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This paper proposes a fractional-order total variation image denoising algorithm based on the primal-dual method, which provides
a much more elegant and effective way of treating problems of the algorithm implementation, ill-posed inverse, convergence
rate, and blocky effect. The fractional-order total variation model is introduced by generalizing the first-order model, and the
corresponding saddle-point and dual formulation are constructed in theory. In order to guarantee 𝑂(1/𝑁2) convergence rate, the
primal-dual algorithm was used to solve the constructed saddle-point problem, and the final numerical procedure is given for
image denoising. Finally, the experimental results demonstrate that the proposed methodology avoids the blocky effect, achieves
state-of-the-art performance, and guarantees 𝑂(1/𝑁2) convergence rate.

1. Introduction

Since the work of Rudin et al. [1], total variation (TV)
minimization problems arise in many image processing
applications for regularizing inverse problems where one
expects the recovered image or signal to be piecewise constant
[2–5]. The typical total variation model, for example, ROF
model, has been proved to be able to achieve a good tradeoff
between edge preservation and noise removal [1]. However,
it tends to produce the so-called blocky (staircase) effects on
the images because it favors a piecewise constant solution
in bounded variation (BV) space [6]. In order to deal
with blocky effects, the modification of TV model, which
generalizes the differential order in regularization term, has
aroused the more and more attentions of numerous scholars.

The improved methods of TV model are divided into
two kinds: the high-order derivative and the fractional-order
derivative. The first one replaces the first-order derivative
in regularization term by the high-order derivative. For
example, a fourth-order partial differential equation-(PDE-
based) denoising mode was proposed by [7], in which the
regularized solution is obtained by solving the minimization
of potential function of second-order derivative of the image.

It has been proved that this model is able to deal with
the blocky problem. However, it tends to cause the sign
of uplifting effect and formation of artifacts around edges.
For this problem, an improved fourth-order PDE model,
replacing the Laplacian operator of diffusivity function by the
gradient operator, was proposed in [8].

In this paper, our interest focuses on the second gen-
eralization which deals with fractional-order differentiation.
Fractional calculus is a rapidly growing mathematical disci-
pline, which provides an important tool for nonlocal field
theories [9]. Recently, it has been greatly studied in computer
vision [10–16], and the main reason for this development
is the expectation that the use of this theory will lead to a
much more elegant and effective way of treating problems of
blocky effect and detailed information protection. Specially,
the fractional-order total variation (TV) models play an
important role for image denoising, inpainting, and motion
estimation [17–21]. So far, the methods adopted to deal
with the fractional-order total variation problem are divided
into three kinds: (1) solving the associated Euler-Lagrange
equation, which is a nonlinear partial differential equation
(PDE) [17, 18]; (2) using the methods based on duality [6];
(3) using the method based on majorization-minimization
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(MM) algorithm [22]. Although the convergence of these
methods has been studied in the corresponding literatures,
the rate of convergence for them has not been discussed yet.
For this problem, in this paper, a primal-dual algorithm is
used to solve the fractional-order total variation problem,
which is able to guarantee 𝑂(1/𝑁2) convergence rate.

The primal-dual algorithm was first presented by [23]
and named as the primal-dual hybrid gradient (PDHG)
method in [24]. In this method, each iteration updates both
a primal and a dual variable. It is thus able to avoid some of
the difficulties that arise when working only on the primal
or dual side [25, 26]. The convergence of the primal-dual
algorithm has been studied in [27, 28]. Recently a unified
form of primal-dual algorithm was presented by [29, 30],
which demonstrated that, in some case, these algorithms can
also achieve the 𝑂(1/𝑁2) rate of convergence. In our paper,
a new image denoising method is proposed, in which the
primal-dual algorithm is used to solve the fractional-order
total variation denoising model. The proposed denoising
method is able to avoid the blocky effect, achieves state-
of-the-art performance, and guarantees the 𝑂(1/𝑁2) rate of
convergence.

This paper is organized as follows. Section 1 introduces
prior work, focusing on the main problems with existing
methods that are addressed by our model. In Section 2, the
fractional-order total variation denoising model is described,
and the corresponding saddle-point and dual formulation are
constructed in theory. Based on this, the primal-dual algo-
rithm was used to solve the constructed saddle-point prob-
lem, and the final numerical implementation is presented
for image denoising. Experimental evaluation is presented in
Section 3 and the paper is concluded in Section 4.

