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In view of the usefulness and a great importance of the kinetic equation in specific chemical engineering problems, we discuss
the numerical solution of a simple fuzzy fractional kinetic equation applied for the hemicelluloses hydrolysis reaction. The fuzzy
approximate solution is derived based on the Legendre polynomials to the fuzzy fractional equation calculus. Moreover, the
complete error analysis is explained based on the application of fuzzy Caputo fractional derivative. The main advantage of the
present method is its superior accuracy which is obtained by using a limited number of Legendre polynomials. The method is
computationally interesting, and the numerical results demonstrate the effectiveness and validity of the method for solving fuzzy
fractional differential equations.

1. Introduction

A rigorous kinetic study of the acid hydrolysis of ligno-
cellulosic materials is a complicated issue due to several
factors: (1) the structure of thewhole cells should be protected
against the attacks of chemicals, (2) lignin hydrophobicity
creates an arduous access of protons to the raw material, (3)
interaction with other components, (4) presence of strong
bonds in the raw material, and (5) variable exposition of
hemicelluloses surface to the chemical attack along the
reaction [1]. Various researchers adapted Saeman’s kinetics to
describe the hydrolysis of hemicellulose and the formation of
byproducts at high temperatures [2, 3]. These models begin
with the work of Saeman for the hydrolysis of wood using
sulfuric acid [4].

In the present work, our focus is to find the approximate
solution of the fuzzy fractional model of the kinetics of

the hemicelluloses hydrolysis reaction catalysed by sulphuric
acid. We apply a family of orthogonal functions to derive a
numerical method for solving this type of kinetic equation of
the fuzzy Caputo fractional order.

1.1. Acid Hydrolyzing Reaction. First of all, in 1945, Faith [5]
investigated the dilute acid hydrolysis process by using wood
material in a 0.5 sulphuric acid solution. Neureiter et al.
[6] found that the temperature has an important role in the
formation of sugar degradation products. For hydrolyzing
the hemicellulose and cellulose, the temperature ranges are
from 100∘C to 140∘C. The acidity (concentration of acid) of
the system is another parameter that affects the hydrolysis
process. For the hydrolyzing of acid, both penetration into
the biomass and dispersion in the reactor can influence not
only the general reaction but also the reactor performance.
The sulphuric acid diffusivity depends on the nature of
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lignocellulosic substances. It is revealed that the diffusivity of
sulfuric acid in agricultural residues is extraordinary higher
than in hard wood [7]. It is with this motivation to investigate
the effect of sulfuric acid concentration on both of hydrolysis
of oil palm empty fruit bunch (OPEFB) fiber hydrolyzing and
analyzing the appropriate kineticmodel.TheOPEFB biomass
includes cellulose, hemicellulose, and lignin. In this study, to
obtain an in depth understanding to the hydrolysis reaction
and an optimum reaction condition for the process, the
reaction kinetics at a complete set of reaction conditions were
investigated. The respective rate constants were determined
as functions of temperature and sulfuric acid concentration
by a nonlinear regression analysis.

1.2. Fractional Kinetic Equation Model and Numerical Meth-
ods. It is now well established that fractional kinetic equa-
tions represent an appropriate model to describe physical
phenomena such as diffusion in porous media with fractal
geometry, kinematics in viscoelastic media, relaxation pro-
cesses in complex systems (including viscoelastic materials,
glassymaterials, synthetic polymers, and biopolymers), prop-
agation of seismic waves, and the rate of change of chemical
composition of a star [8–18].

These equations are obtained from the classical kinetic
equation by replacing the first- or second-order derivative by
fractional derivative [19–30]. In the nonstochastic situation,
fractional kinetic equations have been studied by Kochubĕı
[31], Saichev and Zaslavsky [17], Zaslavsky [18], Haubold and
Mathai [32], and Saxena et al. [33, 34].

In the few years, the analytical and numerical meth-
ods for solving fractional differential equations (FDEs)
have attracted much more consideration of mathematicians.
Although some studies have been exploited to solve FDEs
analytically [35–38], most of them do not have an exact
analytical solution. Therefore, numerical and approximation
techniques have been used for solving these equations. Some
of the most common methods are homotopy perturbation
method [39], Haar wavelet method [40], Spline collocation
method [41], fractional differencemethod (FDM) [42], power
seriesmethod [43], Adomian decompositionmethod (ADM)
[44], Kronecker convolution product [45], spectral methods
[46], He’s variational iteration method [47], and homotopy
analysis method [48].

It is somewhat extraordinary that recently the orthogonal
functions received remarkable utilizing for the fractional-
order differential equations [49, 50]. Much efforts have been
made to develop accurate algorithms using tau and collo-
cation based on operational matrices of some orthogonal
polynomials such as block pulse functions [51], Legendre
polynomials [52, 53], Chebyshev polynomials [54–56], Jacobi
polynomials [57, 58], and Laguerre polynomials [59]. The
main characteristic behind the approach using this technique
is that it reduces FDEs to those of solving a systemof algebraic
equations thus notably simplifying the problem.

Furthermore, spectral methods have been found very
robust tools for solving many types of fractional differential
equations which have inspired many authors to apply them
for these kinds of equations.The shifted Legendre operational

matrix for fractional derivatives was introduced by [53] and
applied with spectral methods for numerical solution of
multiterm linear and nonlinear fractional differential equa-
tions subject to initial conditions which were developed by
Kazem et al. [52] who applied fractional Legendre orthogonal
functions for solving these types of equations. Subsequently,
Doha et al. [55] introduced a new efficient Chebyshev spec-
tral algorithms for solving linear and nonlinear multiterm
fractional orders differential equations.Thereafter, Bhrawy et
al. [60] propose a method to approximate multiterm frac-
tional differential equations with variable coefficients using
a quadrature shifted Legendre tau approach. Consequently,
this way has been followed by several authors [54, 57, 59, 61].

On the other hand, the study of fuzzy differential equa-
tions is rapidly developing as a new field of fuzzy mathe-
matics. The fuzzy differential equations have been studied by
several authors [62–70]. Lately, Agarwal et al. [71] proposed
the concept of solutions for fractional differential equations
with uncertainty. They have considered Riemann-Liouville’s
differentiability with a fuzzy initial condition to solve FFDEs.
Afterward, several authors have studied the existence and
uniqueness of the solution of the fuzzy fractional differential
equations (FFDEs) under different types of fuzzy fractional
differentiability [72–75]; nevertheless, it is a little bit surpris-
ing that few papers reported numerical methods for solving
FFDEs [75–78].

The scope of this paper is to derive an explicit formula
for fuzzy fractional-order derivative of shifted fractional Leg-
endre polynomials of any degree in terms of shifted fractional
Legendre polynomials themselves, in the fuzzy Caputo sense
with order (0 < V ≤ 1). Also, we are concernedwith the direct
solution technique for solving the fuzzy fractional kinetic
equation (FFKE) which is extracted by using the kinetics data
of the acid hydrolysis reaction subject to nonhomogeneous
initial conditions.

In this paper, the fuzzy fractional derivative of the
proposed FFKE is approximated based on the shifted frac-
tional Legendre polynomials presented in [52], and then the
operational matrix of the fractional Caputo derivative of
order (0 < V ≤ 1) is specified, and we apply the shifted
fractional Legendre spectral tau (SCT) method to construct
the spectral solution for such problem. To the best of the
authors knowledge, such approach has not been employed for
solving linear fractional kinetic equations under uncertainty.

The paper is organized as follows. In Section 2, we
introduce some necessary definitions of fuzzy sets, fractional
calculus theory, kinetic equations, relevant properties of Leg-
endre polynomials, and some of the main properties of fuzzy
fractional derivatives. Section 3 is devoted to presentation
of the governing fractional kinetic equation. In Section 4,
the proposed method is explained for numerical solution
of the FFDEs. In Section 5, the derived FFKE is solved
based on the different values of constant coefficients in the
equation by applying the presented technique, and the error
of the approximate solution is depicted to demonstrate the
effectiveness of the method. Finally, some conclusions are
drawn.
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2. Preliminaries

In this section, some basic definitions and notations related
to the fuzzy sets and functions, Legendre polynomials, and
fractional kinetic equations are presented which will be used
throughout the paper.

2.1. Basic Definitions of Fuzzy Sets. The basic definitions
presented in this section are given in [79–82].

Definition 1. Let 𝑢 be a fuzzy set in R. 𝑢 is called a fuzzy
number if

(i) 𝑢 is normal: there exists 𝑥
0
∈ R such that 𝑢(𝑥

0
) = 1,

(ii) 𝑢 is convex: for all 𝑥, 𝑦 ∈ R and 0 ≤ 𝜆 ≤ 1, it holds
that

𝑢 (𝜆𝑥 + (1 − 𝜆) 𝑦) ≥ min {𝑢 (𝑥) , 𝑢 (𝑦)} , (1)

(iii) 𝑢 is upper semicontinuous: for any 𝑥
0
∈ R, it holds

that
𝑢 (𝑥

0
) ≥ lim

𝑥→𝑥

±

0

𝑢 (𝑥) , (2)

(iv) [𝑢]0 = supp(𝑢) is a compact subset of R.

In this paper, the set of all fuzzy numbers is denoted by
RF.

Definition 2. Let 𝑢 ∈ RF and 𝑟 ∈ [0, 1]. The 𝑟-cut of 𝑢 is
the crisp set [𝑢]𝑟 that contains all elements with membership
degree in 𝑢 greater than or equal to 𝑟, that is,

[𝑢]
𝑟

= {𝑥 ∈ R | 𝑢 (𝑥) ≥ 𝑟} . (3)

For a fuzzy number 𝑢, its 𝑟-cuts are closed intervals inR, and
we denote them by

[𝑢]
𝑟

= [𝑢
𝑟

1

, 𝑢
𝑟

2

] . (4)

According to Zadeh’s extension principle, the operation
of addition on RF is defined as follows:

(𝑢 + V) (𝑥) = sup
𝑦∈R

min {𝑢 (𝑦) , V (𝑥 − 𝑦)} , 𝑥 ∈ R, (5)

and scalar multiplication of a fuzzy number is given by

(𝑘 ⊙ 𝑢) (𝑥) =
{

{

{

𝑢(
𝑥

𝑘
) , 𝑘 > 0,

0̃, 𝑘 = 0,
(6)

where 0̃ ∈ RF.

