
Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2013, Article ID 590524, 12 pages
http://dx.doi.org/10.1155/2013/590524

Research Article
Sliding Mode Control with State Derivative Output
Feedback in Reciprocal State Space Form

Yuan-Wei Tseng and Yu-Ning Wang

Department of Electrical Engineering, I-Shou University, Kaohsiung 84001, Taiwan

Correspondence should be addressed to Yuan-Wei Tseng; yuanwei@isu.edu.tw

Received 4 July 2013; Revised 28 September 2013; Accepted 28 September 2013

Academic Editor: Chang-Hua Lien

Copyright © 2013 Y.-W. Tseng and Y.-N. Wang.This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

This paper investigates the novel slidingmode control design with state derivative output feedback in nontraditional reciprocal state
space (RSS) form. The concepts and the need of RSS form are comprehensively reviewed and explained. Novel switching function
and approaching condition based on the derivative of sliding surface are introduced. In addition, a sufficient condition for finding
the upper bound of system uncertainty to guarantee the stability in sliding surface is developed for robustness analysis. A compact
sliding mode controller utilizing only state derivative related output feedback is proposed for systems with system uncertainty,
matched input uncertainty, andmatched external disturbance. Simulation results for a circuit system successfully verify the validities
of the proposed algorithms. Our derivation is basically parallel to that for systems in standard state space form. Therefore, those
who understand the concepts of sliding mode control can easily apply our method to handle more control problems without being
involved in complex mathematics.

1. Introduction

The solutions of output feedback control designs are not
always available for systems. However, when they are avail-
able, comparing with full state feedback controllers and full
estimated state feedback controllers, the output feedback
controllers usually have the most compact structures and
the lowest implementation costs. Therefore, in many cases,
output feedback controllers are the designers’ first choice as
long as the closed loop system can be stabilized. In some
applications, the system outputs are not related to states
but to state derivatives. For this reason, the state derivative
output feedback algorithms are needed. However, in the
past, state derivative output feedback algorithms were rarely
investigated because the closed loop systems are complex in
state space form. In this paper, a sliding mode controller
utilizing state derivative related output feedback in novel
reciprocal state space (RSS) form is proposed.

In general, a dynamic linear continuous time invariant
system using state variables with physical meanings can
be naturally expressed in the following equation under

the names of generalized state space form [1] or descriptor
form [2] or singular system form [3]:

𝐸�̇� = 𝐹𝑥 + 𝑁𝑢, (1)

where 𝑥
𝑛×1

and 𝑢
𝑚×1

are state vector and control vector,
respectively, and 𝐸

𝑛×𝑛
, 𝐹
𝑛×𝑛

, and 𝑁
𝑛×𝑚

are known constant
system matrices. Controllability and observability of gener-
alized state space systems were investigated in [2, 3]. The
following is the characteristic equation of open loop system
of (1):

det (𝑠𝐸 − 𝐹) = 0. (2)

The degree 𝑑 of characteristic equation in (2) is the number
of system’s finite eigenvalues, while 𝑛 − 𝑑 is the number of
system’s eigenvalues at infinity [4].

If 𝐸 in (1) is nonsingular, the system has no eigenvalue
at infinity but can have zero eigenvalues. The system can be
expressed as the following standard state space system:

�̇� = 𝐸
−1

𝐹𝑥 + 𝐸
−1

𝑁𝑢 = 𝐴𝑥 + 𝐵𝑢. (3)
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For the above state space systems, if 𝐴 is nonsingular, every
state derivative variable can be expressed in terms of state
variables and control inputs. Most of the control algorithms
developed for state space systems are related to state feedback
such as full state feedback, state related output feedback, and
estimated state feedback when estimators are implemented.
However, in many applications, the sensors directly measure
state derivatives rather than states. For instance, accelerome-
ters [5] in many micro- and nanoelectromechanical systems
(M/NEMS) and structural applications [6, 7] are such cases,
because acceleration signals can only be modeled as state
derivatives when physical dynamic second order systems are
expressed in state space form [6–8]. Consequently, abundant
control algorithms with state related feedback developed for
standard state space systems cannot be readily applicable
in this situation. Additional integrators which may increase
the cost and complexity of the implementation are needed.
Mathematically speaking, state derivative related feedback
designs cannot be carried out as straightforward as state
feedback for systems expressed in standard state space form.
For example, if we apply the following full state derivative
feedback control law:

𝑢 = −𝐾�̇� (4)

to the state space system in (3), the closed loop system
becomes

�̇� = (𝐼 + 𝐵𝐾)
−1

𝐴𝑥. (5)

In (5), since gain 𝐾 is inside the inverse matrix (𝐼 + 𝐵𝐾)
−1

which is further coupled with the open loop system matrix
𝐴 by multiplication, it is obvious that advanced mathematics
is needed to design gain 𝐾 in (4). Therefore, in the past, the
developed algorithms of state derivative related feedback for
systems in state space form were very few and rarely used to
control the system alone [8]. In a word, standard state space
system in (1) is the best system form for open loop systems
without poles at infinity in designing state related feedback
control algorithms. However, standard state space system is
not the most suitable form to develop state derivative related
feedback control algorithms and cannot handle the systems
with open loop poles at infinity.

If 𝐸 in (1) is singular, the system has poles at infinity
and is called generalized state space system. In the past, the
majority of control designs for system with poles at infinity
were directly developed in generalized state space form in (1).

Extensive applications of generalized state space systems
arise inmany areas of engineering such as electrical networks
[9], aerospace systems [10], smart structures [7, 11], and
chemical processes [12]. Generalized state space systems also
exist in other areas such as the dynamic Leontief model for
economic production sectors [13] and biological complex
systems [14]. A comprehensive review is available in [11].
In this paper, generalized state space system is used as
the name to represent such systems. In previous studies,
generalized state space systems are further categorized as
impulse-free ones [11] and with impulse mode ones in
analysis. If a generalized state space system has impulse

mode, further investigations of impulse controllable and
the impulse mode elimination [15] have to be analyzed in
control designs.Therefore, this kind of generalized state space
system is considered to be difficult in control designs. On
the other hand, control designs for impulse-free generalized
state space systems can be handled in easier ways and have
been an active area of research. Mathematically speaking, the
available control design algorithms which are carried out in
augmented systems and require feedbacks of both state and
state derivative variables for generalized state space systems
[15–19] are much more complex than those for the standard
state space forms. Consequently, there are difficulties for
engineers without strong mathematical background to apply
those sophisticated control algorithms.