2. Fractional-Order Total Variation Model and
Primal-Dual Algorithm

2.1. Model Description. Let 𝑓
𝑖,𝑗

= 𝑢
𝑖,𝑗
+ V
𝑖,𝑗

denote the
observed noisy image, where (𝑖, 𝑗)𝑇 denotes the location with
a rectangular image domain Ω ∈ R𝑛×𝑛 and V is white
Gaussian noise. The typical total variation (TV) denoising
model estimates the desired clean image 𝑢

𝑖,𝑗
by solving the

following finite-dimensional optimization problem:

𝑢̂ = argmin
𝑢∈Ω

{𝐸 (𝑢) := TV (𝑢) + 𝜆
2

󵄩󵄩󵄩󵄩𝑓 − 𝑢
󵄩󵄩󵄩󵄩

2

2
} , (1)

where TV(𝑢) is the regularization term, ‖𝑓 − 𝑢‖2
2
is the data

fidelity term, ‖𝑢‖] is ]-norm of 𝑢, and 𝜆 is regularization
parameter which controls the degree of smoothing. In this
paper, we consider a fractional-order total variation model,
defined as

𝑢̂ = argmin
𝑢∈Ω

{𝐸 (𝑢) := TV𝛼 (𝑢) + 𝜆
2

󵄩󵄩󵄩󵄩𝑓 − 𝑢
󵄩󵄩󵄩󵄩

2

2
} , (2)

where TV𝛼(𝑢) is obtained by the following formula:

TV𝛼 (𝑢) =
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

√(𝐷
𝛼

1
𝑢)
2

+ (𝐷
𝛼

2
𝑢)
2
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩1

, (3)

where √(𝐷𝛼
1
𝑢)
2
+ (𝐷
𝛼

2
𝑢)
2 is the discretization of |𝐷𝛼𝑢|, 𝐷𝛼

is the fractional-order derivative operator, and 𝐷𝛼𝑢 :=

(𝐷
𝛼

1
𝑢,𝐷
𝛼

2
𝑢)
𝑇. 𝐷𝛼
1
and 𝐷𝛼

2
are linear operators corresponding

to horizontal and vertical fractional-order derivative.
FromGrünwald-Letnikov fractional derivative definition

[31], the finite fractional-order forward difference can be
obtained by

𝐷
𝛼

1
𝑢
𝑖,𝑗
=

𝐾−1

∑

𝑘=0

𝑤
(𝛼)

𝑘
𝑢
𝑖+𝑘,𝑗
, 𝐷

𝛼

2
𝑢
𝑖,𝑗
=

𝐾−1

∑

𝑘=0

𝑤
(𝛼)

𝑘
𝑢
𝑖,𝑗+𝑘
, (4)

where𝑤(𝛼)
𝑘
= (−1)

𝑘+1
C𝛼
𝑘
,C𝛼
𝑘
= Γ(𝛼+1)/(Γ(𝑘+1)Γ(𝛼−𝑘+1))

denotes the generalized binomial coefficient, and Γ(𝑥) is the
Gamma function. In addition, the coefficients 𝑤(𝛼) can also
be obtained recursively from

𝑤
(𝛼)

0
= −1, 𝑤

(𝛼)

𝑘
= (1 −

𝛼 + 1

𝑘
)𝑤
(𝛼)

𝑘−1
, 𝑘 = 1, 2, . . . .

(5)

When 𝛼 = 1, 𝑤1
𝑘
= 0 for 𝑘 > 1 and (4) is the first-order

forward derivative as usual.
To describe (2) in matrix algebra language, we reord

the image matrix 𝑢 and 𝑓 row wisely into the vector 𝑥
and 𝑧, associating the (𝑖, 𝑗) element of the two-dimensional
structure with the element (𝑗 − 1)𝑛 + 𝑖 of the vector structure,
𝑥
(𝑗−1)𝑛+𝑖

= 𝑢
𝑖,𝑗
, and 𝑧

(𝑗−1)𝑛+𝑖
= 𝑓
𝑖,𝑗
. We have 𝑥 ∈ R𝑁

and 𝑧 ∈ R𝑁, where 𝑁 = 𝑛
2. The (𝑖, 𝑗) component of the

fractional-order derivative 𝐷𝛼𝑢 can thus be represented as a
multiplication of the vector 𝑥 ∈ R𝑁 by a matrix 𝐴

𝑚
∈ R2×𝑁,

for𝑚 = 1, 2, . . . , 𝑁:

𝐴
𝑚
𝑥 =

{{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{{{

{

(

𝐾−1

∑

𝑘=0

𝑤
(𝛼)

𝑘
𝑥
𝑚+𝑘
,

𝐾−1

∑

𝑘=0

𝑤
(𝛼)

𝑘
𝑥
𝑚+𝑛𝑘

, )

𝑇

if (𝑚 mod 𝑛) ̸= 0 and 𝑚 ≤ 𝑁 − 𝑛

(0,

𝐾−1

∑

𝑘=0

𝑤
(𝛼)

𝑘
𝑥
𝑚+𝑛𝑘

)

𝑇

,

if (𝑚 mod 𝑛) = 0 and 𝑚 ≤ 𝑁 − 𝑛

(

𝐾−1

∑

𝑘=0

𝑤
(𝛼)

𝑘
𝑥
𝑚+𝑘
, 0)

𝑇

,

if (𝑚 mod 𝑛) ̸= 0 and 𝑚 > 𝑁 − 𝑛
(0, 0)
𝑇
,

if (𝑚 mod 𝑛) = 0 and 𝑚 > 𝑁 − 𝑛.