Definition 3 (see [80]). The distance 𝐷(𝑢, V) between two
fuzzy numbers 𝑢 and V is defined as

𝐷 (𝑢, V) = sup
𝑟∈[0,1]

𝑑H ([𝑢]
𝑟

, [V]𝑟) , (7)

where

𝑑H ([𝑢]
𝑟

, [V]𝑟) = max {𝑢
𝑟

1

− V𝑟
1

 ,
𝑢
𝑟

2

− V𝑟
2

} (8)

is the Hausdorff distance between [𝑢]
𝑟 and [V]𝑟.

It is easy to see that 𝐷 is a metric in RF and has the
following properties (see [80, 83]):

(i) 𝐷(𝑢 ⊕ 𝑤, V ⊕ 𝑤) = 𝐷(𝑢, V), for all 𝑢, V, 𝑤 ∈ RF,
(ii) 𝐷(𝑘 ⊙ 𝑢, 𝑘 ⊙ V) = |𝑘|𝐷(𝑢, V), for all 𝑘 ∈ R, 𝑢, V ∈ RF,
(iii) 𝐷(𝑢⊕V, 𝑤⊕𝑒) ≤ 𝐷(𝑢, 𝑤)+𝐷(V, 𝑒), for all 𝑢, V, 𝑤 ∈ RF,
(iv) 𝐷(𝑢 + V, 0) ≤ 𝐷(𝑢, 0) + 𝐷(V, 0), for all 𝑢, V ∈ RF,
(v) (RF, 𝐷) is a complete metric space.

Definition 4 (see [84]). Let𝑓 and𝑔 be the two fuzzy-number-
valued functions on the interval [𝑎, 𝑏], that is, 𝑓, 𝑔 : [𝑎, 𝑏] →

RF. The uniform distance between fuzzy-number-valued
functions is defined by

𝐷
∗

(𝑓, 𝑔) := sup
𝑥∈[𝑎,𝑏]

𝐷(𝑓 (𝑥) , 𝑔 (𝑥)) . (9)

Remark 5 (see [83]). Let 𝑓 : [𝑎, 𝑏] → RF be fuzzy contin-
uous. Then, from property (iv) of Hausdorff distance, we can
define

𝐷(𝑓 (𝑥) , 0̃) = sup
𝑟∈[0,1]

max {𝑓
𝑟

1

(𝑥)
 ,
𝑓
𝑟

2

(𝑥)
} , ∀𝑥 ∈ [𝑎, 𝑏] .

(10)

Definition 6 (see [85]). Let 𝑥, 𝑦 ∈ RF. If there exists 𝑧 ∈ RF

such that 𝑥 = 𝑦⊕ 𝑧, then 𝑧 is called the H-difference of 𝑥 and
𝑦, and it is denoted by 𝑥 ⊖ 𝑦.

In this paper, the sign “⊖” always stands for H-difference,
and note that 𝑥 ⊕ 𝑦 ̸= 𝑥 + (−𝑦). Also, throughout the
paper, the Hukuhara-diference and generalized Hukuhara-
differentiability are assumed to be existed.

Theorem 7 (see [69]). Let 𝐹 : (𝑎, 𝑏) → RF be a function,
and denote [𝐹(𝑡)]𝑟 = [𝑓

𝑟
(𝑡), 𝑔

𝑟
(𝑡)], for each 𝑟 ∈ [0, 1]. Then,

(1) if 𝐹 is (1)-differentiable, then 𝑓
𝑟
(𝑡) and 𝑔

𝑟
(𝑡) are

differentiable functions and

[𝐹


(𝑡)]
𝑟

= [𝑓


𝑟

(𝑡) , 𝑔


𝑟

(𝑡)] , (11)

(2) if 𝐹 is (2)-differentiable, then 𝑓
𝑟
(𝑡) and 𝑔

𝑟
(𝑡) are

differentiable functions and

[𝐹


(𝑡)]
𝑟

= [𝑔


𝑟

(𝑡) , 𝑓


𝑟

(𝑡)] . (12)

Definition 8 (see [86]). Consider the 𝑛 × 𝑛 linear system of
equations

𝑎
11
𝑥
1
+ 𝑎

12
𝑥
2
+ ⋅ ⋅ ⋅ + 𝑎

1𝑛
𝑥
𝑛
= 𝑦

1
,

𝑎
21
𝑥
1
+ 𝑎

22
𝑥
2
+ ⋅ ⋅ ⋅ + 𝑎

2𝑛
𝑥
𝑛
= 𝑦

2
,

...

𝑎
𝑛1
𝑥
1
+ 𝑎

𝑛2
𝑥
2
+ ⋅ ⋅ ⋅ + 𝑎

𝑛𝑛
𝑥
𝑛
= 𝑦

𝑛
.

(13)

The matrix form of the earlier equations is

𝐴𝑋 = 𝑌, (14)
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where the coefficient matrix 𝐴 = (𝑎
𝑖𝑗
), 1 ≤ 𝑖, 𝑗 ≤ 𝑛 is a crisp

𝑛 × 𝑛 matrix and 𝑦
𝑖
∈ RF, 1 ≤ 𝑖 ≤ 𝑛. This system is called a

fuzzy linear system (FLS).

Definition 9 (see [86]). A fuzzy number vector (𝑥
1
, 𝑥
2
, . . . ,

𝑥
𝑛
)
𝑡 given by 𝑥

𝑖
= (𝑥

𝑖

𝑟

−

, 𝑥
𝑖

𝑟

+

), 1 ≤ 𝑖 ≤ 𝑛, 0 ≤ 𝑟 ≤ 1 is called a
solution of the fuzzy linear system (13) if

(

𝑛

∑
𝑗=1

𝑎
𝑖𝑗
𝑥
𝑗
)

𝑟

−

=

𝑛

∑
𝑗=1

(𝑎
𝑖𝑗
𝑥
𝑗
)
𝑟

−

= 𝑦
𝑖

𝑟

−

,

(

𝑛

∑
𝑗=1

𝑎
𝑖𝑗
𝑥
𝑗
)

𝑟

+

=

𝑛

∑
𝑗=1

(𝑎
𝑖𝑗
𝑥
𝑗
)
𝑟

+

= 𝑦
𝑖

𝑟

+

.

(15)

If for a particular 𝑘, 𝑎
𝑘𝑗
> 0, 1 ≤ 𝑗 ≤ 𝑛, we simply get

𝑛

∑
𝑗=1

𝑎
𝑘𝑗
𝑥
𝑗

𝑟

−

= 𝑦
𝑘

𝑟

−

,

𝑛

∑
𝑗=1

𝑎
𝑘𝑗
𝑥
𝑗

𝑟

+

= 𝑦
𝑘

𝑟

+

. (16)

To solve fuzzy linear systems, see [87].

In this part, a brief approach to the fractional calculus
based on the crisp concept is provided. For more details, see
[19, 25, 30].

Definition 10. The Caputo type fractional derivative of order
V > 0 of a function 𝑓 : (0,∞) → R is defined by

𝑐

𝐷
V
𝑓 (𝑥) =

1

Γ (𝑛 − V)
∫
𝑥

0

(𝑥 − 𝑡)
𝑛−V−1

𝑓 (𝑡) 𝑑𝑡. (17)

One of the most important advantages of using a Caputo
type fractional derivative is that the Caputo derivative of a
constant is zero, which means that this kind of derivative can
be used to model the rate of change.

For the Caputo derivative, we have
𝑐

𝐷
V
𝐶 = 0, (𝐶 is a constant) ,

𝑐

𝐷
V
𝑥
𝛽

=

{{

{{

{

0, for 𝛽 ∈ N
0
, 𝛽 < ⌈V⌉ ,

Γ (𝛽 + 1)

Γ(𝛽+1−V)
𝑥𝛽−V, for 𝛽∈N

0
, 𝛽≥⌈V⌉ or 𝛽∉N, 𝛽>⌊V⌋.

(18)

The ceiling function ⌈V⌉ is used to denote the smallest integer
greater than or equal to V and floor function ⌊V⌋ to denote the
largest integer less than or equal to V. Also, N = {1, 2, . . .} and
N
0
= {0, 1, 2, . . .}.

Definition 11 (see [30]). Similar to the differential equation of
integer order, the Caputo’s fractional differentiation is a linear
operation, that is,

𝑐

𝐷
V
(𝜆𝑓 (𝑥) + 𝜇𝑔 (𝑥)) = 𝜆

𝑐

𝐷
V
𝑓 (𝑥) + 𝜇

𝑐

𝐷
V
𝑔 (𝑥) , (19)

where 𝜆 and 𝜇 are constants.

2.2. Fractional Legendre Polynomials. The shifted Legendre
polynomials are generated from the three-term recurrence
relation:

𝐿
𝑖+1

(𝑥) =
(2𝑖 + 1) (2𝑥 − 1)

𝑖 + 1
𝐿
𝑖
(𝑥) −

𝑖

𝑖 + 1
𝐿
𝑖−1

(𝑥) ,

𝑖 = 1, 2, . . . ,

𝐿
0
(𝑥) = 1, 𝐿

1
(𝑥) = 2𝑥 − 1.

(20)

The analytic form of the shifted Legendre polynomial 𝐿
𝑛
(𝑥)

of degree 𝑛 is given by

𝐿
𝑛
(𝑥) =

𝑛

∑
𝑖=0

(−1)
𝑛+𝑖

(𝑛 + 𝑖)!

