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Fixed-point theory in complex valued metric spaces has greatly developed in recent times. In this paper, we prove certain common
fixed-point theorems for two single-valued mappings in such spaces.Themappings we consider here are assumed to satisfy certain
metric inequalities with generalized fixed-point theorems due to Rouzkard and Imdad (2012). This extends and subsumes many
results of other authors which were obtained for mappings on complex-valued metric spaces.

1. Introduction

The existence and uniqueness of fixed-point theorems of
operators or mappings has been a subject of great interest
since the work of Banach in 1992 [1]. The Banach contraction
mapping principle is widely recognized as the source of
metric fixed-point theory. A mapping 𝑇 : 𝑋 → 𝑋, where
(𝑋, 𝑑) is a metric space, is said to be a contraction mapping if
for all 𝑥, 𝑦 ∈ 𝑋,

𝑑 (𝑇𝑥, 𝑇𝑦) ≤ 𝜆𝑑 (𝑥, 𝑦) , where 0 < 𝜆 < 1. (1)

According to the Banach contraction mapping principle, any
mapping 𝑇 satisfying (1) in a complete metric space will
have a unique fixed point. This principle includes different
directions in different spaces adopted by mathematicians;
for example, metric spaces, 𝐺-metric spaces, partial metric
spaces, cone metric spaces, quasimetric spaces have already
been obtained.

A new space called the complex-valued metric space
which is more general than well-known metric spaces has
been introduced by Azam et al. [2]. Azam proved some
fixed-point theorems for mappings satisfying a rational
inequality. Naturally, this new idea can be utilized to define
complex-valued normed spaces and complex-valued inner
product spaces which, in turn, offer a wide scope for further

investigation. Several authors studied many common fixed
point results on complex-valued metric spaces (see [3–5]).

In 2012, Rouzkard and Imdad [6] extended and improved
the common fixed-point theorems which are more general
than the result of Azam et al. [2].

Theorem 1 (see [6, Theorem 1]). If 𝑆 and 𝑇 are self-mappings
defined on a complete complex-valued metric space (𝑋, 𝑑)
satisfying the condition

𝑑 (𝑆𝑥, 𝑇𝑦) ≾ 𝜆𝑑 (𝑥, 𝑦) +
𝜇𝑑 (𝑥, 𝑆𝑥) 𝑑 (𝑦, 𝑇𝑦)

1 + 𝑑 (𝑥, 𝑦)

+
𝛾𝑑 (𝑦, 𝑆𝑥) 𝑑 (𝑥, 𝑇𝑦)

1 + 𝑑 (𝑥, 𝑦)

(2)

for all 𝑥, 𝑦 ∈ 𝑋 where 𝜆, 𝜇, and 𝛾 are nonnegative with 𝜆+𝜇+
𝛾 < 1, then 𝑆 and 𝑇 have a unique common fixed point.

Though complex-valued metric spaces from a spacial
class of cone metric spaces, yet this idea is intended to
define rational expressions which are not meaningful in cone
metric spaces, and thus many results of analysis cannot be
generalized to cone metric spaces. The aim of this paper
is to establish some common fixed-point theorems for two
nonlinear general contraction mappings in complex-valued
metric spaces. Our results generalizedTheorem 1.
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2. Preliminaries

LetC be the set of complex numbers and 𝑧
1
, 𝑧
2
∈ C, we define

a partial order ≺ and ≾ on C as follows:

(i) 𝑧
1
≺ 𝑧
2
if and only if Re(𝑧

1
) < Re(𝑧

2
) and Im(𝑧

1
) <

Im(𝑧
2
);

(ii) 𝑧
1
≾ 𝑧
2
if and only if Re(𝑧

1
) ≤ Re(𝑧

2
) and Im(𝑧

1
) ≤

Im(𝑧
2
).

Now,we briefly review the notation about complex valued
metric space and some lemma for prove our main results.

Definition 2. Let 𝑋 be a nonempty set. Suppose that the
mapping 𝑑 : 𝑋 × 𝑋 → C satisfies the following conditions:

(d
1
) 0 ≾ 𝑑(𝑥, 𝑦) for all 𝑥, 𝑦 ∈ 𝑋;

(d
2
) 𝑑(𝑥, 𝑦) = 0 if and only if 𝑥 = 𝑦 for all 𝑥, 𝑦 ∈ 𝑋;

(d
3
) 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥) for all 𝑥, 𝑦 ∈ 𝑋;

(d
4
) 𝑑(𝑥, 𝑦) ≾ 𝑑(𝑥, 𝑧) + 𝑑(𝑧, 𝑦) for all 𝑥, 𝑦, 𝑧 ∈ 𝑋.

Then, 𝑑 is called a complex-valuedmetric on𝑋, and (𝑋, 𝑑)
is called a complex valued metric space.

Definition 3. Let (𝑋, 𝑑) be a complex-valued metric space.

(i) A point 𝑥 ∈ 𝑋 is called interior point of a set 𝐵 ⊆ 𝑋
whenever there exists 0 ≺ 𝑟 ∈ C such that𝑁(𝑥, 𝑟) :=
{𝑦 ∈ 𝑋 : 𝑑(𝑥, 𝑦) ≺ 𝑟} ⊆ 𝐵.

(ii) A point 𝑥 ∈ 𝑋 is called limit point of a set 𝐵 ⊆ 𝑋
whenever for every 0 ≺ 𝑟 ∈ C such that 𝑁(𝑥, 𝑦) ∩
(𝑋 − 𝐵) ̸= 0.

(iii) A subset 𝐵 ⊆ 𝑋 is called open whenever each element
of 𝐵 is an interior point of 𝐵.