Asmentioned before, when the state derivative coefficient
matrix 𝐸 in (1) is nonsingular, the system can be expressed in
standard state space form in (3). If the system is controllable,
applying state feedback alone is sufficient to control the sys-
tem. Similarly, it is natural to ask if applying state derivative
feedback alone is sufficient to control the system when the
state coefficient matrix 𝐹 in (1) is nonsingular. To answer this
question and to provide supplementary design algorithms of
state derivative feedback, a direct state derivative feedback
control scheme was developed using the “reciprocal state
space” (RSS) methodology [7, 20–24] by the first author of
this paper as follows:

𝑥 = 𝐹
−1

𝐸�̇� − 𝐹
−1

𝑁𝑢 = 𝐴�̇� + 𝐵𝑢. (6)

For the above reciprocal state space (RSS) systems, if 𝐴 is
nonsingular, every state variable can be expressed in terms of
state derivative variables and control inputs. After applying
full state derivative feedback control law in (4), the closed
loop system becomes

𝑥 = (𝐴 − 𝐵𝐾) �̇� = 𝐴
𝐶
�̇�. (7)

The concept of RSS is based on a fact that, for a nonsingular
matrix, the eigenvalues of its inverse matrix must be the
reciprocals of its eigenvalues. Therefore, the eigenvalues of
𝐴
𝐶
in (7) are the reciprocals of the closed loop system poles.

To address this nature, the name of reciprocal state space
framework was given. If state derivative feedback gain 𝐾 can
be designed such that real parts of all eigenvalues of𝐴

𝐶
in (7)

are strictly negative, the closed loop system in RSS form in (7)
can achieve global asymptotic stability. When a controllable
system has no open loop pole at zero, it can be expressed in
RSS form to carry out state derivative related feedback control
designs.

Here is an example for quick understanding of why
expressing system in RSS form and applying state derivative
feedback can easily accomplish control designs for some
systems that were once thought to be difficult in control
designs. For the following generalized state space systemwith
impulse mode [25], its state coefficient matrix is invertible.
Therefore, the open loop system has no open loop pole at zero
and the system can be expressed in RSS form:

[

[

1 0 0

0 1 0

0 0 0

]

]

�̇� = [

[

0.5 0 0

−1 −1 −1

0 −1 0

]

]

𝑥 + [

[

1

1

1

]

]

𝑢. (8)
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Suppose that we want to assign the closed loop poles at
−2, −2.5, and −5; we can first express the system in RSS
framework as follows:

𝑥 = [

[

2 0 0

0 0 0

−2 −1 0

]

]

�̇� + [

[

−2

1

2

]

]

𝑢 = 𝐴�̇� + 𝐵𝑢. (9)

Then, apply the state derivative feedback law 𝑢 = −𝐾�̇�

to assign −0.5, −0.4, and −0.2 (the reciprocals of −2, −2.5,
and −5, resp.) as the eigenvalues of matrix (𝐴 − 𝐵𝐾). Using
“place” command of Matlab, one can easily obtain 𝐾 =
[−1.63 −0.2 0.02]. Therefore, for the systems without open
loop pole at zero, including difficult systems to be controlled
such as generalized state space systems with impulse mode
in this example, they can be expressed in RSS form in (6)
and properly controlled by applying state derivative alone.
Usually, handling the same problem in generalized state
space system form, both state feedback and state derivative
feedback are needed [25].

The controllability and observability analyses for system
in RSS form have been investigated in [23, 24]. They show
that they turn out to be the same as their counterparts in
state space form.They also show that state derivative feedback
designs are as straightforward in RSS form as state feedback
designs in standard state space form in pole placement,
eigenstructure assignment, and linear quadratic regulator
(LQR) designs [20–24].

To streamline the design processes and keep the con-
troller as compact as possible, the following control design
procedure is suggested. For an open loop system, if it has
no pole at infinity, one can express the system in state space
form and apply state related feedback to control it. If it has
poles at infinity but has no pole at zero, one can express
the system in RSS form and apply state derivative related
feedback to control it. If it has neither pole at infinity nor
pole at zero, based on the type of available sensors (state
related sensors or state derivative related sensors), one can
make choice between state space form and RSS form to carry
out control design. Generalized state space system form and
control laws applying both state feedback and state derivative
feedback might be considered as the last resort to handle
the system with both poles at infinity and poles at zero. In
a nutshell, RSS form fills in the gap between standard state
space system and generalized state space system and provides
additional flexibility in control designs.

In recent years, robust control is one of the most popular
topics in control area. One of the famous methods is the
so-called sliding mode control [26–28], which has been
proven as an effectively robust control technology with many
practical applications. The main idea of sliding mode control
is to design a controller rendering the trajectory of states
trapped on a predetermined sliding surface and remaining
on it thereafter. Sliding mode control utilizes a high-speed
switching control law to drive the state trajectory staying
on this sliding surface for all subsequence times such that
the robust stability of the system is assured. In the present,
slidingmode control (SMC) is a highly active area of research.
Finite-time convergence due to discontinuous control law,
low sensitivity to plant parameter uncertainty and/or external

perturbation, and greatly reduced-order modeling of plant
dynamics are the main advantages of SMC. Therefore, based
on SMC,manyworks in state space formhave been developed
[29–33].

Since the majority of available SMC algorithms and
the corresponding switching conditions for linear systems
involve only state variables or state related output, they are not
suitable for systems with state derivative or state derivative
related output. The main purpose of this paper is to combine
the advantages of both RSS and SMC to develop slidingmode
control in reciprocal state space form so that state derivate
output feedback can be systematically applied in SMC to
handle a wider range of control problems.

This paper is organized as follows. In Section 2, stability
analysis in RSS form is reviewed. Comprehensive SMC
design approach in RSS form with considerations of system
uncertainty, input uncertainty and disturbance, selection of
sliding surface with modified transfer matrix method in RSS
form, and a novel switching function which is a function
of the derivative of the sliding surface are presented in
Section 3. In addition, algorithm of finding upper bound of
system uncertainty has also been developed for robustness
analysis in Section 3. In Section 4, a numerical example of
RLC circuit system that verifies the proposed controller is
provided. Finally, conclusions are drawn in Section 5.

2. Stability Analysis in RSS Form

Since Lyapunov stability is the fundamental of sliding mode
control, in this section, Lyapunov stability analysis in RSS
form is presented.

For a linear time invariant system, it is globally asymp-
totically stable if the real parts of all system poles are strictly
negative.Therefore, such systemmust have no pole at infinity
or pole at zero. Consequently, a globally asymptotically stable
system can be expressed in both state space form and RSS
form as follows:

�̇� = 𝐴𝑥, (10)

𝑥 = 𝐴�̇�, (11)

where 𝐴 = 𝐴
−1 and both 𝐴 and 𝐴 are nonsingular. Fur-

thermore, the eigenvalues of 𝐴 are the reciprocals of the
eigenvalues of 𝐴 which are the system poles.

Based on the above discussion, the following Lyapunov
equation can also test the stability of RSS systems in (11):

𝑃𝐴 + 𝐴
𝑇

𝑃 = −𝑄. (12)

The solution of 𝑃 in Lyapunov equation (12) must be
symmetric positive definite to ensure that RSS system matrix
𝐴 is globally asymptotically stable when𝑄 is a symmetric and
positive matrix.
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3. Novel Approaching Condition and
Sliding Mode Control Design for System
in RSS Form

In general, slidingmode control process consists of two parts.
The first part involves the selection of an appropriate sliding
surface and the second part is the design of a controller to
meet the approaching condition.