(𝑛 − 𝑖)!

𝑥𝑖

(𝑖!)
2

=

𝑛

∑
𝑖=0

𝑒
𝑖,𝑛
𝑥
𝑖

, (21)

in which

𝑒
𝑖,𝑛

= (−1)
𝑛+𝑖

(𝑛 + 𝑖)!

(𝑛 − 𝑖)!(𝑖!)
2

, (22)

where

𝐿
𝑛
(0) = (−1)

𝑛

, 𝐿
𝑛
(1) = 1. (23)

The fractional-order Legendre functions (FLFs) can be
defined by introducing the change of variable 𝑡 = 𝑥𝛼 and
𝛼 > 0 on shifted Legendre polynomials. Let the FLFs 𝐿

𝑖
(𝑥𝛼)

be denoted by FL𝛼
𝑖

(𝑥) [52]. The fractional-order Legendre
functions are a particular solution of the normalized eigen-
functions of the singular Sturm-Liouville problem

((𝑥 − 𝑥
1+𝛼

) FL𝛼
𝑖

)


+ 𝛼
2

𝑖 (𝑖 + 1) 𝑥
𝛼−1FL𝛼

𝑖

(𝑥) = 0,

𝑥 ∈ (0, 1) .

(24)

Then, FL𝛼
𝑖

(𝑥) by using (20) can be obtained as follows

FL𝛼
𝑖+1

(𝑥) =
(2𝑖 + 1) (2𝑥

𝛼 − 1)

𝑖 + 1
FL𝛼
𝑖

(𝑥) −
𝑖

𝑖 + 1
FL𝛼
𝑖−1

(𝑥) ,

𝑖 = 1, 2, . . . ,

FL𝛼
0

(𝑥) = 1, FL𝛼
1

(𝑥) = 2𝑥
𝛼

− 1.

(25)

The analytic form of FL𝛼
𝑖

(𝑥) of degree 𝑖𝛼 given by

FL𝛼
𝑖

(𝑥) =

𝑖

∑
𝑠=0

𝑏
𝑠,𝑖
𝑥
𝑠𝛼

, (26)

where

𝑏
𝑠,𝑖
= (−1)

𝑖+𝑠
(𝑖 + 𝑠)!

(𝑖 − 𝑠)!(𝑠!)
2

. (27)

Note that FL𝛼
𝑖

(0) = (−1)
𝑖 and FL𝛼

𝑖

(1) = 1. The FLFs are
orthogonal with respect to the weight function 𝑤(𝑥) = 𝑥

𝛼−1

in the interval (0, 1] with the orthogonality property

∫
1

0

FL𝛼
𝑛

(𝑥) FL𝛼
𝑚

(𝑥) 𝑤 (𝑥) 𝑑𝑥 =
1

(2𝑛 + 1) 𝛼
𝛿
𝑛𝑚
. (28)
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A function𝑓(𝑥), square integrable in (0, 1], may be expressed
in terms of FLFs as

𝑓 (𝑥) =

∞

∑
𝑖=0

𝑎
𝑖
FL𝛼
𝑖

(𝑥) , (29)

where the coefficients 𝑎
𝑗
are given by

𝑎
𝑗
= 𝛼 (2𝑖 + 1) ∫

1

0

𝑓 (𝑥) FL𝛼
𝑖

(𝑥) 𝑤 (𝑥) 𝑑𝑥,

𝑗 = 0, 1, 2, . . . .

(30)

In practice, only the first (𝑚)-terms FLFs are considered.
Then, we have

𝑓 (𝑥) ≃ 𝑓
𝑚
(𝑥) =

𝑚−1

∑
𝑖=0

𝑎
𝑖
FL𝛼
𝑖

(𝑥) = 𝐴
𝑇

Φ (𝑥) , (31)

with

𝐴 = [𝑎
0
, 𝑎
1
, . . . , 𝑎

𝑚−1
]
𝑇

,

Φ (𝑥) = [FL𝛼
0

(𝑥) , FL𝛼
1

(𝑥) , . . . , FL𝛼
𝑚−1

(𝑥)]
𝑇

.

(32)

Theorem 12 (see [52]). Let the function𝐷𝑘𝛼𝑓(𝑥) ∈ 𝐶(0, 1] for
𝑘 = 0, 1, . . . , 𝑚, (2𝑚 + 1) ≤ 𝛼 and P𝑚 = Span{FL𝛼

𝑖

(𝑥)}
𝑚−1

𝑖=0

. If
𝑓
𝑚
= 𝐴𝑇Φ(𝑥) is the best approximation to𝑓 from P𝑚, then the

error bound is presented as follows:

𝑓 (𝑥) − 𝑓
𝑚
(𝑥)

𝑤 ≤
𝑀
𝛼

Γ (𝑚𝛼 + 1)
√

1

(2𝑚 + 1) 𝛼
, (33)

where𝑀
𝛼
≥ |𝐷𝑚𝛼𝑓(𝑥)|, 𝑥 ∈ (0, 1].

The later theorem proved that the approximate function
based on the fractional Legendre polynomials converges to
the function 𝑓.

2.3. Fractional Kinetic Equations. Chemical kinetics as a
science began in the middle of the 19th century, when
Wilhelmy [88] was apparently the first to recognize that the
rate at which a chemical reaction proceeds follows definite
laws, and although his work paved the way for the law of
mass action of Waage and Guldberg [89], it attracted little
attention until it was taken up by Ostwald towards the end of
the century, as discussed by Laidler [90]. Wilhelmy realized
that chemical rates depended on the concentrations of the
reactants [91].

Here, we provide a brief definition to illustrate the
chemical kinetic process. One can find more details in [91,
92].

Definition 13. Chemical kinetics is the study of the rate at
which a chemical process occurs. Besides information about
the speed atwhich reactions occur, kinetics also sheds light on
the reaction mechanism (exactly how the reaction occurs).

The production and destruction of species is described by
kinetic equations governing the change of the number density
𝑁
𝑖
of species 𝑖 over time [32–34], that is,

𝑑

𝑑𝑡
𝑁
𝑖
(𝑡) = 𝑎𝑁

𝑖
(𝑡) , (34)

where 𝑎 is a constant. The destruction rate of the particles of
type 𝑖 is given by

𝑑

𝑑𝑡
𝑁
𝑖
(𝑡) = −𝑏𝑁

𝑖
(𝑡) , (35)

where 𝑏 is a constant.Then, the residual effect can be taken as

𝑑

𝑑𝑡
𝑁
𝑖
(𝑡) = −𝑐𝑁

𝑖
(𝑡) , (36)

where 𝑐 = 𝑏 − 𝑎. The solution of (36) can be seen as a simple
function

𝑁
𝑖
(𝑡) = 𝑁

0
𝑒
−𝑐𝑡

. (37)

A fractional production-destruction equation can be
obtained from a standard production-destruction equation
by considering a fractional integral in place of a classical
integral. A fractional production-destruction equation can
be obtained, after dropping 𝑖, as

𝑁(𝑡) − 𝑁
0
= −𝑐

V
0
𝐷
−V
𝑡

𝑁(𝑡) , V > 0, (38)

where
0
𝐷−V
𝑡

represents theRiemann-Liouville fractional inte-
gral.

It is worth to note here the alternative approach of
Mainardi [93], for solving the fractional relaxation-oscillation
equation, that is, the fractional production-destruction equa-
tion with the Caputo fractional-order derivative.

As it can be seen, the fractional kinetic equation is
obtained by replacing the standard integral with the frac-
tional Riemann-Liouville integral. In the present research,
firstly, we replace the Caputo fractional-order derivative with
the classical derivative in the kinetic equation, and then the
derived fractional kinetic equation in the sense of the fuzzy
setting is solved by the proposed technique.

2.4. Fuzzy Fractional Differentiability. In the fractional lit-
erature, Mittag-Leffler function plays an important role in
the theory of fractional calculus/fuzzy fractional calculus and
fractional differential equations/fuzzy fractional differential
equations which is defined by [19, 30, 94]:

𝐸
𝛼,𝛽

(𝑧) =

∞

∑
𝑘=0

𝑧𝑘

Γ (𝛼𝑘 + 𝛽)
, 𝛼 > 0, 𝛽 > 0. (39)

Also, it is useful to review some basic definitions and
theorems related to the FFDEs. For more details see [72, 74,
75]. Firstly, we present some notations which are used later in
the paper.

(i) 𝐿RF
𝑝

(𝑎, 𝑏), 1 ≤ 𝑝 ≤ ∞ is the set of all fuzzy-valued
measurable functions 𝑓 on [𝑎, 𝑏], where ‖𝑓‖

𝑝

=

(∫
1

0

(𝑑(𝑓(𝑡), 0))
𝑝

𝑑𝑡)
1/𝑝

.
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(ii) 𝐶RF[𝑎, 𝑏] is a space of fuzzy-valued functions which
are continuous on [𝑎, 𝑏].

(iii) 𝐶RF
𝑛

[𝑎, 𝑏] indicates the set of all fuzzy-valued func-
tions which are continuous up to order 𝑛.

(iv) 𝐴𝐶RF[𝑎, 𝑏] denotes the set of all fuzzy-valued func-
tions which are absolutely continuous.

Note that one can find easily these notations in the crisp
context in [30] and references therein.

Definition 14 (see [74]). Let 𝑓 ∈ 𝐶RF[𝑎, 𝑏] ∩ 𝐿RF[𝑎, 𝑏].
The Riemann-Liouville integral of fuzzy-valued function 𝑓 is
defined as

(
RL
𝐼
V

𝑎+

𝑓) (𝑥) =
1

Γ (V)
∫
𝑥

𝑎

𝑓 (𝑡) 𝑑𝑡

(𝑥 − 𝑡)
1−V , 𝑥 > 𝑎, 0 < V ≤ 1.

