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This paper considers the problem of the convergence of the consensus algorithm for multiple agents in a directed network where
each agent is governed by double-integrator dynamics and coupling time delay.The advantage of this protocol is that almost all the
existing linear local interaction consensus protocols can be considered as special cases of the present paper. By combining algebraic
graph theory and matrix theory and studying the distribution of the eigenvalues of the associated characteristic equation, some
necessary and sufficient conditions are derived for reaching the second-order consensus. Finally, an illustrative example is also
given to support the theoretical results.

1. Introduction

Recently, coordinated control of multiple agents has attracted
a great deal of attention in many fields such as biology,
physics, robotics, and control engineering [1, 2]. Research on
multiagent coordinated control problems not only helps in
better understanding the general mechanisms and intercon-
nection rules of natural collective phenomena, but also ben-
efits many practical applications of networked cyberphysical
systems, such as the coordination and control of distributed
sensor networks [3], formation control in multirobots [4],
unmanned autonomous vehicles (UAVs) formations [5, 6],
flocking [7], complex networks [8, 9], and so on [10, 11]. A
critical problem in coordinated control ofmultiple agents is to
find control laws such that all agents can reach an agreement
regarding a certain quantity of interest that depends on the
states of all agents. This problem is usually called the con-
sensus problem [12]. In recent years, numerous studies have
been conducted on this problem, some special second-order
consensus protocols were presented, and some consensus
conditions were obtained [13–18].

In the references on the consensus problem, multiagent
systems with double-integrator dynamics have been paid
great attentions because of their importance in practice.

In [13], the authors studied some necessary and sufficient
conditions for second-order consensus multiagent system,
and revealed that both the real and imaginary parts of the
eigenvalues of the Laplacian matrix of the corresponding
directed network play key roles in reaching consensus. In
[14], Zhu et al. discussed the consensus problem of coupled
second-order linear harmonic oscillators with local interac-
tion, which means that the states of all agents converge to the
same periodic function. In [15], Zhu discussed amore general
linear form of consensus protocols for multiagent systems
with double-integrator dynamics. In [16], Li et al. investi-
gated the final consensus convergence state of multiagent
dynamical systems by using a kind of generalized linear local
interaction protocols without time delay. However, most of
the protocols discussed in the existing literature have neither
addressed the consensus of positive exponential dynamics,
namely, each agent’s state converges to a positive exponential
function, nor considered the time delay in network. So,
the observation provides us the motivation of this paper to
investigate the consensus of second-order agents in directed
networks double-integrators and coupling time delay.

In this paper, we consider the convergence of the second-
order consensus of multiagent systems composed of coupled
double-integrators dynamics and coupling time delay. For
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this protocol, all the agents in the fixed directed network
topology are governed by double-integrator dynamics. The
advantage of this protocol is that almost all the existing linear
local interaction consensus protocols can be considered as
special cases of the present paper [13–16]. By combining
algebraic graph theory and matrix theory and studying the
distribution of the eigenvalues of the associated characteristic
equation, we give explicitly the effect of delays for second-
order consensus. The contribution of this paper is to obtain
a necessary and sufficient condition that the second-order
consensus can be achieved in a delayed multiagent system
with a directed spanning tree if and only if the time delay is
less than a certain critical value.

The rest of this paper is outlined as follows. In Section 2,
some preliminaries on the graph theory and the model
formulation are given. The main results are established
in Section 3. In Section 4, several numerical examples are
simulated to verify the theoretical analysis. Conclusions are
finally drawn in Section 5.

