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Let C be the field of all complex numbers, 𝑀
𝑛
the space of all 𝑛 × 𝑛 matrices over C, and 𝑆

𝑛
the subspace of 𝑀

𝑛
consisting of all

symmetric matrices. The map 𝜙 : 𝑆
𝑛
→ 𝑀

𝑛
satisfies that 𝐴 − 𝜆𝐵 is 𝑘-potent in 𝑆

𝑛
implying that 𝜙(𝐴) − 𝜆𝜙(𝐵) is 𝑘-potent in𝑀

𝑛
,

where 𝜆 ∈ C, then there exist an invertible matrix 𝑃 ∈ 𝑀
𝑛
and 𝜖 ∈ C with 𝜖𝑘 = 𝜖 such that 𝜙(𝑋) = 𝜖𝑃

−1

(𝑋)𝑃 for every 𝑋 ∈ 𝑆
𝑛
.

Moreover, the inductive method used in this paper can be used to characterise similar maps from𝑀
𝑛
to𝑀
𝑛
.

1. Introduction

LetC be the field of all complex numbers,𝑀
𝑛
the space of all

𝑛 × 𝑛 matrices over C, 𝑇
𝑛
the subspace of 𝑀

𝑛
consisting of

all triangular matrices, and 𝑆
𝑛
the subspace of𝑀

𝑛
consisting

of all symmetric matrices. For fixed integer 𝑘 ≥ 2, 𝐴 ∈

𝑀
𝑛
is called a 𝑘-potent matrix if 𝐴𝑘 = 𝐴; especially,

𝐴 is an idempotent matrix when 𝑘 = 2. The map 𝜙 :

𝑆
𝑛

→ 𝑀
𝑛
satisfies that 𝐴 − 𝜆𝐵 is a 𝑘-potent matrix in

𝑆
𝑛
implying that 𝜙(𝐴) − 𝜆𝜙(𝐵) is a 𝑘-potent matrix in 𝑀

𝑛
,

where 𝜆 ∈ C, is a kind of the so-called weak preservers.
While replacing “implying that” with “if and only if,” 𝜙 is
called strong preserver. Obviously, a strong preservermust be
a weak preserver, while a weak preserver may not be a strong
preserver.

The preserver problem in this paper is from LPPs but
without linear assumption (more details about LPP in [1–3]).
You andWang characterized the strong 𝑘-potence preservers
from𝑀

𝑛
to𝑀
𝑛
in [4]; then Song and Cao extended the result

to weak preservers from 𝑀
𝑛
to 𝑀
𝑛
in [5]. In [6], Wang and

You characterized the strong 𝑘-potence preservers from 𝑇
𝑛

to 𝑀
𝑛
. In this paper, the authors characterized the weak 𝑘-

potence preservers from 𝑆
𝑛
to 𝑀
𝑛
and proved the following

theorem.

Theorem 1. Suppose 𝜙 : 𝑆
𝑛
→ 𝑀

𝑛
satisfy that 𝐴 − 𝜆𝐵 is a

𝑘-potent matrix in 𝑆
𝑛
implying that 𝜙(𝐴)−𝜆𝜙(𝐵) is a 𝑘-potent

matrix in𝑀
𝑛
, where 𝜆 ∈ C. Then there exist invertible 𝑃 ∈ 𝑀

𝑛

and 𝜖 ∈ C with 𝜖𝑘 = 𝜖 such that 𝜙(𝑋) = 𝜖𝑃
−1

𝑋𝑃 for every
𝑋 ∈ 𝑆

𝑛
.

Furthermore, we can derive the following corollary from
Theorem 1.

Corollary 2. Suppose 𝜙 : 𝑆
𝑛
→ 𝑆
𝑛
satisfy that 𝐴 − 𝜆𝐵 is a

𝑘-potent matrix in 𝑆
𝑛
implying that 𝜙(𝐴)−𝜆𝜙(𝐵) is a 𝑘-potent

matrix in 𝑆
𝑛
, where 𝜆 ∈ C. Then there exist invertible 𝑃 ∈ 𝑀

𝑛

and 𝜖 ∈ C with 𝜖𝑘 = 𝜖 such that 𝜙(𝑋) = 𝜖𝑃
−1

𝑋𝑃 for every
𝑋 ∈ 𝑆

𝑛
, where 𝑃𝑃𝑡 = 𝑎𝐼

𝑛
for some nonzero 𝑎 ∈ C.

In fact, the proof ofTheorem 1 through some adjustments
is suitable for the weak 𝑘-potence preserver from𝑀

𝑛
to𝑀
𝑛
,

and more details can be seen in remarks.

2. Notations and Lemmas

Γ
𝑛
denotes the set of all 𝑘-potent matrices in𝑀

𝑛
, while 𝑆Γ

𝑛
=

Γ
𝑛
∩ 𝑆
𝑛
. Λ denotes the set of all complex number 𝜖 satisfying

𝜖
𝑘−1

= 1, Δ = Λ ∪ {0}. 𝐸
𝑖𝑗
denotes matrices in 𝑀

𝑛
with 1 in
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(𝑖, 𝑗) and 0 elsewhere, and 𝐼
𝑛
denotes the unit matrix in𝑀

𝑛
.

⟨𝑛⟩ denotes the set of integer 𝑠 satisfy 1 ≤ 𝑠 ≤ 𝑛. 𝐺𝐿
𝑛
denotes

the general linear group consisting of all invertible matrices
in 𝑀
𝑛
. 𝐷
𝑛
denotes an arbitrary diagonal matrix in 𝑀

𝑛
. For

𝐴, 𝐵 ∈ 𝑀
𝑛
, 𝐴 and 𝐵 are orthogonal if 𝐴𝐵 = 𝐵𝐴 = 0. C𝑛×1

denotes the space of all 𝑛 × 1matrices overC.Φ
𝑛
denotes the

set of all maps 𝜙 : 𝑆
𝑛
→ 𝑀

𝑛
satisfying that 𝐴 − 𝜆𝐵 is a 𝑘-

potent matrix in 𝑆
𝑛
implying that 𝜙(𝐴) − 𝜆𝜙(𝐵) is a 𝑘-potent

matrix in𝑀
𝑛
, where 𝜆 ∈ C.

For an arbitrary matrix𝑋 ∈ 𝑀
𝑛
, we denote by𝑋[𝑖, 𝑗] the

term in (𝑖, 𝑗) position of 𝑋, by 𝑋
[𝑖
1
,...,𝑖
𝑠
;𝑗
1
,...,𝑗
𝑡
]
the 𝑠 × 𝑡 matrix

with the term in its (𝑝, 𝑞) position equal to 𝑋[𝑖
𝑝
, 𝑗
𝑞
], where

𝑖
1
< ⋅ ⋅ ⋅ < 𝑖

𝑠
and 𝑗
1
< ⋅ ⋅ ⋅ < 𝑗

𝑡
. Moreover, we denote by

𝑋
{𝑖
1
,...,𝑖
𝑠
;𝑗
1
,...,𝑗
𝑡
}
the 𝑛 × 𝑛 matrix with the term in its (𝑖

𝑝
, 𝑗
𝑞
)

position equal to𝑋[𝑖
𝑝
, 𝑗
𝑞
] and terms elsewhere equal to 0.We

especially simplify it with 𝑋
{𝑖
1
,...,𝑖
𝑠
}
when 𝑠 = 𝑡, and 𝑖

𝑙
= 𝑗
𝑙
for

every 𝑙 ∈ ⟨𝑠⟩. Naturally,𝑋
{𝑖}
= 𝑋[𝑖, 𝑖]𝐸

𝑖𝑖
for every 𝑖 ∈ ⟨𝑛⟩.

Without fixing 𝑋, 𝑋
{𝑖
1
,...,𝑖
𝑠
;𝑗
1
,...,𝑗
𝑡
}
also denotes a matrix in

𝑀
𝑛
with 0 in its (𝑝, 𝑞) position, where 𝑝 ∉ {𝑖

1
, . . . , 𝑖

𝑠
}, 𝑞 ∉

{𝑗
1
, . . . , 𝑗

𝑡
}, and 1 ≤ 𝑖

1
< ⋅ ⋅ ⋅ < 𝑖

𝑠
≤ 𝑛, 1 ≤ 𝑗

1
< ⋅ ⋅ ⋅ < 𝑗

𝑡
≤ 𝑛.

At first, we need the following Lemmas 3, 4, 5, and 7,
which are about 𝑘-potent matrices and orthogonal matrices.

Lemma 3 (see [2]). Suppose 𝑋, 𝑌 ∈ Γ
𝑛
, and 𝑋 + 𝜖𝑌 ∈ Γ

𝑛
for

every 𝜖 ∈ Λ; then𝑋 and 𝑌 are orthogonal.

Lemma 4 ([7, Lemma 1]). Suppose 𝐴
1
, 𝐴
2
, . . ., 𝐴

𝑛
are 𝑛 ×

𝑛 mutually orthogonal nonzero 𝑘-potent matrices; then there
exists 𝑃 ∈ 𝐺𝐿

𝑛
such that 𝑃−1𝐴

𝑖
𝑃 = 𝑐

𝑖
𝐸
𝑖𝑖
with 𝑐

𝑘−1

𝑖
= 1 for

every 𝑖 ∈ ⟨𝑛⟩.

Lemma 5. Suppose 𝑍 ∈ 𝑀
𝑛−1

, 𝑝, 𝑞, 𝑔, ℎ ∈ C(𝑛−1)×1 with
𝑔ℎ
𝑡

̸= 0, 𝛿 ∈ C, for arbitrary nonzero 𝛼 ∈ C with ℎ𝑡𝑔 + 𝛼2 ̸= 0

and 𝜏 = (𝛼
−1

ℎ
𝑡

𝑔+𝛼)
−1, 𝜏 [ 𝑍 𝑝

𝑞
𝑡
𝛿
]+𝜏 [

𝛼
−1

𝑔ℎ
𝑡

𝑔

ℎ
𝑡

𝛼
] ∈ Γ
𝑛
. Then

𝑍 = 0, 𝛿 = 0, and there exist 𝜆
1
, 𝜆
2
∈ Cwith (𝜆

1
+1)(𝜆

2
+1) =

1 such that 𝑝 = 𝜆
1
𝑔 and 𝑞 = 𝜆

2
ℎ.

Proof. By the assumption of 𝛼 and 𝜏, 𝜏 [ 𝛼
−1

𝑔ℎ
𝑡

𝑔

ℎ
𝑡

𝛼
] is

idempotent. Denote this matrix by 𝑋, and then we can get
the following equation:

[
𝐼
𝑛−1

−𝛼
−1

𝑔

𝜏ℎ
𝑡

1 − 𝜏𝛼
−1

ℎ
𝑡

𝑔
]𝑋[

𝐼
𝑛−1

− 𝜏𝛼
−1

𝑔ℎ
𝑡

𝛼
−1

𝑔

−𝜏ℎ
𝑡

1
] = [

0 0

0 1
] .

(1)

Since thematrices on both sides of𝑋 satisfy the following
equation:

[
𝐼
𝑛−1

−𝛼
−1

𝑔

𝜏ℎ
𝑡

1 − 𝜏𝛼
−1

ℎ
𝑡

𝑔
] [

𝐼
𝑛−1

− 𝜏𝛼
−1

𝑔ℎ
𝑡

𝛼
−1

𝑔

−𝜏ℎ
𝑡

1
] = 𝐼
𝑛

(2)

then the following matrix is 𝑘-potent by the assumption of
lemma:

[
𝐼
𝑛−1

−𝛼
−1

𝑔

𝜏ℎ
𝑡

1 − 𝜏𝛼
−1

ℎ
𝑡

𝑔
](𝜏 [

𝑍 𝑝

𝑞
𝑡

𝛿
] + 𝑋)

× [
𝐼
𝑛−1

− 𝜏𝛼
−1

𝑔ℎ
𝑡

𝛼
−1

𝑔

−𝜏ℎ
𝑡

1
] .

