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In this paper, conservation laws for the (2 + 1)-dimensional ANNV equation and KP-BBM equation with higher-order mixed
derivatives are studied. Due to the existence of higher-order mixed derivatives, Ibragimov’s “new conservation theorem” cannot be
applied to the two equations directly.We propose twomodification rules which ensure that the theorem can be applied to nonlinear
evolution equations with any mixed derivatives. Formulas of conservation laws for the ANNV equation and KP-BBM equation are
given. Using these formulas, many nontrivial and time-dependent conservation laws for these equations are derived.

1. Introduction

The construction of explicit forms of conservation laws plays
an important role in the study of nonlinear science, as
they are used for the development of appropriate numerical
methods and for mathematical analysis, in particular, exis-
tence, uniqueness, and stability analysis [1–3]. In addition,
the existence of a large number of conservation laws of a
partial differential equation (system) is a strong indication
of its integrability. The famous Noether’s theorem [4] has
provided a systematic way of determining conservation laws
for Euler-Lagrange equations, once theirNoether symmetries
are known, but this theorem relies on the availability of
classical Lagrangians. To find conservation laws of differ-
ential equations without classical Lagrangians, researchers
have made various generalizations of Noether’s theorem [5–
16]. Among those, the new conservation theorem given by
Ibragimov [5] is one of the most frequently used methods.

For any linear or nonlinear differential equations, Ibrag-
imov’s new conservation theorem offers a procedure for
constructing explicit conservation laws associated with the
known Lie, Lie-Backlund, or nonlocal symmetries. Fur-
thermore, it does not require the existence of classical
Lagrangians. Using the conservation laws formulas given by
the theorem, conservation laws for lots of equations have
been studied [6–16]. When applying Ibragimov’s theorem to

a given nonlinear evolution equation with mixed derivatives,
we must be careful with the mixed derivatives. If we apply the
conservation laws formulas to equations with mixed deriva-
tives directly, it will result in errors. In [9], we have proposed
twomodification rules to apply Ibragimov’s theorem to study
conservation laws of two evolution equations with mixed
derivatives, but themixed derivatives are all second order and
not the highest derivative term. In this paper, we will give two
new modification rules and then use Ibragimov’s theorem
to study conservation laws of the following ANNV equation
[17–20]:

𝑢𝑦𝑡 + 𝑢𝑥𝑥𝑥𝑦 − 3𝑢𝑥𝑥𝑢𝑦 − 3𝑢𝑥𝑢𝑥𝑦 = 0, (1)

and KP-BBM equation [21–24]

𝑢𝑥𝑡 + 𝑢𝑥𝑥 − 2𝛼𝑢
2

𝑥
− 2𝛼𝑢𝑢𝑥𝑥 − 𝛽𝑢𝑥𝑥𝑥𝑡 + 𝛾𝑢𝑦𝑦 = 0, (2)

where𝛼,𝛽, and 𝛾 are constants. Both in (1) and (2), the highest
derivative terms 𝑢𝑥𝑥𝑥𝑦 and 𝑢𝑥𝑥𝑥𝑡 are mixed. Furthermore,
there are other lower-order mixed derivatives in addition to
the higher-order mixed derivatives.

The rest of the paper is organized as follows. In Section 2,
we recall the main concepts and theorems used in this paper.
In Section 3, taking the ANNV equation as an example,
we first give two new modification rules which ensure the
theorem can be applied to nonlinear evolution equations
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with any mixed derivatives. Then formulas of conservation
laws and explicit conservation laws for the ANNV equation
are obtained. In Section 4, conservation laws for the KP-
BBM equation with higher-order mixed derivative term are
derived by means of Ibragimov’s theorem and the two new
modification rules. Some conclusions and discussions are
given in Section 5.

2. Preliminaries

In this section, we briefly present the main notations and
theorems [5–7] used in this paper. Consider an 𝑠th-order
nonlinear evolution equation

𝐹 (𝑥, 𝑢, 𝑢(1), 𝑢(2), . . . , 𝑢(𝑠)) = 0, (3)

with 𝑛 independent variables 𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑛) and a
dependent variable 𝑢, where 𝑢(1), 𝑢(2), . . . , 𝑢(𝑠) denote the col-
lection of all first-, second-, . . ., 𝑠th-order partial derivatives.
𝑢𝑖 = 𝐷𝑖(𝑢), 𝑢𝑖𝑗 = 𝐷𝑗𝐷𝑖(𝑢), . . .. Here

𝐷𝑖 =
𝜕

𝜕𝑥𝑖
+ 𝑢𝑖

𝜕

𝜕𝑢
+ 𝑢𝑖𝑗

𝜕

𝜕𝑢𝑗
+ ⋅ ⋅ ⋅ , 𝑖 = 1, 2, . . . , 𝑛, (4)

is the total differential operator with respect to 𝑥𝑖.

Definition 1. The adjoint equation of (3) is defined by

𝐹
∗
(𝑥, 𝑢, V, 𝑢(1), V(1), 𝑢(2), V(2), . . . , 𝑢(𝑠), V(𝑠)) = 0, (5)

with

𝐹
∗
(𝑥, 𝑢, V, 𝑢(1), V(1), 𝑢(2), V(2), . . . , 𝑢(𝑠), V(𝑠)) =

𝛿 (V𝐹)

𝛿𝑢
, (6)

where

𝛿

𝛿𝑢
=

𝜕

𝜕𝑢
+

∞

∑
𝑚=1

(−1)
𝑚
𝐷𝑖
1

⋅ ⋅ ⋅ 𝐷𝑖
2

𝜕

𝜕𝑢𝑖
1
𝑖
2
⋅⋅⋅𝑖
𝑚

(7)

denotes the Euler-Lagrange operator, V is a new dependent
variable, and V = V(𝑥).

Theorem 2. The system consisting of (3) and its adjoint
equation (5),

𝐹 (𝑥, 𝑢, 𝑢(1), 𝑢(2), . . . , 𝑢(𝑠)) = 0,

𝐹
∗
(𝑥, 𝑢, V, 𝑢(1), V(1), 𝑢(2), V(2), . . . , 𝑢(𝑠), V(𝑠)) = 0,

(8)

has a formal Lagrangian; namely,

𝐿 = V𝐹 (𝑥, 𝑢, 𝑢(1), 𝑢(2), . . . , 𝑢(𝑠)) . (9)

In the followingwe recall the “new conservation theorem”
given by Ibragimov in [5].

Theorem 3. Any Lie point, Lie-Backlund, and nonlocal sym-
metries,

𝑉 = 𝜉
𝑖 𝜕

𝜕𝑥𝑖
+ 𝜂

𝜕

𝜕𝑢
, (10)

of (3) provide a conservation law𝐷𝑖(𝑇
𝑖) = 0 for the system (8).

The conserved vector is given by

𝑇
𝑖
= 𝜉
𝑖
𝐿 +𝑊(

𝜕𝐿

𝜕𝑢𝑖
− 𝐷𝑗 (

𝜕𝐿

𝜕𝑢𝑖𝑗
) + 𝐷𝑗𝐷𝑘 (

𝜕𝐿

𝜕𝑢𝑖𝑗𝑘
)

−𝐷𝑗𝐷𝑘𝐷𝑟 (
𝜕𝐿

𝜕𝑢𝑖𝑗𝑘𝑟
) + ⋅ ⋅ ⋅ )

+ 𝐷𝑗𝑊(
𝜕𝐿

𝜕𝑢𝑖𝑗
− 𝐷𝑘 (

𝜕𝐿

𝜕𝑢𝑖𝑗𝑘
) + 𝐷𝑘𝐷𝑟 (

𝜕𝐿

𝜕𝑢𝑖𝑗𝑘𝑟
) − ⋅ ⋅ ⋅ )

+ 𝐷𝑗𝐷𝑘𝑊(
𝜕𝐿

𝜕𝑢𝑖𝑗𝑘
− 𝐷𝑟 (

𝜕𝐿

𝜕𝑢𝑖𝑗𝑘𝑟
) + ⋅ ⋅ ⋅ ) + ⋅ ⋅ ⋅ ,

(11)

where 𝐿 is determined by (9), 𝑊 is the Lie characteristic
function, and

𝑊 = 𝜂 − 𝜉
𝑗
𝑢𝑗. (12)

3. Two Modification Rules and Conservation
Laws for the ANNV Equation

The asymmetric Nizhnik-Novikov-Veselov (ANNV) equa-
tion (1) is equivalent to the ANNV system [17, 18]

𝑝𝑡 + 𝑝𝑥𝑥𝑥 − 3𝑞𝑥𝑝 − 3𝑞𝑝𝑥 = 0, 𝑝𝑥 = 𝑞𝑦, (13)

by the transformation 𝑞 = 𝑢𝑥, 𝑝 = 𝑢𝑦. A series of new
double periodic solutions to the system (13) were derived in
[17], and the variable separation solutions of (13) have been
given in [18]. The Lie symmetry, reductions, and new exact
solutions of the ANNV equation (1) have been studied by us
from the point of Lax pair [19]. Optimal system of group-
invariant solutions and conservation laws of (1) have been
studied by Wang et al. [20]. In the following, we will study
the conservation laws of (1) by Theorem 3.