2. Preliminaries

In this subsection, some basic concepts and results about
algebraic grapy theory are introduced. Formore details about
algebraic graph theory, please refer to [19]. Suppose that
information exchange among agents in multiagent systems
can be modeled by an interaction digraph. Let 𝑔 = (𝑉, 𝜀, 𝐴)
denote a directed graph, where 𝑉 = {1, 2, . . . , 𝑁} denotes the
node set, 𝜀 ⊆ 𝑉×𝑉 represents the edge set, and𝐴 = (𝑎

𝑖𝑗
)
𝑁×𝑁

is the adjacency matrix. A directed edge 𝜀
𝑖𝑗
in the network 𝑔

is denoted by the ordered pair of nodes (𝑖, 𝑗), where 𝑖 is the
head and 𝑗 is the tail, which means that node 𝑖 can receive
information from node 𝑗 [20]. The elements of the adjacency
matrix 𝐴 are defined such that 𝑎

𝑖𝑗
= 1 ⇔ 𝜀

𝑖𝑗
∈ 𝜀, while

𝑎
𝑖𝑗
= 0 ⇔ 𝜀

𝑖𝑗
∉ 𝜀. We always assume that there is no self-loop

in network 𝑔; that is, 𝑎
𝑖𝑖
= 0 for all 𝑖 ∈ 𝑉. Weighted adjacency

matrix 𝐴 of a weighted directed graph can be defined such
that 𝑎

𝑖𝑗
is a positive weight if 𝜀

𝑖𝑗
∈ 𝜀, while 𝑎

𝑖𝑗
= 0 if 𝜀

𝑖𝑗
∉ 𝜀.

The set of neighbors of node 𝑖 is denoted by 𝑁
𝑖
= {𝑗 ∈ 𝑉 :

(𝑖, 𝑗) ∈ 𝜀}.
If there is a sequence of edges of the form (𝑖, 𝑗

1
),

(𝑗
1
, 𝑗

2
), . . . , (𝑗

𝑚
, 𝑗) ∈ 𝜀 composing a directed path beginning

with 𝑖 and ending with 𝑗 in the directed graph 𝑔 with
distinct nodes 𝑗

𝑘
, 𝑘 = 1, 2, . . . , 𝑚, then the node 𝑗 is said

to be reachable from node 𝑖. A directed graph is strongly
connected if for any distinct nodes 𝑖 and 𝑗, there exists a
directed path from node 𝑖 to node 𝑗. A directed graph has
a directed spanning tree if there exists at least one node
called root which has a directed path to all the other nodes
[21]. A directed graph is balanced if ∑𝑛

𝑗=1
𝑎

𝑖𝑗
= ∑

𝑛

𝑗=1
𝑎

𝑗𝑖
for

all 𝑖. Let (generally nonsymmetrical) Laplacian matrix 𝐿 =

(𝑙
𝑖𝑗
)
𝑁×𝑁

associated with directed network 𝑔 be defined as
𝑙
𝑖𝑖
= ∑

𝑁

𝑗=1, 𝑗 ̸= 𝑖
𝑎

𝑖𝑗
and 𝑙

𝑖𝑗
= −𝑎

𝑖𝑗
, where 𝑖 ̸= 𝑗. Especially, for

an undirected graph, 𝐿 is symmetric positive semidefinite.
However, 𝐿 for a directed graph does not have this property.

2.1. Notations. Some mathematical notations are used for
simplicity throughout this paper. 𝐼

𝑛
(𝑂

𝑛
) denotes the identity

(zero) matrix with 𝑛 dimensions. Let 1
𝑛
(0

𝑛
) be a column

vector with 𝑛 elements being 1 (0). Re(⋅) and Im(⋅) represent
the real part and imaginary part of a complex, respectively.
𝐶

𝑛 is the 𝑛-dimensional complex vector space.

