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We prove that the Chern-Simons-Schrödinger system, under the condition of a Coulomb gauge, has a unique local-in-time solution
in the energy space 𝐻1(R2). The Coulomb gauge provides elliptic features for gauge fields 𝐴

0
, 𝐴
𝑗
. The Koch- and Tzvetkov-type

Strichartz estimate is applied with Hardy-Littlewood-Sobolev and Wente’s inequalities.

1. Introduction

We study herein the initial value problem of the Chern-
Simons-Schrödinger (CSS) equations
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where 𝑖 denotes the imaginary unit; 𝜕
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1
, 𝑥
2
) ∈ R1+2; 𝜙 : R1+2 → C is

the complex scalar field; 𝐴
𝜇
: R1+2 → R is the gauge field;

𝐷
𝜇
= 𝜕
𝜇
+ 𝑖𝐴
𝜇
is the covariant derivative for 𝜇 = 0, 1, 2,

and 𝜆 > 0 is a coupling constant representing the strength
of interaction potential. The summation convention used
involves summing over repeated indices and Latin indices are
used to denote 1, 2.

The CSS system of equations was proposed in [1, 2]
to deal with the electromagnetic phenomena in planar
domains, such as the fractional quantum Hall effect or high-
temperature superconductivity. We refer the reader to [3,
4] for more information on the physical nature of these
phenomena.

The CSS system exhibits conservation of mass
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R2
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and the conservation of total energy
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𝑑𝑥 = 𝐸 (0) . (3)

Note that the terms |𝐹|2 = (1/2)𝐹
𝜇]𝐹
𝜇] are missing in

(3) when compared to the Maxwell-Schrödinger equations
studied in [5].

To figure out the optimal regularity for the CSS system,
we observe that the CSS system is invariant under scaling:

𝜙
𝑎
(𝑡, 𝑥) = 𝑎𝜙 (𝑎

2
𝑡, 𝑎𝑥) , 𝐴

𝑎

𝑗
(𝑡, 𝑥) = 𝑎𝐴

𝑗
(𝑎
2
𝑡, 𝑎𝑥) ,

𝐴
𝑎

0
(𝑡, 𝑥) = 𝑎

2
𝐴
0
(𝑎
2
𝑡, 𝑎𝑥) .

(4)

Therefore, the scaled critical Sobolev exponent is 𝑠
𝑐
= 0 for 𝜙.

In view of (2) we may say that the initial value problem of the
CSS system is mass critical.

The CSS system is invariant under the following gauge
transformations:

𝜙 → 𝜙𝑒
𝑖𝜒
, 𝐴

𝜇
→ 𝐴

𝜇
− 𝜕
𝜇
𝜒, (5)

where 𝜒 : R2+1 → R is a smooth function. Therefore,
a solution to the CSS system is formed by a class of gauge
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equivalent pairs (𝜙, 𝐴
𝜇
). In this work, we fix the gauge

by imposing the Coulomb gauge condition of 𝜕
𝑗
𝐴
𝑗
= 0,

under which the Cauchy problem of the CSS system may be
reformulated as follows:
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where the initial data 𝜙(0, 𝑥) = 𝜙
0
(𝑥). For the formulation of

(6)–(8) we refer the reader to Section 3.
The initial value problem of the CSS system was investi-

gated in [6, 7]. It was shown in [6] that the Cauchy problem
is locally well posed in 𝐻2(R2), and that there exists at least
one global solution, 𝜙 ∈ 𝐿∞(R+; 𝐻1(R2)) ∩ 𝐶

𝜔
(R+; 𝐻1(R2)),

provided that the initial data are made sufficiently small in
𝐿
2
(R2) by finding regularized equations. They also showed,

by deriving a virial identity, that solutions blow up in finite
time under certain conditions. Explicit blow-up solutions
were constructed in [8] through the use of a pseudo-
conformal transformation. The existence of a standing wave
solution to the CSS system has also been proved in [9, 10].

