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We consider the discrete-time Geo𝑋/𝐺/1 queue under N-policy with single and multiple vacations. In this queueing system, the
server takes multiple vacations and a single vacation whenever the system becomes empty and begins to serve customers only if
the queue length is at least a predetermined threshold value N. Using the well-known property of stochastic decomposition, we
derive the stationary queue-length distributions for both vacation models in a simple and unified manner. In addition, we derive
their busy as well as idle-period distributions. Some classical vacation models are considered as special cases.

1. Introduction

Queueing systems with vacations have been studied by many
researchers over the past four decades. A vacation is the
period in which a server is not available for some reason:
the server may break down, take time to warm up/close
down/repair, or be serving other classes of customers and so
forth. Such queuing systems are useful in modeling a variety
of real-life queueing situations such as those in digital com-
munications, computer networks, and production/inventory
systems. Readers are referred to Doshi [1] and Takagi [2, 3]
for excellent and extensive treatments of various types of
queueing systems with vacations.

In recent years, there has been a growing interest in
the analysis of discrete-time queueing systems due to their
applications in a variety of slotted digital communication sys-
tems and other related areas. Takagi [3] presents an extensive
study on discrete-time queueing systems with vacations such
as those with multiple vacations, single vacation, 𝑁-policy,
and set-up times. Zhang and Tian [4] study the discrete-
time Geo/𝐺/1 queue with multiple adaptive vacations, which
includes multiple-vacation and single-vacation models as its

special cases. Fiems and Bruneel [5] consider the discrete-
time GI/𝐺/1 queue with timed vacations. Alfa [6] discusses
a variety of vacation models with discrete-time Markovian
arrival process.

In this paper, we consider a discrete-time queueing
system with batch arrivals,𝑁-policy, and single and multiple
vacations. In this queueing system, groups of customers
arrive according to a Bernoulli process, and they are served
by the single server. The server takes single and multiple
vacationswhenever the systembecomes empty and restarts to
serve the customers only if the number of the customers in the
system is at least a predetermined threshold value𝑁.We refer
to this system as the Geo𝑋/𝐺/1 queue under 𝑁-policy with
single and multiple vacations. The continuous-time coun-
terpart of this queue, that is, the 𝑀𝑋/𝐺/1 queue under 𝑁-
policy with single and multiple vacations, has been discussed
by Lee et al. [7] and Lee et al. [8], respectively. As special
cases, the Geo𝑋/𝐺/1 queues with multiple vacations, single
vacation, and 𝑁-policy are also considered. Until recently,
numerous studies have been reported regarding variations
of queueing systems with 𝑁-policy and vacations including
Markovian queues (Choudhury [9], Ke et al. [10], and Wang
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[11]), general input queues (Lim et al. [12]), and combination
with other control policies (Ke et al. [13] and Feyaerts et al.
[14]). Also, reported works are well summarized by Tian and
Zhang [15]. Nonetheless, results included in this paper have
not been introduced previously and the approach to solve
complex queueing problem is novel and quite simple.

It is well known that discrete-time queueing systems have
been extensively applied in computer and digital commu-
nication systems. Also, control policies including 𝑁-policy
and two types of vacation considered in this paper have
wide applicability to all sorts of different real life problems.
Consider vulnerability of software system that is potentially
dangerous since it might be exploited to cause loss or harm
[16]. Single or multiple vulnerabilities of software systems
are reported and stored in vulnerability databases daily. For
example, vulnerabilities are collected in the NVD (national
vulnerability database) of the NIST (National Institute of
Standards and Technology) in the United States. Then,
discovery and removal of reported vulnerabilities can be
modelled using the discrete time batch arrival queueing
system [16]. A day corresponds to a slot, and𝑁-policy can be
applied to operate systemmore efficiently. Other applications
of queueing systems with vacations can be found in Tian and
Zhang [15].

This paper is organized as follows. In Section 2, we
describe the models in detail. We first study the queue
with 𝑁-policy and multiple vacations in Section 3. Next,
we consider the queue with 𝑁-policy and single vacation in
Section 4. Finally, we conclude the paper in Section 5.