2.2. Consensus Protocols. Suppose that the 𝑖th agent in the
network 𝑔 is modeled by double-integrator dynamics and
coupling time delay

̇𝑟
𝑖 (𝑡) = 𝑣𝑖 (𝑡) , �̇�

𝑖 (𝑡) = 𝑢𝑖 (𝑡) , 𝑖 = 1, 2, . . . , 𝑁, (1)

where 𝑟
𝑖
(𝑡) ∈ 𝑅 is the position state, 𝑣

𝑖
(𝑡) ∈ 𝑅 is the

velocity state, and 𝑢
𝑖
(𝑡) ∈ 𝑅 is the control input, which is

designed based on local information exchange. In this paper,
the consensus protocol in a multiagents system is as follows:

𝑢
𝑖 (𝑡) = − 𝛼𝑟

𝑖 (𝑡) − 𝛽𝑣𝑖 (𝑡) + 𝛾∑

𝑗∈𝑁𝑖

𝑎
𝑖𝑗
(𝑟

𝑗 (𝑡 − 𝜏) − 𝑟𝑖 (𝑡 − 𝜏))

+ 𝜉∑

𝑗∈𝑁𝑖

𝑎
𝑖𝑗
(𝑣

𝑗 (𝑡 − 𝜏) − 𝑣𝑖 (𝑡 − 𝜏)) , 𝑖 = 1, 2, . . . , 𝑁,

(2)

where 𝛼 > 0 (𝛽 > 0) denotes the position (velocity)
damping gain, 𝛾 > 0 (𝜉 > 0) represents the coupling strength
of positions (velocities) between neighboring agents, and 𝜏 >
0 is the communication time-delay.

Equivalently, system (2) can be rewritten as follows:

𝑢
𝑖 (𝑡) = − 𝛼𝑟

𝑖 (𝑡) − 𝛽𝑣𝑖 (𝑡) − 𝛾∑

𝑗∈𝑁𝑖

𝐿
𝑖𝑗
𝑟
𝑗 (𝑡 − 𝜏)

− 𝜉∑

𝑗∈𝑁𝑖

𝐿
𝑖𝑗
𝑣

𝑗 (𝑡 − 𝜏) , 𝑖 = 1, 2, . . . , 𝑁.

(3)

Let x(𝑡) = [𝑟
1
(𝑡), 𝑟

2
(𝑡), . . . , 𝑟

𝑁
(𝑡)]

𝑇 and v(𝑡) =

[𝑣
1
(𝑡), 𝑣

2
(𝑡), . . . , 𝑣

𝑁
(𝑡)]

𝑇. Then, network (1) can be rewritten
in a compact matrix form as

[
ẋ (𝑡)
v̇ (𝑡)] = 𝑄[

x (𝑡)
v (𝑡)] , (4)

where 𝑄 = [
𝑂𝑁 𝐼𝑁

−𝛼𝐼𝑁 − 𝛾𝐿𝑒
−𝜆𝜏

−𝛽𝐼𝑁 − 𝜉𝐿𝑒
−𝜆𝜏 ], and 𝐿 ∈ 𝑅

𝑁×𝑁 is the
(nonsymmetric) Laplacian matrix associated with directed
graph 𝑔.

Definition 1. Second-order consensus in the multiagent sys-
tem (1) under control input (2) is said to be achieved if for any
initial conditions 𝑟

𝑖
(0), 𝑣

𝑖
(0), lim

𝑡 → ∞
|𝑟

𝑖
(𝑡) − 𝑟

𝑗
(𝑡)| = 0 and

lim
𝑡 → ∞

|𝑣
𝑖
(𝑡) − 𝑣

𝑗
(𝑡)| = 0, ∀𝑖, 𝑗 = 1, 2, . . . , 𝑁.

3. Main Results

In delayed systems, the time delays can be regarded as the
bifurcation parameters. In [17, 18], it was found that Hopf
bifurcation occurs when time delays pass through some
critical values where the conditions for local asymptotical
stability of the equilibrium are not satisfied. Similarly, in this
section, we aim to find the maximum time delay with which
the consensus can be achieved in the multiagent system (1).
Before reaching our main results, we first give the following
lemmas.
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Lemma 2 (see [5]). Let 𝐿 be the (nonsymmetric) Laplacian
matrix associatedwith directed network𝑔.Then,𝐿 has a simple
zero eigenvalue and its other eigenvalues have positive real
parts if and only if 𝑔 has a directed spanning tree.