(6)

From this definition, the discrete version of the prime
fractional-order total variation (FOTV) model (2) can be
written as

min
𝑥∈𝑅
𝑁

{𝐸 (𝑥) :=

𝑁

∑

𝑚=1

󵄩󵄩󵄩󵄩𝐴𝑚𝑥
󵄩󵄩󵄩󵄩2 +

𝜆

2
‖𝑥 − 𝑧‖

2

2
} . (7)
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Step 1. Choose 𝜏
0
, 𝜎
0
> 0 with 𝜏

0
𝜎
0
𝐿
2
≤ 1, 𝑥

0
∈ 𝑅
𝑁, 𝑦
0
∈ 𝑅
2𝑁, and 𝑥

0
= 𝑥
0
.

Step 2. Update 𝑥
𝑡
, 𝑦
𝑡
, 𝑥
𝑡
, 𝜃
𝑡
, 𝜏
𝑡
, 𝜎
𝑡
as follows:

𝑦
𝑡+1
= arg min

𝑦∈𝑅
2𝑁

⟨𝑦, −𝐴𝑥
𝑡
⟩ + 𝛿 (𝑦) +

1

2𝜎
𝑡

󵄩󵄩󵄩󵄩𝑦 − 𝑦𝑡
󵄩󵄩󵄩󵄩

2

2
, (A)

𝑥
𝑡+1
= arg min

𝑥∈𝑅
𝑁

𝜆

2
‖𝑥 − 𝑧‖

2

2
+ ⟨𝐴𝑥, 𝑦

𝑡+1
⟩ +

1

2𝜏
𝑡

󵄩󵄩󵄩󵄩𝑥 − 𝑥𝑡
󵄩󵄩󵄩󵄩

2

2
, (B)

𝜃
𝑡
=

1

√1 + 2𝛾𝜏
𝑡

, 𝜏
𝑡+1
= 𝜃
𝑡
𝜏
𝑡
, 𝜎
𝑡+1
=
𝜎
𝑡

𝜃
𝑡

,

𝑥
𝑡+1
= 𝑥
𝑡+1
+ 𝜃
𝑡
(𝑥
𝑡+1
− 𝑥
𝑡
) ,

Algorithm 1

Define a norm ‖V‖
𝐸
= ∑
𝑁

𝑚=1
√V2
1
+ V2
2
where V = (V

1
, V
2
)
𝑇, and

(7) can be rewritten in term of ‖ ⋅ ‖
𝐸
as

min
𝑥∈𝑅
𝑁

{𝐸 (𝑥) := ‖𝐴𝑥‖𝐸 +
𝜆

2
‖𝑥 − 𝑧‖

2

2
} , (8)

Here 𝐴 = [𝐴
1
, 𝐴
2
, . . . , 𝐴

𝑁
]
𝑇
∈ 𝑅
2𝑁×𝑁.

2.2. Dual Problem and Saddle-Point Problem. For any vector,
𝑝
𝑚
= (𝑝
1

𝑚
, 𝑝
2

𝑚
)
𝑇
∈ 𝑅
2 and 𝑝 = (𝑝

1
, 𝑝
2
, . . . , 𝑝

𝑁
)
𝑇
∈ 𝑅
2𝑁. We

have ‖𝐴𝑥‖
𝐸
= max

‖𝑝‖
𝐸
∗≤1
⟨𝐴𝑥, 𝑝⟩, where ‖ ⋅ ‖

𝐸
∗ is the dual

norm of norm ‖ ⋅ ‖
𝐸
, and the ‖ ⋅ ‖

𝐸
and ‖ ⋅ ‖

𝐸
∗ are analogous

to ‖ ⋅ ‖
1
and ‖ ⋅ ‖

∞
, respectively.

Let the function 𝛿(𝑦) : 𝑅2𝑁 → 𝑅 be the conjugate of
‖𝐴𝑥‖
𝐸
; we have

𝛿 (𝑦) = sup
𝑥

⟨𝑦, 𝐴𝑥⟩ − ‖𝐴𝑥‖𝐸

= sup
𝑥

⟨𝑦, 𝐴𝑥⟩ − max
‖𝑝‖
𝐸
∗≤1

⟨𝐴𝑥, 𝑝⟩

= {
0, if ‖V‖

𝐸
∗ ≤ 1

∞, if otherwise,

(9)

in which case we can interpret 𝛿(⋅) as the indicator function
for the unit ball in the dual norm, and 𝑦 = (𝑦

1
, 𝑦
2
, . . . , 𝑦

𝑁
)
𝑇
∈

𝑅
2𝑁 with 𝑦

𝑚
= (𝑦
1

𝑚
, 𝑦
2

𝑚
)
𝑇
∈ 𝑅
2. Since 𝐹 = 𝐹∗∗ if 𝐹 is closed

and convex, we have

‖𝐴𝑥‖𝐸 = sup
𝑦∈𝑅
2𝑁

⟨𝑦, 𝐴𝑥⟩ − 𝛿 (𝑦) . (10)