2. Model Description

In discrete-time queueing models, the time axis is segmented
into a sequence of equal intervals of unit duration, called slots.
It is always assumed that interarrival, service, and vacation
times are integer multiples of unit duration. Because nothing
is assumed to happen at any time during a slot, the state of the
system changes only at a slot boundary 𝑛 = 0, 1, 2, . . .. Under
this discrete-time setting, note that an arrival and a departure
may take place simultaneously at a slot boundary. Regarding
the order of these simultaneous events, there have been
two typical assumptions: arrivals first (AF) and departures
first (DF). Specifically, under AF (DF), such an arrival (a
departure) occurs just before a departure (an arrival).We also
assume that, under AF (DF), a service and a vacation end
before an arrival (a departure) and begin after a departure
(an arrival). By all these assumptions, all the events that
may occur simultaneously at a slot boundary are in order.
For more details on the discrete-time queueing models, see
Hunter [17], Takagi [3], and Bruneel and Kim [18]. Until
addressing DF at the end, we assume AF.

We consider two discrete-time queueing systems: the
discrete-time Geo𝑋/𝐺/1 queue under 𝑁-policy with single
and multiple vacations. In the Geo𝑋/𝐺/1 queue with 𝑁-
policy and multiple vacations, the server takes a vacation
as soon as the system becomes empty. If the number of
waiting customers is less than 𝑁 when the server returns
from the vacation, he takes another vacation. He keeps taking

vacations until he finds at least 𝑁 customers on return from
a vacation. Finally, the server finding at least 𝑁 customers
starts to serve those customers. In the Geo𝑋/𝐺/1 queue
with 𝑁-policy and single vacation, on the other hand, if the
number of waiting customers is less than𝑁 after the server’s
first vacation, the server becomes idle and just waits for the
number to rise to be at least 𝑁. Such a waiting period is
called a dormant period; as soon as the number reaches 𝑁
(or more), he starts to serve the customers.

Let𝐴 denote a generic random variable (r.v.) representing
the number of customers that arrive during a single slot. It is
assumed that numbers of such arrivals are independent and
identically distributed (i.i.d.) with their common distribution
and PGF (probability generating function) given by

𝑎
𝑘
≜ Pr [𝐴 = 𝑘] , 𝑘 = 0, 1, 2, . . . ,

𝐴 (𝑧) ≜

∞

∑

𝑘=0

𝑎
𝑘
𝑧
𝑘
.

(1)

Note that this arrival process is considered as a batch
Bernoulli process, where the interarrival times between
batches are independent and geometrically distributed with
parameter 1 − 𝑎

0
, and the batch-size PMF (probability mass

function) is 𝑎
𝑘
/(1 − 𝑎

0
), 𝑘 = 1, 2, 3, . . .. Service times of

customers (denoted by a generic r.v. 𝑆) are independent of the
arrival process and they are i.i.d. with their commonPMFand
PGF given by

𝑠
𝑘
≜ Pr [𝑆 = 𝑘] , 𝑘 = 1, 2, . . . ,

𝑆 (𝑧) ≜

∞

∑

𝑘=1

𝑠
𝑘
𝑧
𝑘
.

(2)

Lengths of vacations (denoted by a generic r.v. 𝑉) are
independent of the arrival and service processes and they are
i.i.d. with their common PMF and PGF given by

V
𝑘
≜ Pr [𝑉 = 𝑘] , 𝑘 = 1, 2, . . . ,

𝑉 (𝑧) ≜

∞

∑

𝑘=1

V
𝑘
𝑧
𝑘
.

(3)

3. The Geo𝑋/𝐺/1 Queue with 𝑁-Policy and
Multiple Vacations

For this system, we derive PGFs of the stationary queue
length, idle period, and busy period.

3.1. The Queue-Length Distribution. To obtain the queue-
length PGF, we make use of the well-known property of
stochastic decomposition [3, p. 90] and [17]: for a class of
Geo𝑋/𝐺/1 queueing systems with server vacations, PGF𝑃(𝑧)
of the queue length (i.e., the number of customers in system
including the one, if any, being served) during an arbitrary
slot is given by

𝑃 (𝑧) = 𝑃Geo𝑋/𝐺/1 (𝑧) ⋅ 𝑄
−

𝑁
(𝑧) , (4)
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where 𝑃Geo𝑋/𝐺/1(𝑧) = {(1 − 𝜌)(1 − 𝑧)𝑆[𝐴(𝑧)]}/{𝑆[𝐴(𝑧)] − 𝑧}
is the corresponding PGF of the standard Geo𝑋/𝐺/1 queue
without vacations [3, p. 21] and 𝑄−