The adiabatic approximation of the Chern-Simons-
Schrödinger system with a topological boundary condition
was studied in [11], which provides a rigorous description of
slow vortex dynamics in the near self-dual limit.

Taking the conservation of energy (3) into account, it
seems natural to consider the Cauchy problem of the CSS
system with initial data 𝜙

0
∈ 𝐻
1
(R2). Our purpose here

is to supplement the original result of [6] by showing that
there is a unique local- in-time solution in the energy space
𝐻
1
(R2). We follow a rather direct means of constructing the

𝐻
1 solution and prove the uniqueness. We adapt the idea

discussed in [12, 13] where a low regularity solution of the
modified Schrödinger map (MSM) was studied. In fact, the
CSS and MSM systems have several similarities except for
the defining equation for 𝐴

0
. In the MSM, 𝐴
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2, where 𝑅
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= 𝜕
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(−Δ)
−1/2 denotes

the Riesz transform. The local existence of a solution to the
MSM was proved in [12] for the initial data in 𝐻𝑠1(R2) with
𝑠
1
> 1/2, and similarly, the uniqueness was proved in [14] for

𝐻
𝑠
2(R2)with 𝑠

2
> 3/4. To show the existence and uniqueness

of the 𝐻1 solution to the CSS system, the estimate of the
gauge field, 𝐴

0
, is important for situations in which special

structures of nonlinear terms in the defining equation for𝐴
0

are used. The following describes are our main results.

Theorem 1. Let initial data 𝜙
0
belong to 𝐻1(R2). Then, there

exists a local-in-time solution, 𝜙, to (6)–(8) that satisfies
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where 0 < 𝛿 < 1/2, 2 < 𝛿𝑞, 1/𝑝+1/𝑞 = 1/2 and 𝐽 = (1−Δ)1/2.

Theorem 2. Let 𝜙 and 𝜓 be solutions to (6)–(8) on (0, 𝑇) ×
R2 in the distribution sense with the same initial data to that
outlined vide supra. Moreover, one assumes that
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for some constant𝑀 > 0. One then has ‖(𝜙 − 𝜓)(𝑡, ⋅)‖
𝐿
2
(R2) =

0 for 0 ≤ 𝑡 ≤ 𝑇.

We present some preliminaries in Section 2. Theorems
1 and 2 are proved in Sections 3 and 4, respectively. We
conclude the current section by providing a few notations.
We denote space time derivatives by 𝜕 = (𝜕

0
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𝑑𝑡)
1/𝑝. We

use 𝑐, 𝐶 to denote various constants. Becausewe are interested
in local solutions, we may assume that 𝑇 ≤ 1. Thus, we
replace the smooth function of 𝑇, 𝐶(𝑇) with 𝐶. We also use
the convention of writing 𝐴 ≲ 𝐵 as shorthand for 𝐴 ≤ 𝐶𝐵.

2. Preliminaries

We collect here a few lemmas used for the proof ofTheorems
1 and 2. The following lemma is reminiscent of Wente’s
inequality (see [15, 16]).

Lemma 3. Let 𝑓 and 𝑔 be two functions in 𝐻1(R2) and let 𝑢
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The following energy estimate in [17, 18] is used for
estimating a solution to the magnetic Schrödinger equation.
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wherein one means the homogeneous Sobolev space �̇�𝑠 when
𝑠 > 0 and simply 𝐿2 when 𝑠 = 0.
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The following type of Strichartz estimate was used in [19,
20] for the study of the Benjamin-Ono equation. We refer to
[12] for the counterpart to the Schrödinger equation.

Lemma 5. Let 𝑇 ≤ 1 and V be a solution to the equation
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2
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Then, for 𝛿 ∈ 𝑅 and 𝜀 > 0, one has
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where 1/𝑝 + 1/𝑞 = 1/2 and 2 ≤ 𝑞 < ∞.

We use the following Gagliardo-Nirenberg inequality
with the specific constant [21], especially for the proof of
Theorem 2.

