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We establish general conditions for the unique solvability of nonlinear measure functional differential equations in terms of
properties of suitable linear majorants.

1. Introduction, Motivation, and
Problem Setting

Let R = (−∞,∞), R𝑛 ∋ 𝑥 = (𝑥
𝑘
)

𝑛

𝑘=1
→ ‖𝑥‖ := max

1≤𝑘≤𝑛
|𝑥
𝑘
|

be the norm inR𝑛, and let BV([𝑎, 𝑏],R𝑛) be the Banach space
of functions of bounded variation with the standard norm
BV([𝑎, 𝑏],R𝑛) ∋ 𝑢 →‖𝑢‖BV := |𝑢(𝑎)| + Var

[𝑎,𝑏]
𝑢, where

−∞ < 𝑎 < 𝑏 < ∞.
Our aim is to examine the solvability of the equation

𝑢 (𝑡) = 𝜑 (𝑢) + ∫

𝑡

𝑎

(𝑓𝑢) (𝑠) 𝑑𝑔 (𝑠) , 𝑡 ∈ [𝑎, 𝑏] ; (1)

𝑓 : BV([𝑎, 𝑏],R𝑛) → BV([𝑎, 𝑏],R𝑛) is a, generally speaking,
nonlinear operator and 𝜑 : BV([𝑎, 𝑏],R𝑛) → R𝑛 is a
nonlinear vector functional. The integral on the right-hand
side of (1) is the Kurzweil-Stieltjes integral with respect to a
nondecreasing function 𝑔 : [𝑎, 𝑏] → R. We refer to [1–5]
for the definition and properties of this kind of an integral,
recalling only that (1) is a particular case of a generalised
differential equation [2, 6]. It is important to note that, for
any 𝑢 ∈ BV([𝑎, 𝑏],R𝑛), the Kurzweil-Stieltjes integral in (1)
exists (see, e.g., [4, 7]) and, therefore, the equation itselfmakes
sense.

By a solution of (1), we mean a vector function 𝑢 :

[𝑎, 𝑏] → R𝑛 which has bounded variation and satisfies (1)
on the interval [𝑎, 𝑏].

Equation (1) is an extension of a measure differential
equation studied systematically, for example, in [2, 8–10]. It
is a fairly general object which includes many other types of
equations such as differential equations with impulses [11] or
functional dynamic equations on time scales [12] (see, e.g.,
[13, 14]). In particular, if 𝑔(𝑠) = 𝑠, 𝑠 ∈ [𝑎, 𝑏], (1) takes the form

𝑢 (𝑡) = 𝜑 (𝑢) + ∫

𝑡

𝑎

(𝑓𝑢) (𝑠) 𝑑𝑠, 𝑡 ∈ [𝑎, 𝑏] , (2)

and, thus, in the absolutely continuous case, reduces to the
nonlocal boundary value problem for a functional differential
equation

𝑢



(𝑡) = (𝑓𝑢) (𝑡) , 𝑡 ∈ [𝑎, 𝑏] , 𝑢 (𝑎) = 𝜑 (𝑢) , (3)

whose various particular types are the object of investigation
of many authors (see, e.g., [15–19]). A more general choice
of 𝑔 in (1) allows one to cover further cases where solutions
lose their absolute continuity at some points. For example,
consider the impulsive functional differential equation [16,
page 191]

𝑢



(𝑡) = (𝑓𝑢) (𝑡) , 𝑡 ∈ [𝑎, 𝑏] \ {𝑡
1
, 𝑡
2
, . . . , 𝑡

𝑚
} ,

Δ𝑢 (𝑡) = 𝐼
𝑖
(𝑢 (𝑡)) for 𝑡 = 𝑡

𝑖
, 𝑖 ∈ {1, 2, . . . , 𝑚} ,

(4)

where Δ𝑢(𝑡) := 𝑢(𝑡+) − 𝑢(𝑡−) for any function 𝑢 from
BV([𝑎, 𝑏],R𝑛) (in fact, Δ𝑢(𝑡) = 𝑢(𝑡+) − 𝑢(𝑡) if, as is
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customary [11] in that context, a solution is assumed to be
left continuous). Here, 𝑓 = (𝑓

𝑘
)

𝑛

𝑘=1
: BV([𝑎, 𝑏],R𝑛) →

BV([𝑎, 𝑏],R𝑛), the jumps may occur at the preassigned times
𝑡
1
, 𝑡
2
, . . . , 𝑡

𝑚
, and their action is described by the operators

𝐼
𝑖
: R𝑛 → R𝑛, 𝑖 = 1, . . . , 𝑚. By the usual integration

argument [11], one can represent (4) alternatively in the form

𝑢 (𝑡) = 𝑢 (𝑎) + ∫

𝑡

𝑎

(𝑓𝑢) (𝑠) 𝑑𝑠

+ ∑

𝑘:𝑎<𝑡𝑘<𝑡,

𝐼
𝑘
(𝑢 (𝑡
𝑘
)) , 𝑡 ∈ [𝑎, 𝑏] .