The purpose of satisfying the approaching condition [27,
28] is to force the system toward the predetermined sliding
surface 𝑠(𝑡) which can stabilize the system. According to the
matrix sizes specified in (1), suppose that the sliding surface
𝑠(𝑡) is selected by

𝑠 (𝑡) = 𝑐𝑥 (𝑡) = 0, (13)

where 𝑠 ∈ 𝑅
𝑚×1 and 𝑐 ∈ 𝑅

𝑚×𝑛.
Approaching condition is briefly explained as follows.

Define a Lyapunov function candidate as

𝑉 =
1

2
𝑠
𝑇

𝑠. (14)

The derivative of 𝑉 with respect to time is given by

�̇� = 𝑠
𝑇

(𝑡) ⋅ ̇𝑠 (𝑡) . (15)

For RSS form and state derivative related feedback used
in design, given a positive constant 𝛼, the following novel
approaching condition is proposed:

�̇� = 𝑠
𝑇

(𝑡) ⋅ ̇𝑠 (𝑡) < −𝛼 ‖ ̇𝑠‖ < 0, (16)

where ‖‖ denotes norm in this paper.
Consider the following system with system uncertainty,

input uncertainty, and disturbance in RSS form:

𝑥 (𝑡) = (𝐴 + Δ𝐴 (𝑡)) �̇� (𝑡) + (𝐵 + Δ𝐵 (𝑡)) 𝑢 (𝑡) + 𝑑 (𝑡) , (17)

𝑦 (𝑡) = 𝐶�̇� (𝑡) , (18)

where 𝑥(𝑡) ∈ 𝑅
𝑛, 𝑢(𝑡) ∈ 𝑅

𝑚, 𝑦(𝑡) ∈ 𝑅
𝑝, and 𝑑(𝑡) ∈

𝑅
𝑛 are system’s states, control inputs, outputs, and external

disturbance, respectively. The triple pair (𝐴, 𝐵, 𝐶) is known
and the dimensions are 𝐴 ∈ 𝑅

𝑛×𝑛, 𝐵 ∈ 𝑅
𝑛×𝑚, and 𝐶 ∈ 𝑅

𝑝×𝑛.
In (17), Δ𝐴(𝑡) ∈ 𝑅

𝑛×𝑛 is the system uncertainty, Δ𝐵(𝑡) is the
matched uncertainty in the input, and 𝑑(𝑡) is the matched
external disturbance. Therefore, we have

Δ𝐵 (𝑡) = 𝐵 ⋅ 𝐷
𝐵
(𝑡) , (19)

𝑑 (𝑡) = 𝐵 ⋅ 𝑑
𝑟
(𝑡) , (20)

where the term 𝑑
𝑟
(𝑡) ∈ 𝑅

𝑚×1.
The differential sliding surface will be

̇𝑠 (𝑡) = 𝐺𝑦 (𝑡) = 𝐺𝐶�̇�, (21)

where 𝑠 ∈ 𝑅
𝑚×1 and 𝐺 ∈ 𝑅

𝑚×𝑝.
The details of selecting 𝐺 will be discussed later in the

paper.

In addition, an 𝑚 × 𝑚 matrix 𝑑
𝐵
(𝑡) which is a particular

similarity transformation of𝐷
𝐵
(𝑡) will be used in design and

is defined as follows:

𝑑
𝐵
(𝑡) = (𝐺𝐶𝐵)𝐷

𝐵
(𝑡) (𝐺𝐶𝐵)

−1

. (22)

Furthermore, there are three positive scalars 𝛿
𝐴
, 𝛿
𝐵
, and 𝛿

𝑑

such that

‖Δ𝐴 (𝑡)‖ ≤ 𝛿
𝐴
, (23)

𝑑𝐵 (𝑡)
 ≤ 𝛿
𝐵
< 1,

𝑑𝑟 (𝑡)
 ≤ 𝛿
𝑑
.

(24)

Therefore, according to the above descriptions, (17) can be
rewritten as follows:

𝑥 (𝑡) = [𝐴 + Δ𝐴 (𝑡)] �̇� (𝑡) + 𝐵 ⋅ [𝑢 (𝑡) + 𝐷
𝐵
(𝑡) + 𝑑

𝑟
(𝑡)] .

(25)

Similarly, using the SMC method to achieve the asymp-
totic stability for the system (17) involves twomajor steps.The
first step of SMC design is to find a sliding surface 𝑠(𝑡) which
is described as

𝑠 (𝑡) = 𝐺𝐶𝑥 (𝑡) . (26)

When the system is in sliding mode, the system dynamic
with an applicable control law will satisfy the following newly
proposed approaching condition:

̇𝑠
𝑇

(𝑡) ⋅ 𝑠 (𝑡) < −𝛼 ‖ ̇𝑠‖ < 0. (27)

The second step of the SMC process is to design a SMC
control law so that the above approaching condition can
occur; consequently, the system can reach the sliding surface
and keep itself on the close neighborhood of the sliding
surface.

3.1. The Selection of Sliding Surface. In this section, we would
like to design the sliding surface in order to develop a new
variable structure controller for system (17) such that the
sliding motion is asymptotically stable.

If matrix 𝐵 is partitioned into

𝐵 = [
𝐵
1

𝐵
2

] , (28)

where 𝐵
1
is (𝑛 − 𝑚) × 𝑚 and 𝐵

2
is 𝑚 × 𝑚, one can define the

following transfer matrix:

𝑇 = [
𝐼
(𝑛−𝑚)×(𝑛−𝑚)

−𝐵
1
𝐵
−1

2

0
𝑚×(𝑛−𝑚)

𝐼
𝑚×𝑚

] (29)

such that 𝑇 ⋅ 𝐵 = [0 𝐵
2
]
𝑇.

Please note that, for a controllable system, one can always
obtain a 𝐵matrix with an invertible submatrix 𝐵

2
by properly

defining the state variables and consequently obtain 𝑇.
Applying

𝑞 = 𝑇𝑥, (30)
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(17) and (18) can be transferred into

𝑞
1
= (𝐴
11

+ Δ𝐴
11
) ̇𝑞
1
+ (𝐴
12

+ Δ𝐴
12
) ̇𝑞
2
, (31)

𝑞
2
= (𝐴
21

+ Δ𝐴
21
) ̇𝑞
1
+ (𝐴
22

+ Δ𝐴
22
) ̇𝑞
2
+ 𝐵
2
𝑢 + 𝐵
2
⋅ 𝑑
𝑟
,

(32)

𝑦 = 𝐶
1

̇𝑞
1
+ 𝐶
2

̇𝑞
2
= 𝐶�̇� = 𝐶 ̇𝑞, (33)

where

𝑞 = [
𝑞
1

𝑞
2

] ∈ [
𝑅
𝑛−𝑚

𝑅
𝑚 ] ,

𝑇𝐴𝑇
−1

= [
𝐴
11

𝐴
12

𝐴
21

𝐴
22

] ,

𝑇Δ𝐴𝑇
−1

= [
Δ𝐴
11

Δ𝐴
12

Δ𝐴
21

Δ𝐴
22

] ,

𝐶 = 𝐶𝑇
−1

= [𝐶
1

𝐶
2
] .