The characteristic equation for system (4) is

det [ 𝜆𝐼
𝑁

−𝐼
𝑁

𝛼𝐼
𝑁
+ 𝛾𝐿𝑒

−𝜆𝜏
𝜆𝐼

𝑁
+ 𝛽𝐼

𝑁
+ 𝜉𝐿𝑒

−𝜆𝜏]

= det (𝜆𝐼
𝑁
(𝜆𝐼

𝑁
+ 𝛽𝐼

𝑁
+ 𝜉𝐿𝑒

−𝜆𝜏
) + 𝛼𝐼

𝑁
+ 𝛾𝐿𝑒

−𝜆𝜏
)

= det (𝜆2
𝐼
𝑁
+ 𝛽𝜆𝐼

𝑁
+ 𝛼𝐼

𝑁
+ 𝑒

−𝜆𝜏
(𝜆𝐼

𝑁
𝜉𝐿 + 𝛾𝐿))

=

𝑁

∏

𝑖=1

[𝜆
2
+ 𝛽𝜆 + 𝛼 − (𝜆𝜉𝜇

𝑖
+ 𝛾𝜇

𝑖
) 𝑒

−𝜆𝜏
]

= 0.

(5)

Let𝑔
𝑖
(𝜆) = 𝜆

2
+𝛽𝜆+𝛼−(𝜆𝜉𝜇

𝑖
+𝛾𝜇

𝑖
)𝑒

−𝜆𝜏 and𝑔(𝜆) = ∏𝑁

𝑖=1
𝑔

𝑖
(𝜆).

From (5), it is easy to see that 𝐿 has a zero eigenvalue of
algebraic multiplicity 𝑚 if and only if 𝑔(𝜆) = 0 has a zero
eigenvalue of algebraic multiplicity 2𝑚.

In the following, one considers the case that 𝑔
𝑖
(𝜆) has a

pair of purely imaginary roots ±𝑖𝜔
𝑖
. If 𝑖𝜔

𝑖
(𝜔

𝑖
> 0) is a root

of 𝑔
𝑖
(𝜆) = 0, substituting it into 𝑔

𝑖
(𝜆), one can obtain

−𝜔
2

𝑖
+ 𝛽𝑖𝜔

𝑖
+ 𝛼 − (𝑖𝜔

𝑖
𝜉𝜇

𝑖
+ 𝛾𝜇

𝑖
) 𝑒

−𝑖𝜔𝜏
= 0. (6)

Separating the real and imaginary parts of (6) leads to

[𝑅 (𝜇
𝑖
) 𝛾 − 𝑙 (𝜇

𝑖
) 𝜔

𝑖
𝜉] cos𝜔

𝑖
𝜏 + [𝑅 (𝜇

𝑖
) 𝜔

𝑖
𝜉 + 𝑙 (𝜇

𝑖
) 𝛾] sin𝜔

𝑖
𝜏

= −𝜔
2

𝑖
+ 𝛼,

[𝑅 (𝜇
𝑖
) 𝜔

𝑖
𝜉 + 𝑙 (𝜇

𝑖
) 𝛾] cos𝜔

𝑖
𝜏 − [𝑅 (𝜇

𝑖
) 𝛾 − 𝑙 (𝜇

𝑖
) 𝜔

𝑖
𝜉] sin𝜔

𝑖
𝜏

= 𝛽𝜔
𝑖
.

(7)

By squaring and adding the previous equations, it follows that

𝜔
4

𝑖
− (

𝜇𝑖


2
𝜉

2
+ 2𝛼 − 𝛽

2
) 𝜔

2

𝑖
−
𝜇𝑖


2
𝛾

2
+ 𝛼

2
= 0. (8)

By solving (8), one can obtain

𝜔
2

𝑖

=

𝜇𝑖


2
𝜉

2
+2𝛼−𝛽

2
±√(

𝜇𝑖


2
𝜉2+2𝛼−𝛽2)

2

+4 (
𝜇𝑖


2
𝑟2−𝛼2)

2
.

