (50), we obtain

󵄩󵄩󵄩󵄩V𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

− 2𝜇
2
(𝛼
2
− 𝜅
2

𝜇
2
)
󵄩󵄩󵄩󵄩𝐵2𝑥𝑛 − 𝐵

2
𝑝
󵄩󵄩󵄩󵄩

2

− 2𝜇
1
(𝛼
1
− 𝜅
2

𝜇
1
)
󵄩󵄩󵄩󵄩𝐵1𝑢𝑛 − 𝐵

1
𝑞
󵄩󵄩󵄩󵄩

2

.

(51)

Utilizing [21, Proposition 1] and Lemma 10, from (32) and (51)
we have

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

≤ 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑆𝑛𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

+ (1 − 𝛽
𝑛
)
󵄩󵄩󵄩󵄩𝐺𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

− 𝛽
𝑛
(1 − 𝛽

𝑛
) 𝜑
2
(
󵄩󵄩󵄩󵄩𝑆𝑛𝑥𝑛 − 𝐺𝑥

𝑛

󵄩󵄩󵄩󵄩)

≤ 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

+ (1 − 𝛽
𝑛
)
󵄩󵄩󵄩󵄩V𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

− 𝛽
𝑛
(1 − 𝛽

𝑛
) 𝜑
2
(
󵄩󵄩󵄩󵄩𝑆𝑛𝑥𝑛 − 𝐺𝑥

𝑛

󵄩󵄩󵄩󵄩)

≤ 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

− 𝛽
𝑛
(1 − 𝛽

𝑛
) 𝜑
2
(
󵄩󵄩󵄩󵄩𝑆𝑛𝑥𝑛 − 𝐺𝑥

𝑛

󵄩󵄩󵄩󵄩)

+ (1 − 𝛽
𝑛
) [
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

− 2𝜇
2
(𝛼
2
− 𝜅
2

𝜇
2
)
󵄩󵄩󵄩󵄩𝐵2𝑥𝑛 − 𝐵

2
𝑝
󵄩󵄩󵄩󵄩

2

− 2𝜇
1
(𝛼
1
− 𝜅
2

𝜇
1
)
󵄩󵄩󵄩󵄩𝐵1𝑢𝑛 − 𝐵

1
𝑞
󵄩󵄩󵄩󵄩

2

]

=
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

− 𝛽
𝑛
(1 − 𝛽

𝑛
) 𝜑
2
(
󵄩󵄩󵄩󵄩𝑆𝑛𝑥𝑛 − 𝐺𝑥

𝑛

󵄩󵄩󵄩󵄩)

− 2 (1 − 𝛽
𝑛
) [𝜇
2
(𝛼
2
− 𝜅
2

𝜇
2
)
󵄩󵄩󵄩󵄩𝐵2𝑥𝑛 − 𝐵

2
𝑝
󵄩󵄩󵄩󵄩

2

+ 2𝜇
1
(𝛼
1
− 𝜅
2

𝜇
1
)
󵄩󵄩󵄩󵄩𝐵1𝑢𝑛 − 𝐵

1
𝑞
󵄩󵄩󵄩󵄩

2

] ,

(52)

which hence implies that

𝛽
𝑛
(1 − 𝛽

𝑛
) 𝜑
2
(
󵄩󵄩󵄩󵄩𝑆𝑛𝑥𝑛 − 𝐺𝑥

𝑛

󵄩󵄩󵄩󵄩)

+ 2 (1 − 𝛽
𝑛
) [𝜇
2
(𝛼
2
− 𝜅
2

𝜇
2
)

×
󵄩󵄩󵄩󵄩𝐵2𝑥𝑛 − 𝐵

2
𝑝
󵄩󵄩󵄩󵄩

2

+ 𝜇
1
(𝛼
1
− 𝜅
2

𝜇
1
)

×
󵄩󵄩󵄩󵄩𝐵1𝑢𝑛 − 𝐵

1
𝑞
󵄩󵄩󵄩󵄩

2

]

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

≤ (
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝

󵄩󵄩󵄩󵄩)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑦

𝑛

󵄩󵄩󵄩󵄩 .

(53)

Since 0 < 𝜇
𝑖
< 𝛼
𝑖
/𝜅
2 for 𝑖 = 1, 2 and {𝑥

𝑛
}, {𝑦
𝑛
} are bounded,

we obtain from (46), (53), condition (ii) and the properties of
𝜑
2
that

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝐵2𝑥𝑛 − 𝐵
2
𝑝
󵄩󵄩󵄩󵄩 = lim
𝑛→∞

󵄩󵄩󵄩󵄩𝐵1𝑢𝑛 − 𝐵
1
𝑞
󵄩󵄩󵄩󵄩 = 0,

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑆𝑛𝑥𝑛 − 𝐺𝑥
𝑛

󵄩󵄩󵄩󵄩 = 0.

(54)

Utilizing Proposition 3 and Lemma 8, we have

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑞
󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩Π𝐶(𝑥𝑛 − 𝜇

2
𝐵
2
𝑥
𝑛
) − Π
𝐶
(𝑝 − 𝜇

2
𝐵
2
𝑝)
󵄩󵄩󵄩󵄩

2

≤ ⟨𝑥
𝑛
− 𝜇
2
𝐵
2
𝑥
𝑛
− (𝑝 − 𝜇

2
𝐵
2
𝑝) , 𝐽 (𝑢

𝑛
− 𝑞)⟩

= ⟨𝑥
𝑛
− 𝑝, 𝐽 (𝑢

𝑛
− 𝑞)⟩

+ 𝜇
2
⟨𝐵
2
𝑝 − 𝐵
2
𝑥
𝑛
, 𝐽 (𝑢
𝑛
− 𝑞)⟩

≤
1

2
[
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑞

󵄩󵄩󵄩󵄩

2

− 𝜓
1
(
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢

𝑛
− (𝑝 − 𝑞)

󵄩󵄩󵄩󵄩) ]

+ 𝜇
2

󵄩󵄩󵄩󵄩𝐵2𝑝 − 𝐵
2
𝑥
𝑛

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑞
󵄩󵄩󵄩󵄩 ,

(55)

which implies that

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑞
󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

− 𝜓
1
(
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢

𝑛
− (𝑝 − 𝑞)

󵄩󵄩󵄩󵄩)

+ 2𝜇
2

󵄩󵄩󵄩󵄩𝐵2𝑝 − 𝐵
2
𝑥
𝑛

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑞
󵄩󵄩󵄩󵄩 .