Lemma 6. For 2 ≤ 𝑞 < ∞, one has
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3. The Proof of Theorem 1

Theorem 1 is proved in this section. Because the local well-
posedness for smooth data is already known in [6], we simply
present an a priori estimate for the solution to (6)–(8). Let us
first explain (8). To derive it, note the following identities:
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Note that the second-order terms 𝜕
𝛼𝛽
𝜙 are cancelled out.

Combined with the above algebra, the equation for𝐴
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We then have the formulation (6)–(8) in which 𝜙 is the
only dynamical variable and 𝐴

1
, 𝐴
2
, and 𝐴

0
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through (7) and (8).
The constraint equation 𝜕
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1
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Taking into account that the Coulomb gauge condition in
Maxwell dynamics deduces a wave equation, the previous

observationwas used in [6]. Using (20), we have the following
representation of 𝐴 = (𝐴

1
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3.1. Estimates for 𝐴 and 𝐴
0
. We are now ready to estimate

several quantities of 𝐴,𝐴
0
. Making use of (20) and the

representation (21), we obtain the following estimates for 𝐴.

Proposition 7. Let 𝑠 ≥ 0 and 0 < 2/𝑞 < 𝛿 < 1. One also
assumes that 2 ≤ 𝑝 < ∞ if 𝑠 > 0 or 2 < 𝑝 < ∞ if 𝑠 = 0. Then,
one has
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𝑠 .
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Proof. The above can be checked by applying Calderon-
Zygmund and Hardy-Littlewood-Sobolev inequalities. We
refer to [2, Section 2] for the details.

To estimate 𝐴
0
, the special algebraic structure 𝑄

12
and

divergence form of the nonlinear terms in (19) are used.

Proposition 8. Let 𝐴
0
be the solution of (19). Then, one has
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We first estimate the quantity ‖𝐴
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to (24), we deduce that
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To estimate ‖𝐴


0
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𝐿
∞
(R2)

we use the Gagliardo-Nirenberg
inequality with small 𝜖 > 0:
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Applying Hardy-Littlewood-Sobolev’s inequality to (25) we
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where Proposition 7 and Lemma 6 are used. We can also
derive the following from (25):
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(2+4𝜖)/(1+𝜖)

𝐿
2 ,

(31)

where ‖𝜙‖
𝐿
(4+4𝜖)/(1−3𝜖) ≲ ‖𝜙‖

(1−3𝜖)/(2+2𝜖)

𝐿
2

‖∇𝜙‖
(1+5𝜖)/(2+2𝜖)

𝐿
2

is used.
Therefore, we obtain with 𝜖 = 1/11, that is, 𝛼 = 3/4,


𝐴


0

𝐿∞
≲
𝜙


2

𝐿
2

∇𝜙


2

𝐿
2 . (32)

Therefore, we conclude that

𝐴0
𝐿∞

≲
∇𝜙



2

𝐿
2 (1 +

𝜙


2

𝐿
2) . (33)

On the other hand, Lemma 3 shows that

∇𝐴


0

𝐿2
≲
∇𝜙



2

𝐿
2 . (34)

We also have from (25) that

∇𝐴


0

𝐿2
≲

𝐴|𝜙|
2𝐿2

≲ ‖𝐴‖𝐿4
𝜙


2

𝐿
8

≲
𝜙
𝐿2
𝜙
𝐿4
𝜙


2

𝐿
8 ≲

𝜙


2

𝐿
2

∇𝜙


2

𝐿
2 .