(3)

We denote by 𝐴 the following matrix:

[
𝐼
𝑛−1

−𝛼
−1

𝑔

𝜏ℎ
𝑡

1 − 𝜏𝛼
−1

ℎ
𝑡

𝑔
] [

𝑍 𝑝

𝑞
𝑡

𝛿
] [

𝐼
𝑛−1

− 𝜏𝛼
−1

𝑔ℎ
𝑡

𝛼
−1

𝑔

−𝜏ℎ
𝑡

1
] ; (4)

then the following equation is obvious:

(𝜏𝐴 + [
0 0

0 1
])

𝑘

= 𝜏𝐴 + [
0 0

0 1
] . (5)

Unfolding it, we get 𝜏𝑘𝐴𝑘+𝜏𝑘−1(⋅ ⋅ ⋅ )
𝑘−1

+⋅ ⋅ ⋅+𝜏(⋅ ⋅ ⋅ )
1
+[
0 0

0 1
] =

𝜏𝐴+[
0 0

0 1
]; that is, 𝜏𝑘𝐴𝑘 +𝜏𝑘−1(⋅ ⋅ ⋅ )

𝑘−1
+ ⋅ ⋅ ⋅+𝜏(⋅ ⋅ ⋅ )

1
−𝜏𝐴 = 0,

where (⋅ ⋅ ⋅ )
𝑖
is the coefficientmatrix of 𝜏𝑖 for every 𝑖 ∈ ⟨𝑘−1⟩.

Let𝐴 = [
𝑍
1
𝑝
1

𝑞
𝑡

1
𝛿
1

], then we calculate it and get the following
equations:

𝑍
1
= (𝑍 − 𝛼

−1

𝑔𝑞
𝑡

) (𝐼
𝑛−1

− 𝜏𝛼
−1

𝑔ℎ
𝑡

) − (𝑝 − 𝛿𝛼
−1

𝑔) 𝜏ℎ
𝑡

,

𝑝
1
= (𝑍 − 𝛼

−1

𝑔𝑞
𝑡

) 𝛼
−1

𝑔 + 𝑝 − 𝛿𝛼
−1

𝑔,

𝑞
𝑡

1
= (𝜏ℎ

𝑡

𝑍 + 𝑞
𝑡

− 𝜏𝛼
−1

𝑞
𝑡

ℎ
𝑡

𝑔) (𝐼
𝑛−1

− 𝜏𝛼
−1

𝑔ℎ
𝑡

)

− (𝜏ℎ
𝑡

𝑝 + 𝛿 − 𝛿𝜏𝛼
−1

ℎ
𝑡

𝑔) 𝜏ℎ
𝑡

,

𝛿
1
= (𝜏ℎ

𝑡

𝑍 + 𝑞
𝑡

− 𝜏𝛼
−1

𝑞
𝑡

ℎ
𝑡

𝑔) 𝛼
−1

𝑔

+ 𝜏ℎ
𝑡

𝑝 + 𝛿 − 𝛿𝜏𝛼
−1

ℎ
𝑡

𝑔.

(6)

It is easy to get 𝜏(⋅ ⋅ ⋅ )
1
= 𝜏 [

0 𝑝
1

𝑞
𝑡

1
𝑘𝛿
1

] and the following
equation:

𝜏
𝑘

𝐴
𝑘

+ 𝜏
𝑘−1

(⋅ ⋅ ⋅ )
𝑘−1

+ ⋅ ⋅ ⋅ + 𝜏
2

(⋅ ⋅ ⋅ )
2

+ 𝜏 [
−𝑍
1

0

0 (𝑘 − 1) 𝛿
1

] = 0.

(7)

Note that the highest degree of 𝛼 in 𝜏−2𝐴 is 2; then the highest
degree of 𝛼 in 𝜏

−3𝑘+𝑖

(⋅ ⋅ ⋅ )
𝑘−𝑖

is less or equal to 3𝑘 − 𝑖 for
every 𝑖 with 2 ≤ 𝑖 ≤ 𝑘 − 1, and the highest degree of 𝛼 in
𝜏
−3𝑘+1

[
−𝑍
1
0

0 (𝑘−1)𝛿
1

] is 3𝑘−1, where𝑍 is the coefficient matrix
of 𝛼3𝑘−1 in 𝑍

1
and 𝛿 is the coefficient of 𝛼3𝑘−1 in 𝛿

1
.

By the assumption of 𝛼, we have 𝑍 = 0 and 𝛿 = 0. Then
the following equations are true:

𝑍
1
= −𝛼
−1

𝑔𝑞
𝑡

(𝐼
𝑛−1

− 𝜏𝛼
−1

𝑔ℎ
𝑡

) − 𝑝𝜏ℎ
𝑡

,

𝑝
1
= −𝛼
−1

𝑔𝑞
𝑡

𝛼
−1

𝑔 + 𝑝,

𝑞
𝑡

1
= (𝑞
𝑡

− 𝜏𝛼
−1

𝑞
𝑡

ℎ
𝑡

𝑔) (𝐼
𝑛−1

− 𝜏𝛼
−1

𝑔ℎ
𝑡

) − 𝜏ℎ
𝑡

𝑝𝜏ℎ
𝑡

,

𝛿
1
= (𝑞
𝑡

− 𝜏𝛼
−1

𝑞
𝑡

ℎ
𝑡

𝑔) 𝛼
−1

𝑔 + 𝜏ℎ
𝑡

𝑝

(8)

and 𝜏−3𝑘+1𝑍
1
= 𝜏
−3𝑘+1

[−𝛼
−1

𝑔𝑞
𝑡

+ 𝛼
−1

𝑔𝑞
𝑡

𝜏𝛼
−1

𝑔ℎ
𝑡

− 𝑝𝜏ℎ
𝑡

] =

𝜏
−3𝑘+2

[−𝜏
−1

𝛼
−1

𝑔𝑞
𝑡

+ 𝛼
−2

𝑔𝑞
𝑡

𝑔ℎ
𝑡

− 𝑝ℎ
𝑡

], where the highest
degree of 𝛼 is 3𝑘 − 2 and −𝑔𝑞𝑡 − 𝑝ℎ𝑡 is the coefficient matrix
of 𝛼3𝑘−2.
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Now, we calculate the upper left part of 𝜏−3𝑘+2(⋅ ⋅ ⋅ )
2
.

When 𝑘 = 2, 𝜏−3𝑘+2(⋅ ⋅ ⋅ )
2
= 𝜏
−4

𝐴
2, of which the upper

left part is 𝜏−4[𝑝𝑞𝑡(𝐼
𝑛−1

−𝜏𝛼
−1

𝑔ℎ
𝑡

)−𝑞
𝑡

𝑝𝛼
−1

𝑔𝜏ℎ
𝑡

] = 𝜏
−4

[𝑝𝑞
𝑡

−

𝜏𝛼
−1

𝑝𝑞
𝑡

𝑔ℎ
𝑡

− 𝜏𝛼
−1

𝑞
𝑡

𝑝𝑔ℎ
𝑡

]. Then in the upper left part of
𝜏
−4

𝐴
2

+ 𝜏
−5

[
−𝑍
1
0

0 (𝑘−1)𝛿
1

], the highest degree of 𝛼 is 4, and the
coefficient matrix is 𝑝𝑞𝑡 + 𝑔𝑞𝑡 + 𝑝ℎ𝑡.

When 𝑘 > 2, if [ 0 0
0 1

] appears in the left (or right) end of
an additive item of 𝜏−3𝑘+2(⋅ ⋅ ⋅ )

2
, then the upper left part of

this item is 0. So, the upper left part of 𝜏−3𝑘+2(⋅ ⋅ ⋅ )
2
is equal

to the upper left part of 𝜏−3𝑘+2𝐴[ 0 0
0 1

]
𝑘−2

𝐴; that is, the upper
left part is 𝜏−3𝑘+2𝑝

1
𝑞
𝑡

1
= 𝜏
−3𝑘+4

[𝜏
−1

𝛼𝑝𝑞
𝑡

− (𝑞
𝑡

𝑔 + ℎ
𝑡

𝑝)𝑝ℎ
𝑡

−

𝜏
−1

𝛼
−1

𝑔𝑞
𝑡

𝑔𝑞
𝑡

+𝛼
−2

𝑞
𝑡

𝑔(𝑞
𝑡

𝑔+ℎ
𝑡

𝑝)𝑔ℎ
𝑡

], and the highest degree
of 𝛼 is 3𝑘 − 2 with 𝑝𝑞𝑡 as the coefficient matrix of 𝛼3𝑘−2.

By the assumption of 𝛼, we have 𝑝𝑞𝑡 + 𝑔𝑞𝑡 + 𝑝ℎ𝑡 = 0.
By 𝑔ℎ𝑡 ̸= 0, we have 𝑔 ̸= 0, ℎ ̸= 0, and 𝑝 = 0 if and only if

𝑞 = 0. When 𝑝 ̸= 0, we can get 𝑝 = 𝜆
1
𝑔 by 𝑝(𝑞𝑡+ℎ𝑡)+𝑔𝑞𝑡 = 0,

and 𝑞 = 𝜆
2
ℎ by (𝑝 + 𝑔)𝑞

𝑡

+ 𝑝ℎ
𝑡

= 0, where 𝜆
1
and 𝜆

2
satisfy

𝜆
1
𝜆
2
𝑔ℎ
𝑡

+ 𝜆
2
𝑔ℎ
𝑡

+ 𝜆
1
𝑔ℎ
𝑡

= 0; that is, 𝜆
1
𝜆
2
+ 𝜆
2
+ 𝜆
1
= 0

by 𝑔ℎ𝑡 ̸= 0, which is equivalent to (𝜆
1
+ 1)(𝜆

2
+ 1) = 1. When

𝑝 = 𝑞 = 0, 𝜆
1
= 𝜆
2
= 0.

Remark 6. Replacing 𝑔ℎ𝑡 ̸= 0 with 𝑔ℎ
𝑡

= 0 in Lemma 5, we
have 𝑔 = 0 implies 𝑝 = 0 or 𝑞 + ℎ = 0, and ℎ = 0 implies
𝑞 = 0 or 𝑝 + 𝑔 = 0. These cases will not appear in the proof
of Theorem 1, but are necessary for the weak preservers from
𝑀
𝑛
to𝑀
𝑛
.

Lemma 7. Suppose 𝐴 = [
0 (𝜆(𝑎)−𝜆(𝑏))/(𝑎−𝑏)

(𝜆(𝑎)
−1
−𝜆(𝑏)

−1
)/(𝑎−𝑏) 1

] ∈

Γ
2
for arbitrary 𝑎, 𝑏 ∈ Cwith 𝑎 ̸= 𝑏, where 𝜆 : C → C is amap

satisfying 𝜆(𝑥) ̸= 0 for every 𝑥 ∈ C. Then there exists nonzero
𝜆
0
∈ C such that 𝜆(𝑥) = 𝜆

0
for every 𝑥 ∈ C.

Proof. Since the trace of 𝐴 is equal to 1, then (𝜆(𝑎) −

𝜆(𝑏))(𝜆
−1

(𝑎) − 𝜆
−1

(𝑏))/(𝑎 − 𝑏)
2

= 0, or −1, especially, when
equal to −1, 𝑘 − 1 = 6𝑝 with 𝑝 ∈ 𝑍

+. Denote 𝜆(𝑎)/𝜆(𝑏) by 𝑦,
and 𝑎 − 𝑏 by 𝑐; then we have (2 − 𝑦 − 𝑦−1)/𝑐2 = 0 or −1.

(1) If (2−𝑦−𝑦−1)/𝑐2 = 0, then 𝑦 = 1, that is, 𝜆(𝑎) = 𝜆(𝑏);

(2) if (2−𝑦−𝑦−1)/𝑐2 = −1, then𝑦 = (2+𝑐
2

±√4𝑐2 + 𝑐4)/2.
When 𝑐 = 1, 𝜆(𝑏 + 1)/𝜆(𝑏) = (3 ± √5)/2; when 𝑐 = 2,
𝜆(𝑏 + 2)/𝜆(𝑏) = (6 ± √32)/2 = 3 ± 2√2. But 𝜆(𝑏 +
1)/𝜆(𝑏) = (3 ± √5)/2 implies 𝜆(𝑏 + 2)/𝜆(𝑏) = (𝜆(𝑏 +

2)/𝜆(𝑏 + 1))(𝜆(𝑏 + 1)/𝜆(𝑏)) = 1, or (7 ± 3√5)/2. It
is a contradiction! So it is impossible that (2 − 𝑦 −

𝑦
−1

)/𝑥
2

= −1.

