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This paper is concerned with traveling wave fronts for a degenerate diffusion equation with time delay. We first establish the neces-
sary and sufficient conditions to the existence of monotone increasing and decreasing traveling wave fronts, respectively. Moreover,
special attention is paid to the asymptotic behavior of traveling wave fronts connecting two uniform steady states. Some previous
results are extended.

1. Introduction

In this paper, we consider the travelingwave fronts for the fol-
lowing reaction diffusion equation with Hodgkin-Huxley
source:

𝜕𝑢

𝜕𝑡
=
𝜕
2
𝑢
𝑚

𝜕𝑥2
+ 𝑓 (𝑢, 𝑢

𝜏
) , 𝑡 ≥ 0, 𝑥 ∈ R, (1)

where 𝑚 > 0, 𝑓(𝑢, V) = 𝑢
𝑝
(1 − 𝑢)

𝑞
(V − 𝑎), 𝑝 > 0, 𝑞 > 0,

𝑚+𝑝 > 1, 𝑎 ∈ (0, 1) is a constant, and 𝑢
𝜏
(𝑥, 𝑡) = 𝑢(𝑥, 𝑡−𝜏) for

𝜏 > 0.
In 1952, Hodgkin and Huxley [1] proposed the Hodgkin-

Huxley (H-H) equation

𝑑𝑢

𝑑𝑡
= 𝑢 (𝑡) (1 − 𝑢 (𝑡)) (𝑢 (𝑡 − 𝜏) − 𝑎) , 𝑎 ∈ (0, 1) , (2)

which describes the propagation of a voltage pulse through
the nerve axon of a squid. Recently, more and more attention
has been paid to the linear and semilinear parabolic equations
with and without time delay; see, for example, [2–7]. A
natural extension of theH-Hmodel is the following linear dif-
fusion equation:

𝜕𝑢

𝜕𝑡
=
𝜕
2
𝑢

𝜕𝑥2
+ 𝑢 (1 − 𝑢) (𝑢

𝜏
− 𝑎) . (3)

For this equation, there have been many interesting results
on the existence and stability of the traveling wave solutions,

for instance, [8–10]. By a traveling wave solution, we mean a
solution 𝑢(𝑥, 𝑡) of (3) of the form 𝑢(𝑥, 𝑡) = 𝜑(𝑥 + 𝑐𝑡) with the
wave speed 𝑐.

On the other hand, the classical research of traveling
waves for the standard linear diffusion equations with various
sources has been extended to some degenerate or singular
diffusion equations. For example, Aronson [11] considered
the following equation:

𝜕𝑢

𝜕𝑡
=
𝜕
2
𝑢
𝑚

𝜕𝑥2
+ 𝑢 (1 − 𝑢) (𝑢 − 𝑎) , 𝑎 ∈ (0, 1) . (4)

When𝑚 > 1, the equation degenerates at 𝑢 = 0. Hence, it has
a different feature from the case 𝑚 = 1; that is, if the initial
distribution of 𝑢(𝑥, 𝑡) has compact support, then 𝑢(𝑥, 𝑡) also
has compact support for each 𝑡 > 0. When 𝑚 > 1, 𝑎 ∈ (0,

1/2), Aronson [11] showed that (4) possesses a unique sharp
traveling wave solution with positive wave speed. Hosono
[12] solved the existence problem of traveling wave solutions
for (4) especially with nonpositive wave speed and discussed
the shape of the solutions. Sánchez-Garduño and Maini [13]
considered the following degenerate diffusion equation:

𝜕𝑢

𝜕𝑡
=

𝜕

𝜕𝑥
(𝐷 (𝑢)

𝜕𝑢

𝜕𝑥
) + 𝑢 (1 − 𝑢) (𝑢 − 𝑎) ,

𝑎 ∈ (0, 1) , 𝐷 (0) = 0,

(5)

and obtained the existence of traveling wave solutions of
smooth or sharp (oscillatory and monotone) type.



2 Abstract and Applied Analysis

For other papers concerning the traveling wave solutions
for degenerate diffusion equations without time delay, see
[14–22]. From these results, we see that an obvious difference
between the linear diffusion equations and the degenerate
diffusion equations is that, in the degenerate diffusion case,
theremay exist traveling wave fronts of sharp type; that is, the
support of the solution is bounded above or below, and at the
boundary of the support, the derivative of the traveling wave
solution is discontinuous. However, in the linear diffusion
case, all traveling wave fronts are of smooth type; that is, the
solutions are classical solutions, which approach the steady
states at infinity.