(iv) A subset 𝐵 ⊆ 𝑋 is called closed whenever each limit
point of 𝐵 belongs to 𝐵.

(v) The family 𝐹 = {𝑁(𝑥, 𝑟) : 𝑥 ∈ 𝑋, 0 ≺ 𝑟} is a subbasis
for a topology on𝑋.We denote this complex topology
by 𝜏
𝑐
. Indeed, the topology 𝜏

𝑐
is Hausdorff.

Definition 4 (see [2]). Let (𝑋, 𝑑) be a complex-valued metric
space, and let {𝑥

𝑛
} be a sequence in𝑋 and 𝑥 ∈ 𝑋.

(i) If for every 𝑐 ∈ C, with 0 ≺ 𝑐 there is 𝑁 ∈ N such
that for all 𝑛 > 𝑁, 𝑑(𝑥

𝑛
, 𝑥) ≺ 𝑐, then {𝑥

𝑛
} is said to

be convergent, {𝑥
𝑛
} converges to 𝑥 and 𝑥 is limit point

of {𝑥
𝑛
}. We denote this by 𝑥

𝑛
→ 𝑥 as 𝑛 → ∞ or

lim
𝑛→∞

𝑥
𝑛
= 𝑥.

(ii) If for every 𝑐 ∈ C, with 0 ≺ 𝑐 there is𝑁 ∈ N such that
for all 𝑛 > 𝑁, 𝑑(𝑥

𝑛
, 𝑥
𝑛+𝑚
) ≺ 𝑐, where𝑚 ∈ N, then {𝑥

𝑛
}

is said to be Cauchy sequence.
(iii) If every Cauchy sequence in 𝑋 is convergent, then

(𝑋, 𝑑) is said to be a complete complex-valued metric
space.

Lemma 5 (see [2]). Let (𝑋, 𝑑) be a complex-valued metric
space, and let {𝑥

𝑛
} be a sequence in 𝑋. Then, {𝑥

𝑛
} converges

to 𝑥 if and only if |𝑑(𝑥
𝑛
, 𝑥)| → 0 as 𝑛 → ∞.

Lemma 6 (see [2]). Let (𝑋, 𝑑) be a complex-valued metric
space, and let {𝑥

𝑛
} be a sequence in 𝑋. Then, {𝑥

𝑛
} is a Cauchy

sequence if and only if |𝑑(𝑥
𝑛
, 𝑥
𝑛+𝑚
)| → 0 as 𝑛 → ∞, where

𝑚 ∈ N.

Definition 7. Two families of self-mappings {𝑇
𝑖
}
𝑚

𝑖=1
and {𝑆

𝑖
}
𝑛

𝑖=1

are said to be pairwise commuting if:

(i) 𝑇
𝑖
𝑇
𝑗
= 𝑇
𝑗
𝑇
𝑖
, 𝑖, 𝑗 ∈ {1, 2, . . . , 𝑚}.

(ii) 𝑆
𝑖
𝑆
𝑗
= 𝑆
𝑗
𝑆
𝑖
, 𝑖, 𝑗 ∈ {1, 2, . . . , 𝑛}.

(iii) 𝑇
𝑖
𝑆
𝑗
= 𝑆
𝑗
𝑇
𝑖
, 𝑖 ∈ {1, 2, . . . , 𝑚}, 𝑗 ∈ {1, 2, . . . , 𝑛}.

Definition 8. Let 𝑆 and 𝑇 be self-mappings of a nonempty set
𝑋.

(i) A point 𝑥 ∈ 𝑋 is said to be a fixed point of𝑇 if𝑇𝑥 = 𝑥.

(ii) A point 𝑥 ∈ 𝑋 is said to be a common fixed point of 𝑇
and 𝑆 if 𝑇𝑥 = 𝑆𝑥 = 𝑥.

Remark 9. We obtain that the following statements hold:

(i) If 𝑧
1
≾ 𝑧
2
and 𝑧
2
≾ 𝑧
3
, then 𝑧

1
≾ 𝑧
3
.

(ii) If 𝑧 ∈ C, 𝑎, 𝑏 ∈ R, and 𝑎 ≤ 𝑏, then 𝑎𝑧 ≾ 𝑏𝑧.

(iii) If 0 ≾ 𝑧
1
≾ 𝑧
2
, then |𝑧

1
| ≤ |𝑧
2
|.

3. Main Results

In this section, we will prove some common fixed-point the-
orems for the generalized contractive mappings in complex-
valued metric space.

Theorem 10. If 𝑆 and 𝑇 are self-mappings defined on a
complete complex valued metric space (𝑋, 𝑑) satisfying the
condition

𝑑 (𝑆𝑥, 𝑇𝑦) ≾ 𝐴𝑑 (𝑥, 𝑦) +
𝐵𝑑 (𝑥, 𝑆𝑥) 𝑑 (𝑦, 𝑇𝑦)

1 + 𝑑 (𝑥, 𝑦)

+
𝐶𝑑 (𝑦, 𝑆𝑥) 𝑑 (𝑥, 𝑇𝑦)

1 + 𝑑 (𝑥, 𝑦)

+
𝐷𝑑 (𝑥, 𝑆𝑥) 𝑑 (𝑥, 𝑇𝑦)

1 + 𝑑 (𝑥, 𝑦)
+
𝐸𝑑 (𝑦, 𝑆𝑥) 𝑑 (𝑦, 𝑇𝑦)

1 + 𝑑 (𝑥, 𝑦)

(3)

for all 𝑥, 𝑦 ∈ 𝑋, where 𝐴, 𝐵, 𝐶,𝐷, and 𝐸 are nonnegative with
𝐴+𝐵+𝐶+2𝐷+2𝐸 < 1, then 𝑆 and 𝑇 have a unique common
fixed point.