Hence, there exists nonzero 𝜆
0
∈ C such that 𝜆(𝑥) = 𝜆

0

for every 𝑥 ∈ C.

We can prove the following Lemmas 8 and 9 similar as
Lemmas 4 and 5 in [4].

Lemma 8 (see [4], Lemma 4). Suppose 𝜙 ∈ Φ
𝑛
, 𝐴 and 𝐵 are

𝑛 × 𝑛 orthogonal 𝑘-potent matrices; then 𝜙(𝐴) and 𝜙(𝐵) are
orthogonal.

Lemma 9 (see [4], Lemma 5). Suppose 𝜙 ∈ Φ
𝑛
; then 𝜙 are

homogeneous; that is, 𝜙(𝜆𝑋) = 𝜆𝜙(𝑋) for every 𝑋 ∈ 𝑆
𝑛
and

every 𝜆 ∈ C.

Corollary 10. Suppose 𝜙 ∈ Φ
𝑛
, 𝐴 + 𝐵, 𝐶 ∈ 𝑆Γ

𝑛
, and for every

𝜖 ∈ Λ, 𝐴 + 𝐵 + 𝜖𝐶 ∈ 𝑆Γ
𝑛
, 𝜙(𝐵 + 𝜖𝐶) = 𝜙(𝐵) + 𝜙(𝜖𝐶). Then

𝜙(𝐴) + 𝜙(𝐵) and 𝜙(𝐶) are orthogonal.

Proof. By the assumption and Lemma 9, we have 𝜙(𝐴) +

𝜙(𝐵) ∈ Γ
𝑛
, 𝜙(𝐶) ∈ Γ

𝑛
, 𝜙(𝐴) + 𝜙(𝐵 + 𝜖𝐶) = 𝜙(𝐴) +

𝜙(𝐵) + 𝜖𝜙(𝐶) ∈ Γ
𝑛
. By Lemma 3, 𝜙(𝐴) + 𝜙(𝐵) and 𝜙(𝐶) are

orthogonal.

Corollary 11. Suppose 𝜙 ∈ Φ
𝑛
and 𝜙(𝐷

𝑛
) = 𝐷

𝑛
for arbitrary

diagonal matrix 𝐷
𝑛
∈ 𝑀
𝑛
. Then for every 𝑖, 𝑗 ∈ ⟨𝑛⟩ with 𝑖 ̸= 𝑗,

𝜙(𝐸
𝑖𝑗
+𝐸
𝑗𝑖
+𝐷
𝑛
) = 𝜆
𝑖𝑗
𝐸
𝑖𝑗
+ 𝜆
−1

𝑖𝑗
𝐸
𝑗𝑖
+𝐷
𝑛
, where 𝜆

𝑖𝑗
∈ C is only

decided by 𝑖 and 𝑗.

Proof. Let𝐴 = (1/2)(𝐸
𝑖𝑗
+𝐸
𝑗𝑖
+𝐷
𝑛
), 𝐵 = (1/2)(𝐸

𝑖𝑖
+𝐸
𝑗𝑗
−𝐷
𝑛
),

and 𝐶 = ∑
𝑙 ̸= 𝑖,𝑗

𝐸
𝑙𝑙
; then 𝐴, 𝐵 and 𝐶 satisfy the assumption of

Corollary 10, and 𝜙(𝐴) + 𝜙(𝐵) and 𝜙(𝐶) are orthogonal; that
is, 𝜙((𝐸

𝑖𝑗
+ 𝐸
𝑗𝑖
+ 𝐷
𝑛
)) = 𝛼

𝑖𝑖
𝐸
𝑖𝑖
+ 𝛽
𝑖𝑗
𝐸
𝑖𝑗
+ 𝛾
𝑗𝑖
𝐸
𝑗𝑖
+ 𝛿
𝑗𝑗
𝐸
𝑗𝑗
+ 𝐷
𝑛

for some 𝛼
𝑖𝑖
, 𝛽
𝑖𝑗
, 𝛾
𝑗𝑖
, and 𝛿

𝑗𝑗
∈ C.

Since (𝜂−1 +𝜂)−1[(𝐸
𝑖𝑗
+𝐸
𝑗𝑖
+𝐷
𝑛
) − (𝐷

𝑛
−𝜂
−1

𝐸
𝑖𝑖
−𝜂𝐸
𝑗𝑗
)] =

(𝜂
−1

+ 𝜂)
−1

(𝜂
−1

𝐸
𝑖𝑖
+ 𝐸
𝑖𝑗
+ 𝐸
𝑗𝑖
+ 𝜂𝐸
𝑗𝑗
) ∈ 𝑆Γ

𝑛
for arbitrary

nonzero 𝜂 ∈ C with 1 + 𝜂
2

̸= 0, after applying 𝜙, we have
(𝜂
−1

+ 𝜂)
−1

[𝛼
𝑖𝑖
𝐸
𝑖𝑖
+ 𝛽
𝑖𝑗
𝐸
𝑖𝑗
+ 𝛾
𝑗𝑖
𝐸
𝑗𝑖
+ 𝛿
𝑗𝑗
𝐸
𝑗𝑗
+ 𝜂
−1

𝐸
𝑖𝑖
+ 𝜂𝐸
𝑗𝑗
] =

(𝜂
−1

+ 𝜂)
−1

[𝛼
𝑖𝑖
𝐸
𝑖𝑖
+ (𝛽
𝑖𝑗
− 1)𝐸
𝑖𝑗
+ (𝛾
𝑗𝑖
− 1)𝐸
𝑗𝑖
+ 𝛿
𝑗𝑗
𝐸
𝑗𝑗
] + (𝜂
−1

+

𝜂)
−1

(𝜂
−1

𝐸
𝑖𝑖
+𝐸
𝑖𝑗
+𝐸
𝑗𝑖
+𝜂𝐸
𝑗𝑗
) ∈ Γ
𝑛
. By Lemma 5, 𝛼

𝑖𝑖
= 𝛿
𝑗𝑗
= 0,

𝛽
𝑖𝑗
𝛾
𝑗𝑖
= 1.

Let 𝐷
𝑛
= ∑
𝑛

𝑙=1
𝑥
𝑙
𝐸
𝑙𝑙
, where 𝑥

𝑙
∈ C for every 𝑙 ∈ ⟨𝑛⟩; then

𝛽
𝑖𝑗
is the function of 𝑖, 𝑗, and 𝑥

𝑙
and denote by 𝛽

𝑖𝑗
(𝐷
𝑛
) the

value of 𝛽
𝑖𝑗
on 𝑥
1
, . . ., 𝑥

𝑛
, 𝑖, and 𝑗.

Fix 𝑖, 𝑗, and 𝐷
𝑛
and add a free variable 𝑥 to 𝑥

𝑙
for some

𝑙 ∈ ⟨𝑛⟩; then 𝛽
𝑖𝑗
(𝐷
𝑛
+ 𝑥𝐸
𝑙𝑙
) becomes into a map of 𝑥. Since

(1/(𝑎 − 𝑏))(𝐸
𝑖𝑗
+ 𝐸
𝑗𝑖
+ 𝐷
𝑛
+ 𝑎𝐸
𝑗𝑗
) − (1/(𝑎 − 𝑏))(𝐸

𝑖𝑗
+ 𝐸
𝑗𝑖
+

𝐷
𝑛
+𝑏𝐸
𝑗𝑗
) ∈ 𝑆Γ

𝑛
for arbitrary 𝑎 and 𝑏 ∈ Cwith 𝑎−𝑏 ̸= 0, then

by 𝜙(𝐸
𝑖𝑗
+ 𝐸
𝑗𝑖
+ 𝐷
𝑛
+ 𝑎𝐸
𝑗𝑗
) = 𝛽

𝑖𝑗
(𝐷
𝑛
+ 𝑎𝐸
𝑗𝑗
)𝐸
𝑖𝑗
+ 𝛽
−1

𝑖𝑗
(𝐷
𝑛
+

𝑎𝐸
𝑗𝑗
)𝐸
𝑗𝑖
+ 𝐷
𝑛
+ 𝑎𝐸
𝑗𝑗
and 𝜙(𝐸

𝑖𝑗
+ 𝐸
𝑗𝑖
+ 𝐷
𝑛
+ 𝑏𝐸
𝑗𝑗
) = 𝛽
𝑖𝑗
(𝐷
𝑛
+

𝑏𝐸
𝑗𝑗
)𝐸
𝑖𝑗
+ 𝛽
−1

𝑖𝑗
(𝐷
𝑛
+ 𝑏𝐸
𝑗𝑗
)𝐸
𝑗𝑖
+ 𝐷
𝑛
+ 𝑏𝐸
𝑗𝑗
, we can derive that

((𝛽
𝑖𝑗
(𝐷
𝑛
+ 𝑎𝐸
𝑗𝑗
) − 𝛽
𝑖𝑗
(𝐷
𝑛
+ 𝑏𝐸
𝑗𝑗
))/(𝑎 − 𝑏))𝐸

𝑖𝑗
+ ((𝛽
−1

𝑖𝑗
(𝐷
𝑛
+

𝑎𝐸
𝑗𝑗
) − 𝛽
−1

𝑖𝑗
(𝐷
𝑛
+ 𝑏𝐸
𝑗𝑗
))/(𝑎 − 𝑏))𝐸

𝑗𝑖
+ 𝐸
𝑗𝑗
∈ Γ
𝑛
. By Lemma 7,

𝛽
𝑖𝑗
(𝐷
𝑛
+ 𝑎𝐸
𝑗𝑗
) = 𝛽
𝑖𝑗
(𝐷
𝑛
+ 𝑏𝐸
𝑗𝑗
) for fixed 𝑖, 𝑗, and 𝐷

𝑛
; that is,

𝛽
𝑖𝑗
(𝐷
𝑛
+ 𝑥𝐸
𝑗𝑗
) = 𝛽

𝑖𝑗
(𝐷
𝑛
) for arbitrary 𝑥 ∈ C. Similarly, we

can prove 𝛽
𝑖𝑗
(𝐷
𝑛
+ 𝑥𝐸
𝑖𝑖
) = 𝛽
𝑖𝑗
(𝐷
𝑛
) for arbitrary 𝑥 ∈ C.

In fact, we have proved that 𝛽
𝑖𝑗
(𝐷
𝑛
+ 𝑥𝐸
𝑖𝑖
) = 𝛽
𝑖𝑗
(𝐷
𝑛
) and

𝛽
𝑖𝑗
(𝐷
𝑛
+ 𝑦𝐸
𝑗𝑗
) = 𝛽
𝑖𝑗
(𝐷
𝑛
) for arbitrary 𝑥, 𝑦 ∈ C and arbitrary

𝐷
𝑛
; then 𝛽

𝑖𝑗
(𝐷
𝑛
+ 𝑥𝐸
𝑖𝑖
+ 𝑦𝐸
𝑗𝑗
) = 𝛽

𝑖𝑗
(𝐷
𝑛
+ 𝑥𝐸
𝑖𝑖
)(= 𝛽
𝑖𝑗
(𝐷
𝑛
+

𝑦𝐸
𝑗𝑗
)) = 𝛽

𝑖𝑗
(𝐷
𝑛
) follows.