(34)

Now, considering the differential of sliding surface formed
with state derivative output in (18) and (33)

̇𝑠 = 𝐺𝑦 = 𝐺𝐶�̇� = 𝐺𝐶 ̇𝑞 = 𝐺𝐶
1

̇𝑞
1
+ 𝐺𝐶
2

̇𝑞
2
= 0, (35)

the sliding surface is consequently obtained as follows:

𝑠 = 𝐺𝐶
1
𝑞
1
+ 𝐺𝐶
2
𝑞
2
= 𝐺𝐶𝑥 = 𝐺𝐶𝑞 = 0, (36)

where 𝐺 is an𝑚 × 𝑝matrix to be designed.
Assuming that the matrix 𝐺𝐶

2
is nonsingular, from (35),

one can have

̇𝑞
2
= −(𝐺𝐶

2
)
−1

(𝐺𝐶
1
) ̇𝑞
1
. (37)

Substituting (37) into (31), we obtain

𝑞
1
= (𝐴
11

+ Δ𝐴
11
) ̇𝑞
1
+ (𝐴
12

+ Δ𝐴
12
) [(𝐺𝐶

2
)
−1

(𝐺𝐶
1
) ̇𝑞
1
] .

(38)

From (38), the nominal system (Δ𝐴
11

= Δ𝐴
12

= 0) in sliding
surface (∵ 𝑠 = 0, and ̇𝑠 = 0) is represented as

𝑞
1
= (𝐴
11

− 𝐴
12
𝐹𝐶
1
) ̇𝑞
1
, (39)

where

𝐹 = (𝐺𝐶
2
)
−1

𝐺. (40)

Therefore, (39) can be considered as a usual linear RSS output
feedback problem [24]. Consequently, the design of sliding
surface involves finding an output feedback gain𝐹 to stabilize
the system (39).

For the matrices 𝐹 ∈ 𝑅
𝑚×𝑝 in (39) and 𝐶

2
∈ 𝑅
𝑝×𝑚 in (33),

if 𝐹 is a left inverse of 𝐶
2
, we have

𝐹𝐶
2
= (𝐺𝐶

2
)
−1

𝐺𝐶
2
= 𝐼
𝑚×𝑚

. (41)

When (41) holds, following the similar discussions in [34],
the necessary and sufficient condition for the solution of 𝐺 ∈

𝑅
𝑚×𝑝 in (36) can be selected as follows:

𝐺 = 𝑘𝐹, (42)

where 𝑘 is a constant design parameter.

Substituting (42) into (41), one can easily verify the
correctness of (42).

Since the proposed controller is based on the state
derivative related output feedback, the solution exists only
when one can find a matrix 𝐹 which is a left inverse of 𝐶

2

such that (39) is stabilized.When this happens, one can select
𝐺 = 𝑘𝐹 and consequently both the differential sliding surface
in (35) and the sliding surface in (36) are determined.

3.2. Sufficient Condition for Finding theUpper Bound of System
Uncertainty to Guarantee the Stability in Sliding Surface. In
this subsection, we will provide a sufficient condition to
determine the upper bound of uncertainty Δ𝐴 so that the
stability in sliding surface still can be guaranteed.

Using (38), (39), and (40), the mismatched uncertain
system in sliding surface can be expressed as

𝑞
1
= 𝐴
𝑒

̇𝑞
1
+ Δ𝐴
𝑒

̇𝑞, (43)

where

𝐴
𝑒
= 𝐴
11

− 𝐴
12
𝐹𝐶
1
, Δ𝐴

𝑒
= Δ𝐴

11
− Δ𝐴
12
𝐹𝐶
1
. (44)

Theorem 1. Assuming that𝐴
𝑒
is a stable matrix and the time-

varying uncertainty matrix Δ𝐴
𝑒
in (43) has a bounded value 𝜁

such that ‖Δ𝐴
𝑒
‖ < 𝜁, one has

Δ𝐴
𝑒

 < 𝜁 =
min {𝜂

𝑖
}

2𝜆max (𝑃𝑒)
, 𝑖 = 1, 2, . . . , (𝑛 − 𝑚) ,

(45)

where 𝜂
𝑖
are all positive diagonal elements in 𝑄

𝑒
, while 𝑄

𝑒

and 𝑃
𝑒
are symmetric positive definite matrices in the following

Lyapunov equation:

𝐴
𝑇

𝑒
𝑃
𝑒
+ 𝑃
𝑒
𝐴
𝑒
= −𝑄
𝑒
. (46)

Proof. Define the Lyapunov functional:

𝑉 = 𝑞
𝑇

1
𝑃
𝑒
𝑞
1
, (47)

where 𝑃
𝑒
is a symmetric positive definite matrix. It can be

easily verified that𝑉 is a positive function.The timederivative
of 𝑉 along the trajectory of the system (43) is expressed as

�̇� = ̇𝑞
𝑇

1
𝑃
𝑒
𝑞
1
+ 𝑞
𝑇

1
𝑃
𝑒

̇𝑞
1

= ̇𝑞
𝑇

1
𝑃
𝑒
[𝐴
𝑒

̇𝑞
1
+ Δ𝐴
𝑒

̇𝑞
1
] + [𝐴

𝑒
̇𝑞
1
+ Δ𝐴
𝑒

̇𝑞
1
]
𝑇

𝑃
𝑒

̇𝑞
1

= ̇𝑞
𝑇

1
𝑃
𝑒
𝐴
𝑒

̇𝑞
1
+ ̇𝑞
𝑇

1
𝑃
𝑒
Δ𝐴
𝑒

̇𝑞
1
+ ̇𝑞
𝑇

1
𝐴
𝑇

𝑒
𝑃
𝑒

̇𝑞
1
+ ̇𝑞
𝑇

1
Δ𝐴
𝑇

𝑒
𝑃
𝑒

̇𝑞
1

= ̇𝑞
𝑇

1
[𝑃
𝑒
𝐴
𝑒
+ 𝐴
𝑇

𝑒
𝑃
𝑒
] ̇𝑞
1
+ 2 ̇𝑞
𝑇

1
𝑃
𝑒
Δ𝐴
𝑒

̇𝑞
1
.