(9)

Lemma 3. (1) If ‖𝜇
𝑖
‖

2
𝜉

2
+ 2𝛼 < 𝛽

2 and ‖𝜇
𝑖
‖

2
𝛾

2
< 𝛼

2, then (8)
has no positive root.

(2) If ‖𝜇
𝑖
‖

2
𝜉

2
+ 2𝛼 > 𝛽

2 and ‖𝜇
𝑖
‖

2
𝛾

2
> 𝛼

2, then (8) has
only one positive root.

(3) If ‖𝜇
𝑖
‖

2
𝜉

2
+2𝛼 > 𝛽

2 and ‖𝜇
𝑖
‖

2
𝛾

2
< 𝛼

2, then (8) has two
positive roots.

Suppose that (8) has positive roots; without loss of gener-
ality, one assumes that it has two positive roots defined by 𝜔

𝑖𝑘
,

(𝑘 = 1, 2). By (7), one has
cos (𝜔𝑖𝑘𝜏)

=

(−𝜔
2

𝑖𝑘
+𝛼) [𝑅 (𝜇𝑖) 𝛾−𝑙 (𝜇𝑖) 𝜔𝑖𝑘𝜉] + 𝛽𝜔𝑖𝑘 [𝑅 (𝜇𝑖) 𝜔𝑖𝑘𝜉+𝑙 (𝜇𝑖) 𝛾]

(𝜔
2

𝑖𝑘
−𝛼)
2

+𝛽
2
𝜔
2

𝑖𝑘

(10)

Thus, denoting

𝜏
𝑗

𝑖𝑘

=
1

𝜔𝑖𝑘

arccos
(−𝜔
2

𝑖𝑘
+𝛼) [𝑅 (𝜇𝑖) 𝛾−𝑙 (𝜇𝑖) 𝜔𝑖𝑘𝜉] + 𝛽𝜔𝑖𝑘 [𝑅 (𝜇𝑖) 𝜔𝑖𝑘𝜉+𝑙 (𝜇𝑖) 𝛾]

(𝜔
2

𝑖𝑘
−𝛼)
2

+𝛽
2
𝜔
2

𝑖𝑘

+
2𝑗𝜋

𝜔𝑖𝑘

,

(11)

where 𝑗 = 0, 1, . . ., then ±𝑖𝜔
𝑖
is a pair of purely imaginary roots

of 𝑔
𝑖
(𝜆) = 0 with 𝜏𝑗

𝑖𝑘
.

Define 𝜏0

𝑖
= min

𝑘=1,2
{𝜏

𝑖𝑘
} and 𝜏0

= min
𝑖=2,...,𝑁

{𝜏
0

𝑖
}.

Lemma 4 (see [15]). Consider the exponential polynomial

𝑃 (𝜆, 𝑒
−𝜆𝜏

, . . . , 𝑒
−𝜆𝜏𝑚)

= 𝜆
𝑛
+ 𝑝

(0)

1
𝜆

𝑛−1
+ ⋅ ⋅ ⋅ + 𝑝

(0)

𝑛−1
𝜆 + 𝑝

(0)

𝑛

+ [𝑝
(1)

1
𝜆

𝑛−1
+ ⋅ ⋅ ⋅ + 𝑝

(1)

𝑛−1
𝜆 + 𝑝

(1)

𝑛
] 𝑒

−𝜆𝜏

+ ⋅ ⋅ ⋅ + [𝑝
(𝑚)

1
𝜆

𝑛−1
+ ⋅ ⋅ ⋅ + 𝑝

(𝑚)

𝑛−1
𝜆 + 𝑝

(𝑚)

𝑛
] 𝑒

−𝜆𝜏𝑚 ,

(12)

where 𝜏
𝑖
≥ 0 (𝑖 = 1, 2, . . . , 𝑚) and 𝑝(𝑖)

𝑗
(𝑗 = 1, 2, . . . , 𝑚) are

constants. As (𝜏
1
, 𝜏

2
, . . . , 𝜏

𝑚
) vary, the sum of the order of the

zeros of 𝑃(𝜆, 𝑒−𝜆𝜏
, . . . , 𝑒

−𝜆𝜏𝑚) on the open right half plane can
change only if a zero appears on or crosses the imaginary axis.