(40)

Definition 15 (see [74]). Let 𝑓 ∈ 𝐶RF[𝑎, 𝑏] ∩ 𝐿RF[𝑎, 𝑏]. Then
𝑓 is said to be Caputo’s H-differentiable at 𝑥 when

(i) (𝑐𝐷V
𝑎+

𝑓) (𝑥) = (
RL
𝐷
𝛽

𝑎+

[𝑓 (𝑡) ⊖ 𝑓 (𝑎)]) (𝑥) ,

(ii) (𝑐𝐷V
𝑎+

𝑓) (𝑥) = (
RL
𝐷
𝛽

𝑎+

[−𝑓 (𝑎) ⊖ (−𝑓 (𝑡))]) (𝑥) .

(41)

Definition 16 (see [74]). Let 𝑓 : 𝐿RF[𝑎,𝑏] ∩ 𝐶RF[𝑎, 𝑏] and 𝑥
0
∈

(𝑎, 𝑏) andΦ(𝑥) = (1/Γ(1−V)) ∫
𝑥

𝑎

(𝑓(𝑡)/(𝑥−𝑡)
V
)𝑑𝑡. We say that

𝑓(𝑥) is fuzzy Caputo fractional differentiable of order 0 < V ≤
1 at 𝑥

0
, if there exists an element (𝑐𝐷V

𝑎+

𝑓)(𝑥
0
) ∈ 𝐶𝐸[𝑎, 𝑏] such

that for all 0 ≤ 𝑟 ≤ 1, ℎ > 0,

(i) (𝑐𝐷V
𝑎+

𝑓) (𝑥
0
) = lim

ℎ→0
+

Φ(𝑥
0
+ ℎ) ⊖ Φ (𝑥

0
)

ℎ

= lim
ℎ→0

+

Φ(𝑥
0
) ⊖ Φ (𝑥

0
− ℎ)

ℎ
,

(42)

or

(ii) (𝑐𝐷V
𝑎+

𝑓) (𝑥
0
) = lim

ℎ→0
+

Φ(𝑥
0
) ⊖ Φ (𝑥

0
+ ℎ)

−ℎ

= lim
ℎ→0

+

Φ(𝑥
0
− ℎ) ⊖ Φ (𝑥

0
)

−ℎ
,

(43)

or

(iii) (𝑐𝐷V
𝑎+

𝑓) (𝑥
0
) = lim

ℎ→0
+

Φ(𝑥
0
+ ℎ) ⊖ Φ (𝑥

0
)

ℎ

= lim
ℎ→0

+

Φ(𝑥
0
− ℎ) ⊖ Φ (𝑥

0
)

−ℎ
,

(44)

or

(iv) (𝑐𝐷V
𝑎+

𝑓) (𝑥
0
) = lim

ℎ→0
+

Φ(𝑥
0
) ⊖ Φ (𝑥

0
+ ℎ)

−ℎ

= lim
ℎ→0

+

Φ(𝑥
0
) ⊖ Φ (𝑥

0
− ℎ)

ℎ
.

(45)

For the sake of simplicity, we say that the fuzzy-valued
function 𝑓

𝑐

[(1) − V] is differentiable if it is differentiable as
in Definition 16 case (i), and 𝑓 is 𝑐[(2) − V] differentiable if it
is differentiable as in Definition 16 case (ii), and so on for the
other cases.

Theorem 17 (see [74]). Let 0 < V ≤ 1 and 𝑓 ∈ 𝐴𝐶
RF[𝑎, 𝑏];

then the fuzzy Caputo fractional derivative exists almost
everywhere on (𝑎, 𝑏), and for all 0 ≤ 𝑟 ≤ 1, one has

(
𝑐

𝐷
V
𝑎+

𝑓) (𝑥; 𝑟)

= [
1

Γ (1 − V)
∫
𝑥

𝑎

𝑓
𝑟

−

(𝑡) 𝑑𝑡

(𝑥 − 𝑡)
V ,

1

Γ (1 − V)
∫
𝑥

𝑎

𝑓
𝑟

+

(𝑡) 𝑑𝑡

(𝑥 − 𝑡)
V ]

= [(𝐼
1−V
𝑎+

𝐷𝑓
𝑟

−

) (𝑥) , (𝐼
1−V
𝑎+

𝐷𝑓
𝑟

+

) (𝑥)] ,

(46)

when 𝑓 is (1) differentiable, and

(
𝑐

𝐷
V
𝑎+

𝑓) (𝑥; 𝑟)

= [
1

Γ (1 − V)
∫
𝑥

𝑎

𝑓
𝑟

+

(𝑡) 𝑑𝑡

(𝑥 − 𝑡)
V ,

1

Γ (1 − V)
∫
𝑥

𝑎

𝑓
𝑟

−

(𝑡) 𝑑𝑡

(𝑥 − 𝑡)
V ]

= [(𝐼
1−V
𝑎+

𝐷𝑓
𝑟

+

) (𝑥) , (𝐼
1−V
𝑎+

𝐷𝑓
𝑟

−

) (𝑥)] ,

(47)

when 𝑓 is (2) differentiable.

3. The Governing Fractional Kinetic Equation

In this section, the kinetic data experimented based on
the hydrolysis of OPEFB fiber at 120∘C under low acid
concentration conditions [95] is modelled by means of the
fractional calculus.

In what follows are the detailed equation for the classic
kinetic model that will be used to analyze the experimental
data presented by [95].

3.1. Model Development. By the addition of water to the
xylan, the hydrolysis occurs and xylose is produced

xylose Degradation products.Hemicellulose xylan
𝑘1 𝑘2

H2O 3H2O

(48)

In 1945, Saeman [4] worked on dilute sulfuric acid
that was catalyzed hemicellulose hydrolysis. The reaction of
hemicellulose hydrolysis was modelled as a consecutive first-
order reaction with two steps. Firstly, xylan is hydrolyzed
to xylose (𝑘

1
), and secondly the furfural was produced by

degradation of xylose (𝑘
2
) when it is released from the solid

matrix and entered the acidic solution. This classic kinetic
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Table 1: 𝑘
1

and 𝑘
2

values calculated at 120∘C and acid concentrations
of 2%–6%.

2% H2SO4 4% H2SO4 6% H2SO4

𝑘
1

0.012 0.014 0.05
𝑘
2

0.001 0.001 0.05

model that will be utilized to analyze this experimental data
is revealed by the equation as follows:

xylan → xylose → Decomposed products

𝐴
𝑘
1

→ 𝐵
𝑘
2

→ 𝐶,

(49)

where 𝐴 = xylan; 𝐵 = xylose; 𝐶 = Decomposition products;
𝑘
1
= sugar release rate; 𝑘

2
= sugar decomposition rate.

Material balance for components “𝐴” and “𝐵” for the first-
order kinetics gives

−
𝑑𝐶

𝐴
(𝑡)

𝑑𝑡
= 𝑘

1
𝐶
𝐴
(𝑡) (50)

in which the initial concentration at 𝑡 = 0 is presented by
𝐶
𝐴
= 𝐶

𝐴
0

. Also, we have the same way for material 𝐵:

−
𝑑𝐶

𝐵
(𝑡)

𝑑𝑡
= 𝑘

1
𝐶
𝐴
(𝑡) − 𝑘

2
𝐶
𝐵
(𝑡) (51)

in which the initial concentration at 𝑡 = 0 is presented by
𝐶
𝐵

= 𝐶
𝐵
0

. Equation (51) can be integrated, and using the
given boundary condition results in

𝐶
𝐴
(𝑡) = 𝐶

𝐴
0

exp (−𝑘
1
𝑡) . (52)

Substituting (51) into (52) gives

𝑑𝐶
𝐵
(𝑡)

𝑑𝑡
+ 𝑘

2
𝐶
𝐵
(𝑡) = 𝑘

1
𝐶
𝐴
0

exp (−𝑘
1
𝑡) . (53)

In this part, we apply the fractional Caputo-type deriva-
tive in (53) instead of the classical ones. So, we have

𝑐

𝐷
V
𝐶
𝐵
(𝑡) + 𝑘

2
𝐶
𝐵
(𝑡) = 𝑘

1
𝐶
𝐴
0

exp (−𝑘
1
𝑡) . (54)

3.2. Determination of Reaction Rate Constants. Determina-
tions of the rate constants (𝑘

1
, 𝑘
2
) depend on the order of

reaction. By using experimental data, the correct order would
be calculated by which function of rate equation best fit
the linear demand. When the order is established, the rate
constants are determined from the slope of the linear plot
(Table 1) by using Figures 1, 2, and 3 and (55).

For a first-order reaction, the rate can be determined from
the rate of formation of xylose which can be explained by
equation

ln 𝐶
𝐴

𝐶
𝐴
0

= −𝑘
1
𝑡. (55)
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Figure 1: Comparison between calculated and experimental value
of xylose in hydrolysis of OPEFB with 2% H

2

SO
4

at 120∘C [95].
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Figure 2: Comparison between calculated and experimental value
of xylose in hydrolysis of OPEFB with 4% H

2

SO
4

at 120∘C [95].

4. Shifted Fractional Legendre Spectral
Tau Method

The main objective of this section is to apply the shifted
fractional Legendre spectral tau (SFLT) method to construct
the spectral solution for the fractional linear kinetic equation
presented in Section 3, in the fuzzy concept. We now derive
the operational matrix for the fuzzy fractional calculus and
formulate the problem in terms of the Caputo fractional
derivative.

Please notice that one can easily see why we choose such
orthogonal function for this contribution in [52, 53] and
references therein.

Now, definitions of fuzzy approximation function are
established based on the application of fractional Legendre
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Figure 3: Comparison between calculated and experimental value
of xylose in hydrolysis of OPEFB with 6% H

2

SO
4

at 120∘C [95].

polynomials. For more details about the fuzzy approximation
functions, see [96–99].