(48)

Then, substituting (46) into (48), one obtains

�̇� = ̇𝑞
𝑇

1
[−𝑄
𝑒
] ̇𝑞
1
+ 2 ̇𝑞
𝑇

1
𝑃
𝑒
Δ𝐴
𝑒

̇𝑞
1
. (49)

From (49), when the following condition is satisfied, we have
�̇� < 0:

̇𝑞
𝑇

1
𝑄
𝑒

̇𝑞
1
> 2 ̇𝑞
𝑇

1
𝑃
𝑒
Δ𝐴
𝑒

̇𝑞
1
. (50)
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By Rayleigh’s principle [35], the lower bound of ̇𝑞
𝑇

1
𝑄
𝑒

̇𝑞
1
in

(50) can be obtained as follows:

̇𝑞
𝑇

1
𝑄
𝑒

̇𝑞
1
≥ 𝜆min (𝑄

𝑒
) ̇𝑞
𝑇

1
̇𝑞
1
= 𝜆min (𝑄

𝑒
)


̇𝑞
1



2

= min {𝜂
𝑖
}


̇𝑞
1



2

.

(51)

From (50), the following inequality can also be obtained:

2 ̇𝑞
𝑇

1
𝑃
𝑒
Δ𝐴
𝑒

̇𝑞
1
≤ 2

Δ𝐴
𝑒

 𝜆max (𝑃𝑒) ̇𝑞
𝑇

1
̇𝑞
1

= 2
Δ𝐴
𝑒

 𝜆max (𝑃𝑒)


̇𝑞
1



2

.

(52)

Thus, substituting (51) and (52) into (50), we have

2
Δ𝐴
𝑒

 𝜆max (𝑃𝑒)


̇𝑞
1



2

< min {𝜂
𝑖
}


̇𝑞
1



2

. (53)

Therefore, if the following inequality holds, (50) holds, and,
consequently, we have �̇� < 0:

Δ𝐴
𝑒

 <
min {𝜂

𝑖
}

2𝜆max (𝑃𝑒)
= 𝜁 , 𝑖 = 1, 2, . . . , (𝑛 − 𝑚) . (54)

In a word, when (54) holds, the system with mismatched
time-varying uncertainty Δ𝐴

𝑒
in (43) in the sliding surface

is asymptotically stable. Next, we have to provide another
condition to guarantee that the system with the mismatched
uncertainty Δ𝐴 is asymptotically stable in the sliding mode.

Theorem 2. Let the transform matrix T in (30) be partitioned
as

𝑇 = [
𝐿
1

𝐿
2

] , 𝑇
−1

= [𝑅
1

𝑅
2
] , (55)

where 𝐿
1

∈ 𝑅
(𝑛−𝑚)×𝑛, 𝐿

2
∈ 𝑅
𝑚×𝑛, 𝑅

1
∈ 𝑅
𝑛×(𝑛−𝑚), and 𝑅

2
∈

𝑅
𝑛×𝑚.
If the following condition holds:

‖Δ𝐴‖ ≤
min {𝜂

𝑖
}

2 (
𝐿1

 ⋅
𝑅1

 +
𝐿1

 ⋅
𝑅2

 ⋅ ‖𝐹‖ ⋅
𝐶1

) 𝜆max (𝑃𝑒)
,

(56)

where 𝑃
𝑒
and 𝑄

𝑒
are defined in (46) in Theorem 1, the RSS

system with mismatched uncertainty Δ𝐴 in (17) is stable in the
sliding surface.

Proof. Since the transformmatrix𝑇 in (29) can be partitioned
as𝑇 = [

𝐿
1

𝐿
2

] and𝑇
−1

= [𝑅
1

𝑅
2
], the uncertainmatricesΔ𝐴

11

and Δ𝐴
12
in (31) can be expressed as

Δ𝐴
11

= 𝐿
1
Δ𝐴𝑅
1
, Δ𝐴

12
= 𝐿
1
Δ𝐴𝑅
2
. (57)

So the uncertainty Δ𝐴
𝑒
given in (44) can be rewritten as

Δ𝐴
𝑒
= 𝐿
1
Δ𝐴𝑅
1
− 𝐿
1
Δ𝐴𝑅
2
𝐹𝐶
1
. (58)

Taking the norm of (58), one can obtain the following
inequality:
Δ𝐴
𝑒

 ≤
𝐿1Δ𝐴𝑅

1

 +
𝐿1Δ𝐴𝑅

2
𝐹𝐶
1



≤ ‖Δ𝐴‖ (
𝐿1

 ⋅
𝑅1

 +
𝐿1

 ⋅
𝑅2

 ⋅ ‖𝐹‖ ⋅
𝐶1

)

<
min {𝜂

𝑖
}

2𝜆max (𝑃𝑒)
.

(59)

Consequently, the upper bound of Δ𝐴 is obtained as follows:

‖Δ𝐴‖ <
min {𝜂

𝑖
}

2 (
𝐿1

 ⋅
𝑅1

 +
𝐿1

 ⋅
𝑅2

 ⋅ ‖𝐹‖ ⋅
𝐶1

) 𝜆max (𝑃𝑒)
,

𝑖 = 1, 2, . . . , (𝑛 − 𝑚) .

(60)

From the above proof, it is clear to find that if the
condition (60) in Theorem 2 and the condition (45) in
Theorem 1 are satisfied, the system with the mismatched
uncertainty Δ𝐴 is stable in the sliding mode. Since it is a
sufficient condition, if (60) does not hold, it does not mean
that the system will definitely become unstable. The above
procedure is analogous to that in [34].

3.3. Design the State Derivative Related Output Feedback
Controller. In this subsection, a sliding mode controller
is designed to drive the system to sliding surface. Once
the sliding surface is reached, the controller can keep the
system inside the differential sliding layer without causing
“chattering phenomenon.” The only information that the
controller needs is the state derivative related output signals.

Theorem 3. Considering the dynamics system in (17) and (18),
if the following output feedback controller 𝑢(𝑡) is applied, the
system will be kept inside the differential sliding layer of | ̇𝑠| ≤ 𝜀

and inside bounded sliding layer as well. Consider

𝑢 (𝑡) := −(𝐺𝐶𝐵)
−1

(

𝑤1
 ⋅

𝑦
 +

𝑤2


𝜂
+ 𝛼) sat ( ̇𝑠 (𝑡) , 𝜀) ,

(61)

where 𝑤
1
, 𝑤
2
, and 𝜂 are positive scalars such that

𝑤
1
= ‖𝐺‖ ⋅ ‖𝐴‖ + ‖𝐺‖ 𝛿

𝐴
,

𝑤
2
= ‖𝐺‖ ⋅ ‖𝐶‖ ⋅ ‖𝐵‖ 𝛿

𝑑
,

̇𝑠 (𝑡) = 𝐺𝑦 = 𝐺𝐶�̇� (𝑡) ,

𝜂 = 1 − 𝛿
𝐵
> 0,

(62)

while 𝜀 is a selected small positive value, 𝛼 is a selected positive
scalar, and sat is a saturation function described as follows:

sat ( ̇𝑠, 𝜀) =

{{{

{{{

{

1 ̇𝑠 > 𝜀

̇𝑠

𝜀
| ̇𝑠| ≤ 𝜀

−1 ̇𝑠 < −𝜀

=

{

{

{

sign ( ̇𝑠) | ̇𝑠| > 𝜀

̇𝑠

𝜀
| ̇𝑠| ≤ 𝜀.