3.1. Two Modification Rules and Formulas of Conservation
Laws for the ANNV Equation. To search for conservation
laws of (1) by Theorem 3, Lie symmetry, formal Lagrangian,
and adjoint equation of (1) must be known. According to
Definition 1, the adjoint equation of (1) is

V𝑦𝑡 + V𝑦𝑥𝑥𝑥 − 6𝑢𝑥𝑦V𝑥 − 3𝑢𝑦V𝑥𝑥 − 3𝑢𝑥V𝑥𝑦 = 0, (14)

where V is a new dependent variable with respect to 𝑥, 𝑦, and
𝑡.

According to Theorem 2, the formal Lagrangian for the
system consisting of (1) and (14) is

𝐿 = (𝑢𝑦𝑡 + 𝑢𝑦𝑥𝑥𝑥 − 3𝑢𝑥𝑥𝑢𝑦 − 3𝑢𝑥𝑢𝑥𝑦) V, (15)

where V is a solution of (14).
Suppose that the Lie symmetry for the ANNV equation

(1) is as follows:

𝑉 = 𝜉
𝜕

𝜕𝑥
+ 𝜂

𝜕

𝜕𝑦
+ 𝜏

𝜕

𝜕𝑡
+ 𝜙

𝜕

𝜕𝑢
. (16)
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FromTheorem 3, we get the general formula of conservation
laws for the system consisting of (1) and (14):

𝑋 = 𝜉𝐿 +𝑊(
𝜕𝐿

𝜕𝑢𝑥
− 𝐷𝑥 (

𝜕𝐿

𝜕𝑢𝑥𝑥
) − 𝐷𝑦 (

𝜕𝐿

𝜕𝑢𝑥𝑦
)

−𝐷𝑥𝑥𝑦 (
𝜕𝐿

𝜕𝑢𝑥𝑥𝑥𝑦
))

+ 𝐷𝑥 (𝑊)(
𝜕𝐿

𝜕𝑢𝑥𝑥
+ 𝐷𝑥𝑦 (

𝜕𝐿

𝜕𝑢𝑥𝑥𝑥𝑦
))

+ 𝐷𝑦 (𝑊)(
𝜕𝐿

𝜕𝑢𝑥𝑦
+ 𝐷𝑥𝑥 (

𝜕𝐿

𝜕𝑢𝑥𝑥𝑥𝑦
))

+ 𝐷𝑥𝑥 (𝑊)(−𝐷𝑦 (
𝜕𝐿

𝜕𝑢𝑥𝑥𝑥𝑦
))

+ 𝐷𝑥𝑦 (𝑊)(−𝐷𝑥 (
𝜕𝐿

𝜕𝑢𝑥𝑥𝑥𝑦
))

+ 𝐷𝑥𝑥𝑦 (𝑊)(
𝜕𝐿

𝜕𝑢𝑥𝑥𝑥𝑦
) ,

𝑌 = 𝜂𝐿 +𝑊(
𝜕𝐿

𝜕𝑢𝑦
− 𝐷𝑥 (

𝜕𝐿

𝜕𝑢𝑥𝑦
) − 𝐷𝑡 (

𝜕𝐿

𝜕𝑢𝑦𝑡
)

−𝐷𝑥𝑥𝑥 (
𝜕𝐿

𝜕𝑢𝑥𝑥𝑥𝑦
))

+ 𝐷𝑥 (𝑊)(
𝜕𝐿

𝜕𝑢𝑥𝑦
+ 𝐷𝑥𝑥 (

𝜕𝐿

𝜕𝑢𝑥𝑥𝑥𝑦
))

+ 𝐷𝑡 (𝑊)(
𝜕𝐿

𝜕𝑢𝑦𝑡
)

+ 𝐷𝑥𝑥 (𝑊)(−𝐷𝑥 (
𝜕𝐿

𝜕𝑢𝑥𝑥𝑥𝑦
))

+ 𝐷𝑥𝑥𝑥 (𝑊)(
𝜕𝐿

𝜕𝑢𝑥𝑥𝑥𝑦
) ,

𝑇 = 𝜏𝐿 +𝑊(−𝐷𝑦 (
𝜕𝐿

𝜕𝑢𝑦𝑡
)) + 𝐷𝑦 (𝑊)(

𝜕𝐿

𝜕𝑢𝑦𝑡
) ,

(17)

where 𝑊 is the Lie characteristic function, 𝑊 = 𝜙 − 𝜉𝑢𝑥 −

𝜂𝑢𝑦−𝜏𝑢𝑡, and 𝐿 is the formal Lagrangian determined by (15).
In fact, because of the existence of the mixed derivative

terms 𝑢𝑥𝑦, 𝑢𝑦𝑡, and 𝑢𝑥𝑥𝑥𝑦, the general formula of conserva-
tion lawsmust bemodified; otherwise the previous𝑋, 𝑌, and
𝑇 do not satisfy

(𝐷𝑥𝑋 + 𝐷𝑦𝑌 + 𝐷𝑡𝑇)
𝑢
𝑥𝑥𝑥𝑦
=3𝑢
𝑥𝑥
𝑢
𝑦
+3𝑢
𝑥
𝑢
𝑥𝑦
−𝑢
𝑦𝑡

= 0. (18)

The rules of modifications are as follows.
(1) In one conservation vector (𝑋, 𝑌, or 𝑇), the time that

one derivativewith respect to amixed derivative term appears

is determined by the order of the derivative with respect to
its independent variables. For example, whether in 𝑋 or in
𝑌, 𝜕𝐿/𝜕𝑢𝑥𝑦 can only appear once; 𝜕𝐿/𝜕𝑢𝑥𝑥𝑥𝑦 can only appear
once in𝑌 and can appear three times in𝑋; 𝜕𝐿/𝜕𝑢𝑥𝑥𝑥𝑡 can only
appear once in 𝑇 and can appear three times in 𝑋; 𝜕𝐿/𝜕𝑢𝑥𝑥𝑡
can only appear once in 𝑇 and can appear two times in𝑋.

(2) The location that one derivative with respect to a
mixed derivative term appears at cannot be the same in
different conservation vectors. That is to say, if there is
𝑊(−𝐷𝑦(𝜕𝐿/𝜕𝑢𝑥𝑦)) in 𝑋, then the term appears in 𝑌 can
only be 𝐷𝑥(𝑊)(𝜕𝐿/𝜕𝑢𝑥𝑦) and the term 𝑊(−𝐷𝑥(𝜕𝐿/𝜕𝑢𝑥𝑦))

cannot appear in 𝑌 at the same time. And if there is
𝑊(−𝐷𝑥𝑥𝑥(𝜕𝐿/𝜕𝑢𝑥𝑥𝑥𝑦)) in 𝑌, then the terms that appear in
𝑋 contain 𝐷𝑥𝑥𝑦(𝑤)(𝜕𝐿/𝜕𝑢𝑥𝑥𝑥𝑦) and first and second total
derivatives of 𝜕𝐿/𝜕𝑢𝑥𝑥𝑥𝑦.

Applying the two rules to the general conservation laws
formula inTheorem 3, we can get the following results.