(56)
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In the same way, we derive

󵄩󵄩󵄩󵄩V𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩Π𝐶(𝑢𝑛 − 𝜇

1
𝐵
1
𝑢
𝑛
) − Π
𝐶
(𝑞 − 𝜇

1
𝐵
1
𝑞)
󵄩󵄩󵄩󵄩

2

≤ ⟨𝑢
𝑛
− 𝜇
1
𝐵
1
𝑢
𝑛
− (𝑞 − 𝜇

1
𝐵
1
𝑞) , 𝐽 (V

𝑛
− 𝑝)⟩

= ⟨𝑢
𝑛
− 𝑞, 𝐽 (V

𝑛
− 𝑝)⟩

+ 𝜇
1
⟨𝐵
1
𝑞 − 𝐵
1
𝑢
𝑛
, 𝐽 (V
𝑛
− 𝑝)⟩

≤
1

2
[
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑞

󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩V𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

−𝜓
2
(
󵄩󵄩󵄩󵄩𝑢𝑛 − V

𝑛
+ (𝑝 − 𝑞)

󵄩󵄩󵄩󵄩) ]

+ 𝜇
1

󵄩󵄩󵄩󵄩𝐵1𝑞 − 𝐵
1
𝑢
𝑛

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩V𝑛 − 𝑝
󵄩󵄩󵄩󵄩 ,

(57)

which implies that

󵄩󵄩󵄩󵄩V𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑞

󵄩󵄩󵄩󵄩

2

− 𝜓
2
(
󵄩󵄩󵄩󵄩𝑢𝑛 − V

𝑛
+ (𝑝 − 𝑞)

󵄩󵄩󵄩󵄩)

+ 2𝜇
1

󵄩󵄩󵄩󵄩𝐵1𝑞 − 𝐵
1
𝑢
𝑛

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩V𝑛 − 𝑝
󵄩󵄩󵄩󵄩 .

(58)

Substituting (56) for (58), we get

󵄩󵄩󵄩󵄩V𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

− 𝜓
1
(
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢

𝑛
− (𝑝 − 𝑞)

󵄩󵄩󵄩󵄩)

− 𝜓
2
(
󵄩󵄩󵄩󵄩𝑢𝑛 − V

𝑛
+ (𝑝 − 𝑞)

󵄩󵄩󵄩󵄩)

+ 2𝜇
2

󵄩󵄩󵄩󵄩𝐵2𝑝 − 𝐵
2
𝑥
𝑛

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑞
󵄩󵄩󵄩󵄩

+ 2𝜇
1

󵄩󵄩󵄩󵄩𝐵1𝑞 − 𝐵
1
𝑢
𝑛

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩V𝑛 − 𝑝
󵄩󵄩󵄩󵄩 .

(59)

By Lemma 7, we have from (52) and (59)

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

≤ 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑆𝑛𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

+ (1 − 𝛽
𝑛
)
󵄩󵄩󵄩󵄩V𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

≤ 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

+ (1 − 𝛽
𝑛
)

× [
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

− 𝜓
1
(
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢

𝑛
− (𝑝 − 𝑞)

󵄩󵄩󵄩󵄩)

− 𝜓
2
(
󵄩󵄩󵄩󵄩𝑢𝑛 − V

𝑛
+ (𝑝 − 𝑞)

󵄩󵄩󵄩󵄩)

+ 2𝜇
2

󵄩󵄩󵄩󵄩𝐵2𝑝 − 𝐵
2
𝑥
𝑛

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑞
󵄩󵄩󵄩󵄩

+ 2𝜇
1

󵄩󵄩󵄩󵄩𝐵1𝑞 − 𝐵
1
𝑢
𝑛

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩V𝑛 − 𝑝
󵄩󵄩󵄩󵄩 ]

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

− (1 − 𝛽
𝑛
)

× [𝜓
1
(
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢

𝑛
− (𝑝 − 𝑞)

󵄩󵄩󵄩󵄩)

+ 𝜓
2
(
󵄩󵄩󵄩󵄩𝑢𝑛 − V

𝑛
+ (𝑝 − 𝑞)

󵄩󵄩󵄩󵄩)]

+ 2𝜇
2

󵄩󵄩󵄩󵄩𝐵2𝑝 − 𝐵
2
𝑥
𝑛

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑞
󵄩󵄩󵄩󵄩

+ 2𝜇
1

󵄩󵄩󵄩󵄩𝐵1𝑞 − 𝐵
1
𝑢
𝑛

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩V𝑛 − 𝑝
󵄩󵄩󵄩󵄩 ,

(60)

which hence leads to

(1 − 𝛽
𝑛
) [𝜓
1
(
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢

𝑛
− (𝑝 − 𝑞)

󵄩󵄩󵄩󵄩)

+𝜓
2
(
󵄩󵄩󵄩󵄩𝑢𝑛 − V

𝑛
+ (𝑝 − 𝑞)

󵄩󵄩󵄩󵄩)]

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

+ 2𝜇
2

󵄩󵄩󵄩󵄩𝐵2𝑝 − 𝐵
2
𝑥
𝑛

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑞
󵄩󵄩󵄩󵄩

+ 2𝜇
1

󵄩󵄩󵄩󵄩𝐵1𝑞 − 𝐵
1
𝑢
𝑛

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩V𝑛 − 𝑝
󵄩󵄩󵄩󵄩

≤ (
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝

󵄩󵄩󵄩󵄩)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑦

𝑛

󵄩󵄩󵄩󵄩

+ 2𝜇
2

󵄩󵄩󵄩󵄩𝐵2𝑝 − 𝐵
2
𝑥
𝑛

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑞
󵄩󵄩󵄩󵄩

+ 2𝜇
1

󵄩󵄩󵄩󵄩𝐵1𝑞 − 𝐵
1
𝑢
𝑛

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩V𝑛 − 𝑝
󵄩󵄩󵄩󵄩 .

(61)

From (46), (54), (61), condition (ii), and the boundedness of
{𝑥
𝑛
}, {𝑦
𝑛
}, {𝑢
𝑛
}, and {V

𝑛
}, we deduce that

lim
𝑛→∞

𝜓
1
(
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢

𝑛
− (𝑝 − 𝑞)

󵄩󵄩󵄩󵄩) = 0,

lim
𝑛→∞

𝜓
2
(
󵄩󵄩󵄩󵄩𝑢𝑛 − V

𝑛
+ (𝑝 − 𝑞)

󵄩󵄩󵄩󵄩) = 0.

(62)

Utilizing the properties of 𝜓
1
and 𝜓

2
, we deduce that

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢
𝑛
− (𝑝 − 𝑞)

󵄩󵄩󵄩󵄩 = 0,

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑢𝑛 − V
𝑛
+ (𝑝 − 𝑞)

󵄩󵄩󵄩󵄩 = 0.

(63)

From (63) we get
󵄩󵄩󵄩󵄩𝑥𝑛 − V

𝑛

󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢

𝑛
− (𝑝 − 𝑞)

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑢𝑛 − V

𝑛
+ (𝑝 − 𝑞)

󵄩󵄩󵄩󵄩

󳨀→ 0 as 𝑛 󳨀→ ∞,

(64)

which together with (54), leads to

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝐺𝑥
𝑛

󵄩󵄩󵄩󵄩 = 0,

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑆
𝑛
𝑥
𝑛

󵄩󵄩󵄩󵄩 = 0.

