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This paper is concerned with the existence of homoclinic solutions for a class of the second order impulsive Hamiltonian systems.
By employing the Mountain Pass Theorem, we demonstrate that the limit of a 2kT-periodic approximation solution is a homoclinic

solution of our problem.

1. Introduction and Main Results

In this paper, we consider the second-order impulsive differ-
ential equation

4t +V,(t.q) =f®),

-84(t) = g;(a(t)), jez 2)
where g € RY, f € (R,R™), V,(t,q) = grad V(t,9), g;(q) =
graquj(q), Gj € (RN, RYN) for each j € Z, and the operator
A is defined as Ag(t;) = q(t;) = 4(t;), where q(t;)(q(t;))
denotes the right-hand (left-hand) limit of 4 at ;. There exist
anm € NandaT >0Osuchthat0=¢,<t; <---<t, =T,
tiym=t;+T,and g;,,, =g, j€ Z.V: RxRY — R satisfies

t#t,teR, )

(V1) V(t,9) = -K(t,9) + W(t,9), K, W € C'(R x RY,R),
and is T-periodic in its first variable.

We are mainly concerned with the existence of homo-
clinic solutions of system (1) and (2). A function gq(t) €
C(R,RMN) is said to be a (classical) solution of (1) and (2) if
q(t) satisfies (1) and (2). A (classical) solution g(t) of (1) and
(2) is a homoclinic solution and if g(t) — Oast — +ooand
g(t*) —> 0ast — *oo.

When Aq(tj) =0, f(t) =0,and V(¢t,q) = (1/2)(L(t)q, q)+
W(t, q), system (1) and (2) reduces to Hamiltonian system

g +Vv, (t.q) =0, teR. (3)

Rabinowitz [1] studied the existence of nontrivial homoclinic
solutions of it.

When Aq(tj) = 0 and V(t, q) satisfied (V1), system (1), (2)
reduces to Hamiltonian system

G +v,(t.q) = f ),

Izydorek and Janczewska [2] studied the existence of homo-
clinic solutions of it.

Some classical tools such as some fixed point theorems in
cones, topological degree theory, the upper and lower solu-
tions method combined with monotone iterative technique,
and variational methods [3-20] have been widely used to get
solutions of impulsive differential equations. However, the
existence of homoclinic solutions for the impulsive systems
is paid little attention. It is well known that the homoclinic
orbit rupture phenomenon can lead to chaos, which has been
interesting to the mathematicians in recent years [21-26]. In
the literature, Coti-Zelati et al. [27] used dual variational
methods, and Lions [28] and Hofer and Wysocki [29]
employed concentration compactness method, Ekeland’s
variational principle, that they established the existence of
homoclinic solutions of the first-order Hamiltonian systems.
Rabinowitz [1] and Izydorek and Janczewska [2] obtained
homoclinic solutions of a class of second order Hamiltonian
systems as a limit of its periodic solutions.

In recent paper [18], Zhang and Li studied the existence
of homoclinic solutions of an impulsive Hamiltonian system

teR. (4)



q'(O+V,(t,q) = f(t)t#t,t € R,AG'(t;) = g,(q(t;), j€ Z
as a limit of its periodic solutions. In detail, they obtained the
following theorem.

Theorem A (see [18]). Assume that f e C(R, IRN)ﬂ
L*(R,RY), g; is continuous and m-periodic in j, and V, g;
satisfy the following conditions:

H)V : RxRY — R is continuous differentiable T-
periodic, and there exist positive constants by, b, > 0
such that

bla’ < -V (t.q) <blal’, V(t.q) € [0,TIxRY; (5

(H2) -V(t,q) < —Vq(t,q)q < =2V(t,q) for all (t,q) €
[0,T] x RN;

(H3) limyg,4(g;(@)/1q]) = 0 for j = 1,2,...,m;
(H4) there exists a y > 2 such that

g;(@)q<uG;(q) <0, forqe RM\ {0}, j=1,2,...,m,
(6)

then the Hamiltonian §(t) + Vy(t.q) = f@),t+ thte

R, Aq'(tj) = g]-(q(tj)), j € Z, possesses at least one
nonzero homoclinic solution.