Let

𝛿 = max
2≤𝑖≤𝑁

{−2𝛼𝛽
2
+ 4Re (𝜇

𝑖
) 𝛼𝛽𝜉 − 2Re2

(𝜇
𝑖
) 𝛼𝜉

2

− 2Re (𝜇
𝑖
) 𝛽

3
𝜉 + 2Re (𝜇

𝑖
) 𝛽

2
𝛾

+ Re2
(𝜇

𝑖
) 𝛽

2
𝜉

2
− 2Re3

(𝜇
𝑖
) 𝛽𝜉

3

− 2 [2Re2
(𝜇

𝑖
) + Im2

(𝜇
𝑖
)] 𝛽𝛾𝜉

+ 2Re (𝜇
𝑖
) [Re2

(𝜇
𝑖
) + Im2

(𝜇
𝑖
)] 𝜉

2
𝛾

+2Im2
(𝜇

𝑖
) 𝛾

2
} .

(13)

Lemma 5. Suppose that the network contains a directed span-
ning tree, and all the roots of (5) have negative real parts if
and only if the following conditions are satisfied: 𝛿 < 0 and
𝜏 ∈ [0, 𝜏

0
).

Proof. For 𝜏 = 0, (5) can be rewritten in the following form:

𝑁

∏

𝑖=1

[𝜆
2
+ (𝛽 − 𝜉𝜇

𝑖
) 𝜆 + 𝛼 − 𝛾𝜇

𝑖
] = 0. (14)
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Therefore, the roots of (14) satisfy

𝜆
2
+ (𝛽 − 𝜉𝜇

𝑖
) 𝜆 + 𝛼 − 𝛾𝜇

𝑖
= 0. (15)

We know that each eigenvalue of −𝐿, 𝜇
𝑖
, corresponds to two

eigenvalues of 𝑄, denoted by 𝜆
𝑖±
. Their relationships can be

described by

𝜆
𝑖±
=
−𝛽 + 𝜉𝜇

𝑖
± √(𝛽 − 𝜉𝜇

𝑖
)

2
− 4 (𝛼 − 𝛾𝜇

𝑖
)

2
,

𝑖 = 1, 2, . . . , 𝑁.

(16)

From Lemma 2, one knows that −𝐿 has a simple zero eigen-
value, and all the other eigenvalues have negative parts if and
only if the directed network 𝑔 has a directed spanning tree.
That is to say, Re(𝜆

𝑖±
) < 0, 𝑖 = 2, . . . , 𝑁. For convenience,

let √(𝛽 − 𝜉𝜇
𝑖
)
2
− 4(𝛼 − 𝛾𝜇

𝑖
) = 𝑐 + i𝑑, where 𝑐, 𝑑 are real

numbers, and i = √−1. It follows from (16) that Re(𝜆
𝑖±
) < 0

implies (−𝛽 + 𝜉Re(𝜇
𝑖
) ± 𝑐)/2 < 0, 𝑖 = 2, . . . , 𝑁. This is

equivalent to the following two inequalities 𝜉Re(𝜇
𝑖
) − 𝛽 <

𝑐 < −𝜉Re(𝜇
𝑖
) + 𝛽 and Re(𝜇

𝑖
) < 0 which hold simultaneously.

Therefore,

𝑐
2
< 𝜉

2Re2
(𝜇

𝑖
) + 𝛽

2
− 2𝜉𝛽Re (𝜇

𝑖
) , 𝑖 = 2, 3, . . . , 𝑁. (17)

Also note that (𝛽 − 𝜉𝜇
𝑖
)
2
− 4(𝛼 − 𝛾𝜇

𝑖
) = 𝑐

2
− 𝑑

2
+ i2𝑐𝑑.