(35)

Therefore, we have

∇𝐴0
𝐿2

≲
∇𝜙



2

𝐿
2 (1 +

𝜙


2

𝐿
2) . (36)

3.2. The Energy Solution to (CSS). We now prove Theorem 1.
Let us define

𝑋 (𝑇) =
𝜙
𝐿∞
𝑇
𝐻
1 +


𝐽
𝛿
𝜙
𝐿
𝑝

𝑇
𝐿
𝑞
, (37)

where 0 < 𝛿 < 1/2, 2 < 𝛿𝑞, and 1/𝑝 + 1/𝑞 = 1/2. We derive
the following estimate:

𝑋 ≲
𝜙0

𝐻1
+ 𝑇
1/6𝜙0

𝐿2
(1 +

𝜙0


2

𝐿
2) (𝑋
2
+ 𝑋
4
) , (38)

from which Theorem 1 is proved by standard argument; see
[2, Section 3].

To control ‖𝜙‖
𝐿
∞

𝑇
𝐻
1 , we apply Lemma 4 to the solution of

(6)–(8).

Proposition 9. Let 𝜙 be a solution to (6)–(8). Then, one has
𝜙
𝐿∞
𝑇
𝐿
2 =

𝜙0
𝐿2
,

𝜙
𝐿∞
𝑇
�̇�
1 ≲

𝜙0
�̇�
1

+ (1 +
𝜙0



2

𝐿
2) 𝑇
(𝑝−3)/𝑝

(
𝜙


3

𝐿
∞

𝑇
�̇�
1 +


𝐽
𝛿
𝜙


3

𝐿
𝑝

𝑇
𝐿
𝑞
) ,

(39)

where 2 < 𝛿𝑞 and 3 < 𝑝 < ∞.

Proof. From the conservation of mass, we derive the first
estimate. We apply Lemma 4 to (6) with 𝐹 = 𝐴

0
𝜙 + 𝐴

2

𝑗
𝜙 −

𝜆|𝜙|
2
𝜙 and 𝑠 = 1. Combined with Proposition 7, we have

‖∇𝐴‖
�̇�
1

𝜙
𝐿∞

≲
𝜙


2

𝑊
𝛿,𝑞

𝜙
�̇�
1 ,

‖∇𝐴‖𝐿∞
𝜙
�̇�
1 ≲

𝜙


2

𝑊
𝛿,𝑞

𝜙
�̇�
1 ,


𝐴
2
𝜙
�̇�
1 ≲

𝜙


2

𝐿
2 (
𝜙


3

𝑊
𝛿,𝑞 +

𝜙


3

�̇�
1) ,



𝜙


2

𝜙
�̇�
1 ≲

𝜙


2

𝑊
𝛿,𝑞

𝜙
�̇�
1 ,

(40)

where 2 < 𝛿𝑞. We are then left to estimate ‖𝐴
0
𝜙‖
�̇�
1 . By

Proposition 8, we obtain
𝐴0𝜙

�̇�
1 ≲

𝐴0
𝐿∞

𝜙
�̇�
1 +

𝐴0
�̇�
1

𝜙
𝐿∞

≲ (1 +
𝜙


2

𝐿
2) (

∇𝜙


3

𝐿
2 +


𝐽
𝛿
𝜙


3

𝐿
𝑞
) .

(41)

Combining (40) and (41), we obtain

𝜙
𝐿∞
𝑇
�̇�
1 ≲

𝜙0
�̇�
1 + ∫

𝑇

0

(1 +
𝜙0



2

𝐿
2) (

𝜙


3

�̇�
1 +


𝐽
𝛿
𝜙


3

𝐿
𝑞
)

≲
𝜙0

�̇�
1 + (1 +

𝜙0


2

𝐿
2) 𝑇
(𝑝−3)/𝑝

× (
𝜙


3

𝐿
∞

𝑇
�̇�
1 +


𝐽
𝛿
𝜙


3

𝐿
𝑝

𝑇
𝐿
𝑞
) ,

(42)

where 3 < 𝑝 < ∞ and 𝑇 < 1.

To estimate ‖𝐽𝛿𝜙‖
𝐿
𝑝

𝑇
𝐿
𝑞 , we apply Lemma 5 to the solution

of (6)–(8).