Proof. Let 𝑥
0
be an arbitrary in 𝑋. Since 𝑆(𝑋) ⊆ 𝑋 and

𝑇(𝑋) ⊆ 𝑋, we construct the sequence {𝑥
𝑘
} in 𝑋 such that
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𝑥
2𝑘+1

= 𝑆𝑥
2𝑘

and 𝑥
2𝑘+2

= 𝑇𝑥
2𝑘+1

for all 𝑘 ≥ 0. From the
definition of {𝑥

𝑘
} and (3), we obtain that

𝑑 (𝑥
2𝑘+1
, 𝑥
2𝑘+2
) = 𝑑 (𝑆𝑥

2𝑘
, 𝑇𝑥
2𝑘+1
)

≾ 𝐴𝑑 (𝑥
2𝑘
, 𝑥
2𝑘+1
)

+
𝐵𝑑 (𝑥

2𝑘
, 𝑆𝑥
2𝑘
) 𝑑 (𝑥
2𝑘+1
, 𝑇𝑥
2𝑘+1
)

1 + 𝑑 (𝑥
2𝑘
, 𝑥
2𝑘+1
)

+
𝐶𝑑 (𝑥

2𝑘+1
, 𝑆𝑥
2𝑘
) 𝑑 (𝑥
2𝑘
, 𝑇𝑥
2𝑘+1
)

1 + 𝑑 (𝑥
2𝑘
, 𝑥
2𝑘+1
)

+
𝐷𝑑 (𝑥

2𝑘
, 𝑆𝑥
2𝑘
) 𝑑 (𝑥
2𝑘
, 𝑇𝑥
2𝑘+1
)

1 + 𝑑 (𝑥
2𝑘
, 𝑥
2𝑘+1
)

+
𝐸𝑑 (𝑥

2𝑘+1
, 𝑆𝑥
2𝑘
) 𝑑 (𝑥
2𝑘+1
, 𝑇𝑥
2𝑘+1
)

1 + 𝑑 (𝑥
2𝑘
, 𝑥
2𝑘+1
)

.

(4)

Since 𝑥
2𝑘+1

= 𝑆𝑥
2𝑘
implies that 𝑑(𝑥

2𝑘+1
, 𝑆𝑥
2𝑘
) = 0; therefore,

𝑑 (𝑥
2𝑘+1
, 𝑥
2𝑘+2
) ≾ 𝐴𝑑 (𝑥

2𝑘
, 𝑥
2𝑘+1
)

+
𝐵𝑑 (𝑥

2𝑘
, 𝑆𝑥
2𝑘
) 𝑑 (𝑥
2𝑘+1
, 𝑇𝑥
2𝑘+1
)

1 + 𝑑 (𝑥
2𝑘
, 𝑥
2𝑘+1
)

+
𝐷𝑑 (𝑥

2𝑘
, 𝑆𝑥
2𝑘
) 𝑑 (𝑥
2𝑘
, 𝑇𝑥
2𝑘+1
)

1 + 𝑑 (𝑥
2𝑘
, 𝑥
2𝑘+1
)

,

(5)

by Remark 9 and |1 + 𝑑(𝑥
2𝑘
, 𝑥
2𝑘+1
)| > |𝑑(𝑥

2𝑘
, 𝑥
2𝑘+1
)|, we have

𝑑 (𝑥2𝑘+1, 𝑥2𝑘+2)
≤ 𝐴

𝑑 (𝑥2𝑘, 𝑥2𝑘+1)


+
𝐵
𝑑 (𝑥2𝑘, 𝑆𝑥2𝑘)


𝑑 (𝑥2𝑘+1, 𝑇𝑥2𝑘+1)


1 + 𝑑 (𝑥2𝑘, 𝑥2𝑘+1)



+
𝐷
𝑑 (𝑥2𝑘, 𝑆𝑥2𝑘)


𝑑 (𝑥2𝑘, 𝑇𝑥2𝑘+1)


1 + 𝑑 (𝑥2𝑘, 𝑥2𝑘+1)



= 𝐴
𝑑 (𝑥2𝑘, 𝑥2𝑘+1)



+ 𝐵
𝑑 (𝑥2𝑘+1, 𝑥2𝑘+2)



𝑑 (𝑥2𝑘, 𝑥2𝑘+1)


1 + 𝑑 (𝑥2𝑘, 𝑥2𝑘+1)


+𝐷
𝑑 (𝑥2𝑘, 𝑥2𝑘+2)



𝑑 (𝑥2𝑘, 𝑥2𝑘+1)


1 + 𝑑 (𝑥2𝑘, 𝑥2𝑘+1)


< 𝐴
𝑑 (𝑥2𝑘, 𝑥2𝑘+1)

 + 𝐵
𝑑 (𝑥2𝑘+1, 𝑥2𝑘+2)



+ 𝐷
𝑑 (𝑥2𝑘, 𝑥2𝑘+2)

 .

(6)

From (6) and Definition 2, we have
𝑑 (𝑥2𝑘+1, 𝑥2𝑘+2)

 < 𝐴
𝑑 (𝑥2𝑘, 𝑥2𝑘+1)

 + 𝐵
𝑑 (𝑥2𝑘+1, 𝑥2𝑘+2)



+ 𝐷
𝑑 (𝑥2𝑘, 𝑥2𝑘+1)

 + 𝐷
𝑑 (𝑥2𝑘+1, 𝑥2𝑘+2)



(7)

it follows that |𝑑(𝑥
2𝑘+1
, 𝑥
2𝑘+2
)| < ((𝐴 + 𝐷)/(1 − 𝐵 −

𝐷))|𝑑(𝑥
2𝑘
, 𝑥
2𝑘+1
)|.