Since 𝛽
𝑖𝑗
(𝐷
𝑛
+ 𝑥𝐸
𝑗𝑗
+ 𝑦𝐸
𝑙𝑙
) = 𝛽
𝑖𝑗
(𝐷
𝑛
+ 𝑦𝐸
𝑙𝑙
) for fixed 𝑖, 𝑗,

and 𝑙with 𝑙 ̸= 𝑖, 𝑗, and arbitrary 𝑥, 𝑦 ∈ C, then (1/(𝑎−𝑏))(𝐸
𝑖𝑗
+

𝐸
𝑗𝑖
+𝐷
𝑛
+(𝑎−𝑏)𝐸

𝑗𝑗
+𝑎𝐸
𝑙𝑙
)−(1/(𝑎−𝑏))(𝐸

𝑖𝑗
+𝐸
𝑗𝑖
+𝐷
𝑛
+𝑏𝐸
𝑙𝑙
) ∈ 𝑆Γ

𝑛

implies ((𝛽
𝑖𝑗
(𝐷
𝑛
+𝑎𝐸
𝑙𝑙
)−𝛽
𝑖𝑗
(𝐷
𝑛
+𝑏𝐸
𝑙𝑙
))/(𝑎−𝑏))𝐸

𝑖𝑗
+((𝛽
−1

𝑖𝑗
(𝐷
𝑛
+

𝑎𝐸
𝑙𝑙
)−𝛽
−1

𝑖𝑗
(𝐷
𝑛
+𝑏𝐸
𝑙𝑙
))/(𝑎−𝑏))𝐸

𝑗𝑖
+𝐸
𝑗𝑗
+𝐸
𝑙𝑙
∈ Γ
𝑛
. By Lemma 7,

we can get 𝛽
𝑖𝑗
(𝐷
𝑛
+ 𝑎𝐸
𝑙𝑙
) = 𝛽
𝑖𝑗
(𝐷
𝑛
+ 𝑏𝐸
𝑙𝑙
) for arbitrary 𝑎 and
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𝑏 ∈ C with 𝑎 − 𝑏 ̸= 0; that is, 𝛽
𝑖𝑗
(𝐷
𝑛
+ 𝑥𝐸
𝑙𝑙
) = 𝛽

𝑖𝑗
(𝐷
𝑛
) for

arbitrary 𝑥 ∈ C.
Until now,we have proved that𝛽

𝑖𝑗
(𝐷
𝑛
) = 𝛽
𝑖𝑗
(∑
𝑛

𝑙=1
𝑥
𝑙
𝐸
𝑙𝑙
) =

𝛽
𝑖𝑗
(∑
𝑛−1

𝑙=1
𝑥
𝑙
𝐸
𝑙𝑙
) = ⋅ ⋅ ⋅ = 𝛽

𝑖𝑗
(𝑥
1
𝐸
11
) = 𝛽

𝑖𝑗
(0) for arbitrary 𝐷

𝑛
;

that is, 𝛽
𝑖𝑗
is only decided by 𝑖 and 𝑗.

Remark 12. The proof of Corollary 11 presents the basic
procedure of proof ofTheorem 1. In order to decide the image
of matrix 𝐴, we use Corollary 10 and the images of 𝐵 and 𝐶,
which usually are diagonal matrices or some matrices with
images already decided.

If 𝜙 is a weak preserver from𝑀
𝑛
to𝑀
𝑛
, then Corollary 11

is also true. Let 𝐴 = 𝐸
𝑖𝑗
+ 𝐷
𝑛
, 𝐵 = −(𝐸

𝑖𝑗
+ 𝐸
𝑗𝑖
+ 𝐷
𝑛
) + 𝐸
𝑖𝑖
,

and 𝐶 = ∑
𝑙 ̸= 𝑖,𝑗

𝐸
𝑙𝑙
; then we can prove 𝜙(𝐴) = 𝑎

𝑖𝑖
𝐸
𝑖𝑖
+ 𝑎
𝑖𝑗
𝐸
𝑖𝑗
+

𝑎
𝑗𝑖
𝐸
𝑗𝑖
+ 𝑎
𝑗𝑗
𝐸
𝑗𝑗
+𝐷
𝑛
similarly as proving 𝜙((𝐸

𝑖𝑗
+ 𝐸
𝑗𝑖
+𝐷
𝑛
)) =

𝛼
𝑖𝑖
𝐸
𝑖𝑖
+ 𝛽
𝑖𝑗
𝐸
𝑖𝑗
+ 𝛾
𝑗𝑖
𝐸
𝑗𝑖
+ 𝛿
𝑗𝑗
𝐸
𝑗𝑗
+ 𝐷
𝑛
, and (𝑎

𝑖𝑖
+ 1)𝐸

𝑖𝑖
+ (𝑎
𝑖𝑗
−

𝜆
𝑖𝑗
)𝐸
𝑖𝑗
+ (𝑎
𝑗𝑖
−𝜆
−1

𝑖𝑗
)𝐸
𝑗𝑖
+ 𝑎
𝑗𝑗
𝐸
𝑗𝑗
∈ Γ
𝑛
. Since 𝛼−1𝐴+𝛼

−1

(−(𝐸
𝑖𝑗
+

𝐸
𝑗𝑖
+ 𝐷
𝑛
) + 𝛼𝐸

𝑖𝑖
) = −𝛼

−1

𝐸
𝑗𝑖
+ 𝐸
𝑖𝑖
∈ Γ
𝑛
for arbitrary nonzero

𝛼, then the following matrix is 𝑘-potent:

𝛼
−1

[
𝑎
𝑖𝑖

𝑎
𝑖𝑗
− 𝜆
𝑖𝑗

𝑎
𝑗𝑖
− 𝜆
−1

𝑗𝑖
𝑎
𝑗𝑗

] + 𝛼
−1

[
𝛼 0

0 0
] . (9)

Remark 6 tells us that 𝑎
𝑖𝑖
= 𝑎
𝑗𝑗
= 0, 𝑎

𝑖𝑗
−𝜆
𝑖𝑗
= 0, or 𝑎

𝑗𝑖
−𝜆
−1

𝑖𝑗
=

0; that is, 𝜙(𝐴) = 𝜆
𝑖𝑗
𝐸
𝑖𝑗
+ 𝐷
𝑛
, or 𝜙(𝐴) = 𝜆

−1

𝑖𝑗
𝐸
𝑗𝑖
+ 𝐷
𝑛
, 𝜙(𝐴) =

𝜆
𝑖𝑗
𝐸
𝑖𝑗
+ 𝜆
−1

𝑖𝑗
𝐸
𝑗𝑖
+ 𝐷
𝑛
. Similarly, we can prove 𝜙(𝐸

𝑗𝑖
+ 𝐷
𝑛
) =

𝜆
−1

𝑖𝑗
𝐸
𝑗𝑖
+ 𝐷
𝑛
, 𝜙(𝐸
𝑗𝑖
+ 𝐷
𝑛
) = 𝜆

𝑖𝑗
𝐸
𝑖𝑗
+ 𝐷
𝑛
, or 𝜙(𝐸

𝑗𝑖
+ 𝐷
𝑛
) =

𝜆
𝑖𝑗
𝐸
𝑖𝑗
+ 𝜆
−1

𝑖𝑗
𝐸
𝑗𝑖
+ 𝐷
𝑛
. Since 𝐷

𝑛
is arbitrary, we set 𝐷

𝑛
= 0 for

convenience.
If 𝜙(𝐸

𝑖𝑗
) = 𝜆

𝑖𝑗
𝐸
𝑖𝑗
+ 𝜆
−1

𝑖𝑗
𝐸
𝑗𝑖
; then (1/3)𝐸

𝑖𝑗
+ (1/3)(𝐸

𝑖𝑗
+

𝐸
𝑗𝑖
+ 2𝐸
𝑖𝑖
+ 𝐸
𝑗𝑗
) = (1/3)(2𝐸

𝑖𝑗
+ 𝐸
𝑗𝑖
+ 2𝐸
𝑖𝑖
+ 𝐸
𝑗𝑗
) ∈ Γ

𝑛

implies (1/3)(𝜆
𝑖𝑗
𝐸
𝑖𝑗
+ 𝜆
−1

𝑖𝑗
𝐸
𝑗𝑖
) + (1/3)(𝜆

𝑖𝑗
𝐸
𝑖𝑗
+ 𝜆
−1

𝑖𝑗
𝐸
𝑗𝑖
+ 2𝐸
𝑖𝑖
+

𝐸
𝑗𝑗
) = (1/3)(2𝜆

𝑖𝑗
𝐸
𝑖𝑗
+ 2𝜆
−1

𝑖𝑗
𝐸
𝑗𝑖
+ 2𝐸
𝑖𝑖
+ 𝐸
𝑗𝑗
) ∈ Γ

𝑛
; that is,

−2/9 ∈ Δ, which is a contradiction.Hence, we proved that it is
impossible 𝜙(𝐸

𝑖𝑗
) = 𝜆
𝑖𝑗
𝐸
𝑖𝑗
+𝜆
−1

𝑖𝑗
𝐸
𝑗𝑖
or 𝜙(𝐸

𝑗𝑖
) = 𝜆
𝑖𝑗
𝐸
𝑖𝑗
+𝜆
−1

𝑖𝑗
𝐸
𝑗𝑖
.

If 𝜙(𝐸
𝑖𝑗
) = 𝜆
𝑖𝑗
𝐸
𝑖𝑗
and 𝜙(𝐸

𝑗𝑖
) = 𝜆
𝑖𝑗
𝐸
𝑖𝑗
, then (1/2)(𝐸

𝑖𝑖
+𝐸
𝑖𝑗
+

𝐸
𝑗𝑖
+ 𝐸
𝑗𝑗
) ∈ Γ
𝑛
implies (1/2)(𝜙(𝐸

𝑖𝑗
) + 𝜙(𝐸

𝑖𝑖
+ 𝐸
𝑗𝑖
+ 𝐸
𝑗𝑗
)) ∈ Γ
𝑛
;

that is, (1/2)(𝐸
𝑖𝑖
+2𝜆
𝑖𝑗
𝐸
𝑖𝑗
+𝐸
𝑗𝑗
) ∈ Γ
𝑛
, which is a contradiction.

Hence, we proved that 𝜙(𝐸
𝑖𝑗
) = 𝜆
𝑖𝑗
𝐸
𝑖𝑗
and 𝜙(𝐸

𝑗𝑖
) = 𝜆
−1

𝑖𝑗
𝐸
𝑗𝑖
, or

𝜙(𝐸
𝑖𝑗
) = 𝜆
−1

𝑖𝑗
𝐸
𝑗𝑖
and 𝜙(𝐸

𝑗𝑖
) = 𝜆
𝑖𝑗
𝐸
𝑖𝑗
.

3. Proof of Theorem 1

Suppose 𝜙 ∈ Φ
𝑛
, then we can derive Theorem 1 from

Propositions 13, 14, and 16.

Proposition 13. Suppose 𝑖, 𝑗 ∈ ⟨𝑛⟩ with 𝑖 ̸= 𝑗; then 𝜙(𝐸
𝑖𝑖
) = 0

if and only if 𝜙(𝐸
𝑗𝑗
) = 0.

Proof. Suppose 𝜙(𝐸
𝑖𝑖
) = 0 and 𝜙(𝐸

𝑗𝑗
) ̸= 0 for some 𝑖, 𝑗 ∈ ⟨𝑛⟩

with 𝑖 ̸= 𝑗. At first, we prove that 𝜙(𝑎𝐸
𝑖𝑖
+ 𝐸
𝑗𝑗
) = 𝜙(𝐸

𝑗𝑗
) for

arbitrary 𝑎 ∈ C. Since the equation is already truewhen 𝑎 = 0,
then we assume 𝑎 ̸= 0 in the following proof.

Let 𝐴 = 𝑎
−1

(𝑎𝐸
𝑖𝑖
+ 𝐸
𝑗𝑗
), 𝐵 = −𝑎

−1

𝐸
𝑗𝑗
, and 𝐶 = 𝐸

𝑗𝑗
; then

it is easy to verify 𝐴, 𝐵, and 𝐶 satisfying the assumption of
Corollary 10. So 𝜙(𝑎−1(𝑎𝐸

𝑖𝑖
+ 𝐸
𝑗𝑗
)) + 𝜙(−𝑎

−1

𝐸
𝑗𝑗
) and 𝜙(𝐸

𝑗𝑗
)

are orthogonal. Moreover, we can derive 𝜙(𝑎𝐸
𝑖𝑖
+ 𝐸
𝑗𝑗
) ∈ Γ
𝑛

from (𝑎𝐸
𝑖𝑖
+𝐸
𝑗𝑗
) − 𝑎𝐸

𝑖𝑖
∈ 𝑆Γ
𝑛
and 𝜙(𝐸

𝑖𝑖
) = 0. Let 𝑎−1(𝜙(𝑎𝐸

𝑖𝑖
+

𝐸
𝑗𝑗
)−𝜙(𝐸

𝑗𝑗
)) = 𝐷, then𝐷 and𝜙(𝐸

𝑗𝑗
) are orthogonal 𝑘-potent

matrices. While 𝜙(𝑎𝐸
𝑖𝑖
+ 𝐸
𝑗𝑗
) ∈ Γ
𝑛
implies 𝑎𝐷 + 𝜙(𝐸

𝑗𝑗
) ∈ Γ
𝑛
;

then 𝑎𝐷 ∈ Γ
𝑛
. There are two cases on 𝑎.