Proposition 10. Let 𝜙 be a solution to (6)–(8). Then, one has

𝐽
𝛿
𝜙
𝐿
𝑝

𝑇
𝐿
𝑞
≲
𝜙
𝐿∞
𝑇
𝐻
1 + 𝑇
1/6𝜙0

𝐿2
(1 +

𝜙0


2

𝐿
2) (𝑋
2
+ 𝑋
4
) ,

(43)

where 2 < 𝛿𝑞, 3 < 𝑝 < ∞ and 1/𝑝 + 1/𝑞 = 1/2.

Proof. Applying Lemma 5with𝐹
1
= 𝐴
0
𝜙−2𝑖𝐴

𝑗
𝜕
𝑗
𝜙 and𝐹

2
=

𝐴
2
𝜙 − 𝜆|𝜙|

2
𝜙, we obtain


𝐽
𝛿
𝜙
𝐿
𝑝

𝑇
𝐿
𝑞
≲
𝜙
𝐿∞
𝑇
𝐻
1 +

𝐴0𝜙
𝐿2
𝑇
𝐻
𝛿−1/2

+
𝐴 ⋅ ∇𝜙

𝐿2
𝑇
𝐻
𝛿−1/2 +


𝐴
2
𝜙
𝐿1
𝑇
𝐻
𝛿
+


𝜙


2

𝜙
𝐿1
𝑇
𝐻
𝛿
,

(44)
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where 𝛿 = 1/2 − 𝜀, 3 < 𝑝 < ∞ and 2 < 𝛿𝑞. Considering
Proposition 8, we obtain

𝐴0𝜙
𝐿2
𝑇
𝐻
𝛿−1/2

≲
𝐴0

𝐿∞
𝑇
𝐿
∞

𝜙
𝐿2
𝑇
𝐿
2 ≲ 𝑇
1/2𝜙0

𝐿2
(1 +

𝜙0


2

𝐿
2)
∇𝜙



2

𝐿
2 .

(45)

The other terms can be treated, as mentioned in Section 1,
by similar arguments to those in [2, Section 3]. Applying
Proposition 7, we have

𝐴 ⋅ ∇𝜙
𝐿2
𝑇
𝐻
𝛿−1/2 ≲ ‖𝐴‖𝐿2

𝑇
𝐿
∞

∇𝜙
𝐿∞
𝑇
𝐿
2

≲
𝜙0

𝐿2
𝑇
(𝑝−2)/2𝑝 

𝐽
𝛿
𝜙
𝐿
𝑝

𝑇
𝐿
𝑞

𝜙
𝐿∞
𝑇
𝐻
1 ,

(46)


𝐴
2
𝜙
𝐿1
𝑇
𝐻
𝛿
≲

𝐴
2𝐿1
𝑇
𝐿
4


𝐽
𝛿
𝜙
𝐿∞
𝑇
𝐿
4

+

𝐴
2𝐿2
𝑇
𝑊
𝛿,2+𝜀

𝜙
𝐿2
𝑇
𝐿
(4+2𝜀)/𝜀

≲ 𝑇
𝜙0



3/2

𝐿
2

𝜙


5/2

𝐿
∞

𝑇
𝐻
1

+ 𝑇
1/4𝜙0

𝐿2
𝜙


2

𝐿
∞

𝑇
𝐻
1


𝐽
𝛿
𝜙


2

𝐿
𝑝

𝑇
𝐿
𝑞
,

(47)


𝜙
3𝐿1
𝑇
𝐻
𝛿
≲

𝐽
𝛿
𝜙
𝐿∞
𝑇
𝐿
2

𝜙


2

𝐿
2

𝑇
𝐿
∞

≲ 𝑇
(𝑝−2)/𝑝 𝜙

𝐿∞
𝑇
𝐻
1


𝐽
𝛿
𝜙


2

𝐿
𝑝

𝑇
𝐿
𝑞
.