(65)

Since
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑆𝑥

𝑛

󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑆

𝑛
𝑥
𝑛

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑆𝑛𝑥𝑛 − 𝑆𝑥

𝑛

󵄩󵄩󵄩󵄩 . (66)

Utilizing the assumption on {𝑆
𝑛
} and Lemma 11, from (65) we

get

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑆𝑥
𝑛

󵄩󵄩󵄩󵄩 = 0. (67)
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Next, let us show that {𝑥
𝑛
} converges weakly to some 𝑥 ∈

Δ.
Indeed, since 𝑋 is reflexive and {𝑥

𝑛
} is bounded, there

exists a subsequence {𝑥
𝑛
𝑖

} of {𝑥
𝑛
} such that𝑥

𝑛
𝑖

⇀ 𝑥 ∈ 𝐶.Then
by Lemma 6, we obtain from (44), (65), and (67) that 𝑥 ∈ Γ,
𝑥 ∈ Fix(𝐺) = Ω, and 𝑥 ∈ Fix(𝑆) = ⋂

∞

𝑖=0
Fix(𝑆
𝑖
). Thus, 𝑥 ∈ Δ.

In addition, if {𝑥
𝑚
𝑗

} is another subsequence of {𝑥
𝑛
} such that

𝑥
𝑚
𝑗

⇀ 𝑥, then by Lemma 6 we also deduce from (44), (65),
and (67) that 𝑥 ∈ Δ. Thus, the limits lim

𝑛→∞
‖𝑥
𝑛
− 𝑥‖ and

lim
𝑛→∞

‖𝑥
𝑛
− 𝑥‖ exist. Now we claim that 𝑥 = 𝑥. Assume

that 𝑥 ̸= 𝑥. Then in terms of Opial’s condition, we get

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
󵄩󵄩󵄩󵄩 = lim sup
𝑖→∞

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛
𝑖

− 𝑥
󵄩󵄩󵄩󵄩󵄩
< lim sup
𝑖→∞

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛
𝑖

− 𝑥
󵄩󵄩󵄩󵄩󵄩

= lim sup
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
󵄩󵄩󵄩󵄩 = lim sup
𝑗→∞

󵄩󵄩󵄩󵄩󵄩󵄩
𝑥
𝑚
𝑗

− 𝑥
󵄩󵄩󵄩󵄩󵄩󵄩

< lim sup
𝑗→∞

󵄩󵄩󵄩󵄩󵄩󵄩
𝑥
𝑚
𝑗

− 𝑥
󵄩󵄩󵄩󵄩󵄩󵄩
= lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
󵄩󵄩󵄩󵄩 ,

(68)

which leads to a contradiction. So, we must have 𝑥 = 𝑥.
Therefore, 𝑥

𝑛
⇀ 𝑥 ∈ Δ. This completes the proof.

Theorem 15. Let 𝑋 be a uniformly convex and 2-uniformly
smooth Banach space and let 𝐶 be a nonempty closed convex
subset of 𝑋 such that 𝐶 ± 𝐶 ⊂ 𝐶. Let Π

𝐶
be a sunny

nonexpansive retraction from 𝑋 onto 𝐶. Let 𝑇 and 𝐹 : 𝑋 →

𝐶𝐵(𝑋) and let 𝐴 : 𝐶 → 2
𝐶 be three multivalued mappings,

let 𝑔 : 𝑋 → 𝐶 be a single-valued mapping, and let 𝑁(⋅, ⋅) :

𝑋 ×𝑋 → 𝐶 be a single-valued continuous mapping satisfying
conditions (C1)–(C5) in Theorem 2. Let 𝐵

𝑖
: 𝐶 → 𝑋 be 𝛼

𝑖
-

inverse strongly accretive for 𝑖 = 1, 2. Let {𝑆
𝑖
}
∞

𝑖=0
be a countable

family of nonexpansive mappings of 𝐶 into itself such that Δ :=

⋂
∞

𝑖=0
Fix(𝑆
𝑖
) ∩ Ω ∩ Γ ̸= 0, where Ω is the fixed point set of the

mapping 𝐺 = Π
𝐶
(𝐼 − 𝜇

1
𝐵
1
)Π
𝐶
(𝐼 − 𝜇

2
𝐵
2
) with 0 < 𝜇

𝑖
< 𝛼
𝑖
/𝜅
2

for 𝑖 = 1, 2. Let {𝛼
𝑛
}, {𝛽
𝑛
} ⊂ [0, 1], and {𝜎

𝑛
} ⊂ (0,∞) such

that lim
𝑛→∞

𝛼
𝑛
𝜎
𝑛
= 0 and ∑

∞

𝑛=0
𝛼
𝑛
𝜎
𝑛
= ∞. For arbitrary

𝑥
0
∈ 𝐶 define the sequence {𝑥

𝑛
} iteratively by (32), where {𝑢

𝑛
}

is defined by (33) for any 𝑤
𝑛
∈ 𝑇𝑥

𝑛
, 𝑘
𝑛
∈ 𝐹𝑥

𝑛
and some

𝜀 > 0. Then, there exists 𝑑 > 0 such that for 0 < 𝛼
𝑛
𝜎
𝑛
≤ 𝑑,

for all 𝑛 ≥ 0, {𝑥
𝑛
} converges strongly to 𝑝 ∈ Δ provided

lim
𝑛→∞

‖𝑥
𝑛+1

− 𝑥
𝑛
‖ = 0; in this case, for any 𝑤 ∈ 𝑇𝑥, 𝑘 ∈ 𝐹𝑥,

(𝑥, 𝑤, 𝑘) is a solution of the MVVI (15).

Proof. First of all, repeating the same arguments as those in
the proof of Theorem 14, we can prove that for any V ∈ 𝐶,
𝜆 > 0, there exists a point 𝑥 ∈ 𝐷(𝐴) = 𝐶 such that (𝑥, 𝑤, 𝑘) is
a solution of the MVVI (14), for any 𝑤 ∈ 𝑇𝑥 and 𝑘 ∈ 𝐹𝑥. In
addition, in terms of Proposition 5 we know that 𝑉 + 𝜆𝐴 ∘ 𝑔

is a single-valued mapping due to the fact that 𝑉 + 𝜆𝐴 ∘ 𝑔 is
𝜙-strongly accretive. Meantime, by Lemma 13 we know that
𝐺 : 𝐶 → 𝐶 is nonexpansive.