As far as we know, there are only two articles dealing with
the traveling wave solutions for degenerate diffusion equa-
tions with time delay. In [23, 24], Jin et al. considered the fol-
lowing time-delayed Newtonian filtration and non-New-
tonian filtration equations:

𝜕𝑢

𝜕𝑡
=
𝜕
2
𝑢
𝑚

𝜕𝑥2
+ 𝑢 (1 − 𝑢) (𝑢

𝜏
− 𝑎) ,

𝜕𝑢

𝜕𝑡
=

𝜕

𝜕𝑥
(



𝜕𝑢

𝜕𝑥



𝑝−2
𝜕𝑢

𝜕𝑥
) + 𝑢

𝑞
(1 − 𝑢) (𝑢

𝜏
− 𝑎) .

(6)

By using the shooting method together with the comparison
technique, they first obtained the necessary and sufficient
conditions to the existence of monotone increasing and de-
creasing traveling wave solutions, respectively, and then gave
an accurate estimation on the convergent rate for the semifi-
nite or infinite traveling waves.

Motivated by [23, 24], in this paper, we discuss the exist-
ence and asymptotic behavior of traveling wave fronts for (1).
Let 𝑢(𝑥, 𝑡) = 𝜑(𝜉) with 𝜉 = 𝑥 + 𝑐𝑡. Then, (1) is transformed
into the following form:

𝑐𝜑

(𝜉) = (𝜑

𝑚
)


(𝜉) + 𝜑(𝜉)
𝑝
(1 − 𝜑 (𝜉))

𝑞

(𝜑
𝑐𝜏
(𝜉) − 𝑎) , (7)

where 𝜑
𝑐𝜏
(𝜉) = 𝜑(𝜉 − 𝑐𝜏).

Before going further, we first give the definition of sharp-
and smooth-type traveling wave fronts.

Definition 1. A function 𝜑(𝜉) is called a traveling wave front
with wave speed 𝑐 > 0 if there exist 𝜉

𝑎
, 𝜉

𝑏
with −∞ ≤ 𝜉

𝑎
<

𝜉
𝑏
≤ +∞ such that 𝜑 ∈ 𝐶

2
(𝜉

𝑎
, 𝜉

𝑏
) is monotonic increasing

and

𝑐𝜑

(𝜉) = (𝜑

𝑚
)


(𝜉) + 𝜑(𝜉)
𝑝
(1 − 𝜑 (𝜉))

𝑞

(𝜑
𝑐𝜏
(𝜉) − 𝑎) ,

𝜉 ∈ (𝜉
𝑎
, 𝜉

𝑏
) ,

(8)

𝜑 (𝜉) = 0 for 𝜉
𝑎
− 𝑐𝜏 < 𝜉 ≤ 𝜉

𝑎
,

𝜑 (𝜉
𝑏
) = 1,

(𝜑
𝑚
)


(𝜉
𝑎
) = (𝜑

𝑚
)


(𝜉
𝑏
) = 0,

(9)

or there exist 𝜉
𝑎
, 𝜉

𝑏
with −∞ ≤ 𝜉

𝑎
< 𝜉

𝑏
≤ +∞ such that

𝜑 ∈ 𝐶
2
(𝜉

𝑎
, 𝜉

𝑏
) is monotonic decreasing and

𝑐𝜑

(𝜉) = (𝜑

𝑚
)


(𝜉) + 𝜑(𝜉)
𝑝
(1 − 𝜑 (𝜉))

𝑞

(𝜑
𝑐𝜏
(𝜉) − 𝑎) ,

𝜉 ∈ (𝜉
𝑎
, 𝜉

𝑏
) ,

(10)

𝜑 (𝜉) = 1 for 𝜉
𝑎
− 𝑐𝜏 < 𝜉 ≤ 𝜉

𝑎
,

𝜑 (𝜉
𝑏
) = 0,

(𝜑
𝑚
)


(𝜉
𝑎
) = (𝜑

𝑚
)


(𝜉
𝑏
) = 0.

(11)

(i) If 𝜉
𝑎

> −∞ and 𝜑

(𝜉

+

𝑎
) ̸= 0, then 𝜑(𝜉) is called

an increasing sharp-type traveling wave front (see
Figure 1(a)).

(ii) If 𝜉
𝑎

= −∞ or 𝜑
(𝜉

+

𝑎
) = 0, then 𝜑(𝜉) is called an

increasing smooth-type traveling wave front (see
Figure 2(a)).
Similarly, we have the following.

(iii) If 𝜉
𝑏

< +∞ and 𝜑

(𝜉

−

𝑏
) ̸= 0, then 𝜑(𝜉) is called

a decreasing sharp-type traveling wave front (see
Figure 1(b)).