𝑁
(𝑧) is the PGF of the

number of customers that arrive during elapsed slots of an
idle period. Note that 𝑄−

𝑁
(𝑧) is given by

𝑄
−

𝑁
(𝑧) =

1 − 𝑄
𝑁 (𝑧)

𝐸 [𝑄
𝑁
] (1 − 𝑧)

÷
1 − 𝐴 (𝑧)

𝐸 [𝐴] (1 − 𝑧)
, (5)

where 𝑄
𝑁

with its PGF 𝑄
𝑁
(𝑧) is a r.v. of the number of

customers that arrive during an idle period. Note that {1 −
𝑄
𝑁
(𝑧)}/{𝐸[𝑄

𝑁
](1−𝑧)} and {1−𝐴(𝑧)}/{𝐸[𝐴](1−𝑧)} are PGFs

of the (discrete-time version of the) equilibrium distributions
of 𝑄
𝑁
and 𝐴, respectively.

Let 𝛼
𝑖
be the probability that 𝑖 customers (𝑖 = 0, 1, 2, . . .)

arrive during a vacation with its PGF 𝛼(𝑧) = 𝑉[𝐴(𝑧)], and let
𝛽
𝑖
be the probability that a grand vacation process visits state

𝑖 (𝑖 = 0, 1, 2, . . . , 𝑁−1). By a grand vacation, wemean a series
of vacations that ends with a vacation in which at least one
customer arrives (see Lee et al. [8]). For the continuous-time
𝑀
𝑋
/𝐺/1 queue with𝑁-policy and multiple vacations, Lee et

al.[8] show that 𝛽
𝑖
is given by

𝛽
0
= 1,

𝛽
𝑖
=

𝑖

∑

𝑘=1

{
𝛼
𝑘

(1 − 𝛼
0
)
} 𝛽
𝑖−𝑘
, 𝑖 = 1, 2, . . . , 𝑁 − 1.

(6)

Moreover, they show that 𝑄
𝑁
(𝑧) is fully characterized by 𝛼

𝑖

and 𝛽
𝑖
as follows:

𝑄
𝑁 (𝑧) = 1 +

𝛼 (𝑧) − 1

1 − 𝛼
0

𝑁−1

∑

𝑗=0

𝛽
𝑗
𝑧
𝑗
,

𝐸 [𝑄
𝑁
] =

𝑑𝑄
𝑁 (𝑧)

𝑑𝑧

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑧=1

=
𝐸 [𝐴] 𝐸 [𝑉]

1 − 𝛼
0

𝑁−1

∑

𝑗=0

𝛽
𝑗
.

(7)

Note that (𝐸[𝐴]𝐸[𝑉])/(1 − 𝛼
0
) is interpreted as the expected

number of customers that arrive during a grand vacation
(see Wald’s equation [19, p. 98]) and ∑𝑁−1

𝑗=0
𝛽
𝑗
as the expected

number of a grand vacation during an idle period. In
derivations of (6) and (7), we notice that it is irrelevant
whether the model is continuous or discrete; that is, (6) and
(7) hold for their discrete-time counterparts as well.

Now, substituting (7) into (5) and (4), we have the
following theorem.

Theorem 1. For the discrete-time Geo𝑋/𝐺/1 queue with 𝑁-
policy and multiple vacations, the PGF of the stationary queue
length and its mean 𝐿 are given by

𝑃 (𝑧) = 𝑃Geo𝑋/𝐺/1 (𝑧) ⋅
1 − 𝛼 (𝑧)

𝐸 (𝑉) [1 − 𝐴 (𝑧)]
⋅

∑
𝑁−1

𝑗=0
𝛽
𝑗
𝑧
𝑗

∑
𝑁−1

𝑗=0
𝛽
𝑗

= 𝑃Geo𝑋/𝐺/1/𝑀𝑉 (𝑧) ⋅
∑
𝑁−1

𝑗=0
𝛽
𝑗
𝑧
𝑗

∑
𝑁−1

𝑗=0
𝛽
𝑗

,

𝐿 = 𝐿Geo𝑋/𝐺/1/𝑀𝑉 +
∑
𝑁−1

𝑗=0
𝑗𝛽
𝑗

∑
𝑁−1

𝑗=0
𝛽
𝑗

,

(8)

where𝑃Geo𝑋/𝐺/1/𝑀𝑉(𝑧) and 𝐿Geo𝑋/𝐺/1/𝑀𝑉 are the corresponding
PGFandmean of theGeo𝑋/𝐺/1 queuewithmultiple vacations.