Similarly, we get
𝑑 (𝑥
2𝑘+2
, 𝑥
2𝑘+3
) = 𝑑 (𝑥

2𝑘+3
, 𝑥
2𝑘+2
) = 𝑑 (𝑆𝑥

2𝑘+2
, 𝑇𝑥
2𝑘+1
)

≾ 𝐴𝑑 (𝑥
2𝑘+2
, 𝑥
2𝑘+1
)

+
𝐵𝑑 (𝑥

2𝑘+2
, 𝑆𝑥
2𝑘+2
) 𝑑 (𝑥
2𝑘+1
, 𝑇𝑥
2𝑘+1
)

1 + 𝑑 (𝑥
2𝑘+2
, 𝑥
2𝑘+1
)

+
𝐶𝑑 (𝑥

2𝑘+1
, 𝑆𝑥
2𝑘+2
) 𝑑 (𝑥
2𝑘+2
, 𝑇𝑥
2𝑘+1
)

1 + 𝑑 (𝑥
2𝑘+2
, 𝑥
2𝑘+1
)

+
𝐷𝑑 (𝑥

2𝑘+2
, 𝑆𝑥
2𝑘+2
) 𝑑 (𝑥
2𝑘+2
, 𝑇𝑥
2𝑘+1
)

1 + 𝑑 (𝑥
2𝑘+2
, 𝑥
2𝑘+1
)

+
𝐸𝑑 (𝑥

2𝑘+1
, 𝑆𝑥
2𝑘+2
) 𝑑 (𝑥
2𝑘+1
, 𝑇𝑥
2𝑘+1
)

1 + 𝑑 (𝑥
2𝑘+2
, 𝑥
2𝑘+1
)

.

(8)
Since 𝑥

2𝑘+2
= 𝑇𝑥

2𝑘+1
implies that 𝑑(𝑥

2𝑘+2
𝑇𝑥
2𝑘+1
) = 0;

therefore,
𝑑 (𝑥
2𝑘+2
, 𝑥
2𝑘+3
) ≾ 𝐴𝑑 (𝑥

2𝑘+2
, 𝑥
2𝑘+1
)

+
𝐵𝑑 (𝑥

2𝑘+2
, 𝑆𝑥
2𝑘+2
) 𝑑 (𝑥
2𝑘+1
, 𝑇𝑥
2𝑘+1
)

1 + 𝑑 (𝑥
2𝑘+2
, 𝑥
2𝑘+1
)

+
𝐸𝑑 (𝑥

2𝑘+1
, 𝑆𝑥
2𝑘+2
) 𝑑 (𝑥
2𝑘+1
, 𝑇𝑥
2𝑘+1
)

1 + 𝑑 (𝑥
2𝑘+2
, 𝑥
2𝑘+1
)

;

(9)
by Remark 9 and |1 + 𝑑(𝑥

2𝑘+2
, 𝑥
2𝑘+1
)| > |𝑑(𝑥

2𝑘+2
, 𝑥
2𝑘+1
)|, we

have
𝑑 (𝑥2𝑘+2, 𝑥2𝑘+3)



≤ 𝐴
𝑑 (𝑥2𝑘+2, 𝑥2𝑘+1)



+
𝐵
𝑑 (𝑥2𝑘+2, 𝑆𝑥2𝑘+2)


𝑑 (𝑥2𝑘+1, 𝑇𝑥2𝑘+1)


1 + 𝑑 (𝑥2𝑘+2, 𝑥2𝑘+1)



+
𝐸
𝑑 (𝑥2𝑘+1, 𝑆𝑥2𝑘+2)


𝑑 (𝑥2𝑘+1, 𝑇𝑥2𝑘+1)


1 + 𝑑 (𝑥2𝑘+2, 𝑥2𝑘+1)



= 𝐴
𝑑 (𝑥2𝑘+2, 𝑥2𝑘+1)



+ 𝐵
𝑑 (𝑥2𝑘+2, 𝑥2𝑘+3)



𝑑 (𝑥2𝑘+1, 𝑥2𝑘+2)


1 + 𝑑 (𝑥2𝑘+2, 𝑥2𝑘+1)


+ 𝐸
𝑑 (𝑥2𝑘+1, 𝑥2𝑘+3)



𝑑 (𝑥2𝑘+1, 𝑥2𝑘+2)


1 + 𝑑 (𝑥2𝑘+2, 𝑥2𝑘+1)


< 𝐴
𝑑 (𝑥2𝑘+2, 𝑥2𝑘+1)

 + 𝐵
𝑑 (𝑥2𝑘+2, 𝑥2𝑘+3)



+ 𝐸
𝑑 (𝑥2𝑘+1, 𝑥2𝑘+3)

 .

(10)

From (10) and Definition 2, we have
𝑑 (𝑥2𝑘+1, 𝑥2𝑘+2)

 < 𝐴
𝑑 (𝑥2𝑘+2, 𝑥2𝑘+1)

 + 𝐵
𝑑 (𝑥2𝑘+2, 𝑥2𝑘+3)



+ 𝐸
𝑑 (𝑥2𝑘+1, 𝑥2𝑘+2)



+ 𝐷
𝑑 (𝑥2𝑘+2, 𝑥2𝑘+3)

 ;

(11)
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it follows that |𝑑(𝑥
2𝑘+2
, 𝑥
2𝑘+3
)| < ((𝐴 + 𝐸)/(1 − 𝐵 −

𝐸))|𝑑(𝑥
2𝑘+1
, 𝑥
2𝑘+2
)|.