(iv) If 𝜉
𝑏

= +∞ or 𝜑

(𝜉

−

𝑏
) = 0, then 𝜑(𝜉) is called

a decreasing smooth-type traveling wave front (see
Figure 2(b)).

Let 𝜓(𝜉) = (𝜑
𝑚
)

(𝜉). Then, (8) or (10) is transformed into

𝜑

(𝜉) =

1

𝑚
𝜑
1−𝑚

(𝜉) 𝜓 (𝜉) ,

𝜓

(𝜉) =

𝑐

𝑚
𝜑
1−𝑚

(𝜉) 𝜓 (𝜉) − 𝜑(𝜉)
𝑝
(1 − 𝜑 (𝜉))

𝑞

(𝜑
𝑐𝜏
(𝜉) − 𝑎) .

(12)

Furthermore, by (9) or (11), we give the asymptotic boundary
conditions for traveling wave fronts as follows:

𝜑 (𝜉) = 0 for 𝜉
𝑎
− 𝑐𝜏 < 𝜉 ≤ 𝜉

𝑎
,

𝜑 (𝜉
𝑏
) = 1,

𝜓 (𝜉
𝑎
) = 𝜓 (𝜉

𝑏
) = 0,

(13)

or

𝜑 (𝜉) = 1 for 𝜉
𝑎
− 𝑐𝜏 < 𝜉 ≤ 𝜉

𝑎
,

𝜑 (𝜉
𝑏
) = 0,

𝜓 (𝜉
𝑎
) = 𝜓 (𝜉

𝑏
) = 0.

(14)

If 𝜓(𝜉) is strictly positive or negative for 0 < 𝜑 < 1, then (12)
is equivalent to

𝑑𝜓

𝑑𝜑
= 𝑐 −

𝑚𝜑
𝑚+𝑝−1

(1 − 𝜑)
𝑞

(𝜑
𝑐𝜏
− 𝑎)

𝜓
. (15)
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(a) (b)

Figure 1: Sharp-type traveling wave fronts. (a) Monotonic increasing. (b) Monotonic decreasing.

(a) (b)

Figure 2: Smooth-type traveling wave fronts. (a) Monotonic increasing. (b) Monotonic decreasing.

Clearly, for any given 𝜑 > 0, if

∫

𝜑

0

𝑚𝜎
𝑚−1

𝜓 (𝜎)
𝑑𝜎 = +∞, (16)

then 𝜑
𝑐𝜏
can be defined by

𝑐𝜏 = ∫

𝜑

𝜑
𝑐𝜏

𝑚𝜎
𝑚−1

𝜓 (𝜎)
𝑑𝜎. (17)

However, if for some 𝜑 > 0,

∫

𝜑

0

𝑚𝜎
𝑚−1

𝜓 (𝜎)
𝑑𝜎 < +∞, (18)

then ∫
𝜑

0
(𝑚𝜎

𝑚−1
/𝜓(𝜎))𝑑𝜎may be less than 𝑐𝜏 when 𝜑 is near

0.Therefore, the previous definition is not reasonable. Inwhat
follows, we give the definition of 𝜑

𝑐𝜏
.

(i) If 𝜓 is positive, define 𝜑
𝑐𝜏
by

𝑐𝜏 = ∫

𝜑

𝜑
𝑐𝜏

𝑚𝜎
𝑚−1

𝜓 (𝜎)
𝑑𝜎, if ∫

𝜑

0

𝑚𝜎
𝑚−1

𝜓
+
(𝜎)

𝑑𝜎 ≥ 𝑐𝜏,

𝜑
𝑐𝜏
= 0, if ∫

𝜑

0

𝑚𝜎
𝑚−1

𝜓
+
(𝜎)

𝑑𝜎 < 𝑐𝜏,

(19)

where 𝜓
+
is a solution of the following problem:

𝑑𝜓

𝑑𝜑
= 𝑐 +

𝑚𝑎𝜑
𝑚+𝑝−1

(1 − 𝜑)
𝑞

𝜓
, for 𝜑 ∈ (0, 1) ,

𝜓 (0
+
) = 0,

𝜓 (𝜑) > 0, for 𝜑 ∈ (0, 1) .