(1) If 𝑎 ∉ Λ, then𝐷 = 0; that is, 𝜙(𝑎𝐸
𝑖𝑖
+ 𝐸
𝑗𝑗
) = 𝜙(𝐸

𝑗𝑗
);

(2) if 𝑎 ∈ Λ, we can derive that (1/3)𝜙(𝑎𝐸
𝑖𝑖
+ 𝐸
𝑗𝑗
) −

(1/3)𝜙[(𝑎 − 3)𝐸
𝑖𝑖
+ 𝐸
𝑗𝑗
] ∈ Γ
𝑛
from (1/3)(𝑎𝐸

𝑖𝑖
+ 𝐸
𝑗𝑗
) −

(1/3)[(𝑎 − 3)𝐸
𝑖𝑖
+ 𝐸
𝑗𝑗
] ∈ 𝑆Γ

𝑛
. Note that 𝑎 − 3 ∉ Λ,

so it is true that 𝜙[(𝑎 − 3)𝐸
𝑖𝑖
+ 𝐸
𝑗𝑗
] = 𝜙(𝐸

𝑗𝑗
); that is,

(1/3)𝜙(𝑎𝐸
𝑖𝑖
+𝐸
𝑗𝑗
)−(1/3)𝜙(𝐸

𝑗𝑗
) = (𝑎/3)𝐷 ∈ Γ

𝑛
. Finally,

we can derive𝐷 = 0 from 𝑎/3 ∉ Λ and𝐷 ∈ Γ
𝑛
. At the

same time, 𝜙(𝑎𝐸
𝑖𝑖
+ 𝐸
𝑗𝑗
) = 𝜙(𝐸

𝑗𝑗
).

Anyway, 𝜙(𝑎𝐸
𝑖𝑖
+ 𝐸
𝑗𝑗
) = 𝜙(𝐸

𝑗𝑗
) for arbitrary 𝑎 ∈ C.

Since (𝑏−1 + 𝑏)−1(𝑏−1𝐸
𝑖𝑖
+ 𝐸
𝑖𝑗
+ 𝐸
𝑗𝑖
+ 𝑏𝐸
𝑗𝑗
) ∈ 𝑆Γ

𝑛
for every

nonzero 𝑏 ∈ C with 1 + 𝑏2 ̸= 0, then (𝑏−1 + 𝑏)−1[𝜙(𝐸
𝑖𝑗
+ 𝐸
𝑗𝑖
) +

𝜙(𝑏
−1

𝐸
𝑖𝑖
+𝑏𝐸
𝑗𝑗
)] ∈ Γ
𝑛
, and (𝑏−1+𝑏)−1[𝜙(𝐸

𝑖𝑗
+𝐸
𝑗𝑖
)+𝑏𝜙(𝐸

𝑗𝑗
)] ∈

Γ
𝑛
by 𝜙(𝑏−1𝐸

𝑖𝑖
+ 𝑏𝐸
𝑗𝑗
) = 𝑏𝜙(𝐸

𝑗𝑗
). While the equation (𝑏−1 +

𝑏)
−𝑘

[𝜙(𝐸
𝑖𝑗
+ 𝐸
𝑗𝑖
) + 𝑏𝜙(𝐸

𝑗𝑗
)]
𝑘

= (𝑏
−1

+ 𝑏)
−1

[𝜙(𝐸
𝑖𝑗
+ 𝐸
𝑗𝑖
) +

𝑏𝜙(𝐸
𝑗𝑗
)] is equivalent to 𝑏𝑘−1[𝜙(𝐸

𝑖𝑗
+ 𝐸
𝑗𝑖
) + 𝑏𝜙(𝐸

𝑗𝑗
)]
𝑘

= (1 +

𝑏
2

)
𝑘−1

[𝜙(𝐸
𝑖𝑗
+ 𝐸
𝑗𝑖
) + 𝑏𝜙(𝐸

𝑗𝑗
)]. Note that 𝜙(𝐸

𝑖𝑗
+ 𝐸
𝑗𝑖
) is the

constant term of the equation; then 𝜙(𝐸
𝑖𝑗
+ 𝐸
𝑗𝑖
) = 0 by the

infinite property of 𝑏, and (𝑏
−1

+ 𝑏)
−1

𝑏𝜙(𝐸
𝑗𝑗
) ∈ Γ

𝑛
follows.

Then we can derive 𝜙(𝐸
𝑗𝑗
) = 0which is a contradiction to the

assumption.

Proposition 14. Suppose 𝜙(𝐸
𝑖𝑖
) = 0 for every 𝑖 ∈ ⟨𝑛⟩; then

𝜙(𝑋) = 0 for arbitrary 𝑋 ∈ 𝑆
𝑛
.

Proof. The proof will be completed by induction on the
following equation for arbitrary 𝑋 ∈ 𝑆

𝑛
with 𝑋[𝑖, 𝑖] = 𝑥

𝑖
for

every 𝑖 ∈ ⟨𝑛⟩:

𝜙(𝑋
{1,...,𝑚}

+

𝑛

∑

𝑖=𝑚+1

𝑥
𝑖
𝐸
𝑖𝑖
) = 0, (10)

where 1 ≤ 𝑚 ≤ 𝑛 − 1.
When 𝑚 = 1, (10) is equivalent to 𝜙(∑𝑛

𝑖=1
𝑎
𝑖
𝐸
𝑖𝑖
) = 0 for

arbitrary𝐷
𝑛
= ∑
𝑛

𝑖=1
𝑎
𝑖
𝐸
𝑖𝑖
∈ 𝑆
𝑛
.

At first, by the assumption, it is already true that𝜙(𝐸
𝑖𝑖
) = 0

for every 𝑖 ∈ ⟨𝑛⟩.
Suppose 𝜙(∑𝑠

𝑗=1
𝑎
𝑖
𝑗

𝐸
𝑖
𝑗
𝑖
𝑗

) = 0 for every 𝑠 ∈ ⟨𝑛−1⟩with 1 ≤
𝑖
1
< ⋅ ⋅ ⋅ < 𝑖

𝑠
≤ 𝑛; then by the homogeneity of 𝜙, we just need

to prove the following equation for 𝑖
𝑠+1

with 𝑖
𝑠
< 𝑖
𝑠+1

≤ 𝑛:

𝜙(

𝑠

∑

𝑗=1

𝑎
𝑖
𝑗

𝐸
𝑖
𝑗
𝑖
𝑗

+ 𝐸
𝑖
𝑠+1
𝑖
𝑠+1

) = 0. (11)

There are two cases on 𝐵
𝑠
= ∑
𝑠

𝑗=1
𝑎
𝑖
𝑗

𝐸
𝑖
𝑗
𝑖
𝑗

.

(1) If 𝐵
𝑠
∉ 𝑆Γ
𝑛
, then there exists 𝑙 ∈ ⟨𝑠⟩ such that 𝑎

𝑖
𝑙

∉ Δ,
and the following statements are true:

(𝐵
𝑠
+ 𝐸
𝑖
𝑠+1
𝑖
𝑠+1

) − 𝐵
𝑠
= 𝐸
𝑖
𝑠+1
𝑖
𝑠+1

∈ 𝑆Γ
𝑛
,

𝑎
−1

𝑖
𝑙

(𝐵
𝑠
+ 𝐸
𝑖
𝑠+1
𝑖
𝑠+1

) − 𝑎
−1

𝑖
𝑙

(𝐵
𝑠
+ 𝐸
𝑖
𝑠+1
𝑖
𝑠+1

− 𝑎
𝑖
𝑙

𝐸
𝑖
𝑙
𝑖
𝑙

) = 𝐸
𝑖
𝑙
𝑖
𝑙

∈ 𝑆Γ
𝑛
.

(12)



Abstract and Applied Analysis 5

Note that 𝜙(𝐵
𝑠
) = 0 and 𝜙(𝐵

𝑠
+ 𝐸
𝑖
𝑠+1
𝑖
𝑠+1

− 𝑎
𝑖
𝑙

𝐸
𝑖
𝑙
𝑖
𝑙

) = 0 by
the assumption; then the following statements are true:

𝜙 (𝐵
𝑠
+ 𝐸
𝑖
𝑠+1
𝑖
𝑠+1

) ∈ Γ
𝑛
,

𝑎
−1

𝑖
𝑙

𝜙 (𝐵
𝑠
+ 𝐸
𝑖
𝑠+1
𝑖
𝑠+1

) ∈ Γ
𝑛
.

(13)

Since 𝑎
𝑖
𝑙

∉ Δ, then 𝑎
−1

𝑖
𝑙

∉ Δ, and 𝜙(𝐵
𝑠
+ 𝐸
𝑖
𝑠+1
𝑖
𝑠+1

) = 0

follows.
(2) If 𝐵

𝑠
∈ 𝑆Γ
𝑛
, then we have the following statements:

𝐵
𝑠
+ 𝐸
𝑖
𝑠+1
𝑖
𝑠+1

∈ 𝑆Γ
𝑛
,

1

3
(𝐵
𝑠
+ 𝐸
𝑖
𝑠+1
𝑖
𝑠+1

) −
1

3
(−3𝐸
𝑖
1
𝑖
1

+ 𝐵
𝑠
+ 𝐸
𝑖
𝑠+1
𝑖
𝑠+1

) = 𝐸
𝑖
1
𝑖
1

∈ 𝑆Γ
𝑛
.

(14)

Since 𝑎
𝑖
1

−3 ∉ Δ; then𝜙(−3𝐸
𝑖
1
𝑖
1

+𝐵
𝑠
+𝐸
𝑖
𝑠+1
𝑖
𝑠+1

) = 0 by case 1,
and (1/3)𝜙(𝐵

𝑠
+𝐸
𝑖
𝑠+1
𝑖
𝑠+1

) ∈ Γ
𝑛
follows. While 𝜙(𝐵

𝑠
+𝐸
𝑖
𝑠+1
𝑖
𝑠+1

) ∈

Γ
𝑛
, hence we get 𝜙(𝐵

𝑠
+ 𝐸
𝑖
𝑠+1
𝑖
𝑠+1

) = 0.
Anyway, we prove 𝜙(∑𝑠

𝑗=1
𝑎
𝑖
𝑗

𝐸
𝑖
𝑗
𝑖
𝑗

+ 𝐸
𝑖
𝑠+1
𝑖
𝑠+1

) = 0; then by
the induction, (10) is true for𝑚 = 1.

Suppose (10) is true for 𝑚 ∈ ⟨𝑛 − 1⟩, then we prove the
case on𝑚 + 1.

Let 𝑋
𝑚

= 𝑋
[1,...,𝑚; 1,...,𝑚]

, 𝑔 = 𝑋
[1,...,𝑚;𝑚+1]

, 𝐴
𝑛−𝑚

=

∑
𝑛−𝑚

𝑖=1
𝑥
𝑖+𝑚

𝐸
𝑖𝑖
∈ 𝑀
𝑛−𝑚

; then we have 𝑔𝑡 = 𝑋
[𝑚+1; 1,...,𝑚]

and
the following equation:

𝜙([
𝑋
𝑚

0

0 𝐴
𝑛−𝑚

]) = 0. (15)

We will prove the following equation which is equivalent to
(10) on𝑚 + 1:

𝜙(

[
[
[
[

[

𝑋
𝑚

𝑔 0

𝑔
𝑡

𝑥
𝑚+1

0

0 0 𝐴
𝑛−𝑚−1

]
]
]
]

]

) = 0 (16)

For arbitrary nonzero 𝛼 ∈ C with 𝑔
𝑡

𝑔 + 𝛼
2

̸= 0, the
following 𝑛 × 𝑛matrix 𝐵 is idempotent:

𝐵 = 𝜏

[
[
[
[

[

𝛼
−1

𝑔𝑔
𝑡

𝑔 0

𝑔
𝑡

𝛼 0

0 0 0

]
]
]
]

]

, (17)

where 𝜏 = (𝛼
−1

𝑔
𝑡

𝑔 + 𝛼)
−1.