4.1. Approximation of Fuzzy Function

Definition 18. For 𝑦 ∈ 𝐿RF
𝑝

(0, 1) ∩ 𝐶RF(0, 1) and fractional
Legendre polynomial FL𝛼

𝑖

(𝑥) a real-valued function over
(0, 1), the fuzzy function is approximated by

𝑦 (𝑥) =

∞

∑
𝑗=0

∗

𝑎
𝑗
⊙FL𝛼

𝑖

(𝑥) , 𝑥 ∈ (0, 1) , (56)

where the fuzzy coefficients 𝑎
𝑗
are obtained by

𝑎
𝑗
= 𝛼 (2𝑗 + 1) ⊙ ∫

1

0

𝑦 (𝑥) ⊙ FL𝛼
𝑖

(𝑥) ⊙ 𝑤 (𝑥) 𝑑𝑥, (57)

inwhich FL𝛼
𝑖

(𝑥) is as the same in (26), and∑∗means addition
with respect to ⊕ in RF.

Remark 19. Practically, only the first (𝑚)-terms shifted frac-
tional Legendre polynomials are considered. So, we have

𝑦 (𝑥) ≃ 𝑦
𝑚
(𝑥) =

𝑚−1

∑
𝑗=0

∗

𝑎
𝑗

⊙ FL𝛼
𝑖

(𝑥) = 𝐴
𝑇

𝑚

⊙ Φ
𝑚
(𝑥) ; (58)

hence

𝑦
𝑟

(𝑥) ≃ 𝑦
𝑟

𝑚

(𝑥) =

𝑚−1

∑
𝑗=0

∗

𝑎
𝑟

𝑗

⊙ FL𝛼
𝑖

(𝑥) , (59)

were the fuzzy shifted fractional Legendre coefficient vector
𝐴
𝑇

𝑚

and shifted fractional Legendre vectorΦ
𝑚
(𝑥) are defined

as

𝐴
𝑇

𝑚

= [𝑎
0
, 𝑎
1
, . . . , 𝑎

𝑚−1
] ,

Φ
𝑚
(𝑥) = [FL𝛼

0

(𝑥) , FL𝛼
1

(𝑥) , . . . , FL𝛼
𝑚−1

(𝑥)] .
(60)

Definition 20 (see [97]). A fuzzy-valued polynomial 𝑝∗ ∈

∏̃
𝑁

is the best approximation to fuzzy function 𝑓 on 𝜒 =

{𝑥
0
, 𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑁
}, if

max
𝑖=0,1,2,...,𝑁

𝐷(𝑝
∗

(𝑥
𝑖
) , 𝑓

𝑖
) = min

𝑝∈
̃
∏
𝑁

{ max
𝑖=0,1,2,...,𝑁

𝐷(𝑝 (𝑥
𝑖
) , 𝑓

𝑖
)} ,

(61)

in which ∏̃
𝑁

is the set of all fuzzy-valued polynomials.

The problem is addressed to the best shifted fractional
Legendre approximation, as we use fractional Legendre’s
nodes.

Theorem21. Thebest approximation of a fuzzy function based
on the fractional Legendre nodes exists and is unique.

Proof. The proof is an immediate result of Theorem 4.2.1 in
[97].

The following theorem defines an upper error bound for
the fuzzy approximation function based on the fractional
Legendre polynomials. Concerning this theorem, one can
find that the fuzzy approximate function based on the FLFs is
convergent to the desired fuzzy function.

Theorem 22. Let one consider that the function 𝑦(𝑥) : [𝑥
0
, 1]

→ 𝐿RF
𝑝

[0, 1]∩𝐶RF[0, 1] is continuously fuzzy differentiable for
𝑥
0
> 0, 𝑦(𝑥) ∈ 𝐶RF

𝑚

[𝑥
0
, 1] and the fractional-order derivative

is 0 < V ≤ 1 and P𝑚 = Span{FL𝛼
0

(𝑥), FL𝛼
1

(𝑥), . . . , FL𝛼
𝑚−1

(𝑥)}.
If 𝑦

𝑚
= 𝐴𝑇Φ(𝑥) is the best fuzzy approximation to 𝑦(𝑥) from

P𝑚, then the error bound is presented as follows:

𝐷
∗

(𝑦 (𝑥) , 𝑦
𝑚
(𝑥)) ≤

𝑀
V

Γ (𝑚V + 1)
√

1

(2𝑚 + 1) V
, (62)

where 𝑀V ≥ sup
𝑟∈[0,1]

max
𝑥∈[𝑥
0
,1]
{|𝐷V𝑦𝑟

1

(𝑥)|, |𝐷V𝑦𝑟
2

(𝑥)|} and
𝑦𝑟(𝑥) = [𝑦𝑟

1

(𝑥), 𝑦𝑟
2

(𝑥)].

Proof. Considering Definition 4 for which we know that

𝐷
∗

(𝑦 (𝑥) , 𝑦
𝑚
(𝑥))

= sup
𝑥∈[𝑥0 ,1]

𝐷 (𝑦 (𝑥) , 𝑦
𝑚
(𝑥))

= sup
𝑥∈[𝑥
0
,1]

sup
𝑟∈[0,1]

max {𝑦
𝑟

1

(𝑥) − 𝑦
𝑟

𝑚,1

(𝑥)

,

𝑦
𝑟

2

(𝑥) − 𝑦
𝑟

𝑚,2

(𝑥)

}

= sup
𝑟∈[0,1]

max {𝑦
𝑟

1

(𝑥) − 𝑦
𝑟

𝑚,1

(𝑥)
𝑤
,

𝑦
𝑟

2

(𝑥) − 𝑦
𝑟

𝑚,2

(𝑥)
𝑤
} .

(63)
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UsingTheorem 12, we have

𝐷
∗

(𝑦 (𝑥) , 𝑦
𝑚
(𝑥))

≤ sup
𝑟∈[0,1]

max{
𝐷

V𝑦
1
(𝑥)



Γ (𝑚V + 1)
√

1

(2𝑚 + 1) 𝛼
,

𝐷
V𝑦
2
(𝑥)



Γ (𝑚V + 1)
√

1

(2𝑚 + 1) 𝛼
}

≤
𝑀

V

Γ (𝑚V + 1)
√

1

(2𝑚 + 1) V
,

(64)

in which 𝑀V ≥ sup
𝑟∈[0,1]

max
𝑥∈[𝑥
0
,1]
{|𝐷V𝑦𝑟

1

(𝑥)|, |𝐷V𝑦𝑟
2

(𝑥)|}

and 𝑦𝑟(𝑥) = [𝑦𝑟
1

(𝑥), 𝑦𝑟
2

(𝑥)].

4.2. Operational Matrix of FLFs

Lemma 23. The fuzzy Caputo fractional derivative of order
0 < V ≤ 1 over the shifted fractional legendre functions can
be described in the form of

𝑐

𝐷
VFL𝛼

𝑖

(𝑥) =

𝑖

∑
𝑘=0

𝑏


𝑘,𝑖

Γ (𝑘𝛼 + 1)

Γ (𝑘𝛼 − V + 1)
𝑥
𝑘𝛼−V

, (65)

where 𝑏
𝑘,𝑖

= 0 if 𝑏
𝑘,𝑖

= (Γ(𝑘𝛼 + 1)/Γ(𝑘𝛼 − V + 1))𝑏
𝑘𝑗
.

Proof. Taking into account the analytic form of the FLFs
explained in Section 2.2 and (26) and the fuzzy fractional
Caputo definition, we have

𝑐

𝐷
VFL𝛼

𝑖

(𝑥) =

𝑖

∑
𝑘=0

𝑏
𝑘,𝑖

𝑐

𝐷
𝛼

⊙ 𝑥
𝑘𝛼

. (66)

Now, by utilizing the properties of the Caputo fractional
derivative explained in Section 2.1, the lemma can be
proved.

The fuzzy Caputo operational matrix based on the FLFs
is stated the same as the crisp concept. For more details, see
[52, 76]. So, we have

𝑐

𝐷
V
Φ (𝑥) ≃

𝑐

𝐷
(V)
Φ (𝑥) , (67)

where 𝑐𝐷(V) is the𝑚×𝑚 operationalmatrix of fuzzy fractional
Caputo’s derivative of FLFs and 𝑐

𝐷
V
Φ(𝑥) ∈ 𝐶RF[𝑎, 𝑏]. So,

using (67) and Lemma 23, we extend the operational matrix
of Caputo fractional-order derivative of FLFs in the sense of
the fuzzy setting as follows.

Theorem 24. Let one assume thatΦ(𝑥) is the FLF vector.𝐷(V)
𝑖,𝑗

is the𝑚-square operational matrix of fuzzy fractional Caputo’s
derivative of order 0 < V ≤ 1. Then, the elements of 𝐷(V)

𝑖,𝑗

are
achieved as

𝐷
(V)
𝑖,𝑗

=

𝑖

∑
𝑘=⌈𝛼⌉

𝜃
𝑖,𝑗,𝑘

, 𝑖 = 0, 1, . . . , 𝑚 − 1, (68)
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Figure 5: The absolute error for different values 𝑚 with V = 𝛼 =

0.75, 𝑘
1

= 0.012, and 𝑘
2

= 0.001.

in which 𝜃
𝑖,𝑗,𝑘

are acquired by

𝜃
𝑖,𝑗,𝑘

= 𝛼 (2𝑗 + 1)

×

𝑗

∑
𝑙=0

(−1)
𝑖+𝑗+𝑘+𝑙

(𝑖 + 𝑘)! (𝑙 + 𝑗)!Γ (𝑘𝛼 + 1)

(𝑖 − 𝑘)!(𝑘!)
2

Γ(𝑘𝛼−V+1)(𝑗 − 𝑙)!(𝑙!)
2

(𝑘𝛼 + 𝑙𝛼 + 𝛼 − V)
,

𝑗 = 0, 1, . . . , 𝑚 − 1.