(5)

It follows, in particular, from [14, Lemma 2.4] that (5) is
equivalent to the measure functional differential equation

𝑢 (𝑡) = 𝑢 (𝑎) + ∫

𝑡

𝑎

(
̃
𝑓𝑢) (𝑠) 𝑑𝑔 (𝑠) , 𝑡 ∈ [𝑎, 𝑏] , (6)

with 𝑔(𝑠) = 𝑠 + ∑

𝑚

𝑖=1
𝜒
(𝑡𝑖 ,𝑏]

(𝑠), 𝑠 ∈ [𝑎, 𝑏], and ̃
𝑓 :

BV([𝑎, 𝑏],R𝑛) → BV([𝑎, 𝑏],R𝑛) defined by the relation

(
̃
𝑓𝑢) (𝑠) = {

(𝑓𝑢) (𝑠) if 𝑠 ∈ [𝑎, 𝑏] \ {𝑡
1
, 𝑡
2
, . . . , 𝑡

𝑚
} ,

𝐼
𝑖
(𝑢 (𝑠)) if 𝑠 ∈ {𝑡

1
, 𝑡
2
, . . . , 𝑡

𝑚
} .

(7)

Thus, system (4) can be considered as a particular case of
(1). Likewise, an appropriate construction [13, 20] allows
one to regard differential equations on time scales [12] as
measure differential equations.The same is true for equations
involving functional components; in the case of a differential
equation on a time scale with retarded argument, by choosing
𝑔 suitably [13], one arrives at the equation

𝑢 (𝑡) = 𝑢 (𝑎) + ∫

𝑡

𝑎

ℎ (𝑢
𝑠
, 𝑠) 𝑑𝑔 (𝑠) , 𝑡 ∈ [𝑎, 𝑏] ,

𝑢
𝑎
= 𝜙.

(8)

In (8), ℎ : 𝐶([−𝑟, 0],R𝑛) × [𝑎, 𝑏] → R𝑛 is a functional
in the first variable, 𝜙 is from the space 𝐶([−𝑟, 0],R𝑛) of
continuous functions on [−𝑟, 0], and the Krasovsky notation
𝑢
𝑡
: [−𝑟, 0] ∋ 𝑠 → 𝑢(𝑡 + 𝑠), 𝑟 > 0, is used [21, Chapter

VI]. Finally, eliminating the initial function 𝜙 from (8) in a
standard way by transforming it to a forcing term (see [15]),
we conclude that the resulting equation falls into the class of
equations of form (1).

Note that, by measure functional differential equations,
the Volterra type equations of form (8) are usually meant
in the existing bibliography on the subject (see, e.g., [8, 13,
22]), whereas equations with more general types of argument
deviation are rather scarce (we can cite, perhaps, only [4, page
217]). Comparing (8) with (1), we find that the latter includes
non-Volterra cases as well.

This list of examples can be continued. It is interesting
to observe that solutions of problems of type (3) studied
in the literature up to now are always assumed, at least
locally, to be absolutely continuous [16], or even continuously
differentiable [23]. In contrast to this, the gauge integral
involved in (1) allows one to deal with a considerably wider
class of solutions, which are, in fact, assumed to be of

bounded variation only. A possible noteworthy consequence
for systems with impulses may be that the unpleasant effect
of the so-called pulsation phenomenon [11, page 5] might be
more natural to be dealt with in the framework of the space
BV([𝑎, 𝑏],R𝑛). Our interest in (1), originally motivated by a
relation to problems of type (3), has strengthened still further
due to the last observation.

The general character of the object represented by (1)
suggests a natural idea to examine its solvability by comparing
it to simpler linear equations with suitable properties. Here,
we show that such statements can indeed be obtained rather
easily by analogy to [24–26]. The key assumption is that cer-
tain linear operators associated with the nonlinear operator
𝑓 appearing in (1) possess the following property.

Definition 1. Let ℎ : BV([𝑎, 𝑏],R𝑛) → R𝑛 be a linear map-
ping. One says that a linear operator 𝑝 : BV([𝑎, 𝑏],R𝑛) →

BV([𝑎, 𝑏],R𝑛) belongs to the setS
ℎ
([𝑎, 𝑏],R𝑛) if the equation

𝑢 (𝑡) = ℎ (𝑢) + ∫

𝑡

𝑎

(𝑝𝑢) (𝑠) 𝑑𝑔 (𝑠) + 𝑟 (𝑡) ,

𝑡 ∈ [𝑎, 𝑏]

(9)

has a unique solution 𝑢 for any 𝑟 from BV([𝑎, 𝑏],R𝑛), and,
moreover, the solution 𝑢 is nonnegative for any nonnegative
𝑟.

The property described by Definition 1, in fact, means
that the linear operator associated with (9) is positively
invertible on BV([𝑎, 𝑏],R𝑛), and thus it corresponds to the
existence and positivity of Green’s operator for a boundary
value problem [15].

Remark 2. The inclusion 𝑝 ∈ S
ℎ
([𝑎, 𝑏],R𝑛), generally

speaking, does not imply that 𝜆𝑝 ∈ S
ℎ
([𝑎, 𝑏],R𝑛) for 𝜆 ̸= 1!

The question on the unique solvability of (1) is thus
reduced to estimating the nonlinearities suitably, so that
the appropriate majorants generate linear equations with a
unique solution depending monotonously on forcing terms.
The problem of finding such majorants is a separate topic not
discussed here. We only note that, in a number of cases, the
existing results on differential inequalities can be applied (see,
e.g., [17–19]).