(48)

Plugging estimates (45)–(48) into (44) with 𝑝 > 3, we obtain


𝐽
𝛿
𝜙
𝐿
𝑝

𝑇
𝐿
𝑞
≲
𝜙
𝐿∞
𝑇
𝐻
1 + 𝑇
1/6𝜙0

𝐿2
(1 +

𝜙0


2

𝐿
2) (𝑋
2
+ 𝑋
4
) .

(49)

We finally obtain the estimate (38) by combining Propo-
sitions 9 and 10, which proves Theorem 1.

4. The Proof of Theorem 2

In this section, we prove the uniqueness of the solution to (6).
The basic rationale is borrowed from [12, 22].

Let (𝜙, 𝐴
0
, 𝐴) and (𝜓, 𝐵

0
, 𝐵) be solutions of (6)–(8) with

the same initial data. If we set 𝜔 = 𝜙 − 𝜓, then the equation
for 𝜔 is

𝑖𝜕
𝑡
𝜔+Δ𝜔 = 𝐴

0
𝜔+(𝐴

0
− 𝐵
0
) 𝜓 − 2𝑖𝐴 ⋅ ∇𝜔−2𝑖 (𝐴 − 𝐵) ⋅ ∇𝜓

+ 𝐴
2
𝜔+(𝐴

2
− 𝐵
2
) 𝜓 −𝜆

𝜙


2

𝜔−𝜆 (
𝜙


2

−
𝜓


2

) 𝜓.

(50)

We will derive

𝜕
𝑡‖𝜔‖
2

𝐿
2 ≲ 𝑞
1/2
𝑀
2
‖𝜔‖
2−4/𝑞

𝐿
2

+ 𝑞𝑀
2+4/𝑞

(1 +𝑀
2
) ‖𝜔‖
2−4/𝑞

𝐿
2

,

(51)

where𝑀 is a constant inTheorem 2 and 𝑞 > 2. Then we have

𝜕
𝑡‖𝜔‖
4/𝑞

𝐿
2
≲
1

𝑞
(𝑞
1/2
𝑀
2
+ 𝑞𝑀

2+4/𝑞
(1 +𝑀

2
)) . (52)

Considering ‖𝜔(0, ⋅)‖
𝐿
2 = 0 and 2 < 𝑞, we obtain

‖𝜔‖𝐿2 ≲ (𝑇(𝑀
2
+𝑀
4+4/𝑞

))
𝑞/4

. (53)

Letting 𝑞 → ∞, for the time interval satisfying 𝑇(𝑀2 +
𝑀
4+4/𝑞

) ≤ 1/2, we conclude that ‖𝜔(𝑡, ⋅)‖
𝐿
2 = 0 for 0 ≤ 𝑡 ≤ 𝑇,

which thus proves Theorem 2.
In the remainder of this section, we derive inequality

(51). Multiplying 𝜔 to both sides of (50) and integrating the
imaginary part of R2, we have

𝜕
𝑡‖𝜔‖
2

𝐿
2 = ∫ 2 (𝐴

0
− 𝐵
0
) Im (𝜓𝜔)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

(I)

− 2𝐴
𝑗
𝜕
𝑗|𝜔|
2

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

(II)

− 4(𝐴
𝑗
− 𝐵
𝑗
)Re(𝜕

𝑗
𝜓𝜔)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

(III)

𝑑𝑥

+ ∫ 2 (𝐴
2
− 𝐵
2
) Im (𝜓𝜔)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

(IV)

− 2𝜆(
𝜙


2

−
𝜓


2

) Im(𝜓𝜔)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

(V)

𝑑𝑥.