Note that 𝑋
𝑚+1

= [
𝑋
𝑚
𝑔

𝑔
𝑡
𝑥
𝑚+1

] and 𝐴
𝑛−𝑚−1

satisfy the
following equation:

𝜏

[
[
[
[

[

𝑋
𝑚

𝑔 0

𝑔
𝑡

𝑥
𝑚+1

0

0 0 𝐴
𝑛−𝑚−1

]
]
]
]

]

− 𝜏[

[

𝑋
𝑚
− 𝛼
−1

𝑔𝑔
𝑡

0 0

0 𝑥
𝑚+1

− 𝛼 0

0 0 𝐴
𝑛−𝑚−1

]

]

= 𝐵.

(18)

After applying 𝜙 on the above matrices, we have
𝜏𝜙(𝑋
𝑚+1

⊕ 𝐴
𝑛−𝑚−1

) ∈ Γ
𝑛
by the inductive assumption. Then

𝜙(𝑋
𝑚+1

⊕ 𝐴
𝑛−𝑚−1

) = 0 because of the assumption of 𝛼; that
is, (10) holds for𝑚 + 1.

Finally, we prove that 𝜙(𝑋) = 0 for every 𝑋 ∈ 𝑆
𝑛
by the

induction.

Remark 15. If 𝜙 is a weak 𝑘-potence preserver from 𝑀
𝑛
to

𝑀
𝑛
; then Propositions 13 and 14 (replacing 𝑔

𝑡 with ℎ
𝑡 for

arbitrary 𝑋 ∈ 𝑀
𝑛
in the proof of Proposition 14) hold since

Corollary 10 is true under this assumption.

Proposition 16. Suppose 𝜙(𝐸
𝑖𝑖
) ̸= 0 for every 𝑖 ∈ ⟨𝑛⟩, then

there exist 𝑃 ∈ 𝐺𝐿
𝑛
and 𝑐 ∈ Λ such that 𝜙(𝑋) = 𝑐𝑃

−1

𝑋𝑃

for every𝑋 ∈ 𝑆
𝑛
.

Proof. The proof will be completed in the following 4 steps.

Step 1. 𝜙(𝐸
𝑖𝑖
) = 𝑐
𝑖
𝐸
𝑖𝑖
, where 𝑐

𝑖
∈ Λ for every 𝑖 ∈ ⟨𝑛⟩.

Since 𝜙(𝐸
𝑖𝑖
) is nonzero 𝑘-potent, then we can derive from

Lemma 4 that there exists 𝑃
1
∈ 𝐺𝐿
𝑛
such that 𝑃−1

1
𝜙(𝐸
𝑖𝑖
)𝑃
1
=

𝑐
𝑖
𝐸
𝑖𝑖
for every 𝑖 ∈ ⟨𝑛⟩, where 𝑐

𝑖
∈ Λ. It is obvious that the

following map 𝜑 ∈ Φ
𝑛
and 𝜑(𝐸

𝑖𝑖
) = 𝑐
𝑖
𝐸
𝑖𝑖
for every 𝑖 ∈ ⟨𝑛⟩.

𝜑 (𝑋) = 𝑃
−1

1
𝜙 (𝑋) 𝑃

1
. (19)

Without loss of generality, we can assume 𝜙(𝐸
𝑖𝑖
) = 𝑐
𝑖
𝐸
𝑖𝑖
.

Step 2. 𝜙(∑𝑛
𝑖=1

𝑎
𝑖
𝐸
𝑖𝑖
) = ∑

𝑛

𝑖=1
𝑎
𝑖
𝜙(𝐸
𝑖𝑖
), for arbitrary diagonal

matrix∑𝑛
𝑖=1

𝑎
𝑖
𝐸
𝑖𝑖
.

The proof of this step can be seen in Step 3, Section 3 in
[5].

Step 3. 𝑐
𝑖
= 𝑐 ∈ Λ for every 𝑖 ∈ ⟨𝑛⟩.

Let 𝐴 = (1/2)(𝐸
𝑖𝑗
+ 𝐸
𝑗𝑖
), 𝐵 = (1/2)(𝐸

𝑖𝑖
+ 𝐸
𝑗𝑗
), and 𝐶 =

∑
𝑙∈<𝑛>\{𝑖,𝑗}

𝐸
𝑙𝑙
, we can derive the following equation from Step

2 and Corollary 10:

𝜙 (𝐸
𝑖𝑗
+ 𝐸
𝑗𝑖
) = 𝛼
0
𝐸
𝑖𝑖
+ 𝛽
0
𝐸
𝑖𝑗
+ 𝛾
0
𝐸
𝑗𝑖
+ 𝛿
0
𝐸
𝑗𝑗
, (20)

where 𝛼
0
, 𝛽
0
, 𝛾
0
, 𝛿
0
∈ C, 𝑖, 𝑗 ∈ ⟨𝑛⟩ with 𝑖 ̸= 𝑗.

Note that 𝑝𝐸
𝑖𝑖
+𝑞(𝐸
𝑖𝑗
+𝐸
𝑗𝑖
)+ (1−𝑝)𝐸

𝑗𝑗
∈ 𝑆Γ
𝑛
for 𝑝, 𝑞 ∈ C

with 𝑞2 = 𝑝(1 − 𝑝). In fact, 0 and 1 are all the eigenvalues of
this matrix. Applying 𝜙 on the matrix 𝑞(𝐸

𝑖𝑗
+ 𝐸
𝑗𝑖
) + [𝑝𝐸

𝑖𝑖
+

(1−𝑝)𝐸
𝑗𝑗
], we have𝐻(𝑝) = 𝑞(𝛼

0
𝐸
𝑖𝑖
+𝛽
0
𝐸
𝑖𝑗
+𝛾
0
𝐸
𝑗𝑖
+𝛿
0
𝐸
𝑗𝑗
) +

𝑝𝑐
𝑖
𝐸
𝑖𝑖
+ (1 − 𝑝)𝑐

𝑗
𝐸
𝑗𝑗
= (𝑝𝑐
𝑖
+ 𝑞𝛼
0
)𝐸
𝑖𝑖
+ 𝑞𝛽
0
𝐸
𝑖𝑗
+ 𝑞𝛾
0
𝐸
𝑗𝑖
+ ((1 −

𝑝)𝑐
𝑗
+ 𝑞𝛿
0
)𝐸
𝑗𝑗
∈ Γ
𝑛
.

Since 𝑘 is fixed, then Δ is the finite set which contains all
of eigenvalues of𝐻(𝑝), and there exists 𝑤 ∈ {𝑐 + 𝑑 | 𝑐, 𝑑 ∈ Δ}

such that the trace of𝐻(𝑝) is𝑤 for infinite choices of𝑝; that is,
there exist (𝑝

1
, 𝑝
2
) with 𝑝

1
̸= 𝑝
2
such that the traces of𝐻(𝑝

1
)

and 𝐻(𝑝
2
) are all equal to 𝑤; then we have the following

equation:

(𝑝
1
𝑐
𝑖
+ 𝑞
1
𝛼
0
) + ((1 − 𝑝

1
) 𝑐
𝑗
+ 𝑞
1
𝛿
0
)

= (𝑝
2
𝑐
𝑖
+ 𝑞
2
𝛼
0
) + ((1 − 𝑝

2
) 𝑐
𝑗
+ 𝑞
2
𝛿
0
)

(21)

which is equivalent to
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(𝑞
1
− 𝑞
2
) (𝛼
0
+ 𝛿
0
) = (𝑝

2
− 𝑝
1
) (𝑐
𝑖
− 𝑐
𝑗
) , (22)

where 𝑞2
𝑠
= 𝑝
𝑠
(1 − 𝑝

𝑠
), for 𝑠 = 1, 2.

Naturally, there are infinite choices of 𝑝
2
for fixed 𝑝

1
such

that the above equation is true. If (𝑞
1
− 𝑞
2
)/(𝑝
2
− 𝑝
1
) is equal

to some 𝑎 ∈ C, where 𝑝
2

̸= 𝑝
1
, 𝑝
1
and 𝑞

1
are fixed, then we

can derive from the following equation:

(𝑎
2

+ 1) 𝑝
2

2
− (2𝑎𝑞

1
+ 2𝑎
2

𝑝
1
+ 1) 𝑝

2
+ (𝑞
1
+ 𝑎𝑝
1
)
2

= 0

(23)
that there are infinite choices of𝑝

2
for constant (𝑞

1
−𝑞
2
)/(𝑝
2
−

𝑝
1
) if and only if 𝑎2 + 1 = 2𝑎𝑞

1
+ 2𝑎
2

𝑝
1
+ 1 = (𝑞

1
+ 𝑎𝑝
1
)
2

= 0.
While 𝑎2 + 1 = (𝑞

1
+ 𝑎𝑝
1
)
2

= 0 and 𝑞2
1
= 𝑝
1
(1 − 𝑝

1
) imply

𝑝
1
= 𝑞
1
= 0, which is a contradiction to 2𝑎𝑞

1
+2𝑎
2

𝑝
1
+1 = 0,

hence (𝑞
1
− 𝑞
2
)/(𝑝
2
− 𝑝
1
) varies with 𝑝

2
.

Since 𝛼
0
+ 𝛿
0
and 𝑐
𝑖
− 𝑐
𝑗
are all fixed numbers for fixed

𝜙, then 𝛼
0
+ 𝛿
0

̸= 0 implies that there are at least two different
values of 𝑐

𝑖
− 𝑐
𝑗
= (𝑞
1
− 𝑞
2
)/(𝑝
2
−𝑝
1
)(𝛼
0
+𝛿
0
) for fixed 𝑝

1
and

infinite choices of 𝑝
2
; it is a contradiction. So 𝛼

0
+ 𝛿
0
= 0 and

𝑐
𝑖
= 𝑐
𝑗
follows. Hence 𝑐

𝑖
= 𝑐 ∈ Λ for every 𝑖 ∈ ⟨𝑛⟩.

Step 4. 𝜙(𝑋) = 𝑋 for every𝑋 ∈ 𝑆
𝑛
.

After the discussion in Steps 1, 2, and 3, we already have
the following equation:

𝜙(

𝑛

∑

𝑖=1

𝑎
𝑖
𝐸
𝑖𝑖
) = 𝑐

𝑛

∑

𝑖=1

𝑎
𝑖
𝐸
𝑖𝑖
, (24)

where 𝑐 ∈ Λ, 𝑎
𝑖
∈ C for every 𝑖 ∈ ⟨𝑛⟩. Since the map 𝑐−1𝜙 ∈

Φ
𝑛
, then we can assume 𝜙(∑𝑛

𝑖=1
𝑎
𝑖
𝐸
𝑖𝑖
) = ∑

𝑛

𝑖=1
𝑎
𝑖
𝐸
𝑖𝑖
without

loss of generality.
The proof in this step will be completed by induction on

the following equation for arbitrary 𝑋 ∈ 𝑆
𝑛
with 𝑋[𝑖, 𝑖] = 𝑥

𝑖

for every 𝑖 ∈ ⟨𝑛⟩:

𝜙(𝑋
{𝑖
1
,...,𝑖
𝑚
}
+ ∑

𝑗∈<𝑛>\{𝑖
1
,...,𝑖
𝑚
}

𝑥
𝑗
𝐸
𝑗𝑗
)

= 𝑋
{𝑖
1
,...,𝑖
𝑚
}
+ ∑

𝑗∈<𝑛>\{𝑖1 ,...,𝑖𝑚}

𝑥
𝑗
𝐸
𝑗𝑗
,

(25)

where 1 ≤ 𝑖
1
< ⋅ ⋅ ⋅ < 𝑖

𝑚
≤ 𝑛 with 2 ≤ 𝑚 ≤ 𝑛 − 1.

When 𝑚 = 2, (25) is equivalent to 𝜙(𝐸
𝑖𝑗
+ 𝐸
𝑗𝑖
+ 𝐷
𝑛
) =

𝐸
𝑖𝑗
+ 𝐸
𝑗𝑖
+ 𝐷
𝑛
for arbitrary diagonal matrix 𝐷

𝑛
∈ 𝑆
𝑛
and 𝑖,

𝑗 ∈ ⟨𝑛⟩ with 𝑖 < 𝑗, since 𝜙 is homogeneous. The proof will be
completed in the following (1) and (2).