Note that, due to the nature of the techniques used,
statements of this kind available in the literature on problems
of type (3), as a rule, are established separately in every
concrete case (see, e.g., [27–29]). Here, we provide a simple
unified proof, which is, in a sense, independent on the
character of the equation and also allows one to gain a
considerable degree of generality. The results may be useful
in studies of the solvability of various measure functional
differential equations and, in particular, of problem (3) and
its generalisations (note that, e.g., rather complicated neutral-
type functional differential equations [23] can be formulated
in form (1); see also [4, 30]).
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2. Unique Solvability Conditions

We are going to show that the knowledge of the property 𝑝 ∈
S
ℎ
([𝑎, 𝑏],R𝑛) for certain linear operators 𝑝 and ℎ associated

with (1) allows one to guarantee its unique solvability.

2.1. Nonlinear Equations. The following statement is true.

Theorem 3. Assume that there exist certain linear operators
𝑝
𝑖
: BV([𝑎, 𝑏],R𝑛) → BV([𝑎, 𝑏],R𝑛), 𝑖 = 1, 2, such that

𝑝
2
(𝑢 − V) (𝑡) ≤ (𝑓𝑢) (𝑡) − (𝑓V) (𝑡)

≤ 𝑝
1
(𝑢 − V) (𝑡) , 𝑡 ∈ [𝑎, 𝑏] ,

(10)

for arbitrary functions 𝑢 : [𝑎, 𝑏] → R𝑛, V : [𝑎, 𝑏] → R𝑛 with
the property

𝑢 (𝑡) ≥ V (𝑡) ∀𝑡 ∈ [𝑎, 𝑏] . (11)

Furthermore, let the inclusions

𝑝
1
∈ S
ℎ1
([𝑎, 𝑏] ,R

𝑛

) ,

1

2

(𝑝
1
+ 𝑝
2
) ∈ S
(1/2)(ℎ1+ℎ2)

([𝑎, 𝑏] ,R
𝑛

)

(12)

be fulfilled with some linear functionals ℎ
𝑖
: BV([𝑎, 𝑏],R𝑛) →

R, 𝑖 = 1, 2. Then (1) has a unique solution for an arbitrary 𝜑
such that

ℎ
2
(𝑢 − V) ≤ 𝜑 (𝑢) − 𝜑 (V) ≤ ℎ

1
(𝑢 − V) (13)

whenever (11) holds.

The inequality sign and modulus for vectors in (10), (11),
(13), and similar relations below are understood component-
wise. The theorem as well as the other statements formulated
below will be proved later.

Theorem 4. Let there exist certain linear operators 𝑙
𝑖

:

BV([𝑎, 𝑏],R𝑛) → BV([𝑎, 𝑏],R𝑛), 𝑖 = 1, 2, and linear
functionals ℎ

𝑖
: BV([𝑎, 𝑏],R𝑛) → R, 𝑖 = 1, 2 satisfying the

inclusions

𝑙
1
+ 𝑙
2
∈ S
ℎ1
([𝑎, 𝑏] ,R

𝑛

) ,

𝑙
1
∈ S
(1/2)(ℎ1+ℎ2)

([𝑎, 𝑏] ,R
𝑛

) ,

(14)

and such that (13) and the inequality





(𝑓𝑢) (𝑡) − (𝑓V) (𝑡) − 𝑙
1
(𝑢 − V) (𝑡)



≤ 𝑙
2
(𝑢 − V) (𝑡) , 𝑡 ∈ [𝑎, 𝑏] ,

(15)

is true for arbitrary functions𝑢 and V of bounded variationwith
property (11). Then (1) is uniquely solvable.

Theorem 4 is, in fact, an alternative form of Theorem 3,
where the estimate of a “linear part” is more visible.

In other statements, we need the following natural notion
of positivity of a linear operator in the space BV([𝑎, 𝑏],R𝑛).

Definition 5. A linear operator 𝑞 : BV([𝑎, 𝑏],R𝑛) →

BV([𝑎, 𝑏],R𝑛) will be called positive if 𝑞𝑢 is a nonnegative
function for an arbitrary nonnegative 𝑢 from BV([𝑎, 𝑏],R𝑛).

Note that no monotonicity assumptions are imposed on
𝑙
1
in Theorem 4. In the cases where the positivity of certain

linear majorants is known, the following statement may be of
use.

Corollary 6. Assume that there exist some positive linear
operators 𝑞

𝑖
: BV([𝑎, 𝑏],R𝑛) → BV([𝑎, 𝑏],R𝑛), 𝑖 = 1, 2, such

that the inequalities





(𝑓𝑢) (𝑡) − (𝑓V) (𝑡) + 𝑞
2
(𝑢 − V) (𝑡)



≤ 𝑞
1
(𝑢 − V) (𝑡) (16)

hold on [𝑎, 𝑏] for any 𝑢 and V fromBV([𝑎, 𝑏],R𝑛)with property
(11). Moreover, let one can specify linear functionals ℎ

𝑖
:

BV([𝑎, 𝑏],R𝑛) → R, 𝑖 = 1, 2, satisfying (13), and such that
the inclusions

𝑞
1
+ (1 − 2𝜃) 𝑞

2
∈ S
ℎ1
([𝑎, 𝑏] ,R

𝑛

) ,

−𝜃𝑞
2
∈ S
(1/2)(ℎ1+ℎ2)

([𝑎, 𝑏] ,R
𝑛

)

(17)

hold for a certain 𝜃 ∈ (0, 1). Then (1) has a unique solution.