(54)

The integrals (II)–(V), that is, those not containing𝐴
0
, can be

controlled by applying similar arguments to those described
in [2, Section 4]. Integral (II) can be estimated, considering
𝜕
𝑗
𝐴
𝑗
= 0, by

∫−𝐴
𝑗
𝜕
𝑗|𝜔|
2
𝑑𝑥 = ∫𝜕

𝑗
𝐴
𝑗|𝜔|
2
𝑑𝑥 = 0,

(III) , (IV) , (V) ≲ 𝑞𝑀2+4/𝑞 (1 +𝑀2) ‖𝜔‖2−4/𝑞
𝐿
2

(55)

for which we omit the proof.
We simply present how to control integral (I), for which

we have

∫ (𝐴
0
− 𝐵
0
) Im (𝜓𝜔) 𝑑𝑥


≲
𝐴0 − 𝐵0

𝐿𝑎
𝜓
𝐿𝑏‖

𝜔‖𝐿𝑐 , (56)

where 1/𝑎 + 1/𝑏 + 1/𝑐 = 1, 2 ≤ 𝑎, 𝑏, 𝑐. Applying Lemma 6,
we obtain

𝜓
𝐿𝑏

≲ 𝑏
1/2𝜓



2/𝑏

𝐿
2

∇𝜓


1−2/𝑏

𝐿
2 ≲ 𝑏

1/2
𝑀
1−2/𝑏

,

‖𝜔‖𝐿𝑐 ≲ 𝑐
1/2
‖𝜔‖
2/𝑐

𝐿
2 ‖∇𝜔‖

1−2/𝑐

𝐿
2 ≲ 𝑐

1/2
‖𝜔‖
2/𝑐

𝐿
2 𝑀
1−2/𝑐

.

(57)

To control ‖𝐴
0
− 𝐵
0
‖
𝐿
𝑎 , we consider the equation for 𝐴

0
− 𝐵
0

Δ (𝐴
0
− 𝐵
0
) = 𝜕
1
Im (𝜙𝜕

2
𝜙) − 𝜕

2
Im (𝜙𝜕

1
𝜙) − 𝜕

1
Im (𝜓𝜕

2
𝜓)

+ 𝜕
2
Im (𝜓𝜕

1
𝜓) + 𝜕

1
(𝐴
2

𝜙


2

) − 𝜕
2
(𝐴
1

𝜙


2

)

− 𝜕
1
(𝐵
2

𝜓


2

) + 𝜕
2
(𝐵
1

𝜓


2

) .

(58)
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Decomposing 𝐴
0
and 𝐵

0
as (24) and (25), we have

Δ (𝐴


0
− 𝐵


0
) = 𝜕
1
Im (𝜙𝜕

2
𝜔) − 𝜕

2
Im (𝜓𝜕

1
𝜔)

+ 𝜕
1
Im (𝜔𝜕

2
𝜓) − 𝜕

2
Im (𝜔𝜕

1
𝜙) ,

(59)

Δ (𝐴


0
− 𝐵


0
) = 𝜕
1
(𝐴
2
(
𝜙


2

−
𝜓


2

)) − 𝜕
2
(𝐴
1
(
𝜙


2

−
𝜓


2

))

+ 𝜕
1
((𝐴
2
− 𝐵
2
)
𝜓


2

) − 𝜕
2
((𝐴
1
− 𝐵
1
)
𝜙


2

) .

(60)

Taking into account

𝜕
1
Im (𝜙𝜕

2
𝜔) = 𝜕

1
(𝜕
2
Im (𝜙𝜔) − Im (𝜔𝜕

2
𝜙)) ,

𝜕
2
Im (𝜓𝜕

1
𝜔) = 𝜕

2
(𝜕
1
Im (𝜓𝜔) − Im (𝜔𝜕

1
𝜓)) ,

(61)

we can rewrite the equation for 𝐴
0
− 𝐵


0
as follows:

Δ (𝐴


0
− 𝐵


0
) = 𝜕
1
(Im (𝜔𝜕

2
𝜓) − Im (𝜔𝜕

2
𝜙))