(1) 𝜙(𝐸
𝑖𝑖+1

+ 𝐸
𝑖+1𝑖

+ 𝐷
𝑛
) = 𝐸

𝑖𝑖+1
+ 𝐸
𝑖+1𝑖

+ 𝐷
𝑛
for every

𝑖 ∈ ⟨𝑛 − 1⟩.
We already derive from Corollary 11 that 𝜙(𝐸

𝑖𝑖+1
+ 𝐸
𝑖+1𝑖

+

𝐷
𝑛
) = 𝜆

𝑖
𝐸
𝑖𝑖+1

+ 𝜆
−1

𝑖
𝐸
𝑖+1𝑖

+ 𝐷
𝑛
for every 𝑖 ∈ ⟨𝑛 − 1⟩, where

𝜆
𝑖
∈ C is only decided by 𝑖.
Suppose the map 𝜌 : 𝑆

𝑛
→ 𝑀

𝑛
satisfies the following

equation for every𝑋 ∈ 𝑆
𝑛
,

𝜌 (𝑋) = diag(1, 𝜆
1
, 𝜆
1
𝜆
2
, . . . ,

𝑛−1

∏

𝑖=1

𝜆
𝑖
)𝜙 (𝑋)

× diag(1, 𝜆−1
1
, 𝜆
−1

1
𝜆
−1

2
, . . . ,

𝑛−1

∏

𝑖=1

𝜆
−1

𝑖
) ;

(26)

then 𝜌 ∈ Φ
𝑛
, and for arbitrary diagonal matrix 𝐷

𝑛
and every

𝑖 ∈ ⟨𝑛 − 1⟩, 𝜌(𝐷
𝑛
) = 𝐷

𝑛
and 𝜌(𝐸

𝑖𝑖+1
+ 𝐸
𝑖+1𝑖

+ 𝐷
𝑛
) = 𝐸

𝑖𝑖+1
+

𝐸
𝑖+1𝑖

+ 𝐷
𝑛
.

Without loss of generality, we can assume 𝜙(𝐸
𝑖𝑖+1

+𝐸
𝑖+1𝑖

+

𝐷
𝑛
) = 𝐸
𝑖𝑖+1

+𝐸
𝑖+1𝑖

+𝐷
𝑛
for every 𝑖 ∈ ⟨𝑛−1⟩ and arbitrary𝐷

𝑛
.

(2) Suppose 𝜙(𝐸
𝑖𝑗
+𝐸
𝑗𝑖
+𝐷
𝑛
) = 𝐸
𝑖𝑗
+𝐸
𝑗𝑖
+𝐷
𝑛
for every 𝑖,

𝑗 with 1 ≤ 𝑗 − 𝑖 < 𝑠 < 𝑛 − 1; then 𝜙(𝐸
𝑖𝑗
+ 𝐸
𝑗𝑖
+ 𝐷
𝑛
) =

𝐸
𝑖𝑗
+ 𝐸
𝑗𝑖
+ 𝐷
𝑛
for every 𝑖, 𝑗 with 𝑗 − 𝑖 = 𝑠.

At first, we have to prove that 𝜙(𝑥
𝑖𝑖+1

(𝐸
𝑖𝑖+1

+ 𝐸
𝑖+1𝑖

) +

𝑥
𝑖+1𝑖+𝑚

(𝐸
𝑖+1𝑖+𝑚

+ 𝐸
𝑖+𝑚𝑖+1

) + 𝐷
𝑛
) = 𝑥

𝑖𝑖+1
(𝐸
𝑖𝑖+1

+ 𝐸
𝑖+1𝑖

) +

𝑥
𝑖+1𝑖+𝑚

(𝐸
𝑖+1𝑖+𝑚

+𝐸
𝑖+𝑚𝑖+1

)+𝐷
𝑛
for arbitrary nonzero 𝑥

𝑖𝑖+1
and

𝑥
𝑖+1𝑖+𝑚

∈ C.
By the assumption, we already have the following equa-

tions:

𝜙 (𝑥
𝑖𝑖+1

(𝐸
𝑖𝑖+1

+ 𝐸
𝑖+1𝑖

) + 𝐷
𝑛
) = 𝑥
𝑖𝑖+1

(𝐸
𝑖𝑖+1

+ 𝐸
𝑖+1𝑖

) + 𝐷
𝑛
,

𝜙 (𝑥
𝑖+1𝑖+𝑚

(𝐸
𝑖+1𝑖+𝑚

+ 𝐸
𝑖+𝑚𝑖+1

) + 𝐷
𝑛
)

= 𝑥
𝑖+1𝑖+𝑚

(𝐸
𝑖+1𝑖+𝑚

+ 𝐸
𝑖+𝑚𝑖+1

) + 𝐷
𝑛
.

(27)

Let𝑋
1
= 𝑥
𝑖𝑖+1

(𝐸
𝑖𝑖+1

+𝐸
𝑖+1𝑖

) + 𝑥
𝑖+1𝑖+𝑚

(𝐸
𝑖+1𝑖+𝑚

+𝐸
𝑖+𝑚𝑖+1

) +

𝐷
𝑛
,𝑋
2
= 𝑥
𝑖𝑖+1

(𝐸
𝑖𝑖+1

+𝐸
𝑖+1𝑖

) +𝐷
𝑛
, and𝑋

3
= 𝑥
𝑖+1𝑖+𝑚

(𝐸
𝑖+1𝑖+𝑚

+

𝐸
𝑖+𝑚𝑖+1

) + 𝐷
𝑛
. Then the following statements are true

𝑋
1
− (𝑋
2
− 𝑎
𝑖+1
𝐸
𝑖+1𝑖+1

− 𝑎
𝑖+𝑚

𝐸
𝑖+𝑚𝑖+𝑚

) ∈ 𝑆Γ
𝑛
,

𝑋
1
−(𝑋
2
− 𝑎
𝑖+1
𝐸
𝑖+1𝑖+1

− 𝑎
𝑖+𝑚

𝐸
𝑖+𝑚𝑖+𝑚

)+ 𝜖

𝑛

∑

𝑙 ̸= 𝑖+1,𝑖+𝑚

𝐸
𝑙𝑙
∈ 𝑆Γ
𝑛
,

𝑋
1
− (𝑋
3
− 𝑏
𝑖
𝐸
𝑖𝑖
− 𝑏
𝑖+1
𝐸
𝑖+1𝑖+1

) ∈ 𝑆Γ
𝑛
,

𝑋
1
− (𝑋
3
− 𝑏
𝑖
𝐸
𝑖𝑖
− 𝑏
𝑖+1
𝐸
𝑖+1𝑖+1

) + 𝜖

𝑛

∑

𝑙 ̸= 𝑖,𝑖+1

𝐸
𝑙𝑙
∈ 𝑆Γ
𝑛
,

(28)

where 𝑥
𝑖+1𝑖+𝑚

(𝐸
𝑖+1𝑖+𝑚

+ 𝐸
𝑖+𝑚𝑖+1

) + 𝑎
𝑖+1
𝐸
𝑖+1𝑖+1

+ 𝑎
𝑖+𝑚

𝐸
𝑖+𝑚𝑖+𝑚

and 𝑥
𝑖𝑖+1

(𝐸
𝑖𝑖+1

+ 𝐸
𝑖+1𝑖

) + 𝑏
𝑖
𝐸
𝑖𝑖
+ 𝑏
𝑖+1
𝐸
𝑖+1𝑖+1

are 𝑘-potent.
Let 𝐴 = 𝑋

1
, 𝐵 = −(𝑋

2
− 𝑎
𝑖+1
𝐸
𝑖+1𝑖+1

− 𝑎
𝑖+𝑚

𝐸
𝑖+𝑚𝑖+𝑚

), and
𝐶 = ∑

𝑛

𝑙 ̸= 𝑖+1,𝑖+𝑚
𝐸
𝑙𝑙
, then 𝐴, 𝐵, and 𝐶 satisfy the assumption

of Corollary 10. Hence we get 𝜙(𝐴) + 𝜙(𝐵) and 𝜙(𝐶) are
orthogonal; that is,

𝜙 (𝑋
1
) = 𝑋

2
+ 𝑦
𝑖+1
𝐸
𝑖+1𝑖+1

+ 𝑦
𝑖+𝑚

𝐸
𝑖+𝑚𝑖+𝑚

+ 𝑦
𝑖+1𝑖+𝑚

𝐸
𝑖+1𝑖+𝑚

+ 𝑦
𝑖+𝑚𝑖+1

𝐸
𝑖+𝑚𝑖+1

.

(29)

Similarly, we can derive the following equation from
Corollary 10:

𝜙 (𝑋
1
) = 𝑋

3
+ 𝑧
𝑖
𝐸
𝑖𝑖
+ 𝑧
𝑖+1
𝐸
𝑖+1𝑖+1

+ 𝑧
𝑖𝑖+1

𝐸
𝑖𝑖+1

+ 𝑧
𝑖+1𝑖

𝐸
𝑖+1𝑖

.

(30)

Comparing the above two equations, we have 𝑧
𝑖
= 𝑦
𝑖+𝑚

=

0, 𝑧
𝑖+1

= 𝑦
𝑖+1

, 𝑧
𝑖𝑖+1

= 𝑧
𝑖+1𝑖

= 𝑥
𝑖𝑖+1

, and 𝑦
𝑖+1𝑖+𝑚

= 𝑦
𝑖+𝑚𝑖+1

=

𝑥
𝑖+1𝑖+𝑚

, that is, 𝜙(𝑋
1
) = 𝑋

1
+ 𝑦
𝑖+1
𝐸
𝑖+1𝑖+1

.
We will prove 𝑧

𝑖+1
= 𝑦
𝑖+1

= 0. For arbitrary nonzero 𝛼
with 𝑥

2

𝑖+1𝑖+𝑚
+ 𝛼
2

̸= 0, let 𝜏 = (𝛼
−1

𝑥
2

𝑖+1𝑖+𝑚
+ 𝛼)
−1, and 𝑋

4
=
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−𝑋
2
+ 𝛼
−1

𝑥
2

𝑖+1𝑖+𝑚
𝐸
𝑖+1𝑖+1

+ 𝛼𝐸
𝑖+𝑚𝑖+𝑚

; then 𝜏𝑋
1
+ 𝜏𝑋
4
∈ 𝑆Γ
𝑛

implies 𝜏𝜙(𝑋
1
) + 𝜏𝜙(𝑋

4
) ∈ Γ
𝑛
; that is, the following matrix is

𝑘-potent since 𝜙(𝑋
4
) = 𝑋

4
by the assumption

𝜏 [
𝑦
𝑖+1

0

0 0
] + 𝜏 [

𝛼
−1

𝑥
2

𝑖+1𝑖+𝑚
𝑥
𝑖+1𝑖+𝑚

𝑥
𝑖+1𝑖+𝑚

𝛼
] (31)

by Lemma 5, 𝑦
𝑖+1

= 0. Hence we prove 𝜙(𝑋
1
) = 𝑋

1
.

Now we prove 𝜙(𝐸
𝑖𝑖+𝑚

+𝐸
𝑖+𝑚𝑖

+𝐷
𝑛
) = 𝐸
𝑖𝑖+𝑚

+𝐸
𝑖+𝑚𝑖

+𝐷
𝑛
.

By Corollary 11, we already have 𝜙(𝐸
𝑖𝑖+𝑚

+ 𝐸
𝑖+𝑚𝑖

+ 𝐷
𝑛
) =

𝜆
𝑖𝑖+𝑚

𝐸
𝑖𝑖+𝑚

+ 𝜆
−1

𝑖𝑖+𝑚
𝐸
𝑖+𝑚𝑖

+ 𝐷
𝑛
.