Corollary 6 allows one to obtain, in particular, the follow-
ing statements.

Corollary 7. Assume that, for arbitrary 𝑢 and V from
BV([𝑎, 𝑏],R𝑛)with property (11),𝑓 and 𝜑 satisfy estimates (13)
and (16) with some linear functionals ℎ

𝑖
: BV([𝑎, 𝑏],R𝑛) →

R, 𝑖 = 1, 2 and positive linear operators 𝑞
𝑖
: BV([𝑎, 𝑏],R𝑛) →

BV([𝑎, 𝑏],R𝑛), 𝑖 = 1, 2. Then the inclusions

𝑞
1
∈ S
ℎ1
([𝑎, 𝑏] ,R

𝑛

) , −

1

2

𝑞
2
∈ S
(1/2)(ℎ1+ℎ2)

([𝑎, 𝑏] ,R
𝑛

)

(18)

guarantee that (1) is uniquely solvable.

Corollary 8. The assertion of Corollary 7 is true with (18)
replaced by the condition

𝑞
1
+

1

2

𝑞
2
∈ S
ℎ1
([𝑎, 𝑏] ,R

𝑛

) ,

−

1

4

𝑞
2
∈ S
(1/2)(ℎ1+ℎ2)

([𝑎, 𝑏] ,R
𝑛

) .

(19)

The statements formulated above express fairly general
properties of (1) and extend, in particular, the corresponding
results of [25, 27, 29, 31].

2.2. Linear Equations. Let us now assume that 𝑓 :

BV([𝑎, 𝑏],R𝑛) → BV([𝑎, 𝑏],R𝑛) in (1) is an affine mapping,
and, therefore, (1) has the form

𝑢 (𝑡) = ℎ (𝑢) + ∫

𝑡

𝑎

(𝑙𝑢) (𝑠) 𝑑𝑔 (𝑠) + 𝑦 (𝑡) , 𝑡 ∈ [𝑎, 𝑏] , (20)

where 𝑙 : BV([𝑎, 𝑏],R𝑛) → BV([𝑎, 𝑏],R𝑛) and ℎ :

BV([𝑎, 𝑏],R𝑛) → R𝑛 are linear, and 𝑦 ∈ BV([𝑎, 𝑏],R𝑛) is
a given function.
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Corollary 9. Assume that there exist certain linear operators
𝑝
𝑖
: BV([𝑎, 𝑏],R𝑛) → BV([𝑎, 𝑏],R𝑛), 𝑖 = 0, 1, and a linear

mapping ℎ : BV([𝑎, 𝑏],R𝑛) → R𝑛 such that the inclusions

𝑝
1
∈ S
ℎ
([𝑎, 𝑏] ,R

𝑛

) , 𝑝
0
+ 𝑝
1
∈ S
ℎ
([𝑎, 𝑏] ,R

𝑛

) (21)

hold, and the estimate





(𝑙𝑢) (𝑡) − (𝑝
1
𝑢) (𝑡)






≤ (𝑝
0
𝑢) (𝑡) , 𝑡 ∈ [𝑎, 𝑏] (22)

is satisfied for any nonnegative 𝑢 ∈ BV ([𝑎, 𝑏],R𝑛). Then (20)
has a unique solution.

We also have the following.

Corollary 10. Let there exist positive linear operators 𝑞
𝑖
:

BV([𝑎, 𝑏],R𝑛) → BV([𝑎, 𝑏],R𝑛), 𝑖 = 0, 1, satisfying the
inclusions

𝑞
1
∈ S
ℎ
([𝑎, 𝑏] ,R

𝑛

) , −

1

2

𝑞
2
∈ S
ℎ
([𝑎, 𝑏] ,R

𝑛

) , (23)

and such that the inequalities





(𝑙𝑢) (𝑡) + (𝑞
2
𝑢) (𝑡)






≤ (𝑞
1
𝑢) (𝑡) , 𝑡 ∈ [𝑎, 𝑏] (24)

are true for an arbitrary nonnegative function 𝑢 : [𝑎, 𝑏] → R𝑛

of bounded variation. Then (20) has a unique solution for any
𝑦 ∈ BV([𝑎, 𝑏],R𝑛).

We conclude this note by considering the case where 𝑙 in
(20) is a linear mapping admitting a decomposition into the
sum of its positive and negative parts; that is,

𝑙 = 𝑙
0
− 𝑙
1
, (25)

where 𝑙
𝑘
: BV([𝑎, 𝑏],R𝑛) → BV([𝑎, 𝑏],R𝑛), 𝑘 = 0, 1, are

linear and positive. In that case, for the equation of the form

𝑢 (𝑡) = ℎ (𝑢) + ∫

𝑡

𝑎

[(𝑙
0
𝑢) (𝑠) − (𝑙

1
𝑢) (𝑠)] 𝑑𝑔 (𝑠) + 𝑦 (𝑡) ,

𝑡 ∈ [𝑎, 𝑏] ,

(26)

where ℎ : BV([𝑎, 𝑏],R𝑛) → R𝑛 is linear and 𝑦 ∈

BV([𝑎, 𝑏],R𝑛), the following result is obtained.