Putting 𝑘 = max{((𝐴+𝐷)/(1 −𝐵−𝐷)), ((𝐴+𝐸)/(1 −𝐵−
𝐸))}, we obtain that
𝑑 (𝑥𝑛, 𝑥𝑛+1)

 ≤ 𝑘
𝑑 (𝑥𝑛−1, 𝑥𝑛)

 ≤ 𝑘
2 𝑑 (𝑥𝑛−2, 𝑥𝑛−1)



≤ ⋅ ⋅ ⋅ ≤ 𝑘
𝑛 𝑑 (𝑥0, 𝑥1)

 ∀𝑛.

(12)

Thus, for any 𝑛 ∈ N, we have
𝑑 (𝑥𝑛, 𝑥𝑚)

 ≤
𝑑 (𝑥𝑛, 𝑥𝑛+1)

 ≤
𝑑 (𝑥𝑛+1, 𝑥𝑛+2)



≤ ⋅ ⋅ ⋅ ≤
𝑑 (𝑥𝑚−1, 𝑥𝑚)



≤ (𝑘
𝑛
+ 𝑘
𝑛+1
+ 𝑘
𝑛+2
+ ⋅ ⋅ ⋅ + 𝑘

𝑚−1
)
𝑑 (𝑥0, 𝑥1)



≤ (
𝑘
𝑛

1 − 𝑘
)
𝑑 (𝑥0, 𝑥1)

 ;

(13)

it follows that |𝑑(𝑥
𝑛
, 𝑥
𝑚
)| ≤ (𝑘

𝑛
/(1 − 𝑘))|𝑑(𝑥

0
, 𝑥
1
)| → 0 as

𝑛 → ∞.
By Lemma 6, the sequence {𝑥

𝑛
} is a Cauchy. Since 𝑋 is

compete, there exists a point 𝑧 ∈ 𝑋 such that 𝑥
𝑛
→ 𝑧 as

𝑛 → ∞.
Next, we will show that 𝑆𝑧 = 𝑧. By the notion of a

complete complex-valued metric 𝑑, we have

𝑑 (𝑧, 𝑆𝑧) ≾ 𝑑 (𝑧, 𝑥
2𝑘+2
) + 𝑑 (𝑥

2𝑘+2
, 𝑆𝑧)

= 𝑑 (𝑧, 𝑥
2𝑘+2
) + 𝑑 (𝑆𝑧, 𝑇𝑥

2𝑘+1
)

≾ 𝑑 (𝑧, 𝑥
2𝑘+2
) + 𝐴𝑑 (𝑧, 𝑥

2𝑘+1
)

+
𝐵𝑑 (𝑧, 𝑆𝑧) 𝑑 (𝑥

2𝑘+1
, 𝑇𝑥
2𝑘+1
)

1 + 𝑑 (𝑧, 𝑥
2𝑘+1
)

+
𝐶𝑑 (𝑥

2𝑘+1
, 𝑆𝑧) 𝑑 (𝑧, 𝑇𝑥

2𝑘+1
)

1 + 𝑑 (𝑧, 𝑥
2𝑘+1
)

+
𝐷𝑑 (𝑧, 𝑆𝑧) 𝑑 (𝑧, 𝑇𝑥

2𝑘+1
)

1 + 𝑑 (𝑧, 𝑥
2𝑘+1
)

+
𝐸𝑑 (𝑥

2𝑘+1
, 𝑆𝑧) 𝑑 (𝑥

2𝑘+1
, 𝑇𝑥
2𝑘+1
)

1 + 𝑑 (𝑧, 𝑥
2𝑘+1
)

,

(14)

which implies that

|𝑑 (𝑧, 𝑆𝑧)| ≤
𝑑 (𝑧, 𝑥2𝑘+2)

 + 𝐴
𝑑 (𝑧, 𝑥2𝑘+1)



+
𝐵 |𝑑 (𝑧, 𝑆𝑧)|

𝑑 (𝑥2𝑘+1, 𝑥2𝑘+2)


1 + 𝑑 (𝑧, 𝑥2𝑘+1)


+
𝐶
𝑑 (𝑥2𝑘+1, 𝑆𝑧)


𝑑 (𝑧, 𝑥2𝑘+2)


1 + 𝑑 (𝑧, 𝑥2𝑘+1)



+
𝐷 |𝑑 (𝑧, 𝑆𝑧)|

𝑑 (𝑧, 𝑥2𝑘+2)


1 + 𝑑 (𝑧, 𝑥2𝑘+1)


+
𝐸
𝑑 (𝑥2𝑘+1, 𝑆𝑧)


𝑑 (𝑥2𝑘+1, 𝑥2𝑘+2)


1 + 𝑑 (𝑧, 𝑥2𝑘+1)



.

(15)

Taking 𝑘 → ∞, we have |𝑑(𝑧, 𝑆𝑧)| = 0; it is obtained that
𝑑(𝑧, 𝑆𝑧) = 0. Thus, 𝑆𝑧 = 𝑧. It follows that similarly 𝑇𝑧 = 𝑧.
Therefore, 𝑧 is common fixed point of 𝑆 and 𝑇.