(63)
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Please note that𝑦 = 𝐶�̇�(𝑡) and ̇𝑠(𝑡) = 𝐺𝑦 = 𝐺𝐶�̇�(𝑡).Therefore,
only state derivative related output feedback information is
required for applying control law in (61).

Remark 4. The control law (61) cannot eliminate the external
disturbance completely, but it can diminish the influence of
the external disturbance and force both state derivatives and
states in bounded layers.

Proof. According to (63), at first, we consider the following
controller 𝑢(𝑡) for the case when | ̇𝑠| > 𝜀. Consider

𝑢 (𝑡) := −(𝐺𝐶𝐵)
−1

(

𝑤1
 ⋅

𝑦
 +

𝑤2


𝜂
+ 𝛼) sign ( ̇𝑠 (𝑡) , 𝜀) ,

(64)

where sign is a sign function described as follows:

sign ( ̇𝑠) =
̇𝑠

‖ ̇𝑠‖
=

{{

{{

{

1 ̇𝑠 > 0

0 ̇𝑠 = 0

−1 ̇𝑠 < 0.

(65)

Then, substituting (17), (35), (64), and (65) into 𝑠(𝑡), the
following equation is obtained:

𝑠 (𝑡) = 𝐺𝐶𝐴�̇� (𝑡) + 𝐺𝐶Δ𝐴�̇� (𝑡) + 𝐺𝐶𝐵 (1 + 𝐷
𝐵
)

× [−(𝐺𝐶𝐵)
−1

(

𝑤1
 ⋅

𝑦
 +

𝑤2


𝜂
+ 𝛼) sign ( ̇𝑠 (𝑡))]

+ 𝐺𝐶𝑑 (𝑡) .

(66)

Premultiplying ̇𝑠
𝑇

(𝑡) on both sides of (66) and applying (22)
and (62), we have

̇𝑠
𝑇

(𝑡) ⋅ 𝑠 (𝑡)

= ̇𝑠
𝑇

(𝑡) {𝐺𝐶𝐴�̇� (𝑡) + 𝐺𝐶Δ𝐴�̇� (𝑡) + 𝐺𝐶𝐵 (1 + 𝐷
𝐵
)

× [−(𝐺𝐶𝐵)
−1

(

𝑤1
 ⋅

𝑦
 +

𝑤2


𝜂
+ 𝛼)

× sign ( ̇𝑠 (𝑡)) ] + 𝐺𝐶𝑑 (𝑡) }

= ̇𝑠
𝑇

(𝑡) ⋅ [𝐺𝐶𝐴�̇� (𝑡)] + ̇𝑠
𝑇

(𝑡) ⋅ [𝐺𝐶Δ𝐴�̇� (𝑡)]

− (

𝑤1
 ⋅

𝑦
 +

𝑤2


𝜂
+ 𝛼) ‖ ̇𝑠 (𝑡)‖

− (

𝑤1
 ⋅

𝑦
 +

𝑤2


𝜂
+ 𝛼) ̇𝑠

𝑇

(𝑡) 𝑑
𝐵
⋅

̇𝑠 (𝑡)

‖ ̇𝑠 (𝑡)‖

+ ̇𝑠
𝑇

(𝑡) ⋅ 𝐺𝐶𝐵𝑑
𝑟
(𝑡)

≤ −𝛼 ‖ ̇𝑠 (𝑡)‖ − (

𝑤1
 ⋅

𝑦
 +

𝑤2


𝜂
) ⋅ ‖ ̇𝑠 (𝑡)‖

− (

𝑤1
 ⋅

𝑦
 +

𝑤2


𝜂
+ 𝛼) ⋅ (−𝛿

𝐵
) ‖ ̇𝑠 (𝑡)‖

+
(‖𝐺𝐶𝐴‖ + ‖𝐺𝐶‖ 𝛿

𝐴
) �̇� (𝑡)

 ⋅ ‖ ̇𝑠 (𝑡)‖

+ 𝛿
𝑑
⋅ ‖𝐺𝐶𝐵‖ ⋅ ‖ ̇𝑠 (𝑡)‖ .

(67)

In (67), one can obtain the following inequalities.
For ‖𝑑

𝐵
(𝑡)‖ ≤ 𝛿

𝐵
< 1 and 𝜂 = 1 − 𝛿

𝐵
> 0, one obtains

− (

𝑤1
 ⋅

𝑦
 +

𝑤2


𝜂
+ 𝛼) ̇𝑠

𝑇

(𝑡) 𝑑
𝐵
⋅

̇𝑠 (𝑡)

‖ ̇𝑠 (𝑡)‖

≤ −(

𝑤1
 ⋅

𝑦
 +

𝑤2


𝜂
+ 𝛼) ⋅ (−𝛿

𝐵
) ‖ ̇𝑠 (𝑡)‖ .

(68)

For ‖Δ𝐴(𝑡)‖ ≤ 𝛿
𝐴
and ‖𝑑

𝑟
(𝑡)‖ ≤ 𝛿

𝑑
, on can have

̇𝑠
𝑇

(𝑡) ⋅ [𝐺𝐶𝐴�̇� (𝑡)] + ̇𝑠
𝑇

(𝑡) ⋅ [𝐺𝐶Δ𝐴�̇� (𝑡)]

≤
(‖𝐺𝐶𝐴‖ + ‖𝐺𝐶‖ 𝛿

𝐴
) �̇� (𝑡)

 ⋅ ‖ ̇𝑠 (𝑡)‖ ,

̇𝑠
𝑇

(𝑡) ⋅ 𝐺𝐶𝐵𝑑
𝑟
(𝑡) ≤ 𝛿

𝑑
⋅ ‖𝐺𝐶𝐵‖ ⋅ ‖ ̇𝑠 (𝑡)‖ .

(69)

From (67), we can further obtain

̇𝑠
𝑇

(𝑡) ⋅ 𝑠 (𝑡)

≤ −𝛼 ‖ ̇𝑠 (𝑡)‖ − (

𝑤1
 ⋅

𝑦
 +

𝑤2


𝜂
) ⋅ ‖ ̇𝑠 (𝑡)‖

− (

𝑤1
 ⋅

𝑦
 +

𝑤2


𝜂
+ 𝛼) ⋅ (−𝛿

𝐵
) ‖ ̇𝑠 (𝑡)‖

+
(‖𝐺𝐶𝐴‖ + ‖𝐺𝐶‖ 𝛿

𝐴
) �̇� (𝑡)

 ⋅ ‖ ̇𝑠 (𝑡)‖

+ 𝛿
𝑑
⋅ ‖𝐺𝐶𝐵‖ ⋅ ‖ ̇𝑠 (𝑡)‖

= −(

𝑤1
 ⋅

𝑦
 +

𝑤2


1 − 𝛿
𝐵

) ⋅ (1 − 𝛿
𝐵
) ⋅ ‖ ̇𝑠 (𝑡)‖

− (1 − 𝛿
𝐵
) 𝛼 ‖ ̇𝑠 (𝑡)‖ + (

(‖𝐺𝐶𝐴‖ + ‖𝐺𝐶‖ 𝛿
𝐴
) �̇� (𝑡)