Without loss of generality we may assume that V = 0 and
𝜆 = 1. Let 𝑝 ∈ Δ and let 𝑟 > 0 be sufficiently large such
that 𝑥

0
∈ 𝐵
𝑟
(𝑝) =: 𝐵. Let 𝑀 := sup{‖𝑢‖ : 𝑢 ∈ 𝑁(𝑤, 𝑘) +

𝐴(𝑔(𝑥)), 𝑥 ∈ 𝐵, 𝑤 ∈ 𝑇𝑥, 𝑘 ∈ 𝐹𝑥}. Then as 𝐴 ∘ 𝑔, 𝑇 and 𝐹

are 𝐻-uniformly continuous on 𝑋, for 𝜀
1
:= 𝜙(𝑟)/8(1 + 𝜀)

and 𝜀
2
:= 𝜙(𝑟)/8𝜇(1 + 𝜀), 𝜀

3
:= 𝜙(𝑟)/8𝜉(1 + 𝜀), there exist

𝛿
1
, 𝛿
2
, 𝛿
3
> 0 such that for any 𝑥, 𝑦 ∈ 𝑋, ‖𝑥 − 𝑦‖ < 𝛿

1
,

‖𝑥 − 𝑦‖ < 𝛿
2
, and ‖𝑥 − 𝑦‖ < 𝛿

3
imply 𝐻(𝐴 ∘ 𝑔(𝑥), 𝐴 ∘

𝑔(𝑦)) < 𝜀
1
,𝐻(𝑇𝑥, 𝑇𝑦) < 𝜀

2
and𝐻(𝐹𝑥, 𝐹𝑦) < 𝜀

3
, respectively.

Let 𝑑 := (1/2)min{𝛿
2
/𝑀, 𝛿

3
/𝑀, 𝛿

1
/𝑀, 𝑟/𝑀}. Taking into

account lim
𝑛→∞

𝛼
𝑛
𝜎
𝑛
= 0 we may assume that 0 < 𝛼

𝑛
𝜎
𝑛
≤ 𝑑,

for all 𝑛 ≥ 0.
Let us show that 𝑥

𝑛
∈ 𝐵 for all 𝑛 ≥ 0. We show this by

induction. First, 𝑥
0
∈ 𝐵 by construction. Assume that 𝑥

𝑛
∈ 𝐵.

We show that 𝑥
𝑛+1

∈ 𝐵. If possible we assume that 𝑥
𝑛+1

∉ 𝐵,
then ‖𝑥

𝑛+1
− 𝑝‖ > 𝑟. Further from (32) it follows that

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝
󵄩󵄩󵄩󵄩 ≤ 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑆𝑛𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩 + (1 − 𝛽

𝑛
)
󵄩󵄩󵄩󵄩𝐺𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

≤ 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩 + (1 − 𝛽

𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩 .

(69)

Repeating the same arguments as those of (37) in the proof
of Theorem 14, we can get

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑝
󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

− 2𝛼
𝑛
𝜎
𝑛
𝜙 (

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑝
󵄩󵄩󵄩󵄩)
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑝

󵄩󵄩󵄩󵄩

+ 2𝛼
𝑛
𝜎
𝑛
[
󵄩󵄩󵄩󵄩𝑁 (𝑤

𝑛+1
, 𝑘
𝑛+1

) − 𝑁 (𝑤
𝑛
, 𝑘
𝑛
)
󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩𝑢𝑛+1 − 𝑢

𝑛

󵄩󵄩󵄩󵄩]
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑝

󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

− 2𝛼
𝑛
𝜎
𝑛
𝜙 (

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑝
󵄩󵄩󵄩󵄩)
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑝

󵄩󵄩󵄩󵄩

+ 2𝛼
𝑛
𝜎
𝑛
[
󵄩󵄩󵄩󵄩𝑁 (𝑤

𝑛+1
, 𝑘
𝑛+1

) − 𝑁 (𝑤
𝑛+1

, 𝑘
𝑛
)
󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩𝑁 (𝑤

𝑛+1
, 𝑘
𝑛
) − 𝑁 (𝑤

𝑛
, 𝑘
𝑛
)
󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩𝑢𝑛+1 − 𝑢

𝑛

󵄩󵄩󵄩󵄩]
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑝

󵄩󵄩󵄩󵄩 .

(70)

Utilizing (33) and (70) and repeating the same arguments
as those of (40) in the proof of Theorem 14, we can derive
‖𝑥
𝑛+1

− 𝑝‖
2

≤ ‖𝑥
𝑛
− 𝑝‖
2. So, we have ‖𝑥

𝑛+1
− 𝑝‖ ≤ 𝑟, a

contradiction. Therefore, {𝑥
𝑛
} is bounded.

Next let us show that 𝑥
𝑛
→ 𝑥 as 𝑛 → ∞.

Indeed, since ‖𝑥
𝑛+1

− 𝑥
𝑛
‖ → 0 as 𝑛 → ∞, we have

that 𝐻(𝐴(𝑔(𝑥
𝑛+1

)), 𝐴(𝑔(𝑥
𝑛
))) → 0 and ‖𝑁(𝑤

𝑛+1
, 𝑘
𝑛+1

) −

𝑁(𝑤
𝑛
, 𝑘
𝑛
)‖ → 0 as 𝑛 → ∞. The conclusion now follows

from inequality (70) with the use of Proposition 3 and hence
(𝑥, 𝑤, 𝑘) is a solution of the MVVI (15) for any 𝑤 ∈ 𝑇𝑥,
𝑘 ∈ 𝐹𝑥. This completes the proof.

Remark 16. Theorems 14 and 15 improve, extend, supplement,
and develop [4, Theorem 3.2] and [2, Theorem 3.1] in the
following aspects.

(i) The problem of finding a point of⋂∞
𝑖=0

Fix(𝑆
𝑖
) ∩Ω∩Γ

inTheorems 14 and 15 ismore general andmore subtle
than every one of the problem of finding a point of Γ
in [4,Theorem 3.2] and the problem of finding a point
of⋂∞
𝑖=1

Fix(𝑆
𝑖
) ∩ Ω in [2, Theorem 3.1].

(ii) The iterative scheme in [2,Theorem 3.1] is extended to
develop the iterative scheme (32) of Theorems 14 and
15 by virtue of the iterative schemes of [4, Theorems
3.2]. The iterative scheme (32) of Theorems 14 and
15 is more advantageous and more flexible than the
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iterative scheme of [4, Theorem 3.2] because it can
be applied to solving three problems (i.e., GSVI (9),
MVVI (15), and the fixed point problem of {𝑆

𝑛
}) and

involves several parameter sequences {𝛼
𝑛
}, {𝛽
𝑛
}, and

{𝜎
𝑛
}.

(iii) Theorems 14 and 15 extend and generalize [4, The-
orems 3.2] to the setting of a countable family of
nonexpansive mappings and the GSVI (9) for two
inverse-strongly accretive mappings. In the mean-
time, Theorems 14 and 15 extend and generalize [2,
Theorem 3.1] to the setting of the MVVI (15).

(iv) The iterative scheme (32) in Theorems 14 and 15 is
very different from everyone in [4, Theorem 3.2] and
[2, Theorem 3.1] because the iterative scheme in [2,
Theorem 3.1] involves the viscosity approximation
method and the iterative scheme in [4, Theorem 3.2]
is a one-step iterative scheme.

(v) No boundedness condition on the ranges 𝑅(𝐼 −

𝑁(𝑇(⋅), 𝐹(⋅))) and 𝑅(𝐴(𝑔(⋅))) is imposed inTheorems
14 and 15.

4. Mann-Type Extragradient
Algorithms in Smooth and Uniformly
Convex Banach Spaces

In this section, we introduce Mann-type extragradient algo-
rithms in smooth and uniformly convex Banach spaces and
show weak and strong convergence theorems. First, we give
some useful lemmas whose proofs will be omitted.