Substituting (10) into (8), we can obtain the saddle-point
formulation of FOTV model defined by

min
𝑥∈𝑅
𝑁

sup
𝑦∈𝑅
2𝑁

⟨𝑦, 𝐴𝑥⟩ − 𝛿 (𝑦) +
𝜆

2
‖𝑥 − 𝑧‖

2

2
. (11)

The minimization problem of (11) can be solved exactly as

𝑥 = 𝑧 −
1

𝜆
𝐴
𝑇
𝑦. (12)

Substituting (12) into (11) yields the following dual problem:

max
𝑦∈𝑅
2𝑁

− (
󵄩󵄩󵄩󵄩󵄩
𝐴
𝑇
𝑦 − 𝜆𝑧

󵄩󵄩󵄩󵄩󵄩

2

2
+ 𝛿 (𝑦)) , (13)

where −𝐴𝑇 is the corresponding discretization of the
fractional-order divergence, and when 𝛼 = 1, it is the discrete
divergence as usual.

For primal-dual feasible pair (𝑥, 𝑦), the partial primal-
dual gap 𝐺(𝑥, 𝑦) is defined by

𝐺 (𝑥, 𝑦) = { max
𝑦
󸀠
∈𝑅
2𝑁

⟨𝑦
󸀠
, 𝐴𝑥⟩ − 𝛿 (𝑦

󸀠
) +

𝜆

2
‖𝑥 − 𝑧‖

2

2
}

− {min
𝑥
󸀠
∈𝑅
𝑁

⟨𝑦, 𝐴𝑥
󸀠
⟩ − 𝛿 (𝑦) +

𝜆

2

󵄩󵄩󵄩󵄩󵄩
𝑥
󸀠
− 𝑧
󵄩󵄩󵄩󵄩󵄩

2

2
} .

(14)

If (𝑥, 𝑦) is the saddle point of problem (11), then 𝑥 is primal
optimal, 𝑦 is dual optimal [32], and we have

𝐺 (𝑥, 𝑦) ≥ {⟨𝑦, 𝐴𝑥⟩ − 𝛿 (𝑦) +
𝜆

2
‖𝑥 − 𝑧‖

2

2
}

− {⟨𝑦, 𝐴𝑥⟩ − 𝛿 (𝑦) +
𝜆

2
‖𝑥 − 𝑧‖

2

2
} ≥ 0,

(15)

which vanishes only if (𝑥, 𝑦) is itself the saddle point [29].
The primal-dual gap 𝐺(𝑥, 𝑦) is a measure of closeness of the
primal-dual (𝑥, 𝑦) to the primal-dual solution, and we use it
to design the stopping criterion for our numerical algorithm
in this paper.

2.3. Primal-Dual Method for Solving Saddle-Point Problem.
The first-order primal-dual method summarized in [29]
for convex problem was applied in this paper to solve the
saddle-point problem described by (11), which is described
by Algorithm 1.
Let 𝐿 = ‖𝐴‖ and 𝜏

𝑡
𝜎
𝑡
𝐿
2
≤ 1; then there exists a saddle-point

(𝑥, 𝑦) such that 𝑥
𝑡
→ 𝑥 and 𝑦

𝑡
→ 𝑦. Since (𝜆/2)‖𝑥 − 𝑧‖2

2

is uniformly convex such that it has a Lipschitz continuous
gradient, the output (𝑥

𝑡
, 𝑦
𝑡
) possesses a rate of convergence of

𝑂(1/𝑁
2
) [29]. More specifically, we assume that the constant

stepsizes are used; that is, 𝜏
𝑡
= 𝜏 > 0, 𝜎

𝑡
= 𝜎 > 0, and 𝜃

𝑡
= 𝜃

for all 𝑡 ≥ 0. If 𝜏𝜎𝐿2 < 1; then the 𝑂(1/𝑁) convergence rate
can be guaranteed for 𝜃 = 1, and 𝑂(1/√𝑁) convergence rate
can be guaranteed for 𝜃 = 0 [30].
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To summarize, our entire noise removal algorithm in a
form of a pseudocode is done in following:

(1) initialization:

(i) for a given noisy image 𝑓 of size 𝑛 × 𝑛, we reord
the image 𝑓 row wisely into the vector 𝑧 ∈ 𝑅𝑁
with𝑁 = 𝑛 × 𝑛, 𝑧

(𝑗−1)𝑛−𝑖
= 𝑓
𝑖,𝑗
;

(ii) compute the fractional-order discrete operator
𝐴 according to (6);

(iii) initialize the regularization parameter 𝜆, itera-
tion number𝑇, andmaximumpermissible error
𝐸mpe;

(iv) set 𝑡 = 0, 𝑥
0
= 𝑧, 𝐿 = ‖𝐴‖, 𝜏

0
= 1/𝐿

2, 𝜎
0
= 1/𝐿

2,
and 𝛾 = 0.7𝜆;

(2) iteration: compute 𝑥 by the following steps.