+ 𝜕
2
(Im (𝜔𝜕

1
𝜓) − Im (𝜔𝜕

2
𝜙)) ,

(62)

where 𝜕
1
𝜕
2
Im(𝜙𝜔) − 𝜕

2
𝜕
1
Im(𝜓𝜔) = 𝜕

1
𝜕
2
Im(𝜔𝜔) = 0 should

be noted. Using theHardy-Littlewood-Sobolev inequality, we
have


𝐴


0
− 𝐵


0

𝐿𝑎
≲

|𝑥|
−1
∗ (𝜔∇𝜓)

𝐿𝑎

≲
𝜔∇𝜓

𝐿𝑟
≲ ‖𝜔‖𝐿𝑠

∇𝜓
𝐿2
,

(63)

where 1/𝑎 = 1/𝑟 − 1/2 and 1/𝑟 = 1/𝑠 + 1/2, from which we
deduce 𝑎 = 𝑠. Then, we have

‖𝜔‖𝐿𝑎
∇𝜓

𝐿2
≲ 𝑎
1/2
‖𝜔‖
2/𝑎

𝐿
2 ‖∇𝜔‖

1−2/𝑎

𝐿
2 𝑀 ≲ 𝑎

1/2
𝑀
2−2/𝑎

‖𝜔‖
2/𝑎

𝐿
2 .

(64)

The term 𝐴


0
− 𝐵


0
can be bounded as follows:


𝐴


0
− 𝐵


0

𝐿𝑎
≲


|𝑥|
−1
∗ (|𝐴|



𝜙


2

−
𝜓


2
)
𝐿𝑎⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

(1)

+

|𝑥|
−1
∗ (|𝐴 − 𝐵| (

𝜙


2

+
𝜓


2

))
𝐿𝑎⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

(2)

.

(65)

Since ||𝜙|2 − |𝜓|2| ≤ (|𝜙| + |𝜓|)|𝜔|, we have

(1) ≲
|𝐴|(|𝜙| + |𝜓|)

𝐿2‖
𝜔‖𝐿𝑎

≲ ‖𝐴‖𝐿6 (
𝜙
𝐿3

+
𝜓
𝐿3
) ‖𝜔‖𝐿𝑎

(66)

≲
𝜙


2

𝐿
3 (
𝜙
𝐿3

+
𝜓
𝐿3
) ‖𝜔‖𝐿𝑎

≲ 𝑎
1/2
𝑀
2−2/𝑎

‖𝜔‖
2/𝑎

𝐿
2 .

(67)

Since |𝐴
𝑗
− 𝐵
𝑗
| ≲ |𝑥|

−1
∗ ((|𝜙| + |𝜓|)|𝜔|), we may check

(2) ≲

𝐴
𝑗
− 𝐵
𝑗

𝐿𝑎
(

𝜙
2𝐿2

+

𝜓
2𝐿2

)

≲ (
𝜙
𝐿2

+
𝜓
𝐿2
) ‖𝜔‖𝐿𝑎 (

𝜙


2

𝐿
4 +

𝜓


2

𝐿
4)

≲ 𝑎
1/2
‖𝜔‖
2/𝑎

𝐿
2 ‖∇𝜔‖

1−2/𝑎

𝐿
2 (

∇𝜙
𝐿2

+
∇𝜓

𝐿2
)

≲ 𝑎
1/2
𝑀
2−2/𝑎

‖𝜔‖
2/𝑎

𝐿
2 .

(68)

Then, we have
𝐴0 − 𝐵0

𝐿𝑎
≲ 𝑎
1/2
𝑀
2−2/𝑎

‖𝜔‖
2/𝑎

𝐿
2 . (69)

Combining estimates (57) and (69), and denoting 𝑏 = 𝑞/2, we
obtain

𝐴0 − 𝐵0
𝐿𝑎
𝜓
𝐿𝑏‖

𝜔‖𝐿𝑐 ≲ (𝑎𝑞𝑐)
1/2

𝑀
2
‖𝜔‖
2−4/𝑞

𝐿
2

, (70)

where 1/𝑎 + 2/𝑞 + 1/𝑐 = 1. We then obtain (51) by combining
(55) and (70).
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