Lemma 17. Let 𝐶 be a nonempty closed convex subset of a
smooth Banach space 𝑋 and let the mapping 𝐵

𝑖
: 𝐶 → 𝑋

be 𝜆
𝑖
-strictly pseudocontractive and 𝛼

𝑖
-strongly accretive with

𝛼
𝑖
+ 𝜆
𝑖
≥ 1 for 𝑖 = 1, 2. Then, for 𝜇

𝑖
∈ (0, 1] we have

󵄩󵄩󵄩󵄩(𝐼 − 𝜇
𝑖
𝐵
𝑖
) 𝑥 − (𝐼 − 𝜇

𝑖
𝐵
𝑖
)𝑦
󵄩󵄩󵄩󵄩

≤ {√
1 − 𝛼
𝑖

𝜆
𝑖

+ (1 − 𝜇
𝑖
) (1 +

1

𝜆
𝑖

)}

×
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩 , ∀𝑥, 𝑦 ∈ 𝐶,

(71)

for 𝑖 = 1, 2. In particular, if 1−(𝜆
𝑖
/(1+𝜆

𝑖
))(1−√(1 − 𝛼

𝑖
)/𝜆
𝑖
) ≤

𝜇
𝑖
≤ 1, then 𝐼 − 𝜇

𝑖
𝐵
𝑖
is nonexpansive for 𝑖 = 1, 2.

Lemma 18. Let 𝐶 be a nonempty closed convex subset of a
smooth Banach space 𝑋. Let Π

𝐶
be a sunny nonexpansive

retraction from 𝑋 onto 𝐶 and let the mapping 𝐵
𝑖
: 𝐶 → 𝑋 be

𝜆
𝑖
-strictly pseudocontractive and 𝛼

𝑖
-strongly accretive with 𝛼

𝑖
+

𝜆
𝑖
≥ 1 for 𝑖 = 1, 2. Let 𝐺 : 𝐶 → 𝐶 be the mapping defined by

𝐺 (𝑥) = Π
𝐶
[Π
𝐶
(𝑥 − 𝜇

2
𝐵
2
𝑥)

− 𝜇
1
𝐵
1
Π
𝐶
(𝑥 − 𝜇

2
𝐵
2
𝑥)] , ∀𝑥 ∈ 𝐶.

(72)

If 1−(𝜆
𝑖
/(1+𝜆

𝑖
))(1−√(1 − 𝛼

𝑖
)/𝜆
𝑖
) ≤ 𝜇
𝑖
≤ 1, then𝐺 : 𝐶 → 𝐶

is nonexpansive.

Theorem 19. Let𝑋 be a smooth and uniformly convex Banach
space satisfying Opial’s condition and 𝐶 be a nonempty closed
convex subset of 𝑋 such that 𝐶 ± 𝐶 ⊂ 𝐶. Let Π

𝐶
be a sunny

nonexpansive retraction from 𝑋 onto 𝐶. Let 𝑇 and 𝐹 : 𝑋 →

CB(𝑋) and let 𝐴 : 𝐶 → 2
𝐶 be three multivalued mappings,

let 𝑔 : 𝑋 → 𝐶 be a single-valued mapping, and let 𝑁(⋅, ⋅) :

𝑋 ×𝑋 → 𝐶 be a single-valued continuous mapping satisfying
conditions (C1)–(C5) in Theorem 2 and

(H6) 𝑁(𝑇𝑥, 𝐹𝑥) + 𝐴(𝑔(𝑥)) : 𝑋 → 𝐶 is 𝜆
0
-strictly pseudo-

contractive and 𝛼
0
-strongly accretive with 𝜆

0
+ 𝛼
0
≥ 1.

Let𝐵
𝑖
: 𝐶 → 𝑋 be𝜆

𝑖
-strictly pseudocontractive and𝛼

𝑖
-strong-

ly accretivewith𝜆
𝑖
+𝛼
𝑖
≥ 1 for 𝑖 = 1, 2. Let {𝑆

𝑖
}
∞

𝑖=0
be a countable

family of nonexpansive mappings of 𝐶 into itself such that Δ :=

⋂
∞

𝑖=0
Fix(𝑆
𝑖
) ∩ Ω ∩ Γ ̸= 0, where Ω is the fixed point set of the

mapping 𝐺 = Π
𝐶
(𝐼 − 𝜇

1
𝐵
1
)Π
𝐶
(𝐼 − 𝜇

2
𝐵
2
) with 1 − (𝜆

𝑖
/(1 +

𝜆
𝑖
))(1 − √(1 − 𝛼

𝑖
)/𝜆
𝑖
) ≤ 𝜇
𝑖
≤ 1 for 𝑖 = 1, 2. Assume that {𝛼

𝑛
},

{𝛽
𝑛
}, {𝛾
𝑛
}, and {𝜎

𝑛
} are sequences in [0, 1] such that

(i) 0 < lim inf
𝑛→∞

𝛼
𝑛
≤ lim sup

𝑛→∞
𝛼
𝑛
< 1;

(ii) {𝛽
𝑛
}, {𝛾
𝑛
}, {𝛽
𝑛
+ 𝛾
𝑛
} ⊂ [𝑐, 𝑑] for some 𝑐, 𝑑 ∈ (0, 1);

(iii) 0 < lim inf
𝑛→∞

𝜎
𝑛
≤ lim sup

𝑛→∞
𝜎
𝑛
< 1.

For arbitrary 𝑥
0
∈ 𝐶 define the sequence {𝑥

𝑛
} iteratively by

𝑦
𝑛
= 𝛽
𝑛
𝑆
𝑛
𝑥
𝑛
+ 𝛾
𝑛
𝑥
𝑛
+ (1 − 𝛽

𝑛
− 𝛾
𝑛
)Π
𝐶
(𝐼 − 𝜇

1
𝐵
1
)

× Π
𝐶
(𝐼 − 𝜇

2
𝐵
2
) 𝑥
𝑛
,

𝑥
𝑛+1

= 𝛼
𝑛
[𝑥
𝑛
− 𝜎
𝑛
(𝑁 (𝑤

𝑛
, 𝑘
𝑛
) + 𝑢
𝑛
)]

+ (1 − 𝛼
𝑛
) 𝑦
𝑛
, 𝑢
𝑛
∈ 𝐴 (𝑔 (𝑥

𝑛
)) , ∀𝑛 ≥ 0,

(73)

where {𝑢
𝑛
} is defined by

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑢
𝑛+1

󵄩󵄩󵄩󵄩 ≤ (1 + 𝜀)𝐻 (𝐴 (𝑔 (𝑥
𝑛+1

)) , 𝐴 (𝑔 (𝑥
𝑛
))) ,

∀𝑛 ≥ 0,

(74)

for any 𝑤
𝑛

∈ 𝑇𝑥
𝑛
, 𝑘
𝑛

∈ 𝐹𝑥
𝑛
and some 𝜀 > 0. Assume

that ∑∞
𝑛=0

sup
𝑥∈𝐷

‖𝑆
𝑛+1

𝑥 − 𝑆
𝑛
𝑥‖ < ∞ for any bounded subset

𝐷 of 𝐶 and let 𝑆 be a mapping of 𝐶 into itself defined by
𝑆𝑥 = lim

𝑛→∞
𝑆
𝑛
𝑥 for all 𝑥 ∈ 𝐶 and suppose that Fix(𝑆) =

⋂
∞

𝑖=0
Fix(𝑆
𝑖
). Then {𝑥

𝑛
} converges weakly to some 𝑥 ∈ Δ, and

for any 𝑤 ∈ 𝑇𝑥, 𝑘 ∈ 𝐹𝑥, (𝑥, 𝑤, 𝑘) is a solution of the MVVI
(15).