Remark 2. The continuous-time counterpart of Theorem 1 is
derived by Lee et al. [8] using the supplementary variable
technique.

Remark 3. Theorem 1 is readily specialized for the cor-
responding results of the Geo𝑋/𝐺/1 queue with multiple
vacations and the same queue with 𝑁-policy. By letting 𝑁
be 1, the corresponding results for the Geo𝑋/𝐺/1 queue with
multiple vacations [3, p. 98] are obtained. By letting 𝑉 be a
single slot (so thus 𝛼(𝑧) = 𝐴(𝑧)), on the other hand, the
corresponding results for theGeo𝑋/𝐺/1 queuewith𝑁-policy
[3, p. 174] are also obtained (under the discrete-time setting,
note that taking a vacation whose length is a single slot is
equivalent to taking no vacations).

3.2. The Cycle Time. In this section, we first consider the idle
period and then the busy period. Let 𝐼

𝑁
and 𝐼
𝑁
(𝑧) denote the

number of slots of an idle period and its PGF. Then we have
the following theorem.

Theorem 4. For the discrete-time Geo𝑋/𝐺/1 queue with 𝑁-
policy and multiple vacations, the PGF of an idle period and its
mean 𝐸[𝐼

𝑁
] are given by

𝐼
𝑁 (𝑧) =

1

1 − 𝑉 (𝑎
0
𝑧)

×

{

{

{

𝑉 (𝑧) − 𝑉 (𝑎0𝑧)

+

𝑁−1

∑

𝑘=1

[

[

[𝐼
𝑁−𝑘 (𝑧) − 1] ⋅

[

[

∞

∑

𝑗=1

𝑧
𝑗
𝑎
(𝑗)

𝑘
V
𝑗
]

]

]

]

}

}

}

,

(9)

𝐸 [𝐼
𝑁
] =

𝑑𝐼
𝑁 (𝑧)

𝑑𝑧

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑧=1

=
𝐸 [𝑉]

1 − 𝛼
0

𝑁−1

∑

𝑗=0

𝛽
𝑗
. (10)
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Proof. Conditioning on the length of the first vacation and the
number of arrivals during this vacation (denoted by #(𝑉)), we
have the following recursive equation:

𝐼
𝑁
(𝑧 | 𝑉 = 𝑗, # (𝑉) = 𝑘) = {

𝑧
𝑗
⋅ 𝐼
𝑁−𝑘 (𝑧) 𝑘 < 𝑁

𝑧
𝑗

𝑘 ≥ 𝑁.
(11)

Then, unconditioning (11) on #(𝑉), we have

𝐼
𝑁
(𝑧 | 𝑉 = 𝑗) =

∞

∑

𝑘=0

𝐼
𝑁
(𝑧 | 𝑉 = 𝑗, # (𝑉) = 𝑘)

⋅ Pr (# (𝑉) = 𝑘 | 𝑉 = 𝑗)

= 𝑧
𝑗
[1 +

𝑁−1

∑

𝑘=0

𝑎
(𝑗)

𝑘
{𝐼
𝑁−𝑘 (𝑧) − 1}] ,

(12)

where 𝑎(𝑗)
𝑘

is the probability that 𝑘 customers arrive during
𝑗 slots with its PGF given by [𝑎(𝑧)]𝑗 = ∑

∞

𝑘=0
𝑎
(𝑗)

𝑘
𝑧
𝑘. Next,

unconditioning (12) on 𝑉, we have the desired result (9):

𝐼
𝑁 (𝑧) =

∞

∑

𝑗=1

𝐼
𝑁
(𝑧 | 𝑉 = 𝑗) ⋅ V

𝑗

=
1

1 − 𝑉 (𝑎
0
𝑧)

×

{

{

{

𝑉 (𝑧) − 𝑉 (𝑎0𝑧)

+

𝑁−1

∑

𝑘=1

[

[

[𝐼
𝑁−𝑘 (𝑧) − 1] ⋅

[

[

∞

∑

𝑗=1

𝑧
𝑗
𝑎
(𝑗)

𝑘
V
𝑗
]

]

]

]

}

}

}

.