Theorem 4. Suppose that the Lie symmetry of the ANNV
equation (1) is expressed as (16). According to the different
locations of 𝜕𝐿/𝜕𝑢𝑥𝑦, 𝜕𝐿/𝜕𝑢𝑦𝑡, and 𝜕𝐿/𝜕𝑢𝑥𝑥𝑥𝑦, the symmetry
provides sixteen different conservation laws for the system
consisting of (1) and (14). The conserved vectors are given as
follows:

(𝑋𝑖𝑗, 𝑌𝑖𝑗, 𝑇𝑖𝑗) = (𝑋
𝑖
, 𝑌
𝑖
, 𝑇
𝑖
) + (𝐵

𝑋

𝑗
, 𝐵
𝑌

𝑗
, 0) , 𝑖, 𝑗 = 1, 2, 3, 4,

(19)

with

𝑋
1
= 𝜉𝐿 +𝑊(

𝜕𝐿

𝜕𝑢𝑥
− 𝐷𝑥 (

𝜕𝐿

𝜕𝑢𝑥𝑥
))

+ 𝐷𝑥 (𝑊)(
𝜕𝐿

𝜕𝑢𝑥𝑥
) +𝑊(−𝐷𝑦 (

𝜕𝐿

𝜕𝑢𝑥𝑦
)) ,

𝑌
1
= 𝜂𝐿 +𝑊(

𝜕𝐿

𝜕𝑢𝑦
− 𝐷𝑡 (

𝜕𝐿

𝜕𝑢𝑦𝑡
)) + 𝐷𝑥 (𝑊)(

𝜕𝐿

𝜕𝑢𝑥𝑦
) ,

𝑇
1
= 𝜏𝐿 + 𝐷𝑦 (𝑊)(

𝜕𝐿

𝜕𝑢𝑦𝑡
) ,

𝑋
2
= 𝜉𝐿 +𝑊(

𝜕𝐿

𝜕𝑢𝑥
− 𝐷𝑥 (

𝜕𝐿

𝜕𝑢𝑥𝑥
)) + 𝐷𝑥 (𝑊)(

𝜕𝐿

𝜕𝑢𝑥𝑥
)

+𝑊(−𝐷𝑦 (
𝜕𝐿

𝜕𝑢𝑥𝑦
)) ,

𝑌
2
= 𝜂𝐿 +𝑊(

𝜕𝐿

𝜕𝑢𝑦
) + 𝐷𝑥 (𝑊)(

𝜕𝐿

𝜕𝑢𝑥𝑦
)

+ 𝐷𝑡 (𝑊)(
𝜕𝐿

𝜕𝑢𝑦𝑡
) ,

𝑇
2
= 𝜏𝐿 +𝑊(−𝐷𝑦 (

𝜕𝐿

𝜕𝑢𝑦𝑡
)) ,
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𝑋
3
= 𝜉𝐿 +𝑊(

𝜕𝐿

𝜕𝑢𝑥
− 𝐷𝑥 (

𝜕𝐿

𝜕𝑢𝑥𝑥
)) + 𝐷𝑥 (𝑊)(

𝜕𝐿

𝜕𝑢𝑥𝑥
)

+ 𝐷𝑦 (𝑊)(
𝜕𝐿

𝜕𝑢𝑥𝑦
) ,

𝑌
3
= 𝜂𝐿 +𝑊(

𝜕𝐿

𝜕𝑢𝑦
− 𝐷𝑥 (

𝜕𝐿

𝜕𝑢𝑥𝑦
) − 𝐷𝑡 (

𝜕𝐿

𝜕𝑢𝑦𝑡
)) ,

𝑇
3
= 𝜏𝐿 + 𝐷𝑦 (𝑊)(

𝜕𝐿

𝜕𝑢𝑦𝑡
) ,

𝑋
4
= 𝜉𝐿 +𝑊(

𝜕𝐿

𝜕𝑢𝑥
− 𝐷𝑥 (

𝜕𝐿

𝜕𝑢𝑥𝑥
)) + 𝐷𝑥 (𝑊)(

𝜕𝐿

𝜕𝑢𝑥𝑥
)

+ 𝐷𝑦 (𝑊)(
𝜕𝐿

𝜕𝑢𝑥𝑦
) ,

𝑌
4
= 𝜂𝐿 +𝑊(

𝜕𝐿

𝜕𝑢𝑦
− 𝐷𝑥 (

𝜕𝐿

𝜕𝑢𝑥𝑦
)) + 𝐷𝑡 (𝑊)(

𝜕𝐿

𝜕𝑢𝑦𝑡
) ,

𝑇
4
= 𝜏𝐿 +𝑊(−𝐷𝑦 (

𝜕𝐿

𝜕𝑢𝑦𝑡
)) ,

𝐵
𝑋

1
= 𝐷𝑥𝑥𝑦 (𝑊)(

𝜕𝐿

𝜕𝑢𝑥𝑥𝑥𝑦
)

+ 𝐷𝑥𝑦 (𝑊)(−𝐷𝑥 (
𝜕𝐿

𝜕𝑢𝑥𝑥𝑥𝑦
))

+ 𝐷𝑦 (𝑊)(𝐷𝑥𝑥 (
𝜕𝐿

𝜕𝑢𝑥𝑥𝑥𝑦
)) ,

𝐵
𝑌

1
= 𝑊(−𝐷𝑥𝑥𝑥 (

𝜕𝐿

𝜕𝑢𝑥𝑥𝑥𝑦
)) ,

𝐵
𝑋

2
= 𝑊(−𝐷𝑥𝑥𝑦 (

𝜕𝐿

𝜕𝑢𝑥𝑥𝑥𝑦
)) + 𝐷𝑥𝑥𝑦 (𝑊)(

𝜕𝐿

𝜕𝑢𝑥𝑥𝑥𝑦
)

+ 𝐷𝑥𝑦 (𝑊)(−𝐷𝑥 (
𝜕𝐿

𝜕𝑢𝑥𝑥𝑥𝑦
)) ,

𝐵
𝑌

2
= 𝐷𝑥 (𝑊)(𝐷𝑥𝑥 (

𝜕𝐿

𝜕𝑢𝑥𝑥𝑥𝑦
)) ,

𝐵
𝑋

3
= 𝑊(−𝐷𝑥𝑥𝑦 (

𝜕𝐿

𝜕𝑢𝑥𝑥𝑥𝑦
)) + 𝐷𝑥𝑥𝑦 (𝑊)(

𝜕𝐿

𝜕𝑢𝑥𝑥𝑥𝑦
)

+ 𝐷𝑥 (𝑊)(𝐷𝑥𝑦 (
𝜕𝐿

𝜕𝑢𝑥𝑥𝑥𝑦
)) ,

𝐵
𝑌

3
= 𝐷𝑥𝑥 (𝑊)(−𝐷𝑥 (

𝜕𝐿

𝜕𝑢𝑥𝑥𝑥𝑦
)) ,

𝐵
𝑋

4
= 𝑊(−𝐷𝑥𝑥𝑦 (

𝜕𝐿

𝜕𝑢𝑥𝑥𝑥𝑦
))

+ 𝐷𝑥𝑥 (𝑊)(−𝐷𝑦 (
𝜕𝐿

𝜕𝑢𝑥𝑥𝑥𝑦
))

+ 𝐷𝑥 (𝑊)(𝐷𝑥𝑦 (
𝜕𝐿

𝜕𝑢𝑥𝑥𝑥𝑦
)) ,

𝐵
𝑌

4
= 𝐷𝑥𝑥𝑥 (𝑊)(

𝜕𝐿

𝜕𝑢𝑥𝑥𝑥𝑦
) ,

(20)

where𝑊 is the Lie characteristic function and𝑊 = 𝜙 − 𝜉𝑢𝑥 −

𝜂𝑢𝑦 − 𝜏𝑢𝑡, 𝐿 is the formal Lagrangian determined by (15).

3.2. Explicit Conservation Laws of the ANNV Equation. Now,
conservation laws of (1) can be derived by Theorem 4 if Lie
symmetries of (1) are known. In fact, Lie symmetries of (1)
have been obtained in [19] and they are as follows:

𝑉1 = 𝑔 (𝑦)
𝜕

𝜕𝑦
, 𝑉2 = −𝐹 (𝑡)

𝜕

𝜕𝑢
,

𝑉3 = 𝑓 (𝑡)
𝜕

𝜕𝑥
−
𝑥𝑓𝑡

3

𝜕

𝜕𝑢
,

𝑉4 =
𝑥ℎ𝑡

3

𝜕

𝜕𝑥
+ ℎ (𝑡)

𝜕

𝜕𝑡
− (

ℎ𝑡

3
𝑢 +

ℎ𝑡𝑡

18
𝑥
2
)

𝜕

𝜕𝑢
,

(21)

where 𝑔(𝑦), 𝐹(𝑡), 𝑓(𝑡), and ℎ(𝑡) are arbitrary functions.
Using the Lie symmetry 𝑉1 and Theorem 4, we can get

sixteen conservation laws for the system consisting of (1) and
(14). They are listed as follows:

𝑋111 = − 3𝑔 (𝑦) 𝑢
2

𝑦
V𝑥 − 3𝑔 (𝑦) 𝑢𝑦𝑢𝑥V𝑦 − V𝑔𝑦𝑢𝑥𝑥𝑦

− V𝑔 (𝑦) 𝑢𝑥𝑥𝑦𝑦 − V𝑥𝑥𝑔𝑦𝑢𝑦 − V𝑥𝑥𝑔 (𝑦) 𝑢𝑦𝑦

+ V𝑥𝑔𝑦𝑢𝑥𝑦 + V𝑥𝑔 (𝑦) 𝑢𝑥𝑦𝑦,

𝑌111 = 𝑔 (𝑦) V𝑢𝑡𝑦 + 𝑔 (𝑦) V𝑢𝑥𝑥𝑥𝑦 + 𝑔 (𝑦) 𝑢𝑦V𝑡

+ 𝑔 (𝑦) 𝑢𝑦V𝑥𝑥𝑥,

𝑇111 = −V𝑔𝑦𝑢𝑦 − V𝑔 (𝑦) 𝑢𝑦𝑦,

𝑋112 = − 3𝑔 (𝑦) 𝑢
2

𝑦
V𝑥 − 3𝑔 (𝑦) 𝑢𝑦𝑢𝑥V𝑦 − V𝑔𝑦𝑢𝑥𝑥𝑦

− V𝑔 (𝑦) 𝑢𝑥𝑥𝑦𝑦 + V𝑥𝑥𝑦𝑔 (𝑦) 𝑢𝑦 + V𝑥𝑔𝑦𝑢𝑥𝑦

+ 𝑔 (𝑦) V𝑥𝑢𝑥𝑦𝑦,

𝑌112 = 𝑔 (𝑦) V𝑢𝑡𝑦 + 𝑔 (𝑦) V𝑢𝑥𝑥𝑥𝑦 + 𝑔 (𝑦) 𝑢𝑦V𝑡

− 𝑔 (𝑦) 𝑢𝑥𝑦V𝑥𝑥,

𝑇112 = −V𝑔𝑦𝑢𝑦 − V𝑔 (𝑦) 𝑢𝑦𝑦,
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𝑋113 = − 3𝑔 (𝑦) 𝑢
2