Step 1. Solve the problem (A) by

𝑦
𝑡+1

𝑚
=

𝑦
𝑡

𝑚
+ 𝜎
𝑡
𝐴
𝑚
𝑥
𝑡

max {1, 󵄩󵄩󵄩󵄩𝑦𝑡𝑚 + 𝜎𝑡𝐴𝑚𝑥
𝑡󵄩󵄩󵄩󵄩2}

, 𝑚 = 1, 2, . . . , 𝑁. (16)

Step 2. Substitute 𝑦𝑡+1 into the (B) and solve the problem (B)
by

𝑥
𝑡+1
=
𝑥
𝑡
− 𝜏
𝑡
𝐴
𝑇
𝑦
𝑡+1
+ 𝜏
𝑡
𝜆𝑧

1 + 𝜏
𝑡
𝜆

. (17)

Step 3. Compute 𝜃
𝑡
= 1/√1 + 2𝛾𝜏

𝑡
, 𝜏
𝑡+1
= 𝜏
𝑡
𝜃
𝑡
, and 𝜎

𝑡+1
=

𝜎
𝑡
/𝜃
𝑡
.

Step 4. Update 𝑥 by 𝑥𝑡+1 = (1 + 𝜃
𝑡
)𝑥
𝑡+1
− 𝜃
𝑡
𝑥
𝑡.

Step 5. Compute the primal-dual gap 𝑔𝑡+1 according to (15)
as follows:

𝑔
𝑡+1
=

𝑁

∑

𝑚=1

󵄩󵄩󵄩󵄩󵄩
𝐴
𝑚
𝑥
𝑡+1󵄩󵄩󵄩󵄩󵄩2

− (𝑦
𝑡+1
)
𝑇

𝐴𝑥
𝑡+1

+
𝜆

2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑥
𝑡+1
− 𝑧 +

1

𝜆
𝐴
𝑇
𝑦
𝑡+1
󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

2

.

(18)

Step 6. If (𝑔𝑡+1 < 𝐸mpe) or (𝑡 > 𝑇), then we terminate the
iteration and output 𝑥𝑡+1; otherwise, go back to Step 1.

Due to the simplicity of our model, it is easy to be
implemented and can be effectively accelerated on parallel
hardware such as field programmable gata array (FPGA) and
graphics processing unit (GPU). In order to employ the huge
computational power and the parallel processing capabilities
of FPGA to obtain a fully accelerated implementation of our
denoising method, the numerical method should be working
on the regular grids. For this purpose, the implementation of
our algorithm on FPGA is described as the following strategy.
First, an image frame is captured and read in the processor
from a live camera. For the captured frame 𝑓 ∈ R𝑛×𝑛, the 𝑘th

iteration of our method performs the following updates on
prime variable 𝑢 ∈ R𝑛×𝑛 and dual variable 𝑝 ∈ R𝑛×𝑛×2:

𝑝
𝑘+1
=

𝑝
𝑘
+ 𝜎
𝑘
𝐷
𝛼
𝑢
𝑘

max {1, 󵄨󵄨󵄨󵄨󵄨𝑝
𝑘 + 𝜎
𝑘
𝐷𝛼𝑢
𝑘󵄨󵄨󵄨󵄨󵄨
}

, (19)

𝑢
𝑘+1
=
𝑢
𝑘
− 𝜏
𝑘
div𝛼𝑝𝑘+1 + 𝜏

𝑘
𝜆𝑓

1 + 𝜏
𝑘
𝜆

, (20)

where the dual variable 𝑝 = (𝑝1, 𝑝2)𝑇 corresponds with 𝑦
and the discrete fractional divergence operator div𝛼is adjoint
to the discrete fractional gradient operator 𝐷𝛼. Note that
(19) and (20), respectively, correspond with the solutions of
problem (A) and (B). The updates of the other parameters
are the same as the description in the foregoing pseudocode,
and the number of iteration is fixed to ensure the correct
timing sequence. After the iteration, the denoised image 𝑢 is
outputted, the next image frame is captured, and the same
process is repeated until the assignment is over.