Motivated by papers [1, 2, 18], in this paper, we synthesize
their methods to study the existence of homoclinic solutions
of systems (1), (2). In detail, firstly, we introduce the following
sequence equations:

q' ) +V,(tq)= f (1), t#t,teR, @)

where for each k € N, fi : R — RY is a 2kT-periodic
extension of the restriction of f to the interval [-kT,kT].
Secondly, we study periodic solutions of (2) and (7) by con-
verting the problem to the existence of critical points of some
variational structure. finally, we find the homoclinic solutions
of (1) and (2) as the limit of the periodic solutions of (2) and
(7).

Part of the difficulty in treating (1) and (2) is subjected to
the impulsive perturbation which destroys continuities of the
velocity and when we apply the Mountain Theorem to prove
our main result, we need the constant p, « appearing in the
theorem to be independent of k.

Our result is the following theorem.

Theorem 1. Assume that V satisfies (V1), and K, W, and f
satisfy the following:

(K1) there exist constants a, > 0 and y € (1,2] such that for
all (t,q) € [0,T] x RY
K(t0)=0, K(t.q) =alq"; (8)

(K2) there exists 0 € (1,2] such that

K(t,q) <K, (tq)q<0K(t,q), V(tq)e[0,T]x RY;
)
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(WD) W(t,0) = 0, Wy(t,q) = olql), as |ql — 0 uniformly
fort € [0,T];

(W2) there exist constants v > 2 and b, > 0 such that

W(t.q) <blql, V(tq) €0, T]xRY; (10)

(W3) there exist u > 1, a, > 0, and B(t) € LY(R,R"Y) such
that u > r —y and

W, (t.q)q-2W (t.q)

>aql" - B©),

(11)
V(t,q) € [0,T] x RY;

(W4) W(t,q)/lqI* — +ooaslql — +co uniformlyint €
[0, T];

(G1) G;(0) =0, gj(q) =o(lg]), as gl — 0,j=1,2,...,m;
(G2) there exists b, > 0 such that Gj(q) <blql’,q € RY,
j=L2,...,m
(G3) gj(@)q - 2G;(q) 2 0, € RN\ {0}, j = 1,2,...,m;
(F) f e CR,RY) n L*(R,RY) n L¥W(R,RN),
o) 1/2 .
(foo |[f(®)Pdt) < min{l/2,a, — b, — M}(1/C),
where M = sup{G;(q) : j = L,2,...,m, |q| = 1},
a, > bj+M, and C is a constant of (17). Then the system

(1) and (2) possesses at least one nonzero homoclinic
solution.

The rest of this paper is organized as follows. In Section 2
we present some preliminary results. Our main result’s proofs
are given in Section 3.

2. Preliminaries
Let
Hyr = {q: R = RN | g, g € I (([-kT,kT),RY),

u(t) =u(t+2kT), t € R}.
(12)

Then H,, is a Hilbert space with the norm defined by

kT 5 5 1/2
b, = ([ (a0 s laf)ar) . g, 02

For the norm in L%;+(R, R), which denotes a space of 2kT
periodic essentially bounded measurable functions from R

into RY, ”q"LO(l)cT = esssup{|q(t)| : t € [-kT,KkT]}. Next we
set QO ={-km+1,-km+2,...,0,1,2,...,km— 1,km} and
define a functional ¢ as

ocla) = 571 (a) - J_kkTTWdt - 2. Gi(a(t))
jeQy (14)

kT
+ J fradt,  q € Hygr,
kT
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where

kKT ) 1/2
nk(q)=<JkT|q(t)| +2K(t,q(t))dt> ()

Note that ¢y is Fréchet differentiable at any q € Hy, and for
any p € Hy.p, we have

) ¢ (q+hp) -9 ()
¢ (q) (p) = lim 7

kKT
- [ @030 -V,(cap+ fip)dr (9

- 2 9(a(t)e(t)-

JEQ%

It is clear that critical points of the functional ¢, are classical
2kT-periodic solutions of system (2) and (7).