𝑦
V𝑥 − 3𝑔 (𝑦) 𝑢𝑦𝑢𝑥V𝑦 − V𝑔𝑦𝑢𝑥𝑥𝑦

− V𝑔 (𝑦) 𝑢𝑥𝑥𝑦𝑦 + V𝑥𝑥𝑦𝑔 (𝑦) 𝑢𝑦 − 𝑔 (𝑦) 𝑢𝑥𝑦V𝑥𝑦,

𝑌113 = 𝑔 (𝑦) V𝑢𝑡𝑦 + 𝑔 (𝑦) V𝑢𝑥𝑥𝑥𝑦 + 𝑔 (𝑦) 𝑢𝑦V𝑡

+ 𝑔 (𝑦) 𝑢𝑥𝑥𝑦V𝑥,

𝑇113 = −V𝑔𝑦𝑢𝑦 − V𝑔 (𝑦) 𝑢𝑦𝑦,

𝑋114 = − 3𝑔 (𝑦) 𝑢
2

𝑦
V𝑥 − 3𝑔 (𝑦) 𝑢𝑦𝑢𝑥V𝑦 + V𝑥𝑥𝑦𝑔 (𝑦) 𝑢𝑦

+ 𝑔 (𝑦) 𝑢𝑥𝑥𝑦V𝑦 − 𝑔 (𝑦) 𝑢𝑥𝑦V𝑥𝑦,

𝑌114 = 𝑔 (𝑦) V𝑢𝑡𝑦 + 𝑔 (𝑦) 𝑢𝑦V𝑡,

𝑇114 = −V𝑔𝑦𝑢𝑦 − V𝑔 (𝑦) 𝑢𝑦𝑦,

𝑋211 = − 3𝑔 (𝑦) 𝑢
2

𝑦
V𝑥 − 3𝑔 (𝑦) 𝑢𝑦𝑢𝑥V𝑦 − V𝑔𝑦𝑢𝑥𝑥𝑦

− V𝑔 (𝑦) 𝑢𝑥𝑥𝑦𝑦 − V𝑥𝑥𝑔𝑦𝑢𝑦 − V𝑥𝑥𝑔 (𝑦) 𝑢𝑦𝑦

+ V𝑥𝑔𝑦𝑢𝑥𝑦 + V𝑥𝑔 (𝑦) 𝑢𝑥𝑦𝑦,

𝑌211 = 𝑔 (𝑦) V𝑢𝑥𝑥𝑥𝑦 + 𝑔 (𝑦) 𝑢𝑦V𝑥𝑥𝑥,

𝑇211 = 𝑔 (𝑦) 𝑢𝑦V𝑦,

𝑋221 = − 3𝑔 (𝑦) 𝑢
2

𝑦
V𝑥 − 3𝑔 (𝑦) 𝑢𝑦𝑢𝑥V𝑦 − V𝑔𝑦𝑢𝑥𝑥𝑦

− V𝑔 (𝑦) 𝑢𝑥𝑥𝑦𝑦 + 𝑔 (𝑦) 𝑢𝑦V𝑥𝑥𝑦 + V𝑥𝑔𝑦𝑢𝑥𝑦

+ V𝑥𝑔 (𝑦) 𝑢𝑥𝑦𝑦,

𝑌221 = 𝑔 (𝑦) V𝑢𝑥𝑥𝑥𝑦 − 𝑔 (𝑦) 𝑢𝑥𝑦V𝑥𝑥,

𝑇221 = 𝑔 (𝑦) 𝑢𝑦V𝑦,

𝑋231 = − 3𝑔 (𝑦) 𝑢
2

𝑦
V𝑥 − 3𝑔 (𝑦) 𝑢𝑦𝑢𝑥V𝑦 − V𝑔𝑦𝑢𝑥𝑥𝑦

− V𝑔 (𝑦) 𝑢𝑥𝑥𝑦𝑦 + 𝑔 (𝑦) 𝑢𝑦V𝑥𝑥𝑦 − 𝑔 (𝑦) 𝑢𝑥𝑦V𝑥𝑦,

𝑌231 = 𝑔 (𝑦) V𝑢𝑥𝑥𝑥𝑦 + 𝑔 (𝑦) 𝑢𝑥𝑥𝑦V𝑥,

𝑇231 = 𝑔 (𝑦) 𝑢𝑦V𝑦,

𝑋241 = − 3𝑔 (𝑦) 𝑢
2

𝑦
V𝑥 − 3𝑔 (𝑦) 𝑢𝑦𝑢𝑥V𝑦 + 𝑔 (𝑦) 𝑢𝑦V𝑥𝑥𝑦

+ 𝑔 (𝑦) 𝑢𝑥𝑥𝑦V𝑦 − 𝑔 (𝑦) 𝑢𝑥𝑦V𝑥𝑦,

𝑌241 = 0,

𝑇241 = 𝑔 (𝑦) 𝑢𝑦V𝑦,

𝑋311 = − 3𝑔 (𝑦) 𝑢
2

𝑦
V𝑥 + 3𝑔 (𝑦) 𝑢𝑥𝑦𝑢𝑦V + 3𝑢𝑥V𝑔𝑦𝑢𝑦

+ 3𝑢𝑥V𝑔 (𝑦) 𝑢𝑦𝑦 − V𝑔𝑦𝑢𝑥𝑥𝑦 − V𝑔 (𝑦) 𝑢𝑥𝑥𝑦𝑦

− V𝑥𝑥𝑔𝑦𝑢𝑦 − V𝑥𝑥𝑔 (𝑦) 𝑢𝑦𝑦 + V𝑥𝑔𝑦𝑢𝑥𝑦 + V𝑥𝑔 (𝑦) 𝑢𝑥𝑦𝑦,

𝑌311 = 𝑔 (𝑦) V𝑢𝑡𝑦 + 𝑔 (𝑦) V𝑢𝑥𝑥𝑥𝑦 − 3𝑔 (𝑦) V𝑢𝑥𝑥𝑢𝑦

− 3𝑔 (𝑦) V𝑢𝑥𝑢𝑥𝑦 − 3𝑔 (𝑦) 𝑢𝑦𝑢𝑥V𝑥 + 𝑔 (𝑦) 𝑢𝑦V𝑡

+ 𝑔 (𝑦) 𝑢𝑦V𝑥𝑥𝑥,

𝑇311 = −V𝑔𝑦𝑢𝑦 − V𝑔 (𝑦) 𝑢𝑦𝑦,

𝑋321 = − 3𝑔 (𝑦) 𝑢
2

𝑦
V𝑥 + 3𝑔 (𝑦) 𝑢𝑥𝑦𝑢𝑦V + 3𝑢𝑥V𝑔𝑦𝑢𝑦

+ 3𝑢𝑥V𝑔 (𝑦) 𝑢𝑦𝑦 − V𝑔𝑦𝑢𝑥𝑥𝑦 − V𝑔 (𝑦) 𝑢𝑥𝑥𝑦𝑦

+ 𝑔 (𝑦) 𝑢𝑦V𝑥𝑥𝑦 + V𝑥𝑔𝑦𝑢𝑥𝑦 + V𝑥𝑔 (𝑦) 𝑢𝑥𝑦𝑦,

𝑌321 = 𝑔 (𝑦) V𝑢𝑡𝑦 + 𝑔 (𝑦) V𝑢𝑥𝑥𝑥𝑦 − 3𝑔 (𝑦) V𝑢𝑥𝑥𝑢𝑦

− 3𝑔 (𝑦) V𝑢𝑥𝑢𝑥𝑦 − 3𝑔 (𝑦) 𝑢𝑦𝑢𝑥V𝑥 + 𝑔 (𝑦) 𝑢𝑦V𝑡

− 𝑔 (𝑦) 𝑢𝑥𝑦V𝑥𝑥,

𝑇321 = −V𝑔𝑦𝑢𝑦 − V𝑔 (𝑦) 𝑢𝑦𝑦,

𝑋331 = − 3𝑔 (𝑦) 𝑢
2

𝑦
V𝑥 + 3𝑔 (𝑦) 𝑢𝑥𝑦𝑢𝑦V + 3𝑢𝑥V𝑔𝑦𝑢𝑦

+ 3𝑢𝑥V𝑔 (𝑦) 𝑢𝑦𝑦 − V𝑔𝑦𝑢𝑥𝑥𝑦 − V𝑔 (𝑦) 𝑢𝑥𝑥𝑦𝑦

+ 𝑔 (𝑦) 𝑢𝑦V𝑥𝑥𝑦 − 𝑔 (𝑦) 𝑢𝑥𝑦V𝑥𝑦,

𝑌331 = 𝑔 (𝑦) V𝑢𝑡𝑦 + 𝑔 (𝑦) V𝑢𝑥𝑥𝑥𝑦 − 3𝑔 (𝑦) V𝑢𝑥𝑥𝑢𝑦

− 3𝑔 (𝑦) V𝑢𝑥𝑢𝑥𝑦 − 3𝑔 (𝑦) 𝑢𝑦𝑢𝑥V𝑥 + 𝑔 (𝑦) 𝑢𝑦V𝑡

+ 𝑔 (𝑦) 𝑢𝑥𝑥𝑦V𝑥,

𝑇331 = −V𝑔𝑦𝑢𝑦 − V𝑔 (𝑦) 𝑢𝑦𝑦,

𝑋341 = − 3𝑔 (𝑦) 𝑢
2

𝑦
V𝑥 + 3𝑔 (𝑦) 𝑢𝑥𝑦𝑢𝑦V + 3𝑢𝑥V𝑔𝑦𝑢𝑦

+ 3𝑢𝑥V𝑔 (𝑦) 𝑢𝑦𝑦 + 𝑔 (𝑦) 𝑢𝑦V𝑥𝑥𝑦 + 𝑔 (𝑦) 𝑢𝑥𝑥𝑦V𝑦

− 𝑔 (𝑦) 𝑢𝑥𝑦V𝑥𝑦,

𝑌341 = 𝑔 (𝑦) V𝑢𝑡𝑦 − 3𝑔 (𝑦) V𝑢𝑥𝑥𝑢𝑦 − 3𝑔 (𝑦) V𝑢𝑥𝑢𝑥𝑦

− 3𝑔 (𝑦) 𝑢𝑦𝑢𝑥V𝑥 + 𝑔 (𝑦) 𝑢𝑦V𝑡,

𝑇341 = −V𝑔𝑦𝑢𝑦 − V𝑔 (𝑦) 𝑢𝑦𝑦,

𝑋411 = − 3𝑔 (𝑦) 𝑢
2

𝑦
V𝑥 + 3𝑔 (𝑦) 𝑢𝑥𝑦𝑢𝑦V + 3𝑢𝑥V𝑔𝑦𝑢𝑦

+ 3𝑢𝑥V𝑔 (𝑦) 𝑢𝑦𝑦 − V𝑔𝑦𝑢𝑥𝑥𝑦 − V𝑔 (𝑦) 𝑢𝑥𝑥𝑦𝑦

− V𝑥𝑥𝑔𝑦𝑢𝑦 − V𝑥𝑥𝑔 (𝑦) 𝑢𝑦𝑦 + V𝑥𝑔𝑦𝑢𝑥𝑦 + V𝑥𝑔 (𝑦) 𝑢𝑥𝑦𝑦,

𝑌411 = 𝑔 (𝑦) V𝑢𝑥𝑥𝑥𝑦 − 3𝑔 (𝑦) V𝑢𝑥𝑥𝑢𝑦 − 3𝑔 (𝑦) V𝑢𝑥𝑢𝑥𝑦

− 3𝑔 (𝑦) 𝑢𝑦𝑢𝑥V𝑥 + 𝑔 (𝑦) 𝑢𝑦V𝑥𝑥𝑥,

𝑇411 = 𝑔 (𝑦) 𝑢𝑦V𝑦,
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𝑋421 = − 3𝑔 (𝑦) 𝑢
2

𝑦
V𝑥 + 3𝑔 (𝑦) 𝑢𝑥𝑦𝑢𝑦V + 3𝑢𝑥V𝑔𝑦𝑢𝑦

+ 3𝑢𝑥V𝑔 (𝑦) 𝑢𝑦𝑦 − V𝑔𝑦𝑢𝑥𝑥𝑦 − V𝑔 (𝑦) 𝑢𝑥𝑥𝑦𝑦

+ 𝑔 (𝑦) 𝑢𝑦V𝑥𝑥𝑦 + V𝑥𝑔𝑦𝑢𝑥𝑦 + V𝑥𝑔 (𝑦) 𝑢𝑥𝑦𝑦,

𝑌421 = 𝑔 (𝑦) V𝑢𝑥𝑥𝑥𝑦 − 3𝑔 (𝑦) V𝑢𝑥𝑥𝑢𝑦 − 3𝑔 (𝑦) V𝑢𝑥𝑢𝑥𝑦

− 3𝑔 (𝑦) 𝑢𝑦𝑢𝑥V𝑥 − 𝑔 (𝑦) 𝑢𝑥𝑦V𝑥𝑥,

𝑇421 = 𝑔 (𝑦) 𝑢𝑦V𝑦,

𝑋431 = − 3𝑔 (𝑦) 𝑢
2

𝑦
V𝑥 + 3𝑔 (𝑦) 𝑢𝑥𝑦𝑢𝑦V + 3𝑢𝑥V𝑔𝑦𝑢𝑦

+ 3𝑢𝑥V𝑔 (𝑦) 𝑢𝑦𝑦 − V𝑔𝑦𝑢𝑥𝑥𝑦 − V𝑔 (𝑦) 𝑢𝑥𝑥𝑦𝑦

+ 𝑔 (𝑦) 𝑢𝑦V𝑥𝑥𝑦 − 𝑔 (𝑦) 𝑢𝑥𝑦V𝑥𝑦,

𝑌431 = 𝑔 (𝑦) V𝑢𝑥𝑥𝑥𝑦 − 3𝑔 (𝑦) V𝑢𝑥𝑥𝑢𝑦 − 3𝑔 (𝑦) V𝑢𝑥𝑢𝑥𝑦

− 3𝑔 (𝑦) 𝑢𝑦𝑢𝑥V𝑥 + 𝑔 (𝑦) 𝑢𝑥𝑥𝑦V𝑥,

𝑇431 = 𝑔 (𝑦) 𝑢𝑦V𝑦,

𝑋441 = − 3𝑔 (𝑦) 𝑢
2

𝑦
V𝑥 + 3𝑔 (𝑦) 𝑢𝑥𝑦𝑢𝑦V + 3𝑢𝑥V𝑔𝑦𝑢𝑦

+ 3𝑢𝑥V𝑔 (𝑦) 𝑢𝑦𝑦 + 𝑔 (𝑦) 𝑢𝑦V𝑥𝑥𝑦 + 𝑔 (𝑦) 𝑢𝑥𝑥𝑦V𝑦

− 𝑔 (𝑦) 𝑢𝑥𝑦V𝑥𝑦,

𝑌441 = −3𝑔 (𝑦) V𝑢𝑥𝑥𝑢𝑦 − 3𝑔 (𝑦) V𝑢𝑥𝑢𝑥𝑦 − 3𝑔 (𝑦) 𝑢𝑦𝑢𝑥V𝑥,

𝑇441 = 𝑔 (𝑦) 𝑢𝑦V𝑦.

(22)

For the Lie symmetry 𝑉2, we can also get sixteen conser-
vation laws byTheorem 4. For example, making use of

(𝑋21, 𝑌21, 𝑇21) = (𝑋
2
, 𝑌
2
, 𝑇
2
) + (𝐵

𝑋

1
, 𝐵
𝑌

1
, 0) , (23)

we can get

𝑋212 = −3𝐹 (𝑡) 𝑢𝑦V𝑥 − 3𝐹 (𝑡) 𝑢𝑥𝑦V − 3𝐹 (𝑡) 𝑢𝑥V𝑦,

𝑌212 = 3𝐹 (𝑡) 𝑢𝑥𝑥V − 𝐹𝑡V + 𝐹 (𝑡) V𝑥𝑥𝑥,

𝑇212 = 𝐹 (𝑡) V𝑦.