(13)

From (9), we have

𝐸 [𝐼
𝑁
] =

𝑑𝐼
𝑁 (𝑧)

𝑑𝑧

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑧=1

=
𝐸 [𝑉]

1 − 𝛼
0

+

𝑁−1

∑

𝑘=1

𝛼
𝑘

1 − 𝛼
0

𝐸 [𝐼
𝑁−𝑘
] .

(14)

Using (6), it can be shown that (10) is a solution to the
recursive equation (14). This completes the proof.

Note that 𝐸[𝑉]/(1 − 𝛼
0
) is interpreted as the expected

length of a grand vacation.
Next, we consider the busy period. Let 𝐵

𝑁
and 𝐵

𝑁
(𝑧)

denote the number of slots of a busy period and its PGF. Note
that PGF for a busy period that begins with 𝑘 customers in the
queueing system is given by [Θ(𝑧)]𝑘 [3, p. 40], where Θ(𝑧)
represents PGF of the length of a busy period that begins
with one customer in the standard Geo𝑋/𝐺/1 queue without
vacation. Thus we have the following.

Theorem 5. For the discrete-time Geo𝑋/𝐺/1 queue with 𝑁-
policy and multiple vacations, the PGF of a busy period and its
mean 𝐸[𝐵

𝑁
] are given by

𝐵
𝑁 (𝑧) = 𝑄𝑁 [Θ (𝑧)] ,

𝐸 [𝐵
𝑁
] =

𝑑𝐵
𝑁 (𝑧)

𝑑𝑧

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑧=1

=

𝜌𝐸 [𝑉]∑
𝑁−1

𝑗=0
𝛽
𝑗

(1 − 𝜌) (1 − 𝛼
0
)
=

𝜌

1 − 𝜌
𝐸 [𝐼
𝑁
] .

(15)

Remark 6. Along the same lines as presented above, the
continuous-time counterparts of Theorems 4 and 5 have
been derived by Lee et al. [8]. Theorems 4 and 5 are readily
specialized for the corresponding results of the Geo𝑋/𝐺/1
queue with multiple vacations [3, p. 94-95] and the same
queue with𝑁-policy [3, p. 175].

4. The Geo𝑋/𝐺/1 Queue with 𝑁-Policy and
Single Vacation

4.1. The Queue-Length Distribution. For this system, we
also make use of the well-known property of stochastic
decomposition [3, p. 90] and [20] to derive the queue-length
distribution. First, we consider an individual cycle by which
we mean an idle period plus the following busy period. In
a given cycle, we note that a dormant period exists with
probability ∑𝑁−1

𝑘=0
𝛼
𝑘
. Then we let 𝑟

𝑖
be the probability that

the system visits state 𝑖 (𝑖 = 0, 1, 2, . . . , 𝑁 − 1) during such
a dormant period. And 𝜋

𝑖
be the probability that the system

visits state 𝑖 (𝑖 = 0, 1, 2, . . . , 𝑁 − 1) during an idle period
in the Geo𝑋/𝐺/1 under 𝑁-policy without vacations. For the
continuous-time 𝑀𝑋/𝐺/1 queue with 𝑁-policy and single
vacation, Lee et al. [7] show that 𝑟

𝑖
is given by

𝑟
𝑖
=

𝑖

∑

𝑘=0

𝛼
𝑘
𝜋
𝑖−𝑘
, 𝑖 = 1, 2, . . . , 𝑁 − 1,

𝑟
0
= 𝛼
0
, 𝑟 (𝑧) ≜

𝑁−1

∑

𝑘=0

𝑟
𝑘
𝑧
𝑘
.

(16)

In this derivation, we notice that it is irrelevant whether the
model is continuous or discrete; that is, (16) holds for its
discrete-time counterpart as well.