Finally, to prove the uniqueness of common fixed point,
let 𝑧∗ ∈ 𝑋 be another common fixed point of 𝑆 and 𝑇 such
that 𝑆𝑧∗ = 𝑇𝑧∗ = 𝑧∗. Consider

𝑑 (𝑧, 𝑧
∗
) = 𝑑 (𝑆𝑧, 𝑇𝑧

∗
)

≾ 𝐴𝑑 (𝑧, 𝑧
∗
) +
𝐵𝑑 (𝑧, 𝑆𝑧) 𝑑 (𝑧

∗
, 𝑇𝑧
∗
)

1 + 𝑑 (𝑧, 𝑧∗)

+
𝐶𝑑 (𝑧

∗
, 𝑆𝑧) 𝑑 (𝑧, 𝑇𝑧

∗
)

1 + 𝑑 (𝑧, 𝑧∗)

+
𝐷𝑑 (𝑧, 𝑆𝑧) 𝑑 (𝑧, 𝑇𝑧

∗
)

1 + 𝑑 (𝑧, 𝑧∗)

+
𝐸𝑑 (𝑧
∗
, 𝑆𝑧) 𝑑 (𝑧

∗
, 𝑇𝑧
∗
)

1 + 𝑑 (𝑧, 𝑧∗)

(16)

so that

𝑑 (𝑧, 𝑧
∗
)
 ≤ 𝐴

𝑑 (𝑧, 𝑧
∗
)
 +
𝐶
𝑑 (𝑧
∗
, 𝑆𝑧)


𝑑 (𝑧, 𝑇𝑧

∗
)


|1 + 𝑑 (𝑧, 𝑧
∗)|

= 𝐴
𝑑 (𝑧, 𝑧

∗
)
 + 𝐶

𝑑 (𝑧
∗
, 𝑧)


𝑑 (𝑧, 𝑧
∗
)


|1 + 𝑑 (𝑧, 𝑧
∗)|
.

(17)

Since |1 + 𝑑(𝑧, 𝑧∗)| > |𝑑(𝑧, 𝑧
∗
)|, therefore |𝑑(𝑧, 𝑧∗)| <

𝐴|𝑑(𝑧, 𝑧
∗
)| + 𝐶|𝑑(𝑧

∗
, 𝑧)| = (𝐴 + 𝐶)|𝑑(𝑧, 𝑧

∗
)|.

This is contradiction to 𝐴 + 𝐶 < 1. Hence, 𝑧 = 𝑧
∗.

Therefore, 𝑧 is a unique common fixed point of 𝑆 and 𝑇.

Corollary 11. If 𝑇 is a self-mapping defined on a complete
complex-valued metric space (𝑋, 𝑑) satisfying the condition

𝑑 (𝑇𝑥, 𝑇𝑦) ≾ 𝐴𝑑 (𝑥, 𝑦) +
𝐵𝑑 (𝑥, 𝑇𝑥) 𝑑 (𝑦, 𝑇𝑦)

1 + 𝑑 (𝑥, 𝑦)

+
𝐶𝑑 (𝑦, 𝑇𝑥) 𝑑 (𝑥, 𝑇𝑦)

1 + 𝑑 (𝑥, 𝑦)

+
𝐷𝑑 (𝑥, 𝑇𝑥) 𝑑 (𝑥, 𝑇𝑦)

1 + 𝑑 (𝑥, 𝑦)
+
𝐸𝑑 (𝑦, 𝑇𝑥) 𝑑 (𝑦, 𝑇𝑦)

1 + 𝑑 (𝑥, 𝑦)

(18)

for all 𝑥, 𝑦 ∈ 𝑋, where 𝐴, 𝐵, 𝐶,𝐷, and 𝐸 are nonnegative with
𝐴 + 𝐵 + 𝐶 + 2𝐷 + 2𝐸 < 1, then 𝑇 has a unique fixed point.

Proof. We can prove this result by applying Theorem 10 by
setting 𝑇 = 𝑆.

Corollary 12. If 𝑆 and 𝑇 are self-mappings defined on a
complete complex valued metric space (𝑋, 𝑑) satisfying the
condition

𝑑 (𝑆𝑥, 𝑇𝑦) ≾ 𝐴𝑑 (𝑥, 𝑦) +
𝐵𝑑 (𝑥, 𝑆𝑥) 𝑑 (𝑦, 𝑇𝑦)

1 + 𝑑 (𝑥, 𝑦)

+
𝐶𝑑 (𝑦, 𝑆𝑥) 𝑑 (𝑥, 𝑇𝑦)

1 + 𝑑 (𝑥, 𝑦)
+
𝐷𝑑 (𝑥, 𝑆𝑥) 𝑑 (𝑥, 𝑇𝑦)

1 + 𝑑 (𝑥, 𝑦)

(19)
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for all 𝑥, 𝑦 ∈ 𝑋, where 𝐴, 𝐵, 𝐶, and 𝐷 are nonnegative with
𝐴+𝐵+𝐶+2𝐷 < 1, then 𝑆 and 𝑇 have a unique common fixed
point.

Proof. We can prove this result by applying Theorem 10 by
setting 𝐸 = 0.

Corollary 13. If 𝑇 is a self-mapping defined on a complete
complex valued metric space (𝑋, 𝑑) satisfying the condition

𝑑 (𝑇𝑥, 𝑇𝑦) ≾ 𝐴𝑑 (𝑥, 𝑦) +
𝐵𝑑 (𝑥, 𝑇𝑥) 𝑑 (𝑦, 𝑇𝑦)

1 + 𝑑 (𝑥, 𝑦)

+
𝐶𝑑 (𝑦, 𝑇𝑥) 𝑑 (𝑥, 𝑇𝑦)

1 + 𝑑 (𝑥, 𝑦)
+
𝐷𝑑 (𝑥, 𝑇𝑥) 𝑑 (𝑥, 𝑇𝑦)

1 + 𝑑 (𝑥, 𝑦)

(20)

for all 𝑥, 𝑦 ∈ 𝑋, where 𝐴, 𝐵, 𝐶, and 𝐷 are nonnegative with
𝐴 + 𝐵 + 𝐶 + 2𝐷 < 1, then 𝑇 has a unique fixed point.

Proof. We can prove this result by applying Corollary 12 by
setting 𝑇 = 𝑆 and 𝐸 = 0.