Proof. First of all, repeating the same arguments as those in
the proof ofTheorem 14, we can prove that for any V ∈ 𝐶, 𝜆 >

0, there exists a point 𝑥 ∈ 𝐶 such that (𝑥, 𝑤, 𝑘) is a solution of
the MVVI (14), for any 𝑤 ∈ 𝑇𝑥 and 𝑘 ∈ 𝐹𝑥. In addition, in
terms of Proposition 5 we know that 𝑉 + 𝜆𝐴 ∘ 𝑔 is a single-
valued mapping due to the fact that 𝑉 + 𝜆𝐴 ∘ 𝑔 is 𝜙-strongly
accretive. Assume that 𝑁(𝑇𝑥, 𝐹𝑥) + 𝜆𝐴(𝑔(𝑥)) : 𝑋 → 𝐶 is
𝜆
0
strictly pseudocontractive and 𝛼

0
strongly accretive with

𝜆
0
+𝛼
0
≥ 1.Then by Lemma 17 we conclude that themapping

𝑥 󳨃→ 𝑥−(𝑁(𝑇𝑥, 𝐹𝑥)+𝜆𝐴(𝑔(𝑥))) is nonexpansive. Meantime,
by Lemma 18 we know that𝐺 : 𝐶 → 𝐶 is also nonexpansive.
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Without loss of generality we may assume that V = 0 and
𝜆 = 1. Let 𝑝 ∈ Δ and let 𝑟 > 0 be sufficiently large such that
𝑥
0
∈ 𝐵
𝑟
(𝑝) =: 𝐵. Observe that

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝
󵄩󵄩󵄩󵄩 ≤ 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑆𝑛𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩 + 𝛾
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

+ (1 − 𝛽
𝑛
− 𝛾
𝑛
)
󵄩󵄩󵄩󵄩𝐺𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

≤ 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩 + 𝛾
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

+ (1 − 𝛽
𝑛
− 𝛾
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩 .

(75)

Utilizing (75) and repeating the same arguments as those in
the proof of Theorem 14, we can derive 𝑥

𝑛
∈ 𝐵 for all 𝑛 ≥ 0.

Hence {𝑥
𝑛
} is bounded.

Let us show that lim
𝑛→∞

‖𝑥
𝑛
−𝑦
𝑛
‖ = 0 and lim

𝑛→∞
‖𝑥
𝑛
−

𝑥
𝑛+1

‖ = 0.
Indeed, repeating the same arguments as those of (41) in

the proof ofTheorem 14, we obtain from (73) and (75) that for
all 𝑛 ≥ 0

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑝
󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

− 𝛼
𝑛
𝜎
𝑛
(1 − 𝜎

𝑛
) 𝜑
1

× (
󵄩󵄩󵄩󵄩𝑁 (𝑤

𝑛
, 𝑘
𝑛
) + 𝑢
𝑛

󵄩󵄩󵄩󵄩) − 𝛼
𝑛
(1 − 𝛼

𝑛
) 𝜑

× (
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑦

𝑛
− 𝜎
𝑛
(𝑁 (𝑤

𝑛
, 𝑘
𝑛
) + 𝑢
𝑛
)
󵄩󵄩󵄩󵄩)

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

.

(76)

It is easy to see that the limit lim
𝑛→∞

‖𝑥
𝑛
− 𝑝‖ exists. Mean-

time, it can be readily seen from (76) that

𝛼
𝑛
𝜎
𝑛
(1 − 𝜎

𝑛
) 𝜑
1
(
󵄩󵄩󵄩󵄩𝑁 (𝑤

𝑛
, 𝑘
𝑛
) + 𝑢
𝑛

󵄩󵄩󵄩󵄩)

+ 𝛼
𝑛
(1 − 𝛼

𝑛
) 𝜑 (

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑦
𝑛
− 𝜎
𝑛
(𝑁 (𝑤

𝑛
, 𝑘
𝑛
) + 𝑢
𝑛
)
󵄩󵄩󵄩󵄩)

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑝

󵄩󵄩󵄩󵄩

2

,

(77)

which together with conditions (i), (iii), and the existence of
lim
𝑛→∞

‖𝑥
𝑛
− 𝑝‖, implies that

lim
𝑛→∞

𝜑
1
(
󵄩󵄩󵄩󵄩𝑁 (𝑤

𝑛
, 𝑘
𝑛
) + 𝑢
𝑛

󵄩󵄩󵄩󵄩) = 0,

lim
𝑛→∞

𝜑 (
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑦

𝑛
− 𝜎
𝑛
(𝑁 (𝑤

𝑛
, 𝑘
𝑛
) + 𝑢
𝑛
)
󵄩󵄩󵄩󵄩) = 0.

(78)

Utilizing the properties of 𝜑 and 𝜑
1
, we get

Lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑁 (𝑤
𝑛
, 𝑘
𝑛
) + 𝑢
𝑛

󵄩󵄩󵄩󵄩 = 0,

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑦
𝑛
− 𝜎
𝑛
(𝑁 (𝑤

𝑛
, 𝑘
𝑛
) + 𝑢
𝑛
)
󵄩󵄩󵄩󵄩 = 0.

(79)

Note that
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑦

𝑛

󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑦

𝑛
− 𝜎
𝑛
(𝑁 (𝑤

𝑛
, 𝑘
𝑛
) + 𝑢
𝑛
)
󵄩󵄩󵄩󵄩

+ 𝜎
𝑛

󵄩󵄩󵄩󵄩𝑁 (𝑤
𝑛
, 𝑘
𝑛
) + 𝑢
𝑛

󵄩󵄩󵄩󵄩 .

(80)

So, we have

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑦
𝑛

󵄩󵄩󵄩󵄩 = 0. (81)

Also, observe that

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥
𝑛

󵄩󵄩󵄩󵄩 ≤ 𝛼
𝑛
𝜎
𝑛

󵄩󵄩󵄩󵄩𝑁 (𝑤
𝑛
, 𝑘
𝑛
) + 𝑢
𝑛

󵄩󵄩󵄩󵄩

+ (1 − 𝛼
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑦

𝑛

󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑁 (𝑤

𝑛
, 𝑘
𝑛
) + 𝑢
𝑛

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑦

𝑛

󵄩󵄩󵄩󵄩 .