Corollary 11. Let the linear vector functional ℎ :

BV([𝑎, 𝑏],R𝑛) → R𝑛 and the linear positive operators
𝑙
𝑖
: BV([𝑎, 𝑏],R𝑛) → BV([𝑎, 𝑏],R𝑛), 𝑖 = 1, 2, be such that

the inclusions

𝑙
0
∈ S
ℎ
([𝑎, 𝑏] ,R

𝑛

) ,

1

2

(𝑙
0
− 𝑙
1
) ∈ S
ℎ
([𝑎, 𝑏] ,R

𝑛

)

(27)

are satisfied. Then (26) has a unique solution for any 𝑦 ∈

BV([𝑎, 𝑏],R𝑛).

It is interesting to observe the second condition in (27); it
thus turns out that propertyS

ℎ
([𝑎, 𝑏],R𝑛) for one half of the

operator under the integral sign in (26) ensures the unique
solvability of the original equation (26).

3. Proofs

Let ⟨𝐸, ‖ ⋅ ‖⟩ be real Banach space, let 𝑧 ∈ 𝐸 be a given vector,
and let 𝐹 : 𝐸 → 𝐸 be a mapping. Let 𝐾

𝑖
⊂ 𝐸, 𝑖 = 1, 2,

be closed cones inducing the corresponding partial orderings
≦
𝐾𝑖
, so that 𝑥 ≦

𝐾𝑖
𝑦 if and only if 𝑦 − 𝑥 ∈ 𝐾

𝑖
. The following

statement [32, 33] on the abstract equation

𝐹𝑢 = 𝑧 (28)

will be used below.

Theorem 12 (see [33], Theorem 49.4). Let the cone 𝐾
2
be

normal and generating. Furthermore, let𝐵
𝑘
: 𝐸 → 𝐸, 𝑘 = 1, 2,

be linear operators such that 𝐵−1
1

and (𝐵
1
+ 𝐵
2
)

−1 exist and
possess the properties

𝐵

−1

1
(𝐾
2
) ⊂ 𝐾
1
, (𝐵

1
+ 𝐵
2
)

−1

(𝐾
2
) ⊂ 𝐾
1
, (29)

and, furthermore, let the order relation

𝐵
1
(𝑥 − 𝑦) ≦

𝐾2
𝐹𝑥 − 𝐹𝑦≦

𝐾2
𝐵
2
(𝑥 − 𝑦) (30)

be satisfied for any pair (𝑥, 𝑦) such that 𝑦 ≦
𝐾1
𝑥. Then (28) has

a unique solution for an arbitrary element 𝑧 ∈ 𝐸.

Recall that 𝐾
2
is normal if all the sets order bounded

with respect to ≦
𝐾2

are also norm bounded and that 𝐾
1
is

generating if and only if {𝑢 − V | {𝑢, V} ⊂ 𝐾
1
} = 𝐸 (see, e.g.,

[33, 34]).
Let BV+([𝑎, 𝑏],R𝑛) (resp., BV++([𝑎, 𝑏],R𝑛)) be the set of

all the nonnegative (resp., nonnegative and nondecreasing)
functions from BV([𝑎, 𝑏],R𝑛).

Lemma 13. (1) The set BV+([𝑎, 𝑏],R𝑛) is a cone in the space
BV([𝑎, 𝑏],R𝑛).

(2) The set BV++([𝑎, 𝑏],R𝑛) is a normal and generating
cone in BV([𝑎, 𝑏],R𝑛).

Proof. The first assertion of the lemma being obvious, only
the second one should be verified.

It follows directly from the definition of the set
BV++([𝑎, 𝑏],R𝑛) that it is a cone in BV([𝑎, 𝑏],R𝑛), which
is also generating due to the Jordan decomposition of a
function of bounded variation (see, e.g., [3]). In order
to verify its normality, it will be sufficient to show [32,
Theorem 4.1] that the set

𝐴 (𝛼, 𝛽) := {𝑥 ∈ BV ([𝑎, 𝑏] ,R
𝑛

) :

{𝑥 − 𝛼, 𝛽 − 𝑥} ⊂ BV++ ([𝑎, 𝑏] ,R𝑛)}
(31)

is bounded for any {𝛼, 𝛽} ⊂ BV([𝑎, 𝑏],R𝑛). Indeed, if 𝑥 ∈

𝐴(𝛼, 𝛽), then the functions 𝑥 − 𝛼 and 𝛽 − 𝑥 are both
nonnegative and nondecreasing. Therefore,

Var
[𝑎,𝑏]

(𝑥 − 𝛼) = 𝛼 (𝑎) − 𝛼 (𝑏) + 𝑥 (𝑏) − 𝑥 (𝑎) , (32)
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and, hence,

‖𝑥‖BV ≤ ‖𝛼‖BV + ‖𝑥 − 𝛼‖BV

= ‖𝛼‖BV + |𝑥 (𝑎) − 𝛼 (𝑎)| + Var
[𝑎,𝑏]

(𝑥 − 𝛼)

= ‖𝛼‖BV + 𝑥 (𝑏) − 𝛼 (𝑏) ≤ ‖𝛼‖BV + 𝛽 (𝑏) − 𝛼 (𝑏) .

(33)

The last estimate shows that the norms of all such 𝑥 are
uniformly bounded.