+ 𝛿
𝑑
⋅ ‖𝐺𝐶𝐵‖) ⋅ ‖ ̇𝑠 (𝑡)‖

= − (1 − 𝛿
𝐵
) 𝛼 ‖ ̇𝑠 (𝑡)‖ − (

𝑤1
 ⋅

𝑦
 +

𝑤2
) ‖

̇𝑠 (𝑡)‖

⋅ (1 −

(‖𝐺𝐶𝐴‖ + ‖𝐺𝐶‖ 𝛿
𝐴
) �̇� (𝑡)

 + 𝛿
𝑑
⋅ ‖𝐺𝐶𝐵‖

𝑤1
 ⋅

𝑦
 +

𝑤2


)

≤ − (1 − 𝛿
𝐵
) 𝛼 ‖ ̇𝑠 (𝑡)‖ = −𝛽 ‖ ̇𝑠 (𝑡)‖ < 0,

(70)
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where

(1 − 𝛿
𝐵
) 𝛼 = 𝛽 > 0,

𝑤1
 ⋅

𝑦
 =

‖𝐺‖ ⋅ ‖𝐴‖ + 𝛿
𝐴
‖𝐺‖

 ⋅ ‖𝐶�̇� (𝑡)‖

≥
(‖𝐺𝐶𝐴‖ + ‖𝐺𝐶‖ 𝛿

𝐴
) �̇� (𝑡)

 ,

𝑤2
 = ‖𝐺‖ ‖𝐶‖ ‖𝐵‖ 𝛿

𝑑
≥ ‖(𝐺𝐶𝐵)‖ 𝛿

𝑑
,

(71)

and, consequently,

(1 −

(‖𝐺𝐶𝐴‖ + ‖𝐺𝐶‖ 𝛿
𝐴
) �̇� (𝑡)

 + 𝛿
𝑑
⋅ ‖𝐺𝐶𝐵‖

𝑤1
 ⋅

𝑦
 +

𝑤2


) ≥ 0. (72)

Therefore, from (70), the approaching condition for the case
of | ̇𝑠| > 𝜀 is assured.

When | ̇𝑠| ≤ 𝜀, the controller becomes

𝑢 (𝑡) := −(𝐺𝐶𝐵)
−1

(

𝑤1
 ⋅

𝑦
 +

𝑤2


𝜂
+ 𝛼) ⋅

̇𝑠

𝜀
. (73)

Since | ̇𝑠/𝜀| < 1, through a similar derivation, one can find
that the approaching conditionmay not always happen inside
the differential sliding layer of | ̇𝑠| ≤ 𝜀 and may result in the
increase of | ̇𝑠|. However, when | ̇𝑠| is increased to be bigger
than 𝜀, the controller will switch to (64) to push the system
back to the differential sliding layer of | ̇𝑠| ≤ 𝜀.

One may wonder that if ̇𝑠 is bounded inside the differen-
tial sliding layer | ̇𝑠| ≤ 𝜀, can the amplitude of its integral 𝑠 still
keep increasing as time goes by and finally become diverged?
The answer is negative because when ̇𝑠 = 𝐺𝐶�̇� is bounded, so
is �̇�due to the fact that𝐺 and𝐶 are constantmatrices.When �̇�

is bounded, from the system equation in (17) and controller in
(61), 𝑥which can be expressed in terms of �̇�must be bounded
too. Consequently, 𝑠 = 𝐺𝐶𝑥must also be bounded. Similarly,
through the system constraint in (17), when the approaching
condition does not happen inside the differential sliding layer
of | ̇𝑠| ≤ 𝜀, both |𝑠| and |𝑥| will be increased, so will | ̇𝑠|

and |�̇�|. When ̇𝑠 finally reaches to the condition of | ̇𝑠| > 𝜀,
the controller will switch to (64) to push the system back to
the differential sliding layer of | ̇𝑠| ≤ 𝜀. In this manner, the
controller can keep the ̇𝑠 inside the differential sliding layer
of | ̇𝑠| ≤ 𝜀 in steady state. Consequently, through the system
constraint, 𝑠 and 𝑥 can also be bounded in steady state.

Ideally, the controller can drive the system to reach and
stay on the sliding surface. However, it may cause “chattering
phenomenon” because its switching frequency is required to
be infinite. To avoid this problem, “sign” function is replaced
by “sat” function in our proposed controller in (61) to bound
the system inside the differential sliding layer of | ̇𝑠| ≤ 𝜀 in
steady state. Although it may cause the deterioration of accu-
racy and robustness, wasting small accuracy is still worthier
than causing “chattering phenomenon.” This concludes the
proof.

Other than sliding mode control, an expert in control
can easily apply Lyapunov approach [36] to stabilize the
system in (22)-(23). However, for a novice in control, it is not
always apparent to him that the Lyapunov function should

be chosen in designs. Therefore, there are difficulties for
him to apply Lyapunov approach to stabilize the system in
(22)-(23). On the contrary, the structure of the proposed
controller in (61) is clear and simple and only state derivative
related output feedback information is required. Therefore,
a novice in control can easily handle the implementation of
the proposed controller. Our derivation is basically parallel
to that of systems in standard state space form. Therefore,
the proposed method can be easily adopted by many control
designers.

4. Numerical Example

The following example is provided to justify the proposed
algorithm of SMC design with state derivative output
feedback in RSS form.

Example 1. Considering the following RLC circuit system in
Figure 1, let 𝑥

1
, 𝑥
2
, 𝑥
3
, and 𝑢 be the current of inductor 𝐿, the

voltage of capacitor 𝐶
2
, the voltage of capacitor 𝐶

1
, and the

control input voltage, respectively.

Applying Kirchhoff ’s current law at node 𝑃, one can
obtain 𝑥

2
as follows:

𝐶
1
�̇�
3
= 𝐶
2
�̇�
2
+

𝑥
2

𝑅
, 𝑥

2
= 𝑅𝐶
1
�̇�
3
− 𝑅𝐶
2
�̇�
2
. (74)

Applying Kirchhoff ’s current law at node𝑄 and (74), one can
obtain 𝑥

1
as follows:

𝑥
1
= 𝐶
2
�̇�
2
+

𝑥
2

𝑅
= 𝐶
2
�̇�
2
+ 𝐶
1
�̇�
3
− 𝐶
2
�̇�
2
= 𝐶
1
�̇�
3
. (75)

Applying (74) andKirchhoff ’s voltage law to the left-hand side
loop, 𝑥

3
is solved as

𝑢 = 𝑥
2
+ 𝑥
3
+ 𝐿�̇�
1
,

𝑥
3
= 𝑢 − 𝑥

2
− 𝐿�̇�
1
= −𝑅𝐶

1
�̇�
3
+ 𝑅𝐶
2
�̇�
2
− 𝐿�̇�
1
+ 𝑢.