Corollary 14. If 𝑆 and 𝑇 are self-mappings defined on a
complete complex valued metric space (𝑋, 𝑑) satisfying the
condition

𝑑 (𝑆𝑥, 𝑇𝑦) ≾ 𝐴𝑑 (𝑥, 𝑦) +
𝐵𝑑 (𝑥, 𝑆𝑥) 𝑑 (𝑦, 𝑇𝑦)

1 + 𝑑 (𝑥, 𝑦)

+
𝐶𝑑 (𝑦, 𝑆𝑥) 𝑑 (𝑥, 𝑇𝑦)

1 + 𝑑 (𝑥, 𝑦)
+
𝐸𝑑 (𝑦, 𝑆𝑥) 𝑑 (𝑦, 𝑇𝑦)

1 + 𝑑 (𝑥, 𝑦)

(21)

for all 𝑥, 𝑦 ∈ 𝑋 where 𝐴, 𝐵, 𝐶, and 𝐸 are nonnegative with
𝐴+𝐵+𝐶+2𝐸 < 1, then 𝑆 and 𝑇 have a unique common fixed
point.

Proof. We can prove this result by applying Theorem 10 by
setting𝐷 = 0.

Corollary 15. If 𝑇 is a self-mapping defined on a complete
complex valued metric space (𝑋, 𝑑) satisfying the condition

𝑑 (𝑇𝑥, 𝑇𝑦) ≾ 𝐴𝑑 (𝑥, 𝑦) +
𝐵𝑑 (𝑥, 𝑇𝑥) 𝑑 (𝑦, 𝑇𝑦)

1 + 𝑑 (𝑥, 𝑦)

+
𝐶𝑑 (𝑦, 𝑇𝑥) 𝑑 (𝑥, 𝑇𝑦)

1 + 𝑑 (𝑥, 𝑦)

+
𝐷𝑑 (𝑥, 𝑇𝑥) 𝑑 (𝑥, 𝑇𝑦)

1 + 𝑑 (𝑥, 𝑦)
+
𝐸𝑑 (𝑦, 𝑇𝑥) 𝑑 (𝑦, 𝑇𝑦)

1 + 𝑑 (𝑥, 𝑦)

(22)

for all 𝑥, 𝑦 ∈ 𝑋, where 𝐴, 𝐵, 𝐶, and 𝐸 are nonnegative with
𝐴 + 𝐵 + 𝐶 + 2𝐸 < 1, then 𝑇 has a unique fixed point.

Proof. We can prove this result by applying Corollary 14 by
setting 𝑇 = 𝑆.

Remark 16. (i) By choosing𝐷 = 𝐸 = 0 inTheorem 10, we get
Theorem 1 of [6].

(ii) By choosing 𝐷 = 𝐸 = 0 and 𝑆 = 𝑇 in Theorem 10, we
get Corollary 3 of [6].

(iii) By choosing 𝐶 = 𝐷 = 𝐸 = 0 in Theorem 10, we get
Theorem 4 of Azam et al. [2].

(iv) By choosing𝐶 = 𝐷 = 𝐸 = 0 and 𝑆 = 𝑇 inTheorem 10,
we get Corollary 5 of Azam et al. [2].

Theorem 17. If {𝑇
𝑖
}
𝑚

1
and {𝑆

𝑖
}
𝑛

1
are two finite pairwise com-

muting finite families of self-mapping defined on complete
complex-valued metric space (𝑋, 𝑑) such that the mappings
𝑇 and 𝑆 with 𝑇 = 𝑇

1
𝑇
2
⋅ ⋅ ⋅ 𝑇
𝑚
and 𝑆 = 𝑆

1
𝑆
2
⋅ ⋅ ⋅ 𝑆
𝑛
satisfy

condition (3), then the component maps of the two families
{𝑇
𝑖
}
𝑚

1
and {𝑆

𝑖
}
𝑛

1
have a unique common fixed point.

Proof. By Theorem 10, one can infer that 𝑇 and 𝑆 have a
unique common fixed point 𝑍 (i.e., 𝑇𝑧 = 𝑆𝑧 = 𝑧). Now, we
will show that 𝑧 is a common fixed point of all the component
maps of both families. In view of pairwise commutativity of
the families {𝑇

𝑖
}
𝑚

1
and {𝑆

𝑖
}
𝑛

1
, for every 1 ≤ 𝑘 ≤ 𝑚, we can write

𝑇
𝑘
𝑧 = 𝑇
𝑘
𝑆𝑧 = 𝑆𝑇

𝑘
𝑧,

𝑇
𝑘
𝑧 = 𝑇
𝑘
𝑇𝑧 = 𝑇𝑇

𝑘
𝑧.

(23)

It implies that𝑇
𝑘
𝑧 (∀𝑘) is also a common fixed point of𝑇 and

𝑆. By using the uniqueness of common fixed point, we have
𝑇
𝑘
𝑧 = 𝑧 (∀𝑘). Hence, 𝑧 is a common fixed point of the family

{𝑇
𝑖
}
𝑚

1
. Similarly, we can show that 𝑧 is a commonfixedpoint of

the family {𝑆
𝑖
}
𝑛

1
.This completes the proof of the theorem.