(82)

Thus from (79) and (81) it follows that

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥
𝑛

󵄩󵄩󵄩󵄩 = 0. (83)

Let us show that lim
𝑛→∞

‖𝑥
𝑛
− 𝐺𝑥
𝑛
‖ = lim

𝑛→∞
‖𝑥
𝑛
−

𝑆𝑥
𝑛
‖ = 0.
Indeed, from (73) we obtain that

𝛽
𝑛

𝛽
𝑛
+ 𝛾
𝑛

(𝑆
𝑛
𝑥
𝑛
− 𝐺𝑥
𝑛
) +

𝛾
𝑛

𝛽
𝑛
+ 𝛾
𝑛

(𝑥
𝑛
− 𝐺𝑥
𝑛
)

=
𝛽
𝑛
𝑆
𝑛
𝑥
𝑛
+ 𝛾
𝑛
𝑥
𝑛

𝛽
𝑛
+ 𝛾
𝑛

− 𝐺𝑥
𝑛

=
𝑦
𝑛
− (1 − 𝛽

𝑛
− 𝛾
𝑛
) 𝐺𝑥
𝑛

𝛽
𝑛
+ 𝛾
𝑛

− 𝐺𝑥
𝑛

=
𝑦
𝑛
− 𝐺𝑥
𝑛

𝛽
𝑛
+ 𝛾
𝑛

.

(84)

Utilizing Lemma 10 we deduce from (73) and (84) that

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩𝛽𝑛 (𝑆𝑛𝑥𝑛 − 𝑝) + 𝛾

𝑛
(𝑥
𝑛
− 𝑝)

+ (1 − 𝛽
𝑛
− 𝛾
𝑛
) (𝐺𝑥
𝑛
− 𝑝)

󵄩󵄩󵄩󵄩

2

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

(𝛽
𝑛
+ 𝛾
𝑛
) [

𝛽
𝑛

𝛽
𝑛
+ 𝛾
𝑛

(𝑆
𝑛
𝑥
𝑛
− 𝑝)

+
𝛾
𝑛

𝛽
𝑛
+ 𝛾
𝑛

(𝑥
𝑛
− 𝑝)]

+ (1 − 𝛽
𝑛
− 𝛾
𝑛
) (𝐺𝑥
𝑛
− 𝑝)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

≤ (𝛽
𝑛
+ 𝛾
𝑛
)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝛽
𝑛

𝛽
𝑛
+ 𝛾
𝑛

(𝑆
𝑛
𝑥
𝑛
− 𝑝)

+
𝛾
𝑛

𝛽
𝑛
+ 𝛾
𝑛

(𝑥
𝑛
− 𝑝)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

+ (1 − 𝛽
𝑛
− 𝛾
𝑛
)
󵄩󵄩󵄩󵄩𝐺𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

− (𝛽
𝑛
+ 𝛾
𝑛
) (1 − 𝛽

𝑛
− 𝛾
𝑛
) 𝜑
2

× (

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝛽
𝑛

𝛽
𝑛
+ 𝛾
𝑛

(𝑆
𝑛
𝑥
𝑛
− 𝐺𝑥
𝑛
)

+
𝛾
𝑛

𝛽
𝑛
+ 𝛾
𝑛

(𝑥
𝑛
− 𝐺𝑥
𝑛
)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

)
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= (𝛽
𝑛
+ 𝛾
𝑛
)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝛽
𝑛

𝛽
𝑛
+ 𝛾
𝑛

(𝑆
𝑛
𝑥
𝑛
− 𝑝)

+
𝛾
𝑛

𝛽
𝑛
+ 𝛾
𝑛

(𝑥
𝑛
− 𝑝)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

+ (1 − 𝛽
𝑛
− 𝛾
𝑛
)
󵄩󵄩󵄩󵄩𝐺𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

− (𝛽
𝑛
+ 𝛾
𝑛
) (1 − 𝛽

𝑛
− 𝛾
𝑛
) 𝜑
2

× (
1

𝛽
𝑛
+ 𝛾
𝑛

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝐺𝑥
𝑛

󵄩󵄩󵄩󵄩)

≤ (𝛽
𝑛
+ 𝛾
𝑛
) [

𝛽
𝑛

𝛽
𝑛
+ 𝛾
𝑛

󵄩󵄩󵄩󵄩𝑆𝑛𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

+
𝛾
𝑛

𝛽
𝑛
+ 𝛾
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

−
𝛽
𝑛
𝛾
𝑛

(𝛽
𝑛
+ 𝛾
𝑛
)
2

𝜑
3
(
󵄩󵄩󵄩󵄩𝑆𝑛𝑥𝑛 − 𝑥

𝑛

󵄩󵄩󵄩󵄩)]

+ (1 − 𝛽
𝑛
− 𝛾
𝑛
)
󵄩󵄩󵄩󵄩𝐺𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

− (𝛽
𝑛
+ 𝛾
𝑛
) (1 − 𝛽

𝑛
− 𝛾
𝑛
) 𝜑
2

× (
1

𝛽
𝑛
+ 𝛾
𝑛

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝐺𝑥
𝑛

󵄩󵄩󵄩󵄩)

≤ 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑆𝑛𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

+ 𝛾
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

− 𝛽
𝑛
𝛾
𝑛
𝜑
3
(
󵄩󵄩󵄩󵄩𝑆𝑛𝑥𝑛 − 𝑥

𝑛

󵄩󵄩󵄩󵄩)

+ (1 − 𝛽
𝑛
− 𝛾
𝑛
)
󵄩󵄩󵄩󵄩𝐺𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

− (𝛽
𝑛
+ 𝛾
𝑛
) (1 − 𝛽

𝑛
− 𝛾
𝑛
) 𝜑
2

× (
1

𝛽
𝑛
+ 𝛾
𝑛

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝐺𝑥
𝑛

󵄩󵄩󵄩󵄩)

≤ 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

+ 𝛾
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

− 𝛽
𝑛
𝛾
𝑛
𝜑
3
(
󵄩󵄩󵄩󵄩𝑆𝑛𝑥𝑛 − 𝑥

𝑛

󵄩󵄩󵄩󵄩)

+ (1 − 𝛽
𝑛
− 𝛾
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

− (𝛽
𝑛
+ 𝛾
𝑛
) (1 − 𝛽

𝑛
− 𝛾
𝑛
) 𝜑
2

× (
1

𝛽
𝑛
+ 𝛾
𝑛

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝐺𝑥
𝑛

󵄩󵄩󵄩󵄩)

=
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

− 𝛽
𝑛
𝛾
𝑛
𝜑
3
(
󵄩󵄩󵄩󵄩𝑆𝑛𝑥𝑛 − 𝑥

𝑛

󵄩󵄩󵄩󵄩)

− (𝛽
𝑛
+ 𝛾
𝑛
) (1 − 𝛽

𝑛
− 𝛾
𝑛
) 𝜑
2

× (
1

𝛽
𝑛
+ 𝛾
𝑛

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝐺𝑥
𝑛

󵄩󵄩󵄩󵄩) ,

(85)

which hence implies that

𝛽
𝑛
𝛾
𝑛
𝜑
3
(
󵄩󵄩󵄩󵄩𝑆𝑛𝑥𝑛 − 𝑥

𝑛

󵄩󵄩󵄩󵄩)

+ (𝛽
𝑛
+ 𝛾
𝑛
) (1 − 𝛽

𝑛
− 𝛾
𝑛
) 𝜑
2

× (
1

𝛽
𝑛
+ 𝛾
𝑛

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝐺𝑥
𝑛

󵄩󵄩󵄩󵄩)

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

≤ (
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝

󵄩󵄩󵄩󵄩)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑦

𝑛

󵄩󵄩󵄩󵄩 .