(69)

Note that in𝐷(V), the first ⌈V⌉ rows are all zero.
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Proof. If we consider the fractional derivative in the crisp
context, then the proof of this theorem is obtained from
Theorem 2 in [52]. In the same way, if we consider the
fuzzy Caputo fractional derivative, then analogously to the
demonstration ofTheorem 1 in [52] and by using Lemma 23,
we can prove the relation (69).

Also, we can exhibit the operational matrix 𝐷(V) in the
alternative form as

𝐷
(V)

=

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

(

0 0 0 . . . 0
...

...
... . . .

...
0 0 0 . . . 0

⌈V⌉

∑
𝑘=⌈V⌉

𝜃
⌈V⌉,0,𝑘

⌈V⌉

∑
𝑘=⌈V⌉

𝜃
⌈V⌉,1,𝑘

⌈V⌉

∑
𝑘=⌈V⌉

𝜃
⌈V⌉,2,𝑘 . . .

⌈V⌉

∑
𝑘=⌈V⌉

𝜃
⌈V⌉,𝑚−1,𝑘

...
...

... . . .
...

𝑖

∑
𝑘=⌈V⌉

𝜃
𝑖,0,𝑘

𝑖

∑
𝑘=⌈V⌉

𝜃
𝑖,1,𝑘

𝑖

∑
𝑘=⌈V⌉

𝜃
𝑖,2,𝑘

. . .

𝑖

∑
𝑘=⌈V⌉

𝜃
𝑖,𝑚−1,𝑘

...
...

... . . .
...

𝑚−1

∑
𝑘=⌈V⌉

𝜃
𝑚−1,0,𝑘

𝑚−1

∑
𝑘=⌈V⌉

𝜃
𝑚−1,0,𝑘

𝑚−1

∑
𝑘=⌈V⌉

𝜃
𝑚−1,0,𝑘

. . .

𝑚−1

∑
𝑘=⌈V⌉

𝜃
𝑚−1,0,𝑘

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

)

.

(70)

Remark 25. If V = 1, then Theorem 24 gives the operational
matrix for the shifted Legendre polynomials function as
described in Section 2.2.

4.3. The Application of the FLFs for Solving Linear FFKE. In
this section, we are concerned with providing a numerical
solution to linear FFKEwhich was described in Section 3.We
approximate the fuzzy function 𝑦(𝑥) by means of the FLFs
and then substitute in the FFKE to derive the approximate
solution. The method reduces the fuzzy fractional initial

problem to a system of fuzzy algebraic equations. The large
systems of algebraic equations may lead to greater computa-
tional complexity and large storage requirements. However,
the operational matrix for the FLFs is structurally spare.
This reduces the computational complexity of the resulting
algebraic system.

Fractional kinetic differential equation was derived in the
deterministic case in Section 3. Now, in order to investigate
the mentioned problem in a real case, we use the fuzzy initial
value𝐶

𝐵
0

, the fuzzy-valued function 𝑔(𝑥), and the concept of
Caputo’s H-differentiability for fractional derivative of𝐶

𝐵
(𝑥),

(
𝑐

𝐷V
0+

𝐶
𝐵
)(𝑥) and generalizedH-differentiability [67] for first-

order derivative of 𝐶
𝐵
(𝑥).

Let us consider the fuzzy version of the linear fractional
kinetic differential equation in the general form:

(
𝑐

𝐷
V
0
+𝐶
𝐵
) (𝑥) = 𝐶

𝐵
(𝑥) ⊕ 𝑔 (𝑥) , 0 < V ≤ 1,

𝐶
𝐵
(0) = 𝐶

𝐵
0

∈ RF,
(71)

where 𝐶
𝐵
(𝑥) : 𝐿RF ∩ 𝐶RF is a continuous fuzzy-valued func-

tion, 𝑐𝐷V
0
+(𝑥) denotes the fuzzy Caputo fractional derivative

of order V, and 𝑔(𝑥) : [0, 1] → RF.
Firstly, we state the unknown fuzzy functions 𝐶

𝐵
(𝑥),

(
𝑐

𝐷V
0
+𝐶
𝐵
)(𝑥) and known fuzzy function 𝑔(𝑥) in terms of the

FLFs as follows:

𝐶
𝑟

𝐵

(𝑥) ≃ 𝐶
𝐵

𝑟

𝑚

(𝑥) =

𝑚−1

∑
𝑗=0

∗

𝑎
𝑟

𝑗

⊙ FL𝛼
𝑗

(𝑥) = 𝐴
𝑇

𝑚

⊙ Φ
𝑟

𝑚

(𝑥) ,

(72)

(
𝑐

𝐷
V
0
+𝐶
𝐵
) (𝑥) ≃

𝑚−1

∑
𝑗=0

∗

𝑎
𝑟

𝑗

⊙
𝑐

𝐷
VFL𝛼

𝑗

(𝑥)

= 𝐴
𝑇

𝑚

⊙ 𝐷
(V)
Φ
𝑟

𝑚

(𝑥) ,

(73)

𝑔 (𝑥) ≃ 𝑔
𝑟

𝑚

(𝑥) =

𝑚−1

∑
𝑗=0

∗𝑔𝑟
𝑗

⊙ FL𝛼
𝑗

(𝑥) = 𝐺
𝑇

𝑚

⊙ Φ
𝑟

𝑚

(𝑥) . (74)

The following theorem provides a suitable way to reach
the fuzzy unknown coefficient of the fuzzy approximate
function 𝐶

𝐵

𝑟

𝑚

(𝑥), by means of the fuzzy residual function
(𝑅
𝑚
(𝑥)) of the problem stated.

Theorem 26 (see [76]). Let𝐶
𝐵
(𝑥) ∈ 𝐶RF[0, 1] and 0 < V ≤ 1,

then the fuzzy residual function can be expressed by

[(
𝑐

𝐷
(V)
𝐶
𝐵𝑚

) (𝑥)]
(𝑟)

= [𝑅
𝑚
(𝑥) ⊕ 𝑔

𝑚
(𝑥) ⊕ 𝐶

𝐵𝑚

(𝑥)]
(𝑟)

,

𝑟 ∈ [0, 1] .

(75)

Let ⟨⋅, ⋅⟩RF
denote the fuzzy inner product over 𝑋RF

=

𝐿2RF
([0, 1]). As in a typical tau method (see [100, 101]), we

make (𝑚−1) linear fuzzy equations from the following inner
product as
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⟨𝑅
𝑚
(𝑥; 𝑟) , FL𝛼

𝑖

(𝑥; 𝑟)⟩
RF

= 0̃, 𝑖=0, 1, . . . , 𝑚 − 2, 𝑟∈[0, 1] ,

(76)

where ⟨𝑅
𝑚
(𝑥; 𝑟), FL𝛼

𝑖

(𝑥; 𝑟)⟩
RF

= [(FR) ∫1
0

𝑅
𝑚
(𝑥) ⊙ (𝑥),

FL𝛼
𝑖

(𝑥) ⊙ 𝑤(𝑥)𝑑𝑥]
(𝑟).
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= 0.001.

From (76), we make (𝑚 − 1) fuzzy linear algebraic
equations which are as follows in the expanded form:

𝑚−2

∑
𝑗=0

∗

𝑎
(𝑟)

𝑗

⊙ {⟨𝐷
(V)FL𝛼

𝑗

(𝑥) , FL𝛼
𝑖

(𝑥)⟩ − ⟨FL𝛼
𝑗

(𝑥) , FL𝛼
𝑖

(𝑥)⟩}
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=

𝑚−2

∑
𝑗=0

∗𝑔(𝑟)
𝑗

⊙ ⟨FL𝛼
𝑗

(𝑥) , FL𝛼
𝑖

(𝑥)⟩ ,

(77)

for 𝑖 = 0, 1, . . . , 𝑚 − 2. Also, the fuzzy coefficients 𝑔
𝑗
are

defined as

𝑔 (𝑥) ≃ 𝑔
𝑟

𝑚

(𝑥) =

𝑚−1

∑
𝑗=0

∗𝑔𝑟
𝑗

⊙ FL𝛼
𝑖

(𝑥) = 𝐺
𝑇

𝑚

⊙ Φ
𝑚
, (78)

where 𝐺 = [𝑔
0
, 𝑔
1
, . . . , 𝑔

𝑚−1
]
𝑇 is gained as

𝑔
𝑖
= (2𝑖 + 1) 𝛼∫

1

0

FL𝛼
𝑖

(𝑥) ⊙ 𝑔 (𝑥) ⊙ 𝑤 (𝑥) 𝑑𝑥,

𝑖 = 0, 1, . . . , 𝑚 − 1.

(79)

Consequently, putting (72) in the initial condition of the
problem (71), we have

𝐶
𝐵
(0) =

𝑚−1

∑
𝑗=0

∗

𝑎
(𝑟)

𝑗

⊙ FL𝛼
𝑖

(0) = 𝐶
𝐵
0

. (80)

Considering the aforementioned equation with the fuzzy
algebraic equations system (77), (𝑚)-fuzzy linear algebraic
equations are produced. Solving this resultant fuzzy system
based on the method presented in [86], the unknown fuzzy
coefficients 𝑎

𝑗
for 𝑗 = 0, . . . , 𝑚 − 1 will be obtained.

5. Numerical Results

In order to illustrate the effectiveness and accuracy of the
proposed method, we carry it out for solving the fractional
kinetic equation which was derived in Section 3 in the sense
of the fuzzy concept. Comparison of the results obtainedwith

the exact solution reveals that our method is efficient and
convenient.