By some calculations and separating the real and imaginary
parts, one obtains

𝛽
2
+ 𝜉

2Re2
(𝜇

𝑖
) − 𝜉

2Im2
(𝜇

𝑖
) − 2𝛽𝜉Re (𝜇

𝑖
)

− 4𝛼 + 4𝛾Re (𝜇
𝑖
) = 𝑐

2
− 𝑑

2
,

𝜉
2 Re (𝜇

𝑖
) Im (𝜇

𝑖
) − 𝛽𝜉 Im (𝜇

𝑖
) + 2𝛾 Im (𝜇

𝑖
) = 𝑐𝑑.

(18)

It follows from (18) that

𝑐
4
− 𝐵𝑐

2
− 𝐴 = 0, (19)

where

𝐵 = 𝛽
2
+ 𝜉

2Re2
(𝜇

𝑖
) − 𝜉

2Im2
(𝜇

𝑖
)

− 2𝛽𝜉Re (𝜇
𝑖
) − 4𝛼 + 4𝛾Re (𝜇

𝑖
) ,

𝐴 = [𝜉
2 Re (𝜇

𝑖
) Im (𝜇

𝑖
) − 𝛽𝜉 Im (𝜇

𝑖
) + 2𝛾 Im (𝜇

𝑖
)]

2

.

(20)

Solving (19) and combining (17) yield

𝑐
2
=
𝐵 ± √𝐵2 + 4𝐴

2
< 𝜉

2Re2
(𝜇

𝑖
) + 𝛽

2
− 2𝜉𝛽Re (𝜇

𝑖
) ,

𝑖 = 2, 3, . . . , 𝑁.

(21)

After some simplifications, we can derive that the inequality
𝛿 < 0 in Lemma 5 holds. Using Lemma 4 and similar to the
approach in [22, 23], we complete the proof.

Summarizing the previous discussions, we have the fol-
lowing theorem.

𝑉1 𝑉2

𝑉3
𝑉4

𝑉5

Figure 1: The directed interaction topology of five agents.

Theorem 6. Suppose that the network contains a directed
spanning tree; we have the following results.

(1) Ifmax{‖𝜇
𝑖
‖

2
𝜉

2
+2𝛼} < 𝛽

2
,max{‖𝜇

𝑖
‖

2
𝑟

2
} < 𝛼

2, and 𝛿 <
0, the second-order consensus in system (1) is achieved.

(2) If min{‖𝜇
𝑖
‖

2
𝜉

2
+ 2𝛼} > 𝛽

2, 𝛿 < 0 and 𝜏 ∈ [0, 𝜏
0
), the

second-order consensus in system (1) is achieved.

Corollary 7. For𝛼 = 𝛽 = 0, 𝛾, 𝜉 > 0, and 𝜏 > 0, second-order
consensus in multiagent system (1) can be achieved if and only
if the network contains a directed spanning tree and

𝜉
2

𝛾
> max

2≤𝑖≤𝑁

{
Im2

(𝜇
𝑖
)

−Re (𝜇
𝑖
) [Re2

(𝜇
𝑖
) + Im2

(𝜇
𝑖
)]
} ,

𝜏 < 𝜏
0
= min

2≤𝑖≤𝑁

{
𝜃

𝑖1

𝜔
𝑖1

} ,

(22)

where 𝜇
𝑖
are nonzero eigenvalues of matrix −𝐿, 𝑖 = 2, 3, . . . , 𝑁.