(86)

Utilizing condition (ii) we conclude from (81) and (86) that

lim
𝑛→∞

𝜑
3
(
󵄩󵄩󵄩󵄩𝑆𝑛𝑥𝑛 − 𝑥

𝑛

󵄩󵄩󵄩󵄩) = 0,

lim
𝑛→∞

𝜑
2
(

1

𝛽
𝑛
+ 𝛾
𝑛

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝐺𝑥
𝑛

󵄩󵄩󵄩󵄩) = 0.

(87)

From the properties of 𝜑
2
and 𝜑

3
and condition (ii), it

immediately follows that

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑆𝑛𝑥𝑛 − 𝑥
𝑛

󵄩󵄩󵄩󵄩 = 0, lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝐺𝑥
𝑛

󵄩󵄩󵄩󵄩 = 0. (88)

Observe that
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑆𝑥

𝑛

󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑆

𝑛
𝑥
𝑛

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑆𝑛𝑥𝑛 − 𝑆𝑥

𝑛

󵄩󵄩󵄩󵄩 ,

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝐺𝑥
𝑛

󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑦

𝑛

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝐺𝑥

𝑛

󵄩󵄩󵄩󵄩 .

(89)

Thus, utilizing Lemma 11 and the assumption on {𝑆
𝑛
}, from

(81) and (88) we conclude that

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑆𝑥
𝑛

󵄩󵄩󵄩󵄩 = 0, lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝐺𝑥
𝑛

󵄩󵄩󵄩󵄩 = 0. (90)

Next, let us show that {𝑥
𝑛
} converges weakly to some 𝑥 ∈

Δ.
Indeed, repeating the same arguments as those in the

proof ofTheorem 14, we can prove that {𝑥
𝑛
} converges weakly

to some 𝑥 ∈ Δ. This completes the proof.

Theorem 20. Let 𝑋 be a uniformly convex and 2-uniformly
smooth Banach space and let 𝐶 be a nonempty closed convex
subset of𝑋 such that 𝐶±𝐶 ⊂ 𝐶. LetΠ

𝐶
be a sunny nonexpan-

sive retraction from𝑋 onto 𝐶. Let 𝑇 and 𝐹 : 𝑋 → 𝐶𝐵(𝑋) and
let𝐴 : 𝐶 → 2

𝐶 be threemultivaluedmappings, let𝑔 : 𝑋 → 𝐶

be a single-valued mapping, and let 𝑁(⋅, ⋅) : 𝑋 × 𝑋 → 𝐶

be a single-valued continuous mapping satisfying conditions
(C1)–(C5) inTheorem 2. Let𝐵

𝑖
: 𝐶 → 𝑋 be𝜆

𝑖
strictly pseudo-

contractive and𝛼
𝑖
strongly accretive with 𝜆

𝑖
+𝛼
𝑖
≥ 1 for 𝑖 = 1, 2.

Let {𝑆
𝑖
}
∞

𝑖=0
be a countable family of nonexpansivemappings of𝐶

into itself such thatΔ := ⋂
∞

𝑖=0
Fix(𝑆
𝑖
)∩Ω∩Γ ̸= 0, whereΩ is the

fixed point set of the mapping 𝐺 = Π
𝐶
(𝐼 − 𝜇

1
𝐵
1
)Π
𝐶
(𝐼 − 𝜇

2
𝐵
2
)

with 1−(𝜆
𝑖
/(1+𝜆

𝑖
))(1−√(1 − 𝛼

𝑖
)/𝜆
𝑖
) ≤ 𝜇
𝑖
≤ 1 for 𝑖 = 1, 2. Let

{𝛼
𝑛
}, {𝛽
𝑛
} ⊂ [0, 1] and {𝜎

𝑛
} ⊂ (0,∞) such that lim

𝑛→∞
𝛼
𝑛
𝜎
𝑛
=

0 and∑∞
𝑛=0

𝛼
𝑛
𝜎
𝑛
= ∞. For arbitrary𝑥

0
∈ 𝐶define the sequence

{𝑥
𝑛
} iteratively by (73), where {𝑢

𝑛
} is defined by (74) for any

𝑤
𝑛
∈ 𝑇𝑥
𝑛
, 𝑘
𝑛
∈ 𝐹𝑥
𝑛
and some 𝜀 > 0. Then, there exists 𝑑 > 0

such that for 0 < 𝛼
𝑛
𝜎
𝑛
≤ 𝑑, for all 𝑛 ≥ 0, {𝑥

𝑛
} converges strongly

to 𝑝 ∈ Δ provided lim
𝑛→∞

‖𝑥
𝑛+1

− 𝑥
𝑛
‖ = 0; in this case, for

any 𝑤 ∈ 𝑇𝑥, 𝑘 ∈ 𝐹𝑥, (𝑥, 𝑤, 𝑘) is a solution of the MVVI (15).



14 Abstract and Applied Analysis

Proof. First of all, repeating the same arguments as those in
the proof ofTheorem 14, we can prove that for any V ∈ 𝐶, 𝜆 >

0, there exists a point 𝑥 ∈ 𝐷(𝐴) = 𝐶 such that (𝑥, 𝑤, 𝑘) is a
solution of the MVVI (14), for any 𝑤 ∈ 𝑇𝑥 and 𝑘 ∈ 𝐹𝑥. In
addition, in terms of Proposition 5 we know that 𝑉 + 𝜆𝐴 ∘ 𝑔

is a single-valued mapping due to the fact that 𝑉 + 𝜆𝐴 ∘ 𝑔 is
𝜙-strongly accretive. Meantime, by Lemma 18 we know that
𝐺 : 𝐶 → 𝐶 is nonexpansive.

Without loss of generality we may assume that V = 0 and
𝜆 = 1. Let 𝑝 ∈ Δ. Then from (73) we deduce that for all 𝑛 ≥ 0

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝
󵄩󵄩󵄩󵄩 ≤ 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑆𝑛𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩 + 𝛾
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

+ (1 − 𝛽
𝑛
− 𝛾
𝑛
)
󵄩󵄩󵄩󵄩𝐺𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

≤ 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩 + 𝛾
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

+ (1 − 𝛽
𝑛
− 𝛾
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩 .

(91)

Repeating the same arguments as those of the remainder in
the proof ofTheorem 15, we can derive the desired result.
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