Lemma 2 (see [2]). There is a positive constant C such that for
each k € N and q € Hyr the following inequality holds:

lalzy, < Clals,,» va € Haa- 17)

2kT

Lemma 3. Set m; = inf{Gj(q) tlgl =1,j = 1,2,...,m}
then for every { € R\ {0} and q € Hyy \ {0}, we have

j; G;(La(t)) = mﬂ(ﬁ% |q(tj)'2 = 2kmmy. (1)

ICq(tj)I > 1}, and ¢(s) = sZGj(q/s),j € Oy, s > 0.By (G3), we

have
v (D-a ()20 o

So we have Gj(q) > IqIZGj(q/IqI), Igl = 1.If B, is empty, we
have q(t;) = 0, j € (, which implies Zjer Gj(Cq(tj)) =
0 > —2kmm,. Therefore, Without loss of generality, we can
assume that B is nonempty, and we have

2, Gi(a(ty))> 2.6,(calt,))

JE
3 ZGj( ¢a(t;) >|Cq(tj)|2

jeBy |5q (tj)'
=m, Y feat)]
Jj€By
(S ate)f - S a) )
jey jeAy

> m,|¢[ Z |q (tj)|2 - 2kmm;.
JeQy
(20)
O

Lemma 4 (see [30]). Let E be a real Banach space and let ¢ :
E — R beaC'-smooth functional satisfying the Palais-Smale
condition and ¢(0) = 0. If ¢ satisfies the following conditions:

(i) there exist constants p, o > 0 such that (plaBP >,

(ii) there exists e € E '\ Ep, such that ¢(e) < 0, then ¢
possesses a critical value ¢ > « given by

c = infmax¢ (g (s)), (21)

g€l'se[0,1]

where

Ir={geC(0,1]1,E): g(0)=0,g(1)=e}. (22

Lemma 5 (see [2]). Letq : R — RY be a continuous map-
ping such that g € L}, (R,RN). For every t € R the following
inequality holds:

t+1/2

1/2
la ()] < \/E(L_l/2 (la)” + IQ(S)lz)dS> . @

3. Proof of Theorem 1

We have divided the proof of Theorem 1 into a sequence of
lemmas.

Lemma 6. Assume that (V1), (K1), (K2), (W1), (W2), (W3),
(W4), (Gl), (G2), (G3), and (F1) are satisfied; system (2), (7)
possesses a 2kT-periodic solution.

Proof. It is clear that ¢ (0) = 0. It is well known that
Lemma 4 holds true with the (C) condition replacing the
usual (PS) condition. We say the functional ¢, satisfies the
(C) condition; that is, for every sequence {q,} € Hyr, {q,}
has a convergent subsequence if {¢;(g,)} is bounded and
lim, oo (1 + gl )94(q,) = 0.

Step 1. Pick {q,} < H,,r such that {¢,(q,)} is bounded and
lim, _, (1 + ||gl HZkT)(p,L(qn) = 0 then there exists a constant
C, > 0 such that

C\ =29, (4,) - 9 (4,) (4,)

[ ot o1

[ G- ea)a]a

= 2 1265(an(1))) - 95 (4. (1)) 4 (1))

je0y, (24)

kT
+ J‘ fkqndt
kT

kT +00
> o J |q.|"dt - J B(t)dt
—kT

—00

+00 . N/ kT 1
([Tua) ([ Jakrar)
-0 —kT



where [/l, > land 1/pt'+1/‘u = 1.(24) implies (_kaTT anI"dt)l/”
is bounded; that is, there exists a constant C, > 0 such that

kT 1
(J |qn|”dt> <G, (25)
-kT

From (W2), (G2), (17), and (25), we have

1 kT
@) =9 @)+ | Wtag,)d
kT

_ JkkTT fegndt + Y G;(q,(t;))

- jEe

kT
< Cy by (Cllal,) " [ latar

(el e,

+b, (C”%“HM )H4 Z |qn(ti) 'M

7€

< C3 + (b1 + bz) Cgcriy("q”"szT)r_ﬂ

+00 , 1
+<J_ |f(t)|"dt> C,.