Corollary 18. If 𝐹 and 𝐺 are self-mappings defined on a
complete complex-valued metric space (𝑋, 𝑑) satisfying the
condition

𝑑 (𝐹
𝑚
𝑥, 𝐺
𝑛
𝑦) ≾ 𝐴𝑑 (𝑥, 𝑦) +

𝐵𝑑 (𝑥, 𝐹
𝑚
𝑥) 𝑑 (𝑦𝐺

𝑛
𝑦)

1 + 𝑑 (𝑥, 𝑦)

+
𝐶𝑑 (𝑦, 𝐹

𝑚
𝑥) 𝑑 (𝑥, 𝐺

𝑛
𝑦)

1 + 𝑑 (𝑥, 𝑦)

+
𝐷𝑑 (𝑥, 𝐹

𝑚
𝑥) 𝑑 (𝑥, 𝐺

𝑛
𝑦)

1 + 𝑑 (𝑥, 𝑦)

+
𝐸𝑑 (𝑦, 𝐹

𝑚
𝑥) 𝑑 (𝑦, 𝐺

𝑛
𝑦)

1 + 𝑑 (𝑥, 𝑦)

(24)

for all 𝑥, 𝑦 ∈ 𝑋, where 𝐴, 𝐵, 𝐶,𝐷, and 𝐸 are nonnegative with
𝐴+𝐵+𝐶+2𝐷+2𝐸 < 1, then 𝐹 and𝐺 have a unique common
fixed point.

Proof. We can prove this result by applying Theorem 17 by
setting 𝑇

1
= 𝑇
2
= ⋅ ⋅ ⋅ = 𝑇

𝑚
= 𝐹 and 𝑆

1
= 𝑆
2
= ⋅ ⋅ ⋅ = 𝑆

𝑛
=

𝐺.
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Corollary 19. If 𝑇 is a self-mapping defined on a complete
complex valued metric space (𝑋, 𝑑) satisfying the condition

𝑑 (𝑇
𝑛
𝑥, 𝑇
𝑛
𝑦) ≾ 𝐴𝑑 (𝑥, 𝑦) +

𝐵𝑑 (𝑥, 𝑇
𝑛
𝑥) 𝑑 (𝑦, 𝑇

𝑛
𝑦)

1 + 𝑑 (𝑥, 𝑦)

+
𝐶𝑑 (𝑦, 𝑇

𝑛
𝑥) 𝑑 (𝑥, 𝑇

𝑛
𝑦)

1 + 𝑑 (𝑥, 𝑦)

+
𝐷𝑑 (𝑥, 𝑇

𝑛
𝑥) 𝑑 (𝑥, 𝑇

𝑛
𝑦)

1 + 𝑑 (𝑥, 𝑦)

+
𝐸𝑑 (𝑦, 𝑇

𝑛
𝑥) 𝑑 (𝑦, 𝑇

𝑛
𝑦)

1 + 𝑑 (𝑥, 𝑦)

(25)

for all 𝑥, 𝑦 ∈ 𝑋, where 𝐴, 𝐵, 𝐶,𝐷, and 𝐸 are nonnegative with
𝐴 + 𝐵 + 𝐶 + 2𝐷 + 2𝐸 < 1, then 𝑇 has a unique fixed point.

Proof. We can prove this result by applying Corollary 18 by
setting 𝐹 = 𝐺 = 𝑇.

Remark 20. (i) By choosing𝐷 = 𝐸 = 0 inTheorem 17, we get
Theorem 1 of [6].

(ii) By choosing 𝐷 = 𝐸 = 0 in Corollary 18, we get
Corollary 6 of [6].

(iii) By choosing 𝐷 = 𝐸 = 0 in Corollary 19, we get
Corollary 7 of [6].

(iv) By choosing 𝐶 = 𝐷 = 𝐸 = 0 in Corollary 19, we get
Corollary 6 of Azam et al. [2].

Corollary 21 (see [5]). If 𝑇 : 𝑋 → 𝑋 is a mapping defined
on a complete complex-valuedmetric space (𝑋, 𝑑) satisfying the
condition

𝑑 (𝑇
𝑛
𝑥, 𝑇
𝑛
𝑦) ≾ 𝜆𝑑 (𝑥, 𝑦) (26)

for all 𝑥, 𝑦 ∈ 𝑋, where 𝜆 is nonnegative reals 𝜆 < 1, then 𝑇 has
a unique fixed point.

The following example demonstrates the superiority of
Bryant theorem [5] over Banach contraction theorem.

Example 22. Let 𝑋 = C be the set of complex numbers.
Define 𝑑 : C × C → C as

𝑑 (𝑧
1
, 𝑧
2
) =
𝑥1 − 𝑥2

 + 𝑖
𝑦1 − 𝑦2

 , (27)

where 𝑧
1
= 𝑥
1
+𝑖𝑦
1
and 𝑧
2
= 𝑥
2
+𝑖𝑦
2
.Then, (C, 𝑑) is a complete

complex-valued metric space. Define 𝑇 : C → C as

𝑇 (𝑥 + 𝑖𝑦) =

{{{{

{{{{

{

0; 𝑥, 𝑦 ∈ 𝑄,

2 + 2𝑖; 𝑥, 𝑦 ∈ 𝑄
𝑐
,

2; 𝑥 ∈ 𝑄
𝑐
, 𝑦 ∈ 𝑄,

2𝑖; 𝑥 ∈ 𝑄, 𝑦 ∈ 𝑄
𝑐
.

(28)

Now, for 𝑥 = 1/√3 and 𝑦 = 0, we get

𝑑(𝑇(
1

√3
) , 𝑇 (0)) = 𝑑 (2, 0) = 2 ≾ 𝜆𝑑(

1

√3
, 0) = 𝜆

1

√3
.

(29)

Thus, 𝜆 ≥ √3, which is a contradiction as 0 ≤ 𝜆 < 1.
However, notice that 𝑇2𝑧 = 0, so that 0 = 𝑑(𝑇2𝑧

1
, 𝑇
2
𝑧
2
) ≾

𝜆𝑑(𝑧
1
, 𝑧
2
), which shows that 𝑇2 satisfies the requirement of

Bryant theorem and 𝑧 = 0 is the unique fixed point of 𝑇.
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