3. Experiments and Analysis

3.1. Restraint of Block Effect. The blocky effect is the main
drawback produced by the typical first-order total variation
denoising algorithm. In this section, some experiments are
given to assess the capability of reducing block effect of our
proposed fractional-order total variation (FOTV) denoising
algorithm. Firstly, the one-dimensional signal is used as the
test signal, 𝑦(𝑡) = 4 sin(2𝜋𝑡) + 8 sin(3𝜋𝑡). We contaminate
the given signal using the additive white Gaussian noise
(AWGN) with standard deviation (SD) of 0.5. The corrupted
signal is shown in Figure 1(a).The proposed FOTVdenoising
algorithm with 𝛼 = 1 and 𝛼 = 1.5 is used to process the
contaminated signal, respectively. When 𝛼 = 1, our FOTV
algorithm is the typical ROF denoising algorithm based on
primal-dual method. In this experiment, we set 𝜆 = 0.01, and
the results at the 1000th iteration are, respectively, shown in
Figures 1(b) and 1(c).The difference is obvious: while the first-
order TV denoising algorithm approximates the observed
signal with a step signal, the fractional-order algorithm with
a piecewise planar signal which looks more natural and does
not produce false edges.

We now consider a two-dimensional image “Lena” of
size 512 × 512. The image is degraded by using AWGN
with standard deviation of 10 and the result is shown in
Figure 2(a). This degraded image is, respectively, fed into the
proposed FOTV denoising algorithm with 𝛼 = 1 and 𝛼 = 1.5
as initial condition, and the time evolution of the algorithms
begins. The results at the 1000th iteration are, respectively,
shown in Figures 2(b) and 2(c).The blocky effects are obvious
in Figure 2(b), while the Figure 2(c) looks more natural and
does not produce blocky effect.

In conclusion, the fractional-order TV algorithm can
reduce blocky effect effectively comparing with the tradi-
tional first-order TV algorithm.

3.2. Analysis of Denoising Performance. The aim of this
section is to analyze the denoising performance of the FOTV
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(b) Processed by FOTV with 𝛼 = 1
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(c) Processed by FOTV with 𝛼 = 1.5

Figure 1: Signal processed by FOTV with 𝛼 = 1 and 𝛼 = 1.5.

algorithm. For this purpose, three famous 512 × 512 test
images, called Barbara, Lena, and Peppers, are used in the
experiments, as shown in Figure 3. In order to quantify the
denoised image, we consider the peak-signal-to-noise ratio
(PSNR), which has been largely used in the literature and
commonly applied to determine the quality of a processed
image. It can be calculated by the following formula:

PSNR = 10log
10

𝑉
2

𝐿
𝑀𝑁

∑
𝑁

𝑖=1
∑
𝑀

𝑗=1
(𝑢 (𝑖, 𝑗) − 𝑢̂ (𝑖, 𝑗))

2
, (21)

where 𝑢 is the original image, 𝑢̂ is the denoised image, and𝑉
𝐿

is the maximal gray level of the image.
Firstly, in order to decide the value of the fractional-

order 𝛼, we study the relation between the PSNR and 𝛼.
Figure 4 shows the relation between the PSNR and 𝛼 on Lena
and Peppers image corrupted by the additive white Gaussian
noise with standard deviation (SD) of 20. The left image is
the result of Lena image and the right one is the result of

Peppers image. From the figure, we can obtain the following
conclusions. Firstly, the PSNR reaches a maximum between
𝛼 = 1 and 𝛼 = 2. Secondly, the PSNR at 𝛼 = 1 is lower than
PSNR at𝛼 > 1, which is owing to the blocky effect. Finally, the
PSNR decreases rapidly as 𝛼 tends to zero, and when 𝛼 = 0,
the PSNR reaches a minimum. According to these facts, we
can select the fractional-order 𝛼 between 𝛼 = 1.2 and 𝛼 = 2.

In order to analyze the denoising performance, the addi-
tive white Gaussian noise (AWGN) with standard deviation
(SD) of 10, 20, and 30 is, respectively, added in the three
test images. Five denoising algorithms are used to process
these given noisy images, which are the improved Perona and
Malik (IP-M) model [33], fourth order (F-O) PDEmodel [7],
improved fourth order (IF-O) PDE model [8], ROF model
[1], and the proposed FOTV denoising algorithm. In this
experiment, we set 𝜎 = 5 and Δ𝑡 = 0.25 for IP-M, F-O-PDE,
and IF-O-PDE models, and we set 𝜆 = 0.07, 𝜏 = 0.1, and
𝐾 = 20 for ROF model. These parameters are able to ensure
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(a) Noisy image (b) Processed by FOTV with 𝛼 = 1

(c) Processed by FOTV with 𝛼 = 1.5

Figure 2: Image processed by FOTV with 𝛼 = 1 and 𝛼 = 1.5.

Table 1: PSNR quantitative comparison among five denoising models.