(24)

For the Lie symmetry 𝑉3, we can also get sixteen conser-
vation laws byTheorem 4. For example, making use of

(𝑋42, 𝑌42, 𝑇42) = (𝑋
4
, 𝑌
4
, 𝑇
4
) + (𝐵

𝑋

2
, 𝐵
𝑌

2
, 0) , (25)

we can get

𝑋423 = 𝑓 (𝑡) V𝑢𝑡𝑦 − 𝑥𝑓𝑡𝑢𝑦V𝑥 − 3𝑓 (𝑡) 𝑢𝑦V𝑥𝑢𝑥 + 𝑢𝑦V𝑓𝑡

+
1

3
𝑥𝑓𝑡V𝑥𝑥𝑦 + 𝑓 (𝑡) 𝑢𝑥V𝑥𝑥𝑦 + 𝑓 (𝑡) 𝑢𝑥𝑥𝑦V𝑥,

𝑌423 = − 𝑥𝑓𝑡𝑢𝑥V𝑥 − 3𝑓 (𝑡) 𝑢
2

𝑥
V𝑥 −

1

3
𝑥V𝑓𝑡𝑡 − V𝑓𝑡𝑢𝑥

− V𝑓 (𝑡) 𝑢𝑡𝑥 −
1

3
𝑓𝑡V𝑥𝑥 − 𝑓 (𝑡) V𝑥𝑥𝑢𝑥𝑥,

𝑇423 =
1

3
𝑥𝑓𝑡V𝑦 + 𝑓 (𝑡) V𝑦𝑢𝑥.

(26)

Using the Lie symmetry 𝑉4 and Theorem 4, sixteen
conservation laws for (1) can be obtained. For example,
making use of

(𝑋13, 𝑌13, 𝑇13) = (𝑋
1
, 𝑌
1
, 𝑇
1
) + (𝐵

𝑋

3
, 𝐵
𝑌

3
, 0) , (27)

we can get

𝑋134 = − ℎ (𝑡) V𝑢𝑥𝑥𝑦𝑡 +
1

3
𝑢ℎ𝑡V𝑥𝑥𝑦 − ℎ (𝑡) 𝑢𝑡𝑥V𝑥𝑦 − ℎ𝑡V𝑢𝑥𝑥𝑦

− 𝑥ℎ𝑡𝑢𝑥𝑢𝑦V𝑥 −
1

9
𝑥ℎ𝑡𝑡V𝑥𝑦 + ℎ (𝑡) V𝑥𝑥𝑦𝑢𝑡 −

2

3
ℎ𝑡𝑢𝑥V𝑥𝑦

+
1

18
𝑥
2
ℎ𝑡𝑡V𝑥𝑥𝑦 − 2𝑥ℎ𝑡V𝑢𝑥𝑢𝑥𝑦 − ℎ𝑡𝑢𝑢𝑦V𝑥 − ℎ𝑡𝑢𝑢𝑥𝑦V

− ℎ𝑡𝑢𝑢𝑥V𝑦 −
1

6
𝑥
2
ℎ𝑡𝑡𝑢𝑦V𝑥 −

1

6
𝑥
2
ℎ𝑡𝑡𝑢𝑥𝑦V

−
1

6
𝑥
2
ℎ𝑡𝑡𝑢𝑥V𝑦 − 𝑥ℎ𝑡𝑢

2

𝑥
V𝑦 − 3ℎ (𝑡) 𝑢𝑡𝑢𝑦V𝑥

− 3ℎ (𝑡) 𝑢𝑡𝑢𝑥𝑦V − 3ℎ (𝑡) 𝑢𝑡𝑢𝑥V𝑦 + 2ℎ𝑡V𝑢𝑦𝑢𝑥

+
1

3
𝑥V𝑢𝑦ℎ𝑡𝑡 + 3ℎ (𝑡) V𝑢𝑦𝑢𝑡𝑥 +

1

3
𝑥ℎ𝑡V𝑥𝑥𝑦𝑢𝑥

−
1

3
𝑥ℎ𝑡V𝑥𝑦𝑢𝑥𝑥 +

1

3
𝑥ℎ𝑡V𝑢𝑡𝑦,

𝑌134 = ℎ𝑡V𝑢𝑢𝑥𝑥 +
1

6
𝑥
2Vℎ𝑡𝑡𝑢𝑥𝑥 + 2𝑥ℎ𝑡V𝑢𝑥𝑥𝑢𝑥

+ 3ℎ (𝑡) V𝑢𝑥𝑥𝑢𝑡 +
1

3
𝑢V𝑡ℎ𝑡 +

1

18
𝑥
2V𝑡ℎ𝑡𝑡

+
1

3
𝑥ℎ𝑡V𝑡𝑢𝑥 + ℎ (𝑡) V𝑡𝑢𝑡 + 2ℎ𝑡V𝑢

2

𝑥

+
1

3
𝑥ℎ𝑡𝑡V𝑢𝑥 + 3ℎ (𝑡) 𝑢𝑥V𝑢𝑡𝑥 + ℎ𝑡𝑢𝑥𝑥V𝑥

+
1

9
V𝑥ℎ𝑡𝑡 +

1

3
𝑥ℎ𝑡V𝑥𝑢𝑥𝑥𝑥 + ℎ (𝑡) V𝑥𝑢𝑡𝑥𝑥,

𝑇134 = ℎ (𝑡) V𝑢𝑥𝑥𝑥𝑦 − 3ℎ (𝑡) V𝑢𝑥𝑥𝑢𝑦 − 3ℎ (𝑡) V𝑢𝑥𝑢𝑥𝑦

−
1

3
V𝑢𝑦ℎ𝑡 −

1

3
V𝑥𝑢𝑥𝑦ℎ𝑡.

(28)

In the previous expressions of conservation laws, V is a
solution of (14). If we can find an exact solution V of (14),
explicit conservation laws of the ANNV equation (1) can be
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obtained by substituting it with the previous expressions. For
example,

V = 𝑚 (𝑦) + 𝑛 (𝑡) (29)

is a solution of (14) with 𝑚(𝑦) and 𝑛(𝑡) being two arbitrary
functions. By that, nontrivial conservation laws of (1) can be
obtained.

Remark 5. It is pointed out that the previous conservation
laws are all nontrivial.The accuracy of themhas been checked
by Maple software.

Remark 6. Theconservation laws of (1) obtained in this paper
are different from each other and are all different from those
in [20].

4. Formulas of Conservation Laws
and Explicit Conservation Laws for
the KP-BBM Equation

The solutions of the KP-BBM equation (2) have been studied
by Wazwaz in [21, 22] who used the sine-cosine method,
the tanh method, and the extended tanh method. Abdou
[23] used the extended mapping method with symbolic
computation to obtain some periodic solutions, solitary wave
solution, and triangular wave solution. Exact solutions and
conservation laws of (2) have been studied by Adem and
Khalique using the Lie group analysis and the simplest
equation method [24].

4.1. Formulas of Conservation Laws of the KP-BBM Equation.
To search for conservation laws of (2) byTheorem 3, Lie sym-
metry, formal Lagrangian, and adjoint equation of (2) must
be known. According to Definition 1, the adjoint equation of
(2) is

V𝑥𝑡 + V𝑥𝑥 − 2𝛼𝑢V𝑥𝑥 − 𝛽V𝑥𝑥𝑥𝑡 + 𝛾V𝑦𝑦 = 0, (30)

where V is a new dependent variable with respect to 𝑥, 𝑦, and
𝑡.

According to Theorem 2, the formal Lagrangian for the
system consisting of (2) and (30) is

𝐿 = (𝑢𝑥𝑡 + 𝑢𝑥𝑥 − 2𝛼𝑢
2

𝑥
− 2𝛼𝑢𝑢𝑥𝑥 − 𝛽𝑢𝑥𝑥𝑥𝑡 + 𝛾𝑢𝑦𝑦) V. (31)

Since there are a higher-order mixed derivative 𝑢𝑥𝑥𝑥𝑡 and
a mixed derivative 𝑢𝑥𝑡 in (2), the two modification rules
must be used if we want to get conservation laws of (2) by
Theorem 3. Therefore, we can get the following statement.