Let 𝑝 : BV([𝑎, 𝑏],R𝑛) → BV([𝑎, 𝑏],R𝑛) be a linear
operator and ℎ : BV([𝑎, 𝑏],R𝑛) → R a linear functional.
Let us put

𝑉
𝑝,ℎ
𝑢 := 𝑢 − ∫

⋅

𝑎

(𝑝𝑢) (𝜉) 𝑑𝑔 (𝜉) − ℎ (𝑢) (34)

for any 𝑢 from BV([𝑎, 𝑏],R𝑛). It follows immediately from
Definition 1 that the linear operator 𝑉

𝑝,ℎ
: BV([𝑎, 𝑏],R𝑛) →

BV([𝑎, 𝑏],R𝑛) defined by (34) has the following property.

Lemma 14. If 𝑝 is a linear operator such that

𝑝 ∈ S
ℎ
([𝑎, 𝑏] ,R

𝑛

) , (35)

then 𝑉
𝑝,ℎ

is invertible and, moreover, its inverse 𝑉−1
𝑝,ℎ

satisfies
the inclusion

𝑉

−1

𝑝,ℎ
(BV++ ([𝑎, 𝑏] ,R𝑛)) ⊂ BV+ ([𝑎, 𝑏] ,R𝑛) . (36)

We will also use the obvious identity

𝑉
𝑝1 ,ℎ1

+ 𝑉
𝑝2,ℎ2

= 2𝑉
(1/2)(𝑝1+𝑝2),(1/2)(ℎ1+ℎ2)

, (37)

which is valid for any linear 𝑝
𝑖

: BV([𝑎, 𝑏],R𝑛) →

BV([𝑎, 𝑏],R𝑛), 𝑖 = 1, 2.

3.1. Proof of Theorem 3. Let us set 𝐸 = BV([𝑎, 𝑏],R𝑛) and put

(𝐹𝑢) (𝑡) := 𝑢 (𝑡) − ∫

𝑡

𝑎

(𝑓𝑢) (𝑠) 𝑑𝑔 (𝑠) − 𝜑 (𝑢) , 𝑡 ∈ [𝑎, 𝑏] ,

(38)

for any 𝑢 from BV([𝑎, 𝑏],R𝑛). Then (1) takes the form of (28)
with 𝑧 = 0. Since 𝑓𝑢 and 𝑔 are both from BV([𝑎, 𝑏],R𝑛), it
follows (see, e.g., [30]) that the function

[𝑎, 𝑏] ∋ 𝑡 → ∫

𝑡

𝑎

(𝑓𝑢) (𝑠) 𝑑𝑔 (𝑠) (39)

also belongs to BV([𝑎, 𝑏],R𝑛).Therefore,𝐹 given by (38) is an
operator acting in 𝐸.

Note that relation (10) is equivalent to inequalities

−𝑝
1
(𝑢 − V) (𝑡) ≤ − (𝑓𝑢) (𝑡) + (𝑓V) (𝑡) ≤ −𝑝

2
(𝑢 − V) (𝑡) ,

(40)

for any 𝑡 ∈ [𝑎, 𝑏] and {𝑢, V} from BV([𝑎, 𝑏],R𝑛) with
properties (11). Integrating (40) with respect to 𝑔, we obtain

−∫

𝑡

𝑎

𝑝
1
(𝑢 − V) (𝑠) 𝑑𝑔 (𝑠) ≤ −∫

𝑡

𝑎

(𝑓𝑢) (𝑠) 𝑑𝑔 (𝑠)

+ ∫

𝑡

𝑎

(𝑓V) (𝑠) 𝑑𝑔 (𝑠)

≤ −∫

𝑡

𝑎

𝑝
2
(𝑢 − V) (𝑠) 𝑑𝑔 (𝑠) ,

(41)

and, therefore, according to (38),

𝑢 (𝑡) − V (𝑡) − ∫
𝑡

𝑎

𝑝
1
(𝑢 − V) (𝑠) 𝑑𝑔 (𝑠) − 𝜑 (𝑢) + 𝜑 (V)

≤ (𝐹𝑢) (𝑡) − (𝐹V) (𝑡)

≤ 𝑢 (𝑡) − V (𝑡) − ∫
𝑡

𝑎

𝑝
2
(𝑢 − V) (𝑠) 𝑑𝑔 (𝑠) − 𝜑 (𝑢) + 𝜑 (V) ,

(42)

for all 𝑡 ∈ [𝑎, 𝑏]. Taking assumption (13) into account and
using notation (34), we get

𝑉
𝑝1,ℎ1

(𝑢 − V) (𝑡) ≤ (𝐹𝑢) (𝑡) − (𝐹V) (𝑡) ≤ 𝑉
𝑝2,ℎ2

(𝑢 − V) (𝑡) ,
(43)

for all 𝑡 ∈ [𝑎, 𝑏] and 𝑢 and V from BV([𝑎, 𝑏],R𝑛) with
properties (11). Furthermore, it follows immediately from
(34) and (38) that, for any 𝑡 ∈ [𝑎, 𝑏],

(𝐹𝑢) (𝑡) − (𝐹V) (𝑡) − 𝑉
𝑝1,ℎ1

(𝑢 − V) (𝑡)

= 𝜑 (V) − 𝜑 (𝑢)

+ ∫

𝑡

𝑎

[𝑝
1
(𝑢 − V) (𝑠) − (𝑓𝑢) (𝑠) + (𝑓V) (𝑠)] 𝑑𝑔 (𝑠) .