Image SD IP-M F-O-PDE IF-O-PDE ROF FOTV

Barbara
10 31.2427 29.3776 29.3777 31.0871 31.2850
20 26.6231 24.8155 24.8156 26.8212 27.0976
30 24.4496 22.9267 22.9273 24.7415 24.9479

Lena
10 33.6393 31.5440 31.5442 33.8378 34.4747
20 29.7665 27.8080 27.8098 30.4101 31.2153
30 27.4437 26.0883 26.1019 28.5889 29.3855

Peppers
10 33.6967 31.8199 31.8205 33.8715 34.0619
20 30.0275 28.0437 28.0457 30.1768 31.0285
30 27.4982 26.1613 26.1694 28.2689 29.0046

the best denoising performance of the corresponding denois-
ing model. Based on the conclusion of the foregoing experi-
ment, we set 𝛼 = 1.8 for FOTV denoising algorithm, and the
denoising results are shown in Table 1. In the table, the first
column lists the given image and the second column lists the
standard deviation of noisy image.ThePSNRs of the denoised
images processed by the different denoising algorithms are
listed under the corresponding denoising model. The bigger

the PSNR is, the better the denoising performance is. For easy
observation, the biggest PSNR values are shown in boldface.
From the table, it is obvious that the PSNR of our proposed
algorithm is bigger than that of the other four algorithms,
so we can conclude that our FOTV denoising algorithm
outperforms the other algorithms.

In order to further verify the denoising performance of
our proposed algorithm, Figure 5 shows the denoised images
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(a) Barbara (b) Lena

(c) Peppers

Figure 3: Original image: Barbara, Lena, and Peppers.
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Figure 4: Relation between the fractional-order 𝛼 and PSNR on Lena (a) and Peppers (b) image corrupted by the additive white Gaussian
noise with standard deviation (SD) of 20.
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(a) Barbara with 20 SD Gaussian noise (b) Partial view of (a) (c) IP-M algorithm

(d) IF-O PDE algorithm (e) ROF algorithm (f) FOTV algorithm

Figure 5: Comparison of four algorithms for the noisy image with additive Gaussian white noise of 𝜎 = 20.

processed by four denoising algorithms. The first figure is
the famous image “Barbara” corrupted by the additive white
Gaussian noise with standard deviation (SD) of 20. In order
to show the comparison clearly, the partial enlarged view
of the noisy image is shown in the second figure. The
denoised result of IP-M algorithm is shown in the right-top
figure. The second row shows the denoised images processed
by IF-O PDE algorithm, ROF algorithm, and our FOTV
algorithm. In Figures 5(c) and 5(d), although the detailed
information is preserved, there are a lot of noises unremoved.
The result in Figure 5(e) looks blocky. Only the result of our
model, as shown in Figure 5(f), looks natural and does not
produce false edges. So we conclude that our proposed FOTV
algorithm is able to achieve a better tradeoff between edge
preservation and noise removal.

3.3. The Convergence and the Rate of Convergence. The
convergence and the rate of convergence are two important
factors for evaluating the performance of the denoising
method. In this section, some experiments are given to
show the convergence and convergence rate of our proposed
fractional-order total variation (FOTV) denoising algorithm.

For this purpose, the proposed FOTV algorithm is,
respectively, used to process the image “Lena” corrupted by
the additive white Gaussian noise with standard deviation
(SD) of 10, 20, and 30, and the PSNR is recorded at each

iteration. Figure 6(a) shows the relation between the iteration
and PSNR. The horizontal axis of this figure is iteration
number and the vertical axis is PSNR. The different colorful
curve denotes the result obtained from the different noisy
image. The red dotted line is the result of the noisy image
with 𝜎 = 30, the green dashed line is the result of the noisy
image with 𝜎 = 20, and the red real line is the result of the
noisy image with 𝜎 = 10. From the figure, we can see that
the PSNR values are stable after 50 iterations, which indicate
that our proposed FOTV denoising algorithm is convergent.
In addition, it can be seen that the bigger the variance of white
noise is, the longer the stopping times are and the lower the
PSNRs are.

Figure 6 plots the convergence of the FOTV algorithm for
the above experiment together with the theoretical 𝑂(1/𝑁2)
and 𝑂(1/𝑁4) rate. For easy observation, the horizontal axis
is the log curve of iteration number and the vertical axis is
the log curve of primal-dual gap calculated in Step 5. The
dashed line shows the theoretical𝑂(1/𝑁2) rate and the dotted
line shows the theoretical 𝑂(1/𝑁4) rate. The red line shows
the convergence of FOTV algorithm in the noisy image with
𝜎 = 30, the green line shows the convergence of FOTV
algorithm in the noisy image with 𝜎 = 20, and the blue line
shows the convergence of FOTValgorithm in the noisy image
with 𝜎 = 10. From this figure, it can be seen that the smaller
the variance of white noise is, the faster convergence is. In
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Figure 6: Relation among the iteration, PSNR, and primal-dual gap on the noisy Lena image with 𝜎 = 10, 𝜎 = 20, and 𝜎 = 30.

addition, we can see that the FOTV algorithm converges at
𝑂(1/𝑁

2
) rate firstly and 𝑂(1/𝑁4) rate in the end.