On the other hand, it follows from (K1) and (17) that

1 (q) 2 er [14a” +2a1|q, "] dt
2 k \1In ) kT n 1|n

1 kT )
25 [l
h (27)

y-2 *T 2
ta(Claali, ) | laulds

(1 _
> min {319,051, @ la.ll, |-

Combining (26) and (27), we obtain

. 1 2 B
min { E ||qnl|H2kT’ ! Cy ’ ”qn“szkT}

<Cyt (0 +5)CC (gl )™ (28)

(o) e

Since r —p <y < 2, it follows that ||g, [l  is bounded. In
a similar way to [21, Proposition B35], we can prove that {g, }
has a convergent subsequence. So, the functional ¢, satisfies
the (C) condition.

Step 2. We show that the functional ¢, satisfies the assump-

tion (i) of Lemma 4. Set ¢(s) = ssz(q/s), j=12,...,m

s > 0. By (G3), we have
(p'(s)=s[2Gj<q>—gj<q)ﬂ]SO. (29)

N s/ S
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Hence when 0 < [|gll; <1, we have
2kT

2.G(a(t))

jEQ
q(t;) ) 2
< 2. G q(t;)
j;k ]<|q(tj)| o) (30)

<M Y Jatt)|

JEQ

< Mldlz,,

From (K1), (W2), and (30), we have

o) = 2 (@)~ [ g
-3 6,a(6)+ [ naa

JEQ (31)

. 1
> min {5, (a, - b, - M)} ||61||§4m

+00 1/2
([ vrrat) b,

Set

P:

>

Ql~

cxminl a0} & ([ irora)

> 0.
(32)

Let IIqIIHM = p; then 0 < "q”L‘ZEiT < 1 and (31) gives ¢(q) >
a > 0.

Step 3. We show that the functional ¢ satisfies assumption
(ii) of Lemma 4.

In order to verify (ii), we choose { € R,Q € H,\{0} such
that Q(+T) = 0 and M, = maxy g, <1 K(£,9). Set h(s) =
s_eK(t, sq). By (K2), we have H(s) = (Kq(t, 5q)sq—0K(t,sq))/

s*1 < 0. So we have

2Iq|91<<t,|%;|), gl <1, £ € [0,T],

K(t.,q) (33)
< |Q|9K<t,|%:|), lg| > 1, t € [0, T].
Define
Q tel-T,T],
Q= — 34
Q o, e EKDKT] (34)
[_T’T]
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Take A > (1 +2M,[QI%, )/2 [ Q(t)dt. By (W4), there
exists B > 0 such that
W(t,q) 2 Alq]-B, te[0,TIxR". (35)

By (33), (34), (35), and Lemma 3, we have

- X G(gQ(t)) + CJ £iQat

j€N

T
2 (:Q) = 37 Q) - j Wt

1 T 2
> W20 [P IQE, - ARE [ Q@)

\S)

+2(M,T + TB + mm,)

~m (P Y ||

je,
T 5 1/2 T R 1/2
([ ra) ([ era)
1+2M
< [¢f? (¥||Q||HZT -A j Q) dt)
+2(M,T + TB + mm,)

1/2 1/2

RI([ k) ([ 1apa)

Clearly, ¢ ({g) — -oo as [{| — +00, so (ii) holds. By
Lem-ma 4, ¢, possesses a critical value ¢, > a > 0. Let g,
denote the corresponding critical point of ¢, on H,; that is,

(36)

o @)= oc(q) =0 (37)
Hence the system (2), (7) possesses a nontrivial 2kT-periodic
solution g. O

Lemma 7. Let {q;} be the sequence given by (37). Then there
exist a subsequence {q; ;} of {qi} and a function q, € Wli CZ
LOO

© (R, R) such that {q j,j} converges to q, weakly in Wloc and
strongly in L (R, RM).