Theorem 7. Suppose that the Lie symmetry of the KP-BBM
equation is as follows:

𝑉 = 𝜉
𝜕

𝜕𝑥
+ 𝜂

𝜕

𝜕𝑦
+ 𝜏

𝜕

𝜕𝑡
+ 𝜙

𝜕

𝜕𝑢
. (32)

According to the different locations of 𝜕𝐿/𝜕𝑢𝑥𝑡 and 𝜕𝐿/𝜕𝑢𝑥𝑥𝑥𝑡,
the symmetry provides eight different conservation laws for

the system consisting of (2) and (30). The conserved vectors are
given as follows:

(𝑋𝑖𝑗, 𝑌𝑖𝑗, 𝑇𝑖𝑗) = (𝑋
𝑖
, 𝑌
𝑖
, 𝑇
𝑖
) + (𝐴

𝑋

𝑗
, 0, 𝐴
𝑇

𝑗
) ,

𝑖 = 1, 2, 𝑗 = 1, 2, 3, 4

(33)

with

𝑋
1
= 𝜉𝐿 +𝑊(

𝜕𝐿

𝜕𝑢𝑥
− 𝐷𝑥 (

𝜕𝐿

𝜕𝑢𝑥𝑥
)) + 𝐷𝑥 (𝑊)(

𝜕𝐿

𝜕𝑢𝑥𝑥
)

+𝑊(−𝐷𝑡 (
𝜕𝐿

𝜕𝑢𝑥𝑡
)) ,

𝑌
1
= 𝜂𝐿 +𝑊(−𝐷𝑦 (

𝜕𝐿

𝜕𝑢𝑦𝑦
)) + 𝐷𝑦 (𝑊)(

𝜕𝐿

𝜕𝑢𝑦𝑦
) ,

𝑇
1
= 𝜏𝐿 + 𝐷𝑥 (𝑊)(

𝜕𝐿

𝜕𝑢𝑥𝑡
) ,

𝑋
2
= 𝜉𝐿 +𝑊(

𝜕𝐿

𝜕𝑢𝑥
− 𝐷𝑥 (

𝜕𝐿

𝜕𝑢𝑥𝑥
)) + 𝐷𝑥 (𝑊)(

𝜕𝐿

𝜕𝑢𝑥𝑥
)

+ 𝐷𝑡 (𝑊)(
𝜕𝐿

𝜕𝑢𝑥𝑡
) ,

𝑌
2
= 𝑌
1
,

𝑇
2
= 𝜏𝐿 +𝑊(−𝐷𝑥 (

𝜕𝐿

𝜕𝑢𝑥𝑡
)) ,

𝐴
𝑋

1
= 𝐷𝑥𝑥𝑡 (𝑊)(

𝜕𝐿

𝜕𝑢𝑥𝑥𝑥𝑡
) + 𝐷𝑥𝑡 (𝑊)(−𝐷𝑥 (

𝜕𝐿

𝜕𝑢𝑥𝑥𝑥𝑡
))

+ 𝐷𝑡 (𝑊)(𝐷𝑥𝑥 (
𝜕𝐿

𝜕𝑢𝑥𝑥𝑥𝑡
)) ,

𝐴
𝑇

1
= 𝑊(−𝐷𝑥𝑥𝑥 (

𝜕𝐿

𝜕𝑢𝑥𝑥𝑥𝑡
)) ,

𝐴
𝑋

2
= 𝐷𝑥𝑥𝑡 (𝑊)(

𝜕𝐿

𝜕𝑢𝑥𝑥𝑥𝑡
) + 𝐷𝑥𝑡 (𝑊)(−𝐷𝑥 (

𝜕𝐿

𝜕𝑢𝑥𝑥𝑥𝑡
))

+𝑊(−𝐷𝑥𝑥𝑡 (
𝜕𝐿

𝜕𝑢𝑥𝑥𝑥𝑡
)) ,

𝐴
𝑇

2
= 𝐷𝑥 (𝑊)(𝐷𝑥𝑥 (

𝜕𝐿

𝜕𝑢𝑥𝑥𝑥𝑡
)) ,

𝐴
𝑋

3
= 𝐷𝑥𝑥𝑡 (𝑊)(

𝜕𝐿

𝜕𝑢𝑥𝑥𝑥𝑡
) + 𝐷𝑥 (𝑊)(𝐷𝑥𝑡 (

𝜕𝐿

𝜕𝑢𝑥𝑥𝑥𝑡
))

+𝑊(−𝐷𝑥𝑥𝑡 (
𝜕𝐿

𝜕𝑢𝑥𝑥𝑥𝑡
)) ,

𝐴
𝑇

3
= 𝐷𝑥𝑥 (𝑊)(−𝐷𝑥 (

𝜕𝐿

𝜕𝑢𝑥𝑥𝑥𝑡
)) ,
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𝐴
𝑋

4
= 𝐷𝑥𝑥 (𝑊)(−𝐷𝑡 (

𝜕𝐿

𝜕𝑢𝑥𝑥𝑥𝑡
))

+ 𝐷𝑥 (𝑊)(𝐷𝑥𝑡 (
𝜕𝐿

𝜕𝑢𝑥𝑥𝑥𝑡
))

+𝑊(−𝐷𝑥𝑥𝑡 (
𝜕𝐿

𝜕𝑢𝑥𝑥𝑥𝑡
)) ,

𝐴
𝑇

4
= 𝐷𝑥𝑥𝑥 (𝑊)(

𝜕𝐿

𝜕𝑢𝑥𝑥𝑥𝑡
) ,

(34)

where𝑊 is the Lie characteristic function,𝑊 = 𝜙−𝜉𝑢𝑥−𝜂𝑢𝑦−

𝜏𝑢𝑡, and 𝐿 is the formal Lagrangian determined by (31).

4.2. Explicit Conservation Laws of the KP-BBM Equation. Lie
symmetries of (2) have been derived in [24] and are listed as
follows:

𝑉1 =
𝜕

𝜕𝑥
, 𝑉2 =

𝜕

𝜕𝑦
, 𝑉3 =

𝜕

𝜕𝑡
,

𝑉4 = −𝛼𝑦
𝜕

𝜕𝑦
− 2𝛼𝑡

𝜕

𝜕𝑡
+ (2𝛼𝑢 − 1)

𝜕

𝜕𝑢
.

(35)

ApplyingTheorem 7, we can obtain conservation laws for the
system consisting of (2) and (30). For the symmetry 𝑉1, we
can get the following eight conservation laws:

𝑋111 = V𝑢𝑡𝑥 + 𝛾V𝑢𝑦𝑦 − 2𝛼𝑢𝑥V𝑥𝑢 + 𝑢𝑥V𝑥 + 𝑢𝑥V𝑡

+ 𝛽𝑢𝑡𝑥V𝑥𝑥 − 𝛽𝑢𝑡𝑥𝑥V𝑥,

𝑇111 = −V𝑢𝑥𝑥 − 𝛽𝑢𝑥V𝑥𝑥𝑥,

𝑋121 = V𝑢𝑡𝑥 + 𝛾V𝑢𝑦𝑦 − 2𝛼𝑢𝑥V𝑥𝑢 + 𝑢𝑥V𝑥 + 𝑢𝑥V𝑡

− 𝛽V𝑡𝑥𝑥𝑢𝑥 − 𝛽𝑢𝑡𝑥𝑥V𝑥,

𝑇121 = −V𝑢𝑥𝑥 + 𝛽𝑢𝑥𝑥V𝑥𝑥,

𝑋131 = V𝑢𝑡𝑥 + 𝛾V𝑢𝑦𝑦 − 2𝛼𝑢𝑥V𝑥𝑢 + 𝑢𝑥V𝑥 + 𝑢𝑥V𝑡

− 𝛽V𝑡𝑥𝑥𝑢𝑥 + 𝛽𝑢𝑥𝑥V𝑡𝑥,

𝑇131 = −V𝑢𝑥𝑥 − 𝛽𝑢𝑥𝑥𝑥V𝑥,

𝑋141 = V𝑢𝑡𝑥 − 𝛽𝑢𝑡𝑥𝑥𝑥V + 𝛾V𝑢𝑦𝑦 − 2𝛼𝑢𝑥V𝑥𝑢 + 𝑢𝑥V𝑥

+ 𝑢𝑥V𝑡 − 𝛽V𝑡𝑥𝑥𝑢𝑥 + 𝛽𝑢𝑥𝑥V𝑡𝑥 − 𝛽𝑢𝑥𝑥𝑥V𝑡,

𝑇141 = −V𝑢𝑥𝑥 + 𝛽𝑢𝑥𝑥𝑥𝑥V,

𝑋211 = 𝛾V𝑢𝑦𝑦 − 2𝛼𝑢𝑥V𝑥𝑢 + 𝑢𝑥V𝑥 + 𝛽𝑢𝑡𝑥V𝑥𝑥 − 𝛽𝑢𝑡𝑥𝑥V𝑥,

𝑇211 = 𝑢𝑥V𝑥 − 𝛽𝑢𝑥V𝑥𝑥𝑥,

𝑋221 = 𝛾V𝑢𝑦𝑦 − 2𝛼𝑢𝑥V𝑥𝑢 + 𝑢𝑥V𝑥 − 𝛽V𝑡𝑥𝑥𝑢𝑥 − 𝛽𝑢𝑡𝑥𝑥V𝑥,

𝑇221 = 𝑢𝑥V𝑥 + 𝛽𝑢𝑥𝑥V𝑥𝑥,

𝑋231 = 𝛾V𝑢𝑦𝑦 − 2𝛼𝑢𝑥V𝑥𝑢 + 𝑢𝑥V𝑥 − 𝛽V𝑡𝑥𝑥𝑢𝑥 + 𝛽𝑢𝑥𝑥V𝑡𝑥,

𝑇231 = 𝑢𝑥V𝑥 − 𝛽𝑢𝑥𝑥𝑥V𝑥,

𝑋241 = − 𝛽𝑢𝑡𝑥𝑥𝑥V + 𝛾V𝑢𝑦𝑦 − 2𝛼𝑢𝑥V𝑥𝑢 + 𝑢𝑥V𝑥

− 𝛽V𝑡𝑥𝑥𝑢𝑥 + 𝛽𝑢𝑥𝑥V𝑡𝑥 − 𝛽𝑢𝑥𝑥𝑥V𝑡,

𝑇241 = 𝑢𝑥V𝑥 + 𝛽𝑢𝑥𝑥𝑥𝑥V,

(36)