(76)

The system of (74)–(76) in RSS form is obtained as follows:

𝑥 = [

[

𝑥
1

𝑥
2

𝑥
3

]

]

= [

[

0 0 𝐶
1

0 −𝑅𝐶
2

𝑅𝐶
1

−𝐿 𝑅𝐶
2

−𝑅𝐶
1

]

]

[

[

�̇�
1

�̇�
2

�̇�
3

]

]

+ [

[

0

0

1

]

]

𝑢,

𝑦 = 𝑥
2
= [𝐿 −𝑅𝐶

2
𝑅𝐶
1
] ⋅ [

[

�̇�
1

�̇�
2

�̇�
3

]

]

.

(77)
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C1ẋ3

u
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+
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−

−
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C2ẋ2

+

−
y = Lẋ1 + x2 = Lẋ1 − RC2ẋ2 + RC1ẋ3

−L+

P

R

+C1−

Q

C2

Figure 1: RLC circuit system.

Let 𝑅 = 100, 𝐶
1
= 0.1, 𝐶

2
= 0.1, and 𝐿 = 1000; the nominal

system in RSS form is as follows:

𝑥 = [

[

𝑥
1

𝑥
2

𝑥
3

]

]

= [

[

0 0 0.1

0 −10 10

−1000 10 −10

]

]

[

[

�̇�
1

�̇�
2

�̇�
3

]

]

+ [

[

0

0

1

]

]

𝑢

= 𝐴�̇� + 𝐵𝑢,

𝑦 = [1000 −10 10] ⋅ [

[

�̇�
1

�̇�
2

�̇�
3

]

]

= 𝐶�̇�,

𝐴 = [

[

0 0 0.1

0 −10 10

−1000 10 −10

]

]

, 𝐵 = [

[

0

0

1

]

]

,

𝐵
1
= [

0

0
] , 𝐵

2
= [1] ,

𝐶 = [1000 −10 10] .

(78)

From (29), we have

𝑇 = [
𝐼
(𝑛−𝑚)×(𝑛−𝑚)

−𝐵
1
𝐵
−1

2

0
𝑚×(𝑛−𝑚)

𝐼
𝑚×𝑚

] = [

[

1 0 0

0 1 0

0 0 1

]

]

,

𝑇
−1

= [

[

1 0 0

0 1 0

0 0 1

]

]

.

(79)

Therefore, the system is already in the form of (31)–(33) and
we have

𝐶 = 𝐶𝑇
−1

= [𝐶
1

𝐶
2
] = [1000 −10 10] ,

𝐶
1
= [1000 −10] ,

𝐶
2
= 10,

𝑇 ⋅ 𝐵 = [

[

0

0

1

]

]

= [

[

0

0

𝐵
2

]

]

, 𝐵
2
= 1,

𝐴
11

= [
0 0

0 −10
] , 𝐴

12
= [

0.1

10
] ,

(80)

for

𝑞
1
= (𝐴
11

− 𝐴
12
𝐹𝐶
1
) ̇𝑞
1
.

(81)

Since 𝐶
2
= 10 in this example, from (41), we have 𝐹 = 0.1.

When 𝐹 = 0.1, 𝑞
1
in (81) is stable. Therefore, 𝐹 = 0.1 is a

workable output feedback gain for (81).
When constant 𝑘 in (42) is selected as 𝑘 = 1, the following

sliding surface is obtained for simulation:

𝑠 = 𝐺𝐶𝑥 = 𝑘𝐹𝐶𝑥 = 0.1 ⋅ 1 ⋅ [1000 −10 10] 𝑥

= [100 −1 1] 𝑥.

(82)

To illustrate the performance of the proposed controller,
suppose that the system has the following uncertainties and
disturbance:

Δ𝐴 = [

[

0 0 10

0 10 10

10 10 10

]

]

sin (𝑡) ,

Δ𝐵 = [

[

0

0

0.2

]

]

cos (5𝑡) ,

𝑑 = [

[

0

0

3

]

]

sin (3𝑡) .

(83)

Based on them, the design parameters are selected as follows.
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Figure 2: State responses for uncontrolled system subject to uncer-
tainties and disturbance.

Since the norm of Δ𝐴 is 22.4698, we select 𝛿
𝐴

= 23 in
design:

∵ Δ𝐵 = 𝐵𝐷
𝐵
(𝑡) = [

[

0

0

0.2

]

]

cos (5𝑡) ,

∴ 𝐷
𝐵
(𝑡) = 0.2 cos (5𝑡) ,

𝑑
𝐵
(𝑡) = (𝐺𝐶𝐵)𝐷

𝐵
(𝑡) (𝐺𝐶𝐵)

−1

= 0.2 cos (5𝑡) .

(84)

Therefore, 𝛿
𝐵
= 0.2 is selected in design:

∵ 𝑑 = 𝐵𝑑
𝑟
(𝑡) = [

[

0

0

3

]

]

sin (3𝑡) ,

∴ 𝑑
𝑟
(𝑡) = 3 sin (3𝑡) , 𝛿

𝑑
= 3.

(85)

When external disturbance and system uncertainties are
considered, the system is unstable if no control is applied. All
states are diverged as shown in Figure 2.

To test the correctness of proposed approaching condi-
tion in (27) and the selected sliding surface, simulations were
performed. For simulation, 𝜀 = 0.005 and 𝛼 = 5 are selected
in the SMC control law of (61). Applying this control law, the
time responses of sliding surface, states, and control effort are
plotted in Figures 3, 4, and 5, respectively.

From Figure 3, we can find that the sliding surface
response does converge to zero; that is, both approaching
phase and sliding phase occur. Therefore, when the control
is applied, it is not surprising to see that all states and control
effort are converged in Figures 4 and 5, respectively. From the
simulation result, we conclude that approaching condition
in (27), the SMC controller design of state derivative output
feedback in (61), and the proposed novel saturation switching
function do work effectively for the system in RSS form.

0 500 1000 1500 2000 2500 3000
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Sliding surface

Figure 3: Sliding surface with system uncertainties and control.

0 500 1000 1500 2000 2500 3000

0

0.2

0.4

0.6

0.8

1

1.2

x1
x2
x3

−0.2

Figure 4: State responses with system uncertainties and control.

5. Conclusion

The needs for reciprocal state space (RSS) form have been
addressed. Novel sliding mode control design approach with
state derivative output feedback in reciprocal state space
framework has been presented. Nontraditional switching
function utilizing the derivative of sliding surface is proposed
and proven to satisfy the approaching condition of sliding
mode. In addition, algorithm of finding upper bound of
system uncertainty has been developed for robustness anal-
ysis. Simulation results of the RLC circuit system successfully
verify the proposed algorithms. Since our derivation is
basically parallel to that of systems in standard state space
form, the contribution of this paper is to provide SMC
design approach by applying direct state derivative related
output feedback in nontraditional RSS form so that people
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2
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Figure 5: Control effort.

can handle more control problems without too much of a
mathematical overhead.
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