4. Conclusion

A fractional-order total variation image denoising algorithm
based on primal-dual method was proposed in this paper.
The main contributions are as follows: (1) the saddle point
and dual formulation of the proposed fractional-order total
variation model are constructed in theory; (2) the primal-
dual algorithm was used to solve the constructed saddle-
point problem, in which 𝑂(1/𝑁2) convergence rate can
be guaranteed; (3) the experiments demonstrate that the
proposed methodology is able to avoid the blocky effect,
achieve state-of-the-art performance, and guarantee𝑂(1/𝑁2)
convergence rate.

Acknowledgments

This work was supported by National Natural Science Foun-
dation of China (no. 61201378), Scientific Research Fund of
Liaoning Provincial Education Department (L2012073), and
Fundamental Research Funds for the Central Universities
(N110304001).

References

[1] L. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation
based noise removal algorithms,” Physica D, vol. 60, no. 1–4, pp.
259–268, 1992.

[2] J.-F. Aujol, “Somefirst-order algorithms for total variation based
image restoration,” Journal of Mathematical Imaging and Vision,
vol. 34, no. 3, pp. 307–327, 2009.

[3] C. Vogel and M. Oman, “Fast, robust total variation-based
reconstruction of noisy, blurred images,” IEEE Transactions on
Image Processing, vol. 7, no. 6, pp. 813–824, 1998.

[4] F. Alter, S. Durand, and J. Froment, “Adapted total variation
for artifact free decompression of JPEG images,” Journal of
Mathematical Imaging and Vision, vol. 23, no. 2, pp. 199–211,
2005.

[5] F. Li, C. Shen, and C. Li, “Multiphase soft segmentation with
total variation and H 1 regularization,” Journal of Mathematical
Imaging and Vision, vol. 37, no. 2, pp. 98–111, 2010.

[6] J. Zhang, Z. Wei, and L. Xiao, “Adaptive fractional-order multi-
scale method for image denoising,” Journal of Mathematical
Imaging and Vision, vol. 43, no. 1, pp. 39–49, 2012.

[7] Y. L. You and M. Kaveh, “Fourth-order partial differential
equations for noise removal,” IEEE Transactions on Image
Processing, vol. 9, no. 10, pp. 1723–1730, 2000.

[8] M. Hajiaboli, “A self-governing fourth-order nonlinear dif-
fusion filter for image noise removal,” IPSJ Transactions on
Computer Vision and Applications, vol. 2, pp. 94–103, 2010.

[9] R. Herrmann, Fractional Calculus: An Introduction for Physi-
cists, World Scientific, New Jersey, NJ, USA, 2011.

[10] S.-C. Liu and S. Chang, “Dimension estimation of discrete-time
fractional Brownian motion with applications to image texture
classification,” IEEE Transactions on Image Processing, vol. 6, no.
8, pp. 1176–1184, 1997.

[11] D. Chen, Y. Chen, and D. Xue, “Digital fractional order
Savitzky-Golay differentiator,” IEEE Transactions on Circuits
and Systems II, vol. 58, no. 11, pp. 758–762, 2011.

[12] S. Didas, B. Burgeth, A. Imiya, and J. Weickert, “Regularity and
scale-space properties of fractional high order linear filtering,”
in 5th International Conference on Scale Space and PDEMethods
in Computer Vision, Scale-Space 2005, pp. 13–25, deu, April
2005.

[13] B. Ninness, “Estimation of 1/𝑓 Noise,” IEEE Transactions on
Information Theory, vol. 44, no. 1, pp. 32–46, 1998.



10 Abstract and Applied Analysis

[14] I. Petras, D. Sierociuk, and I. Podlubny, “Identification of
parameters of a half-order system,” IEEE Transactions on Signal
Processing, vol. 60, no. 10, pp. 5561–5566, 2012.

[15] D. Chen, Y. Chen, and D. Xue, “1-D and 2-D digital fractional-
order Savitzky-Golay differentiator,” Signal, Image and Video
Processing, vol. 6, no. 3, pp. 503–511, 2012.

[16] Y. F. Pu, J. L. Zhou, and X. Yuan, “Fractional differential mask:
a fractional differential-based approach for multiscale texture
enhancement,” IEEE Transactions on Image Processing, vol. 19,
no. 2, pp. 491–511, 2010.

[17] D. Chen, H. Sheng, Y. Chen, andD. Xue, “Fractional-order vari-
ational optical flowmodel for motion estimation,” Philosophical
Transactions of the Royal Society A, vol. 371, no. 1990, 2013.

[18] J. Bai and X. Feng, “Fractional-order anisotropic diffusion for
image denoising,” IEEE Transactions on Image Processing, vol.
16, no. 10, pp. 2492–2502, 2007.

[19] P. Guidotti and J. V. Lambers, “Two new nonlinear nonlocal
diffusions for noise reduction,” Journal ofMathematical Imaging
and Vision, vol. 33, no. 1, pp. 25–37, 2009.

[20] E. Cuesta,M. Kirane, and S. A.Malik, “Image structure preserv-
ing denoising using generalized fractional time integrals,” Signal
Processing, vol. 92, no. 2, pp. 553–563, 2012.
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