Following the procedure presented by Lee et al. [7], we
obtain that 𝑄

𝑁
(𝑧) is fully characterized by 𝛼

𝑖
, 𝑎
𝑖
, and 𝑟

𝑖
as

follows:

𝑄
𝑁 (𝑧) = 𝛼 (𝑧) +

𝐴 (𝑧) − 1

1 − 𝑎
0

𝑁−1

∑

𝑗=0

𝑟
𝑗
𝑧
𝑗
, (17)

𝐸 [𝑄
𝑁
] =

𝑑𝑄
𝑁 (𝑧)

𝑑𝑧

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑧=1

= 𝐸 [𝐴] 𝐸 [𝑉] +
𝐸 [𝐴]

1 − 𝑎
0

𝑁−1

∑

𝑗=0

𝑟
𝑗
.

(18)

Note that∑𝑁−1
𝑗=0

𝑟
𝑗
is interpreted as the mean number of batch

arrivals during a dormant period and 𝐸[𝐴]/(1 − 𝑎
0
) as the

mean batch size.
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Now, simply substituting (17) into (5) and (4), we have the
following.

Theorem 7. For the discrete-time Geo𝑋/𝐺/1 queue with 𝑁-
policy and single vacation, the PGF of the stationary queue
length and its mean 𝐿 are given by

𝑃 (𝑧) = 𝑃Geo𝑋/𝐺/1 (𝑧) ⋅
1

(1 − 𝑎
0
) 𝐸 [𝑉] + ∑

𝑁−1

𝑗=0
𝑟
𝑗

⋅ {
(1 − 𝑎

0
) [1 − 𝛼 (𝑧)]

1 − 𝐴 (𝑧)
+ 𝑟 (𝑧)} ,

𝐿 = 𝐿Geo𝑋/𝐺/1 +
1

(1 − 𝑎
0
) 𝐸 [𝑉] + ∑

𝑁−1

𝑗=0
𝑟
𝑗

⋅

{

{

{

𝐸 [𝐴] (1 − 𝑎0)

2
𝐸 [𝑉
2
− 𝑉] +

𝑁−1

∑

𝑗=0

𝑗𝑟
𝑗

}

}

}

.

(19)

Remark 8. The continuous-time counterpart of Theorem 7
was derived by Lee et al. [7] using the supplementary variable
technique.

Remark 9. Theorem 7 is readily specialized for the corre-
sponding results of the Geo𝑋/𝐺/1 queue with single vacation
and the same queue with 𝑁-policy. By letting 𝑁 be 1, the
corresponding results for the Geo𝑋/𝐺/1 queue with single
vacation [3, p. 132] are obtained. By letting 𝑉 be a single slot,
the corresponding results for the Geo𝑋/𝐺/1 queue with 𝑁-
policy [3, p. 174] are also obtained.

4.2. The Cycle Time. In this section, we first consider the idle
period and then the busy period. Let 𝐼

𝑁
and 𝐼
𝑁
(𝑧) denote the

number of slots of an idle period and its PGF. Then we have
the following.

Theorem 10. For the discrete-time Geo𝑋/𝐺/1 queue with 𝑁-
policy and single vacation, the PGF of an idle period and its
mean 𝐸[𝐼

𝑁
] are given by

𝐼
𝑁 (𝑧) = 𝑉 (𝑧) +

𝑁−1

∑

𝑘=0

[

[

[𝐼
0

𝑁−𝑘
(𝑧) − 1] ⋅ [

[

∞

∑

𝑗=1

𝑧
𝑗
𝑎
(𝑗)

𝑘
V
𝑗
]

]

]

]

,

(20)

𝐸 [𝐼
𝑁
] = 𝐸 [𝑉] +

1

1 − 𝑎
0

𝑁−1

∑

𝑗=0

𝑟
𝑗
. (21)

Proof. Conditioning on the length of the first vacation and
the number of customers that arrive during this vacation
(denoted by #(𝑉)), we have the following recursive equation:

𝐼
𝑁
(𝑧 | 𝑉 = 𝑗, # (𝑉) = 𝑘) = {

𝑧
𝑗
⋅ 𝐼
0

𝑁−𝑘
(𝑧) 𝑘 < 𝑁

𝑧
𝑗

𝑘 ≥ 𝑁,
(22)

where 𝐼0
𝑁
(𝑧) denotes the PGF for an idle period in Geo𝑋/𝐺/1

under 𝑁-policy without vacations. Then, unconditioning
(22) on #(𝑉), we have

𝐼
𝑁
(𝑧 | 𝑉 = 𝑗) =

∞

∑

𝑘=0

𝐼
𝑁
(𝑧 | 𝑉 = 𝑗, # (𝑉) = 𝑘) ,

⋅ Pr (# (𝑉) = 𝑘 | 𝑉 = 𝑗)