where 𝑌𝑖𝑗1 = 𝛾𝑢𝑥V𝑦 − 𝛾𝑢𝑥𝑦V, 𝑖 = 1, 2, 𝑗 = 1, 2, 3, 4.
For the symmetry 𝑉2, we can also get eight conservation

laws for the system of (2) and (30). For example, making use
of

(𝑋13, 𝑌13, 𝑇13) = (𝑋
1
, 𝑌
1
, 𝑇
1
) + (𝐴

𝑋

3
, 0, 𝐴
𝑇

3
) , (37)

we can get

𝑋132 = 2𝛼𝑢𝑦𝑢𝑥V − 2𝛼𝑢𝑦V𝑥𝑢 + 𝑢𝑦V𝑥 − 𝑢𝑥𝑦V + 2𝛼𝑢𝑥𝑦V𝑢

+ 𝑢𝑦V𝑡 − 𝛽V𝑡𝑥𝑥𝑢𝑦 + 𝛽𝑢𝑡𝑥𝑥𝑦V + 𝛽𝑢𝑥𝑦V𝑡𝑥,

𝑌132 = V𝑢𝑡𝑥 + V𝑢𝑥𝑥 − 2𝛼V𝑢2
𝑥
− 2𝛼V𝑢𝑢𝑥𝑥 − 𝛽V𝑢𝑡𝑥𝑥𝑥 + 𝛾𝑢𝑦V𝑦,

𝑇132 = −𝑢𝑥𝑦V − 𝛽𝑢𝑥𝑥𝑦V𝑥.
(38)

Similarly, for the symmetry𝑉3, we can get eight conserva-
tion laws for the system of (2) and (30). For example, making
use of

(𝑋22, 𝑌22, 𝑇22) = (𝑋
2
, 𝑌
2
, 𝑇
2
) + (𝐴

𝑋

2
, 0, 𝐴
𝑇

2
) , (39)

we can get

𝑋223 = 2𝛼𝑢𝑡𝑢𝑥V − 2𝛼𝑢𝑡V𝑥𝑢 + 𝑢𝑡V𝑥 − 𝑢𝑡𝑥V + 2𝛼𝑢𝑡𝑥V𝑢

− 𝑢𝑡𝑡V − 𝛽V𝑡𝑥𝑥𝑢𝑡 + 𝛽𝑢𝑡𝑡𝑥𝑥V − 𝛽𝑢𝑡𝑡𝑥V𝑥,

𝑌223 = 𝛾𝑢𝑡V𝑦 − 𝛾𝑢𝑡𝑦V,

𝑇223 = 𝑢𝑡𝑥V + V𝑢𝑥𝑥 − 2𝛼V𝑢2
𝑥
− 2𝛼V𝑢𝑢𝑥𝑥 − 𝛽V𝑢𝑡𝑥𝑥𝑥

+ 𝛾V𝑢𝑦𝑦 + 𝑢𝑡V𝑥 + 𝛽𝑢𝑡𝑥V𝑥𝑥.

(40)

For the symmetry 𝑉4, we only list the conservation laws
derived by

(𝑋14, 𝑌14, 𝑇14) = (𝑋
1
, 𝑌
1
, 𝑇
1
) + (𝐴

𝑋

4
, 0, 𝐴
𝑇

4
) , (41)
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and they are as follows:

𝑋144 = 4𝛼𝑢𝑥V + 4𝛼
2
𝑢
2V𝑥 − 2𝛼V𝑡𝑢 − 4𝛼V𝑥𝑢 − 𝛽𝛼𝑦V𝑡𝑥𝑢𝑥𝑦

+ V𝑥 + 𝛽𝛼𝑦V𝑡𝑢𝑥𝑥𝑦 − 𝛽V𝑡𝑥𝑥 + V𝑡 − 8𝛼
2
𝑢𝑢𝑥V

− 𝛼𝑦𝑢𝑦V𝑥 − 2𝛼𝑡𝑢𝑡V𝑥 + 𝛼𝑦𝑢𝑥𝑦V + 2𝛼𝑡𝑢𝑡𝑥V − 𝛼𝑦V𝑡𝑢𝑦

− 2𝛼𝑡V𝑡𝑢𝑡 + 2𝛽𝛼V𝑡𝑥𝑥𝑢 − 2𝛽𝛼V𝑡𝑥𝑢𝑥

− 2𝛼
2
𝑦𝑢𝑦𝑢𝑥V + 2𝛽𝛼V𝑡𝑢𝑥𝑥 + 2𝛼

2
𝑦𝑢𝑦V𝑥𝑢,

𝑌144 = − 4𝛼
2
𝑡𝑢𝑡𝑢𝑥V + 4𝛼

2
𝑡𝑢𝑡V𝑥𝑢 − 2𝛼

2
𝑦𝑢𝑥𝑦V𝑢 − 4𝛼

2
𝑡𝑢𝑡𝑥V𝑢

+ 𝛽𝛼𝑦V𝑡𝑥𝑥𝑢𝑦 + 2𝛽𝛼𝑡V𝑡𝑥𝑥𝑢𝑡 − 2𝛽𝛼𝑡V𝑡𝑥𝑢𝑡𝑥

+ 2𝛽𝛼𝑡V𝑡𝑢𝑡𝑥𝑥,

𝑇144 = − 2𝛼𝑡V𝑢𝑥𝑥 + 4𝛼
2
𝑡V𝑢2
𝑥
+ 4𝛼
2
𝑡V𝑢𝑢𝑥𝑥 − 2𝛼𝛾𝑡V𝑢𝑦𝑦

+ 2𝛼𝑢𝑥V + 𝛼𝑦𝑢𝑥𝑦V − 2𝛽𝛼V𝑢𝑥𝑥𝑥 − 𝛽𝛼𝑦V𝑢𝑥𝑥𝑥𝑦.
(42)

In the previous expressions of conservation laws, V is a
solution of the adjoint equation (30). If we can find an exact
solution V of (30), explicit conservation laws for the KP-
BBM equation (2) can be obtained by substituting it with the
previous expressions. For example,

V = (𝑥 +𝑀(𝑡)) 𝑦 + 𝑁 (𝑡) (43)

is a solution of (30) with 𝑀(𝑡) and 𝑁(𝑡) being two arbitrary
functions. By that we can get many infinite conservation laws
for (2). Furthermore, the conservation laws are nontrivial and
time dependent.

Remark 8. The correctness of the conservation laws of (2)
obtained here has been checked by Maple software. The
conservation laws obtained here for (2) are much more than
those in [24] and different from them.

5. Concluding Remarks

Recently, conservation laws of nonlinear evolution equa-
tions with mixed derivatives have attracted the interest of
mathematical and physical researchers. As shown in [16],
when applying Noether’s theorem and partial Noether’s
theorem to obtain conservation laws of nonlinear evolution
equations with higher-order mixed derivatives, the obtained
conservation lawsmust be adjusted to satisfy the definition of
conservation laws. We face the same problem when applying
Ibragimov’s new conservation theorem to find conservation
laws of nonlinear evolution equations withmixed derivatives.
In this paper, we propose two modification rules which
ensure that Ibragimov’s theorem can be applied to nonlin-
ear evolution equations with higher-order and lower-order
mixed derivatives. The two modification rules given in this
paper are a generalization of those proposed in [9]. The
results are used to study the conservation laws of two partial
differential equations with higher-order mixed derivatives:

the ANNV equation and the KP-BBM equation. Many
infinite explicit and nontrivial conservation laws are obtained
for the two equations. Based on the two modification rules,
Ibragimov’s new conservation theorem can be used to find
conservation laws of other partial differential equations with
any mixed derivatives.
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