Proof. We assert that there is a constant M; > 0 independent
of k such that

lael,, < Ms. (38)

Lete, € H,;\{0} such thate,(+T)
(-T,T), and ¢, (e;) < 0. Define

e
e, =
-1
We extend e, in the way of 2kT-periodic to R. For simplicity,
we also note it again by e;. It is clear that e, € H,,; and

=0,e,(t;,) #0forsomet, €

1t < T,

T < |t| < kT. (39)

[0,1] —

#rlex) = ¢(e;) < 0. Define gy : skt By gi(s) =

sey for s € [0, 1]. Then, we have

G < Maxg (gx (9) = nax¢r (919) = (40)

independently of k. The rest detailed argument is similar to
the proof of Step 1 in Lemma 6 and we thus omit it here.

Hence, {g,} is a bounded sequence in WE((=T,T), RY)
and we may pick a subsequence {q,;} such that {g;}
converges weakly in W"*((-T,T),RY) and strongly in
L®((-T,T),RY). Next {914} is a bounded sequence in
WY ((=2T, 2T), RY), so we may pick a subsequence {21}
such that {g, ;} converges weakly in W"*((-2T, 2T), R™) and
strongly in L ((=2T, 2T), RY). We can repeat this process
and obtain, for any positive integer 7, a sequence {g,, ;} which
converges weakly in W"?((~nT,nT),R") and strongly in
L®((-nT,nT), RY), and

ladt >t 2 {and 2 2 {gupey 2 (@)

Therefore, for any positive integer n, the sequence {g .}
converges weakly in W"((-nT,nT), RY) and strongly in
L®((=nT,nT),RN). Hence there exists a function q €
WE(R, RYN) n LT (R, RY) such that the sequence {g; .}

loc

converges weakly in g € Wlloi (R,RY) and strongly in
(R, RY). O

loc

Lemma 8. The function q, determined by Lemma 7 is a non-
zero homoclinic solution of the system (1), (2).

Proof. The proof will be divided into four steps.

Firstly, we show that g, is a solution of the system (1), (2).
Here, for simplicity, we denote {gy;} by {g;}. For any given
interval (a,b) ¢ (—kT,kT) and any p € WOI’Z((a, b), RN),
define

t €(a,b),

_1p
pl‘{o, t € (“kT.KT)\ (a,b), (42

so forany p € Wol’z((a, b), RY), we have

o
I

o (@) Py

b
L (qkp -Vy(ta) p+ ka) dt (43)

+ ) gi(a () p(t)-

t; €(a,b)



Therefore, one has

[ b= vaearp)are ¥ o)(ar(s))ols)

ti€(@b)

= lim
k — +00

b
< L (‘?kp -V, (ta)p+ ka) dt

+ 3 o))
=0. "

The remained detailer argument is similar to the proof of
Lemma 2.5 in [13] and we thus omit it here, so g,(t) is a
solution of system (1) and (2).

Secondly we show that g,(t) — 0,ast — +o00.{q} is
weak continuity, so it is weak lower semicontinuity. One has

+00
J—oo (|%|2 + |%|2) dt

kT
. 2 .2
= kETm ‘[kT(l%l + |4o] )dt (45)
. L kT 2 .2
< lim lim inf LT (Jasf" + ;) e
< M3,
and so
J (|qo|2 + |q0|2)dt — 0, asr — +oo. (46)
|t|=r

By (23) and (46), we obtain g,(t) — 0,ast — *oo.
Thirdly, we prove that g,(t*) — 0ast — +co. We have
proved g, (t) is a solution of system (1) and (2), so we have

tj
L 1o (5) s

j-

_ L" (=V, (5, qo(9) + £(5)) ds 47)

j-

< ZJ ('V (5,90 (s))| |f (s)|2>ds

By (V1), (K1), and (W1), one has Vq(t, 0) = —Kq(t, 0) +
Wq(t, 0) = 0. Hence '[;: |q’0(5)|2ds — 0asj — +00.By(23),
one has

|40 (t)|2 <2 Lj (|510(5)|2 + |"10(5)|2) ds

j-1

<2L (l6)F + ldo(s)) ds (48)

j-1
t

2L1|%@ﬁdg te(tipt;).
-1

Therefore one has §,(t*) — Oast — +oo.
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Finally, we show g, #0 when f = 0.Since 0 = ¢, < t; <