In [13], Yu et al. studied the second-order consensus under the
linear protocol:

𝑢
𝑖 (𝑡) = 𝛾∑

𝑗∈𝑁𝑖

𝑎
𝑖𝑗
(𝑟

𝑗 (𝑡) − 𝑟𝑖 (𝑡)) + 𝜉∑

𝑗∈𝑁𝑖

𝑎
𝑖𝑗
(𝑣

𝑗 (𝑡) − 𝑣𝑖 (𝑡)) ,

𝑖 = 1, 2, . . . , 𝑁,

(23)

and obtained the similar conclusions as Corollary 7. Therefore,
Theorem 6 can be viewed as the extension of the results in [13].

Corollary 8. For 𝜏 = 0, second-order consensus in multiagent
system (1) can be achieved if and only if the network contains a
directed spanning tree and 𝛿 < 0. In [15], Zhu investigated the
second-order consensus under the linear protocol:

𝑢
𝑖 (𝑡) = − 𝛼𝑟

𝑖 (𝑡) − 𝛽𝑣𝑖 (𝑡) + 𝛾∑

𝑗∈𝑁𝑖

𝑎
𝑖𝑗
(𝑟

𝑗 (𝑡) − 𝑟𝑖 (𝑡))

+ 𝜉∑

𝑗∈𝑁𝑖

𝑎
𝑖𝑗
(𝑣

𝑗 (𝑡) − 𝑣𝑖 (𝑡)) , 𝑖 = 1, 2, . . . , 𝑁,

(24)
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Figure 2: Velocity and position states of five agents in a network under linear consensus protocols where 𝜏 = 0.39 < 𝜏
0
.
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Figure 3: Velocity and position states of five agents in a network under periodic consensus protocols where 𝜏 = 0.394 > 𝜏
0
.

and obtained the similar conclusions as Corollary 8. Therefore,
Theorem 6 can be viewed as the extension of the results in [15].

4. Simulation Examples

In this section, some numerical results of simulating system
(1) are given to verify the theorems obtained earlier. Consider
the network (1) with the topology shown in Figure 1. In
Figure 1, the adjacency matrix 𝐴 and the Laplacian matrix
𝐿 of directed network 𝑔 are given in (25). Moreover, it is
easily to see that there exists a directed spanning tree Figure 1.
With simple calculations, we obtain the eigenvalues of −𝐿,
𝜇

1
= 0, 𝜇

2
= −1 + i, 𝜇

3
= −1 − i, 𝜇

4
= −2, and 𝜇

5
= −2.

Consider

𝐴 =

[
[
[
[
[

[

0 1 1 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

0 1 0 0 0

]
]
]
]
]

]

,

𝐿 =

[
[
[
[
[

[

2 −1 −1 0 0

0 1 −1 0 0

0 0 1 −1 0

0 0 0 1 −1

0 −1 0 0 1

]
]
]
]
]

]

.

(25)

Let us set the parameters of the system (1) as follows: 𝛼 =

0.1, 𝛽 = 0.2, 𝛾 = 0.5, and 𝜉 = 1. According to (11) and
Lemma 5, we obtain 𝜏

0
= 0.3939 and 𝛿 = −0.3962 < 0.

Consider 𝜏 = 0.39 < 𝜏
0
; from Theorem 6, we know that

the second-order consensus can be reached.The position and
velocity states of all the agents are shown in Figure 2. It is easy
to see that the consensus of all agents is achieved.

Consider 𝜏 = 0.394 > 𝜏
0
; fromTheorem 6, we know that

the second-order consensus cannot be reached. The position
and velocity states of all the agents are shown in Figure 3. It is
easy to see that the consensus of all agents is not achieved.
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5. Conclusions

In this paper, the convergence of the second-order con-
sensus of multiagent systems composed of coupled double-
integrators dynamics and coupling time delay has been stud-
ied. The advantage of the considered protocol is that it can
be treated as the extensions of most linear local interaction
protocols in the existing literatures. By combining algebraic
graph theory andmatrix theory and studying the distribution
of the eigenvalues of the associated characteristic equation,
some necessary and sufficient conditions are derived for
reaching the second-order consensus. Several simulation
results further validate the effectiveness of theoretical anal-
ysis.
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