(44)

Therefore, by virtue of inequality (43) and assumption (10),
the function 𝐹𝑢 − 𝐹V − 𝑉

𝑝1,ℎ1
(𝑢 − V) is nonnegative and

nondecreasing and, hence,

𝐹𝑢 − 𝐹V − 𝑉
𝑝1,ℎ1

(𝑢 − V) ∈ BV++ ([𝑎, 𝑏] ,R𝑛) . (45)

In the same manner, one shows that

𝑉
𝑝2 ,ℎ2

(𝑢 − V) − 𝐹𝑢 + 𝐹V ∈ BV++ ([𝑎, 𝑏] ,R𝑛) . (46)

Considering (45) and (46), we conclude that 𝐹 satisfies
condition (30) with

𝐵
𝑖
= 𝑉
𝑝𝑖,ℎ𝑖

, (47)

𝑖 = 1, 2, and

𝐾
1
= BV+ ([𝑎, 𝑏] ,R𝑛) ,

𝐾
2
= BV++ ([𝑎, 𝑏] ,R𝑛) .

(48)
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By virtue of Lemma 13,𝐾
2
is a normal and generating cone in

BV([𝑎, 𝑏],R𝑛).
Since, by assumption (12), 𝑝

1
∈ S
ℎ1
, it follows that 𝑉

𝑝1 ,ℎ1

is invertible and the inclusion

𝑉

−1

𝑝1,ℎ1

(𝐾
2
) ⊂ 𝐾
1

(49)

holds. Furthermore, by (12) and Lemma 14, the opera-
tor (1/2)𝑉−1

(1/2)(𝑝1+𝑝2),(1/2)(ℎ1+ℎ2)
exists and coincides with the

inverse operator to 𝑉
𝑝1,ℎ1

+ 𝑉
𝑝2,ℎ2

. It is moreover positive in
the sense that

(𝑉
𝑝1,ℎ1

+ 𝑉
𝑝2 ,ℎ2

)

−1

(𝐾
2
) ⊂ 𝐾
1
. (50)

Combining (49) and (50), we see that the inverse operators
𝐵

−1 and (𝐵
1
+ 𝐵
2
)

−1 exist and possess properties (29) with
respect to cones (48). Applying now Theorem 12, we prove
the unique solvability of (28) and, hence, that of (1).

3.2. Proof of Theorem 4. Rewriting relations (15) in the form

𝑙
1
(𝑢 − V) (𝑡) − 𝑙

2
(𝑢 − V) (𝑡)

≤ (𝑓𝑢) (𝑡) − (𝑓V) (𝑡)

≤ 𝑙
2
(𝑢 − V) (𝑡) + 𝑙

1
(𝑢 − V) (𝑡) , 𝑡 ∈ [𝑎, 𝑏] ,

(51)

and putting

𝑝
𝑖
:= 𝑙
1
− (−1)

𝑖

𝑙
2
, 𝑖 = 1, 2, (52)

we find that 𝑓 admits estimate (10) with 𝑝
1
and 𝑝

2
defined

by (52). Therefore, it remains only to note that assumption
(14) ensures the validity of inclusions (12), and to apply
Theorem 3.

3.3. Proof of Corollary 6. It turns out that, under assump-
tions (16) and (17), the operators 𝑙

𝑖
: BV([𝑎, 𝑏],R𝑛) →

BV([𝑎, 𝑏],R𝑛), 𝑖 = 1, 2, defined by the formulae

𝑙
1
:= −𝜃𝑞

2
, 𝑙

2
:= 𝑞
1
+ (1 − 𝜃) 𝑞

2
(53)

with 𝜃 ∈ (0, 1), satisfy conditions (14) and (15) of Theorem 4.
Indeed, estimate (16) and the positivity of the operator 𝑞

2

imply that, for any 𝑢 and V with properties (11) and all 𝑡 ∈
[𝑎, 𝑏], the relations






(𝑓𝑢) (𝑡) − (𝑓V) (𝑡) + 𝜃𝑞
2
(𝑢 − V) (𝑡)



=






(𝑓𝑢) (𝑡) − (𝑓V) (𝑡) + 𝑞
2
(𝑢 − V) (𝑡)

− (1 − 𝜃) 𝑞
2
(𝑢 − V) (𝑡)



≤ 𝑞
1
(𝑢 − V) (𝑡) + 



(1 − 𝜃) 𝑞
2
(𝑢 − V) (𝑡)



= 𝑞
1
(𝑢 − V) (𝑡) + (1 − 𝜃) 𝑞

2
(𝑢 − V) (𝑡)

(54)

are true. This means that 𝑓 admits estimate (15) with the
operators 𝑙

1
and 𝑙
2
of form (53). It is easy to verify that

assumption (17) ensures the validity of inclusions (14) for
operators (53), and, therefore, Theorem 4 can be applied.

3.4. Proof of Corollaries 7 and 8. The results follow directly
from Corollary 6 if one puts 𝜃 = (1/2) and 𝜃 = (1/4),
respectively.

3.5. Proof of Corollary 9. If 𝑦 = 0, one should apply
Theorem 4 with 𝑓 = 𝑙, 𝑙

1
= 𝑝
1
, 𝑙
2
= 𝑝
0
, and ℎ

1
= ℎ,

ℎ
2
= ℎ. For a nonzero 𝑦 ∈ BV([𝑎, 𝑏],R𝑛), one can modify the

theorem slightly by incorporating the forcing term 𝑦 directly
into (1) similarly to (20). Then we find that the argument of
Section 3.1 remains almost unchanged.