For arbitrary nonzero 𝛼 with 2 + 𝛼
2

̸= 0, (2𝛼
−1

+

𝛼)
−1

(𝐸
𝑖𝑖+𝑚

+ 𝐸
𝑖+𝑚𝑖

+ 𝐷
𝑛
) − (2𝛼

−1

+ 𝛼)
−1

(−𝛼
−1

(𝐸
𝑖𝑖
+ 𝐸
𝑖𝑖+1

+

𝐸
𝑖+1𝑖

+𝐸
𝑖+1𝑖+1

) −𝐸
𝑖+1𝑖+𝑚

−𝐸
𝑖+𝑚𝑖+1

−𝛼𝐸
𝑖+𝑚𝑖+𝑚

+𝐷
𝑛
) = (2𝛼

−1

+

𝛼)
−1

(𝛼
−1

(𝐸
𝑖𝑖
+𝐸
𝑖𝑖+1

+𝐸
𝑖+1𝑖

+𝐸
𝑖+1𝑖+1

)+(𝐸
𝑖𝑖+𝑚

+𝐸
𝑖+1𝑖+𝑚

)+(𝐸
𝑖+𝑚𝑖

+

𝐸
𝑖+𝑚𝑖+1

) + 𝛼𝐸
𝑖+𝑚𝑖+𝑚

) is idempotent.
After applying 𝜙 on the above matrices, we have (2𝛼−1 +

𝛼)
−1

𝜙(𝐸
𝑖𝑖+𝑚

+ 𝐸
𝑖+𝑚𝑖

+𝐷
𝑛
) − (2𝛼

−1

+ 𝛼)
−1

𝜙(−𝛼
−1

(𝐸
𝑖𝑖
+ 𝐸
𝑖𝑖+1

+

𝐸
𝑖+1𝑖

+𝐸
𝑖+1𝑖+1

) −𝐸
𝑖+1𝑖+𝑚

−𝐸
𝑖+𝑚𝑖+1

−𝛼𝐸
𝑖+𝑚𝑖+𝑚

+𝐷
𝑛
) = (2𝛼

−1

+

𝛼)
−1

(𝛼
−1

(𝐸
𝑖𝑖
+𝐸
𝑖𝑖+1

+𝐸
𝑖+1𝑖

+𝐸
𝑖+1𝑖+1

)+(𝐸
𝑖𝑖+𝑚

+𝐸
𝑖+1𝑖+𝑚

)+(𝐸
𝑖+𝑚𝑖

+

𝐸
𝑖+𝑚𝑖+1

)+𝛼𝐸
𝑖+𝑚𝑖+𝑚

)+ (2𝛼
−1

+𝛼)
−1

((𝜆
𝑖𝑖+𝑚

−1)𝐸
𝑖𝑖+𝑚

+(𝜆
−1

𝑖𝑖+𝑚
−

1)𝐸
𝑖+𝑚𝑖

) ∈ Γ
𝑛
.

Then 𝜆
𝑖𝑖+𝑚

= 1 by Lemma 5.
By the induction, we prove𝜙(𝐸

𝑖𝑗
+𝐸
𝑗𝑖
+𝐷
𝑛
) = 𝐸
𝑖𝑗
+𝐸
𝑗𝑖
+𝐷
𝑛

for every 𝑖, 𝑗 with 1 ≤ 𝑖 < 𝑗 ≤ 𝑛.

(3) Suppose (25) is true for every 𝑠 with 2 ≤ 𝑠 < 𝑚 ≤ 𝑛;
then we prove it holds on𝑚.

For arbitrary𝑋 ∈ 𝑆
𝑛
with𝑋[𝑖, 𝑖] = 𝑥

𝑖
for every 𝑖 ∈ ⟨𝑛⟩, let

𝐴, 𝐵, 𝑈, 𝑉, 𝑦
𝑖
𝑚

, and 𝜏 satisfy the following equations:

𝐴 = 𝑋
{𝑖
1
,...,𝑖
𝑚
}
+ ∑

𝑗∈⟨𝑛⟩\{𝑖1 ,...,𝑖𝑚}

𝑥
𝑗
𝐸
𝑗𝑗
,

𝐵 = 𝑋
{𝑖
1
,...,𝑖
𝑚−1
}
+ ∑

𝑗∈⟨𝑛⟩\{𝑖1 ,...,𝑖𝑚−1}

𝑥
𝑗
𝐸
𝑗𝑗
,

𝑈 = 𝑋
{𝑖
1
,...,𝑖
𝑚−1
;𝑖
𝑚
}
,

𝑉 = 𝑋
{𝑖
𝑚
;𝑖
1
,...,𝑖
𝑚−1
}
,

𝑦
𝑖
𝑚

= (𝑋
{𝑖
𝑚
;𝑖
1
,...,𝑖
𝑚−1
}
𝑋
{𝑖
1
,...,𝑖
𝑚−1
;𝑖
𝑚
}
) [𝑖
𝑚
, 𝑖
𝑚
] ,

𝜏 = (𝛼
−1

𝑦
𝑖
𝑚

+ 𝛼)
−1

.

(32)

Then 𝜏𝐴+𝜏(−𝐵+𝛼−1𝑈𝑉+𝛼𝐸
𝑖
𝑚
𝑖
𝑚

) is idempotent for arbitrary
nonzero 𝛼with 𝑦

𝑖
𝑚

+𝛼
2

̸= 0. Applying 𝜙 on it, we have 𝜏𝜙(𝐴)+
𝜏𝜙(−𝐵+𝛼

−1

𝑈𝑉+𝛼𝐸
𝑖
𝑚
𝑖
𝑚

) ∈ Γ
𝑛
. Let𝐶 = −𝐵+𝛼

−1

𝑈𝑉+𝛼𝐸
𝑖
𝑚
𝑖
𝑚

;
then by 𝜏𝐴 + 𝜏𝐶 + 𝜖∑

𝑗∈⟨𝑛⟩\{𝑖
1
,...,𝑖
𝑚
}
𝐸
𝑗𝑗
∈ 𝑆Γ
𝑛
for every 𝜖 ∈ Λ,

we have 𝜏𝜙(𝐴) + 𝜙(𝜏𝐶 + 𝜖∑
𝑗∈⟨𝑛⟩\{𝑖

1
,...,𝑖
𝑚
}
𝐸
𝑗𝑗
) ∈ Γ
𝑛
.

Note that 𝜙(𝜏𝐶 + 𝜖∑
𝑗∈⟨𝑛⟩\{𝑖

1
,...,𝑖
𝑚
}
𝐸
𝑗𝑗
) = 𝜏𝐶 +

𝜖∑
𝑗∈⟨𝑛⟩\{𝑖

1
,...,𝑖
𝑚
}
𝐸
𝑗𝑗
and 𝜙(𝐶) = 𝐶 by the assumption; then

𝜏𝜙(𝐴) + 𝜏𝜙(𝐶) and ∑
𝑗∈⟨𝑛⟩\{𝑖

1
,...,𝑖
𝑚
}
𝐸
𝑗𝑗

are orthogonal by
Corollary 10; that is, 𝜙(𝐴) = 𝑌

{𝑖
1
,...,𝑖
𝑚
}
+∑
𝑗∈⟨𝑛⟩\{𝑖

1
,...,𝑖
𝑚
}
𝑥
𝑗
𝐸
𝑗𝑗
for

some 𝑌 ∈ 𝑀
𝑛
.

On the other hand, 𝐶 = −(𝑋
{𝑖
1
,...,𝑖
𝑚−1
}

+

∑
𝑗∈⟨𝑛⟩\{𝑖

1
,...,𝑖
𝑚−1
}
𝑥
𝑗
𝐸
𝑗𝑗
) + 𝛼

−1

𝑈𝑉 + 𝛼𝐸
𝑖
𝑚
𝑖
𝑚

= −(𝑋
{𝑖
1
,...,𝑖
𝑚
}
+

∑
𝑗∈⟨𝑛⟩\{𝑖

1
,...,𝑖
𝑚
}
𝑥
𝑗
𝐸
𝑗𝑗
) + 𝛼

−1

𝑈𝑉 + 𝛼𝐸
𝑖
𝑚
𝑖
𝑚

+ 𝑈 + 𝑉 implies
𝜏(𝑌
{𝑖
1
,...,𝑖
𝑚
}
− 𝑋
{𝑖
1
,...,𝑖
𝑚
}
+ 𝛼
−1

𝑈𝑉 + 𝛼𝐸
𝑖
𝑚
𝑖
𝑚

+ 𝑈 + 𝑉) =

𝜏(𝑌
{𝑖
1
,...,𝑖
𝑚
}
− 𝑋
{𝑖
1
,...,𝑖
𝑚
}
) + 𝜏(𝛼

−1

𝑈𝑉 + 𝛼𝐸
𝑖
𝑚
𝑖
𝑚

+ 𝑈 + 𝑉) ∈ Γ
𝑛
by

𝜏𝜙(𝐴)+𝜏𝜙(𝐶) ∈ Γ
𝑛
. By Lemma 5, we can derive the following

equations:

𝑌
{𝑖
1
,...,𝑖
𝑚−1
}
= 𝑋
{𝑖
1
,...,𝑖
𝑚−1
}
,

𝑌 [𝑖
𝑚
, 𝑖
𝑚
] = 𝑋 [𝑖

𝑚
, 𝑖
𝑚
] ,

𝑌
{𝑖
1
,...,𝑖
𝑚−1
},{𝑖
𝑚
}
= 𝜂𝑈,

𝑌
{𝑖
𝑚
},{𝑖
1
,...,𝑖
𝑚−1
}
= 𝜂
−1

𝑉

(33)

that is, 𝜙(𝐴) = 𝑋
{𝑖
1
,...,𝑖
𝑚−1
}
+𝜂𝑈+𝜂

−1

𝑉+∑
𝑗∈⟨𝑛⟩\{𝑖

1
,...,𝑖
𝑚−1
}
𝑥
𝑗
𝐸
𝑗𝑗
.

Let 𝐵
1
and 𝐵

2
satisfy the following equations:

𝐵
1
= 𝑋
{𝑖
2
,...,𝑖
𝑚
}
+ ∑

𝑗∈⟨𝑛⟩\{𝑖2 ,...,𝑖𝑚}

𝑥
𝑗
𝐸
𝑗𝑗
,

𝐵
2
= 𝑋
{𝑖
1
,...,𝑖
𝑚−2
,𝑖
𝑚
}
+ ∑

𝑗∈⟨𝑛⟩\{𝑖1 ,...,𝑖𝑚−2,𝑖𝑚}

𝑥
𝑗
𝐸
𝑗𝑗
;

(34)

then we can prove

𝑌
{𝑖
2
,...,𝑖
𝑚
}
= 𝑋
{𝑖
2
,...,𝑖
𝑚
}
,

𝑌 [𝑖
1
, 𝑖
1
] = 𝑋 [𝑖

1
, 𝑖
1
] ,

𝑌
{𝑖
2
,...,𝑖
𝑚
},{𝑖
1
}
= 𝛽𝑋
{𝑖
2
,...,𝑖
𝑚
},{𝑖
1
}
,

𝑌
{𝑖
1
},{𝑖
2
,...,𝑖
𝑚
}
= 𝛽
−1

𝑋
{𝑖
1
},{𝑖
2
,...,𝑖
𝑚
}
,

𝑌
{𝑖
1
,...,𝑖
𝑚−2
,𝑖
𝑚
}
= 𝑋
{𝑖
1
,...,𝑖
𝑚−2
,𝑖
𝑚
}
,

𝑌 [𝑖
𝑚−1

, 𝑖
𝑚−1

] = 𝑋 [𝑖
𝑚−1

, 𝑖
𝑚−1

] ,

𝑌
{𝑖
1
,...,𝑖
𝑚−2
,𝑖
𝑚
},{𝑖
𝑚−1
}
= 𝛾𝑋
{𝑖
1
,...,𝑖
𝑚−2
,𝑖
𝑚
},{𝑖
𝑚−1
}
,

𝑌
{𝑖
𝑚−1
},{𝑖
1
,...,𝑖
𝑚−2
,𝑖
𝑚
}
= 𝛾
−1

𝑋
{𝑖
𝑚−1
},{𝑖
1
,...,𝑖
𝑚−2
,𝑖
𝑚
}
.

(35)

Comparing the above three sets of equations, we can get
𝜙(𝐴) = 𝐴, which is equivalent to (25) on𝑚.

By the induction, we prove that 𝜙(𝑋) = 𝑋 for arbitrary
𝑋 ∈ 𝑆

𝑛
.

Remark 17. If 𝜙 is a weak 𝑘-potence preserver from𝑀
𝑛
to𝑀
𝑛
,

then the proof in Steps 1, 2, and 3 of Proposition 16 holds, and
we prove 𝜙(𝑋) = 𝑋 or 𝜙(𝑋) = 𝑋

𝑡 in Step 4. We omit the
detailed proof since the case on 𝑋

𝑡 is totally the same after
changing relevant notations.
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