<ty =T ti,=t;+T,je€ Z wecanletd = min;,{t; -
ti_1}. By Holder inequality and

ai(t;) = qi () + Lt] G(s)ds, 7 € [t;_y,t;], j € Oy, we have

NAGEES) J”

JE€% —JG it

1 t t 2
1 (7) 'ud)d
ngk th_l (‘1k T)+ jT qi\s)as T

t;} and 5 = maxez{t; -

(tj)'sz

tj tj ,
< égk Lm (l‘Zk(T)P + L qy(s)ds )d‘[
= é j |Qk(T)l dr (49)
2 t -
' éjeﬂk Jl,» <(tf B T) L |qk(s)|2d5> dr

—2

2 (KT 287 [+

< 3 j_kT |‘1k(T)|2dT + o J_kT |Qk(T)|2dT
2

< max{l 5 }ank”;”'

Let M, = max{l,&z}(z/é) > 0, which is a constant inde-
pendent of k.

Itis clearly that g, (t+ 1), j € Z,isa2kT periodic solution
of (2), (7). So we can assume the maximum of g, occurs
in [-T,T]. Now we assume g, = 0, so there is IquIILo;;T =
max,.;_r7lq]l — 0ask — +oo; therefore there exists
integer N; > 0 such that ||g,|| e < 1. Combining (G1), there

exists an integer N, > 0 such that when k > N, one has

|9, (2 (1)) PR
2. ()] 2Ms

min{l,a;}, jezZ  (50)

By (49) and (50), when k > N,, one has

2. 95 (a () 4 (1))

jE

+w|qk(tj)'2 (51)

2
in{l,a} "%"HM'
Define a function Y : R* — R by

0, s=0,
gw, .9)| (52)
, §>0.
(el JEl<s [

Y (s) =
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It is clear that Y € C(R*,R*) and is monotone nondecreas-
ing, so we have

qW, (£ (1))
M < Y(Ilqk||Loo ) t € [-kT,kT].
lqk(t)l [~kT,KT]
(53)
Hence we have
kT
J | W, (£, 4 (8))| dt
—kT
kT
2 (54)
< (lauli,,,, ) [ oo

Mael,,

Since f = 0, g, is a solution of the system (1) and (2), so
when k > max{N,, N,}, we have

< ¥ (Jael,e

[-kTkT)

kT
| aw, acender Y g, (a () ac(t)
—kT ey (55)

> min {1) al} "qk";sz'

Combining (51), (54), and (55) we have

1
Maeli,, + 5 min {1 a} Jailz,,

¥ (Jacls .

[~KT,kT]

> min {1> al} “qk“ifzw'

Hence, we have

[
Y("Qk"po ) 23 min{1,a,} > 0. (57)

[-KT.kT]

By the property of the function Y, there exists a constant Ms >
0 such that [|g]| LR > M, > 0. This is a contradiction.
Hence the system (1), (2) has a nontrivial homoclinic solution

evenif f =0. 0
Next, we give an example to illustrate our main result.
Example 9. Let

K (t,q) = (4 +sint) |q|4/3,

W (t,q) = (2 + cost) |q|21n(1 +1ql),
t.
Gi(a(t;)) = Sin(f) q () (58)
t.
g;(a(t;)) =r fsin (é)

wherer > 2,t; = 2mj/m, j € N. It is easy to verify that K, W,
Gj, gj>and f satisfy conditions (V1), (K1), (K2), (W1), (W2),
(W3),(W4), (Gl), (G2), (G3), and (F1). So, system (1), (2) with
K, W, Gj, g;, and f as in (58) has a nontrivial homoclinic
solution.

q~ (tj)’ f®=0
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