Now, we consider (54) with the fuzzy initial condition.
It means that the initial concentration of xylose is a fuzzy
number. So, we have

Example 27. Consider the following FFDE:

𝑐

𝐷
V
0
+𝐶
𝐵
(𝑡) ⊕ 𝑘

2
𝐶
𝐵
(𝑡) = 𝑘

1
𝐶
𝐴
0

exp (−𝑘
1
𝑡) , 0 < V ≤ 1,

𝐶
𝐵
(0; 𝑟) = [𝐶

𝑟

𝐵
01

, 𝐶
𝑟

𝐵
02

] , 0 < 𝑟 ≤ 1,

(81)

in which 𝐶
𝐵
(𝑡) : 𝐿RF[0, 1] ∩ 𝐶RF[0, 1] is a continuous

fuzzy function, 𝑐𝐷V
0
+ denotes the fuzzy Caputo fractional

derivative of order V, and 𝑘
1
, 𝑘
2
are constant coefficients

specified from Table 1.

Regarding the definition of the Caputo fuzzy fractional
differentiability for 𝑐[1 − V] differentiability andTheorem 17,
we can state (81) in a parametric form as follows:

(
𝑐

𝐷
V
0
+𝐶
𝐵1

) (𝑡; 𝑟) + 𝑘
2
𝐶
𝐵1

(𝑡; 𝑟) = 𝑘
1
𝐶
𝐴
0

exp (−𝑘
1
𝑡) ,

0 < V ≤ 1,

𝐶
𝐵
(0; 𝑟) = 𝐶

𝑟

𝐵
01

, 0 < 𝑟 ≤ 1,

(
𝑐

𝐷
V
0
+𝐶
𝐵2

) (𝑡; 𝑟) + 𝑘
2
𝐶
𝐵2

(𝑡; 𝑟) = 𝑘
1
𝐶
𝐴
0

exp (−𝑘
1
𝑡) ,

0 < V ≤ 1,

𝐶
𝐵
(0; 𝑟) = 𝐶

𝑟

𝐵
02

, 0 < 𝑟 ≤ 1,

(82)

where 𝐶
𝐵
(0; 𝑟) = [0.5 + 0.5𝑟, 1.5 − 0.5𝑟]. The exact solution of

(81) can be gained using (82) as

𝐶
𝐵𝑚1

(𝑡; 𝑟)

= (0.5 + 0.5𝑟) 𝐸V,1 [−𝑘2𝑡
V
]

+ ∫
𝑡

0

(𝑡 − 𝜏)
V−1

𝐸V,V [−𝑘2(𝑡 − 𝜏)
V
] 𝑘
1
𝐶
𝐴
0

exp (−𝑘
1
𝑡) 𝑑𝜏,

0 < V ≤ 1,

𝐶
𝐵𝑚2

(𝑡; 𝑟)

= (1.5 − 0.5𝑟) 𝐸V,1 [−𝑘2𝑡
V
]

+ ∫
𝑡

0

(𝑡 − 𝜏)
V−1

𝐸V,V [−𝑘2(𝑡 − 𝜏)
V
] 𝑘
1
𝐶
𝐴
0

exp (−𝑘
1
𝑡) 𝑑𝜏,

0 < 𝑟 ≤ 1.

(83)

Employing the proposed method described in Section 4,
we can derive the operational matrix of the FLFs based on
the fuzzy fractional derivative of the Caputo type and the
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Figure 11: The fuzzy approximate solution for different values of fractional orders V = 𝛼 with𝑚 = 12, 𝑘
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approximate fuzzy function of the solution by means of the
FLFs. So, we can express (81) as

𝐴
1

𝑇

𝑚

[𝐷
(V)

+ 𝐼]Φ (𝑥) = 𝐺
1

𝑇

𝑚

Φ (𝑥) ,

𝐴
2

𝑇

𝑚

[𝐷
(V)

+ 𝐼]Φ (𝑥) = 𝐺
2

𝑇

𝑚

Φ (𝑥) ,

(84)
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Figure 13: The absolute error for different values 𝑚 with V = 𝛼 =

0.95, 𝑘
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where the matrix of the unknown coefficients of the fuzzy
approximate solution is 𝐴𝑇

𝑚

= [𝐴
1𝑚

, 𝐴
2𝑚

]
𝑇 and the right-

hand side coefficients matrix is𝐺𝑇
𝑚

= [𝐺
1𝑚

, 𝐺
2𝑚

]
𝑇, where the

elements of the vector 𝐺𝑇 are achieved from (79).
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Using Theorem 26, we can derive the fuzzy residual
function for (81). Afterward, employing the inner product
explained in Section 4.3 and (81), we can generate fuzzy linear
algebraic systemwith (𝑚−1) equations which is in thematrix
form as follows:

𝐴
1

𝑇

𝑚

[𝐷
(V)

+ 𝐼] = 𝐺
1

𝑇

𝑚

,

𝐴
2

𝑇

𝑚

[𝐷
(V)

+ 𝐼] = 𝐺
2

𝑇

𝑚

.

(85)

Additionally, we approximate fuzzy initial conditions (81) by
using (80) to produce the last equation which is needed to
complete our fuzzy algebraic linear equations system. So, we
have

𝐶
𝑟

𝐵
01

≃ 𝐴
1

𝑇

𝑚

Φ
𝑚
(𝑥) = (0.5 + 0.5𝑟) ,

𝐶
𝑟

𝐵
02

≃ 𝐴
2

𝑇

𝑚

Φ
𝑚
(𝑥) = (1.5 − 0.5𝑟) .

(86)

From (85) and (86), (𝑚)-fuzzy linear equations are produced
which on can solve it easily using Definitions 8 and 9 and
the method presented in [86] to find the unknown fuzzy
coefficients, {𝑎

𝑗
}
𝑚−1

𝑗=0

, of the fuzzy approximate solution.
We solved the problem by applying the technique

described in Section 4. With 𝑚 = 3, V = 𝛼 = 0.75 and
from Table 1, we assume that 𝑘

1
= 0.012, 𝑘

2
= 0.001. We

approximate the solution in terms of the lower and upper
approximate fuzzy functions as

𝐶
𝐵21

(𝑥; 𝑟) =

2

∑
𝑗=0

𝑎
𝑗

𝑟

1

FL0.75
𝑗

(𝑥) = [𝑎
0

𝑟

1

𝑎
1

𝑟

1

𝑎
2

𝑟

1

]
𝑇

Φ (𝑥) ,

𝐶
𝐵22

(𝑥; 𝑟) =

2

∑
𝑗=0

𝑎
𝑗

𝑟

2

FL0.75
𝑗

(𝑥) = [𝑎
0

𝑟

2

𝑎
1

𝑟

2

𝑎
2

𝑟

2

]
𝑇

Φ (𝑥) ,

(87)

where our aim is to find the unknown fuzzy coefficients
{𝑎
𝑗
}
2

𝑗=0

. The operational matrix of the FLFs is as

𝐷
(0.75)

= (

0 0 0

𝜃
1,0,1

𝜃
1,1,1

𝜃
1,2,1

2

∑
𝑘=1

𝜃
1,0,𝑘

2

∑
𝑘=1

𝜃
1,1,𝑘

2

∑
𝑘=1

𝜃
1,2,𝑘

)

= (

0 0 0

1.8381 0 0

−1.1751 4.3392 0

) .

(88)

The FLFs for𝑚 = 2 are as follows:

FL0.75
𝑖

(𝑥) =

{{

{{

{

1,

−1 + 2𝑥
(3/4),

1 − 6𝑥(3/4) + 6𝑥(3/2).

(89)

Here, we assume that 𝑟-cut = 1, so the right-hand side
coefficients vector in terms of the lower and upper parametric
form of the fuzzy number is as follows:

𝐺
12

= 𝐺
22

= (

0.019

0.0017

1.000

) . (90)

Putting (88) and (90) in (85), we reach a fuzzy linear algebraic
equations system. Unknown coefficients vectors𝐴

12

and𝐴
22

are obtained by solving this system the values for 𝑟-cut= 1 are
as

𝐴
12

= 𝐴
22

= (

1.0060

0.0059

0.0000

) , (91)

and from the earlier vector, we can attain the approximate
fuzzy function as

𝐶
𝐵21

= 𝐶
𝐵22

= 1 + 0.0120𝑥
(3/4)

− 1.1301 × 10
−4

𝑥
(3/2)

. (92)

Now, in the following results, we will reach the approxi-
mate fuzzy solutions for (81) regarding different values of 𝑘

1

and 𝑘
2
from Table 1. Actually, we achieve the concentration

of xylose after a specific time from the stated fuzzy fractional
kinetic equation (81).

In Table 2, we present the approximate solution and the
absolute error with 𝑘

1
= 0.012, 𝑚 = 7, and 𝑘

2
= 0.001

at 𝑇 = 1. As expected, the absolute error demonstrates the
spectral accuracy of the proposedmethod.The absolute error
for V = 𝛼 = 0.5, 075, 0.85, 0.95 is plotted in Figure 4. As we
can see, the absolute error increases gradually but remains
in the interval [10−10, 10−12]. This error can be explained
by the computer round-off errors that prevent any further
accuracy improvements. This error can be explained by the
computer round-off errors that prevent any further accuracy
improvements. Also, Figure 5 shows the absolute error for
different number of the FLFs which is clear that decreasing
the the absolute error decreases with the increasing number
of functions occurring. Moreover, in Figure 6, the absolute
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Figure 15: The fuzzy approximate solution for different values of fractional orders V = 𝛼 with𝑚 = 10, 𝑘
1

= 0.05, and 𝑘
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= 0.05.

Table 2: The result of the proposed method for Example 27 with V = 𝛼 = 0.75,𝑚 = 7, 𝑘
1

= 0.012, and 𝑘
2

= 0.001.