= 𝑧
𝑗
[1 +

𝑁−1

∑

𝑘=0

𝑎
(𝑗)

𝑘
{𝐼
0

𝑁−𝑘
(𝑧) − 1}] ,

(23)

where 𝑎(𝑗)
𝑘

is the probability that 𝑘 customers arrive during
𝑗 slots with its PGF given by [𝑎(𝑧)]𝑗 = ∑

∞

𝑘=0
𝑎
(𝑗)

𝑘
𝑧
𝑘. Next,

unconditioning (23) on 𝑉, we have the desired result (20):

𝐼
𝑁 (𝑧) =

∞

∑

𝑗=1

𝐼
𝑁
(𝑧 | 𝑉 = 𝑗) ⋅ V

𝑗

= 𝑉 (𝑧) +

𝑁−1

∑

𝑘=0

[

[

[𝐼
0

𝑁−𝑘
(𝑧) − 1] ⋅ [

[

∞

∑

𝑗=1

𝑧
𝑗
𝑎
(𝑗)

𝑘
V
𝑗
]

]

]

]

.

(24)

From (18), we have

𝐸 [𝐼
𝑁
] =

𝐸 [𝑄
𝑁
]

𝐸 [𝐴]
= 𝐸 [𝑉] +

1

1 − 𝑎
0

𝑁−1

∑

𝑗=0

𝑟
𝑗
. (25)

Note that ∑𝑁−1
𝑗=0

𝑟
𝑗
/(1 − 𝑎

0
) is interpreted as the mean

length of a dormant period, where 1/(1 − 𝑎
0
) represents the

mean interbatch time.
Next, we consider the busy period. Let 𝐵

𝑁
and 𝐵

𝑁
(𝑧)

denote the number of slots of a busy period and its PGF.
Following the same procedure as presented in Section 3, we
have the following.

Theorem 11. For the discrete-time Geo𝑋/𝐺/1 queue with 𝑁-
policy and single vacation, the PGF of a busy period and its
mean 𝐸[𝐵

𝑁
] are given by

𝐵
𝑁 (𝑧) = 𝑄𝑁 [Θ (𝑧)] ,

𝐸 [𝐵
𝑁
] =

𝑑𝐵
𝑁 (𝑧)

𝑑𝑧

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑧=1

=
𝜌

1 − 𝜌

{

{

{

𝐸 [𝑉] +
1

1 − 𝑎
0

𝑁−1

∑

𝑗=0

𝑟
𝑗

}

}

}

=
𝜌

1 − 𝜌
𝐸 [𝐼
𝑁
] .

(26)

Remark 12. Along the same lines as presented above, the
continuous-time counterparts of Theorems 10 and 11 have
been derived by Lee et al. [7]. Theorems 10 and 11 are readily
specialized for the corresponding results of the Geo𝑋/𝐺/1
queue with single vacation [3, p. 130-131] and the same queue
with𝑁-policy [3, p. 175].
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5. Concluding Remarks

In this paper, we consider the discrete-timeGeo𝑋/𝐺/1 queues
under 𝑁-policy with multiple and single vacations. As a
result, PGFs of queue-length distributions are obtained,
and PGFs of the lengths of idle and busy periods are also
presented. These results have not been presented previously
in the literature. In addition, our approach is fairly simple
to solve complex problems comparing to other previous
works. For example, the supplementary variable technique
needs a lengthy and difficult calculation. Our simple and
unified approach is based on the well-known property of
stochastic decomposition.The results presented in this paper
specialize some fundamental vacation models that include
the Geo𝑋/𝐺/1 queues with single vacation, multiple vaca-
tions, and𝑁 policy.

Finally, we remark that all the results obtained in this
paper for models under AF assumptions also hold for those
under DF assumptions. This is because assumptions on the
order of simultaneous events at a slot boundary do not affect
the system state during a slot (see Kim et al. [20]).
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