3.6. Proof of Corollary 10. Corollary 7 with 𝑓 = 𝑙, ℎ
1
= ℎ, and

ℎ
2
= ℎ is applied.

3.7. Proof of Corollary 11. It is sufficient to note that, under
these assumptions, the linear operators 𝑝

𝑖
: BV([𝑎, 𝑏],R𝑛) →

BV([𝑎, 𝑏],R𝑛), 𝑖 = 1, 2, defined by the formulae

𝑝
0
:=

1

2

(𝑙
0
+ 𝑙
1
) , 𝑝

1
:=

1

2

(𝑙
0
− 𝑙
1
) , (55)

satisfy conditions (21) and (22) of Corollary 9.

4. Comments

The following can be pointed out in relation to the above said.

4.1. Remark on Constants. The conditions presented in Sec-
tions 2.1 and 2.2 are, in a sense, optimal and cannot be
improved. For example, it follows from [26] that assumption
(14) of Corollary 7 can be replaced neither by the condition

(1 − 𝜀) 𝑙
1
∈ S
ℎ
([𝑎, 𝑏] ,R

𝑛

) , 𝑙
0
+ 𝑙
1
∈ S
ℎ
([𝑎, 𝑏] ,R

𝑛

)

(56)

nor by the condition

𝑙
1
∈ S
ℎ
([𝑎, 𝑏] ,R

𝑛

) , (1 − 𝜀) (𝑙
0
+ 𝑙
1
) ∈ S
ℎ
([𝑎, 𝑏] ,R

𝑛

) ,

(57)

no matter how small 𝜀 ∈ (0,∞) may be. Likewise, coun-
terexamples show that the assertion of Corollary 11 is not true
any more if condition (27) is replaced by either of its weaker
versions

(1 − 𝜀) 𝑙
0
∈ S
ℎ
([𝑎, 𝑏] ,R

𝑛

) ,

1

2

(𝑙
0
− 𝑙
1
) ∈ S
ℎ
([𝑎, 𝑏] ,R

𝑛

) ,

(58)

and

𝑙
0
∈ S
ℎ
([𝑎, 𝑏] ,R

𝑛

) ,

1

2 + 𝜀

(𝑙
0
− 𝑙
1
) ∈ S
ℎ
([𝑎, 𝑏] ,R

𝑛

)

(59)

with a positive 𝜀. The same holds for the other inequalities
and constants.
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4.2. Equations with Matrix-Valued Functions. It is clear from
the proofs given above that similar statements can also be
obtained in the case where the integrals of matrix-valued
functions are considered in (1), as described, for example, in
[3, 4].

4.3. The Case of a Nonmonotone Measure. Results similar to
those stated above can also be formulated in the case where
the function𝑔 involved in (1) is of bounded variation only and
not necessarily nondecreasing. For this purpose, one should
use the representation

𝑔 = 𝑔
1
− 𝑔
2
, (60)

where 𝑔
𝑘
, 𝑘 = 1, 2, are nondecreasing functions, and modify

the definition of the set S
ℎ
([𝑎, 𝑏],R𝑛) in the following way.

Definition 15. A pair of operators (𝑞
1
, 𝑞
2
) is said to belong to

S
ℎ
([𝑎, 𝑏],R𝑛) if the equation

𝑢 (𝑡) = ℎ (𝑢) + ∫

𝑡

𝑎

(𝑞
1
𝑢) (𝑠) 𝑑𝑔

1
(𝑠)

− ∫

𝑡

𝑎

(𝑞
2
𝑢) (𝑠) 𝑑𝑔

2
(𝑠) + 𝑟 (𝑡) , 𝑡 ∈ [𝑎, 𝑏] ,

(61)

has a unique solution 𝑢 for any 𝑟 from BV([𝑎, 𝑏],R𝑛) and,
moreover, the solution 𝑢 is nonnegative for nonnegative 𝑟.

In that case, an analogue of the assertion of Theorem 3
is obtained if assumption (12) is replaced by the pair of
conditions

(𝑝
1
, 𝑝
2
) ∈ S
ℎ1
([𝑎, 𝑏] ,R

𝑛

) ,

(

1

2

(𝑝
1
+ 𝑝
2
) ,

1

2

(𝑝
1
+ 𝑝
2
)) ∈ S

(1/2)(ℎ1+ℎ2)
([𝑎, 𝑏] ,R

𝑛

) .

(62)

The proof of this fact is pretty similar to the argument
given in Section 3.1 and uses Theorem 12 with the operators
𝐵
𝑘
: BV([𝑎, 𝑏],R𝑛) → BV([𝑎, 𝑏],R𝑛), 𝑘 = 1, 2,

(𝐵
𝑘
𝑢) (𝑡) := 𝑢 (𝑡) − ∫

𝑡

𝑎

(𝑝
𝑘
𝑢) (𝑠) 𝑑𝑔

1
(𝑠)

+ ∫

𝑡

𝑎

(𝑝
3−𝑘

𝑢) (𝑠) 𝑑𝑔
2
(𝑠) − ℎ

𝑘
(𝑢) , 𝑡 ∈ [𝑎, 𝑏] ,

(63)

instead of those defined by (47).
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