𝑟 𝐶
𝐵71

𝐶
𝐵1

(1; 𝑟) Error 𝐶
𝐵72

𝐶
𝐵2

(1; 𝑟) Error
0 0.512415005475 0.512415004378 0.109731956854𝑒 − 8 1.511327692084 1.511327690987 0.109732001263𝑒 − 8

0.1 0.562360639806 0.562360638709 0.109731967956𝑒 − 8 1.461382057754 1.461382056656 0.109731956854𝑒 − 8

0.2 0.612306274136 0.612306273039 0.109731967956𝑒 − 8 1.411436423423 1.411436422326 0.109731956854𝑒 − 8

0.3 0.662251908467 0.662251907369 0.109731967956𝑒 − 8 1.361490789093 1.361490787995 0.109731979058𝑒 − 8

0.4 0.712197542797 0.712197541700 0.109731967956𝑒 − 8 1.311545154762 1.311545153665 0.109731979058𝑒 − 8

0.5 0.762143177128 0.762143176030 0.109731979058𝑒 − 8 1.261599520432 1.261599519335 0.109731956854𝑒 − 8

0.6 0.812088811458 0.812088810361 0.109731990161𝑒 − 8 1.211653886101 1.211653885004 0.109731956854𝑒 − 8

0.7 0.862034445788 0.862034444691 0.109731956854𝑒 − 8 1.161708251771 1.161708250674 0.109731979058𝑒 − 8

0.8 0.911980080119 0.911980079022 0.109731967956𝑒 − 8 1.111762617441 1.111762616343 0.109731979058𝑒 − 8

0.9 0.961925714449 0.961925713352 0.109731967956𝑒 − 8 1.061816983110 1.061816982013 0.109731979058𝑒 − 8

1 1.011871348780 1.011871347682 0.109731934649𝑒 − 8 1.011871348780 1.011871347682 0.109731934649𝑒 − 8

error obtained by our method for V = 0.75 and 𝑚 = 7. As
one can see, the increase in the amount of 𝛼 cannot reduce
the absolute error noticeably.The approximated solutions are
evaluated for V = 𝛼 = 0.5, 0.75, 0.85, 0.95 and 𝑚 = 8. The
results of the numerical simulations are plotted in Figure 7.

The approximate solutions for V = 𝛼 = 0.85, 𝑚 = 9, 𝑘
1
=

0.014, and 𝑘
2
= 0.001 are obtained in Table 3. The obtained

numerical results are in very good agreement with the exact
solutions. In Figure 8, the absolute errors for the problem
of V = 𝛼 = 0.5, 0.75, 0.85, 0.95 by the proposed method
with 𝑚 = 8 are given. It is obvious that the improvement of
the value of the V and 𝛼 could not affect the absolute error

considerably, but the method could achieve a suitable error
in the interval [10−9, 10−14]. The absolute error for V = 0.85

and the various choices of𝑚 and 𝛼 by the presented method
are shown in Figures 9 and 10, respectively, tomake it easier to
comparewith the analytic solution.We show the approximate
solution in Figure 11 for V = 𝛼 = 0.5, 0.75, 0.85, 0.95 with
𝑚 = 12.

Table 4 exhibits the error of analytical and numerical
solutions. Numerical results demonstrate the good accuracy
of the proposed method. The absolute error is evaluated
for various choices of 𝛼 in Figure 12. We see that as V, 𝛼
approaches 1, the solution of the fuzzy fractional kinetic
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Table 3: The result of the proposed method for Example 27 with V = 𝛼 = 0.85,𝑚 = 9, 𝑘
1

= 0.014, and 𝑘
2

= 0.001.

𝑟 𝐶
𝐵91

𝐶
𝐵1

(1; 𝑟) Error 𝐶
𝐵92

𝐶
𝐵2

(1; 𝑟) Error
0 0.514156300808 0.514156300733 0.753808127029𝑒 − 10 1.513099430793 1.513099430717 0.753803686137𝑒 − 10

0.1 0.564103457307 0.564103457232 0.753809237252𝑒 − 10 1.463152274293 1.463152274218 0.753808127029𝑒 − 10

0.2 0.614050613806 0.614050613731 0.753809237252𝑒 − 10 1.413205117794 1.413205117719 0.753805906583𝑒 − 10

0.3 0.663997770306 0.663997770230 0.753807016806𝑒 − 10 1.363257961295 1.363257961220 0.753805906583𝑒 − 10

0.4 0.713944926805 0.713944926730 0.753809237252𝑒 − 10 1.313310804796 1.313310804720 0.753805906583𝑒 − 10

0.5 0.763892083304 0.763892083229 0.753807016806𝑒 − 10 1.263363648296 1.263363648221 0.753808127029𝑒 − 10

0.6 0.813839239803 0.813839239728 0.753808127029𝑒 − 10 1.213416491797 1.213416491722 0.753805906583𝑒 − 10

0.7 0.863786396303 0.863786396227 0.753809237252𝑒 − 10 1.163469335298 1.163469335223 0.753805906583𝑒 − 10

0.8 0.913733552802 0.913733552726 0.753808127029𝑒 − 10 1.113522178799 1.113522178723 0.753805906583𝑒 − 10

0.9 0.963680709301 0.963680709226 0.753805906583𝑒 − 10 1.063575022300 1.063575022224 0.753810347475𝑒 − 10

1 1.013627865800 1.013627865725 0.753808127029𝑒 − 10 1.013627865800 1.013627865725 0.753808127029𝑒 − 10

Table 4: The result of the proposed method for Example 27 with V = 𝛼 = 0.95,𝑚 = 11, 𝑘
1

= 0.05, and 𝑘
2

= 0.05.

𝑟 𝐶
𝐵111

𝐶
𝐵1

(1; 𝑟) Error 𝐶
𝐵112

𝐶
𝐵2

(1; 𝑟) Error
0 0.523578117777 0.523578117838 0.615489881283𝑒 − 10 1.473894867831 1.473894867893 0.614888140404𝑒 − 10

0.1 0.571093955279 0.571093955341 0.615463235931𝑒 − 10 1.426379030328 1.426379030390 0.614917006203𝑒 − 10

0.2 0.713641467788 0.618609792844 0.615431039463𝑒 − 10 1.331347355323 1.378863192887 0.614950312893𝑒 − 10

0.3 0.761157305290 0.666125630346 0.615399953218𝑒 − 10 1.283831517820 1.331347355384 0.614972517354𝑒 − 10

0.4 0.713944926805 0.713641467849 0.615371087420𝑒 − 10 1.236315680317 1.283831517882 0.615005824045𝑒 − 10

0.5 0.763892083304 0.761157305352 0.615342221621𝑒 − 10 1.188799842815 1.236315680379 0.615039130735𝑒 − 10

0.6 0.808673142793 0.808673142854 0.615311135376𝑒 − 10 1.213416491797 1.188799842876 0.615067996534𝑒 − 10

0.7 0.856188980296 0.856188980357 0.615278938909𝑒 − 10 1.141284005312 1.141284005374 0.615099082779𝑒 − 10

0.8 0.903704817798 0.903704817860 0.615252293556𝑒 − 10 1.093768167809 1.093768167871 0.615132389469𝑒 − 10

0.9 0.951220655301 0.951220655363 0.615220097088𝑒 − 10 1.046252330307 1.046252330368 0.615156814376𝑒 − 10

1 0.998736492804 0.998736492865 0.615190121067𝑒 − 10 0.998736492804 0.998736492865 0.615190121067𝑒 − 10

equation approaches that of the integer order fuzzy kinetic
equations. In Figure 13, again we see that the method could
reach a high accuracy for the approximate solution, but the
increase in the number of the FLFS could not affect the
absolute error considerably. Also, in Figure 14, the method
could hit the better accuracy when the values of the fractional
derivative and fractional order of the Legendre functions
were the same. In Figure 15, we show the fuzzy approximate
solutions which were evaluated for various values of V = 𝛼.

6. Conclusion

In this paper, a spectral method has been adapted for numer-
ical solution of fuzzy fractional kinetic equation of order 0 <

V ≤ 1. A specific family of the orthogonal polynomials which
is so-called FLFs was used as the approximation basis. The
proposedmethod is characterized by its simplicity, efficiency,
and high accuracy.The accuracy and validity of the presented
method were demonstrated through numerical simulation
for the derived FFKE. Using the proposed method, we
could reach the suitable approximation of the amount of the
concentration value of xylose after a determined time that is
important to analyze the kinetic data in the chemical process.

A direction for further research would be to extend the
presented method to the other types of the fuzzy fractional

differential equations like fuzzy fractional oscillation differ-
ential equations of the distributed order.
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[10] W.G. Glöckle and T. F. Nonnenmacher, “Fox function represen-
tation of non-Debye relaxation processes,” Journal of Statistical
Physics, vol. 71, no. 3-4, pp. 741–757, 1993.

[11] R. Hilfer, “Fractional time evolution,” in Applications of Frac-
tional Calculus in Physics, pp. 87–130, World Scientific Publish-
ing, River Edge, NJ, USA, 2000.

[12] V. L. Kobelev, E. P. Romanov, L. Y. Kobelev, and Y. L. Kobelev,
“Relaxational and diffusive processes in fractal space,” Izvestiya
Akademii Nauk. Seriya Fizicheskaya, vol. 62, no. 12, pp. 2401–
2408, 1998.

[13] F. Mainardi, “Fractional diffusive waves in viscoelastic solids,”
in Nonlinear Waves in Solids, J. L. Wegner and F. R. Norwood,
Eds., pp. 93–97, ASME, New York, NY, USA, 1995.

[14] F. Mainardi, “Fractal calculus: some basic problems in contin-
uum and statistical mechanics,” in Fractals and Fractional Cal-
culus in Continuum Mechanics, A. Carpinteri and F. Mainardi,
Eds., pp. 291–348, Springer, Wien, Austria, 1997.

[15] F. Mainardi and M. Tomirotti, “Seismic pulse propagation
with constant Q and stable probability distributions,” Annali di
Geofisica, vol. 40, no. 5, pp. 1311–1325, 1997.
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