(20)

(ii) If 𝜓 is negative, define 𝜑
𝑐𝜏
by

𝑐𝜏 = ∫

𝜑
𝑐𝜏

𝜑

𝑚𝜎
𝑚−1

−𝜓 (𝜎)
𝑑𝜎, if ∫

1

𝜑

𝑚𝜎
𝑚−1

−𝜓
−
(𝜎)

𝑑𝜎 ≥ 𝑐𝜏,

𝜑
𝑐𝜏
= 1, if ∫

1

𝜑

𝑚𝜎
𝑚−1

−𝜓
−
(𝜎)

𝑑𝜎 < 𝑐𝜏,

(21)

where 𝜓
−
is a solution of the following problem:

𝑑𝜓

𝑑𝜑
= 𝑐 −

𝑚 (1 − 𝑎) 𝜑
𝑚+𝑝−1

(1 − 𝜑)
𝑞

𝜓
, for 𝜑 ∈ (0, 1) ,

𝜓 (1
−
) = 0,

𝜓 (𝜑) < 0, for 𝜑 ∈ (0, 1) .

(22)



4 Abstract and Applied Analysis

Consider the following problem:

𝑑𝜓

𝑑𝜑
= 𝑐 −

𝑚𝜑
𝑚+𝑝−1

(1 − 𝜑)
𝑞

(𝜑
𝑐𝜏
− 𝑎)

𝜓
,

𝜓 (0
+
) = 0, 𝜓 (1

−
) = 0.

(23)

In Sections 2 and 3, we will verify the following two conclu-
sions are equivalent, that is, (1) 𝜑 is a monotonic solution of
the problem (8)-(9) (or (10)-(11)); (2) 𝜓(𝜑) > 0 (or 𝜓(𝜑) < 0)
is a solution of the problem (23).

2. Existence of Increasing Traveling Waves

In this section, we aim to find a solution 𝜓(𝜑) of the problem
(23) with 𝜓(𝜑) > 0 for 𝜑 ∈ (0, 1).

Since 𝜓 > 0, we see that 𝜑(𝜉) is increasing in 𝜉, and so
𝜑
𝑐𝜏
(𝜉) ≤ 𝜑(𝜉). Thus, to investigate the behavior of the trajec-

tories 𝜓
𝑐
(𝜑) of (23), we have to study the trajectories starting

from (0, 0), since the property of 𝜓
𝑐
at 𝜑 depends on the

behavior of𝜓
𝑐
at 𝜑

𝑐𝜏
closely. Consider the following problem:

𝑑𝜓

𝑑𝜑
= 𝑐 −

𝑚𝜑
𝑚+𝑝−1

(1 − 𝜑)
𝑞

(𝜑
𝑐𝜏
− 𝑎)

𝜓
for 𝜑 ∈ (0, 𝛽) ,

𝜓 (0
+
) = 0,

𝜓 (𝜑) > 0 for 𝜑 ∈ (0, 𝛽) ,

(24)

where (0, 𝛽) with 𝛽 ≤ 1 is the maximal existence interval of
the solution 𝜓(𝜑) > 0. By (24),

1

2
𝜓
2
(𝜑) = ∫

𝜑

0

𝑐𝜓 (𝑠) 𝑑𝑠 − 𝑚∫

𝜑

0

𝑠
𝑚+𝑝−1

(1 − 𝑠)
𝑞
(𝑠

𝑐𝜏
− 𝑎) 𝑑𝑠

≥ ∫

𝜑

0

𝑐𝜓 (𝑠) 𝑑𝑠 − 𝑚∫

𝜑

0

𝑠
𝑚+𝑝−1

(1 − 𝑠)
𝑞
(𝑠 − 𝑎) 𝑑𝑠.

(25)

This excludes𝜓(1−) = 0 if ∫1
0
𝑠
𝑚+𝑝−1

(1−𝑠)
𝑞
(𝑠−𝑎)𝑑𝑠 ≤ 0.Thus,

we only need to find the increasing traveling wave fronts for
the case ∫1

0
𝑠
𝑚+𝑝−1

(1 − 𝑠)
𝑞
(𝑠 − 𝑎)𝑑𝑠 > 0. We first prove the

following two lemmas.

Lemma 2. Assume that 0 < 𝜑
0
< 1 and𝜓

1
(𝜑),𝜓

2
(𝜑) are solu-

tions of (24) corresponding to different wave speeds 𝑐
1
, 𝑐

2
,

respectively, where 𝜓
1
(𝜑

0
) ≥ 𝜓

2
(𝜑

0
) > 0, 𝜓

1
(𝜑) > 𝜓

2
(𝜑) > 0

for 0 < 𝜑 < 𝜑
0
, and 𝜑

1
(𝜉

1
) = 𝜑

2
(𝜉

2
) = 𝜑

0
. Then, 𝜑

1
(𝜉

1
− 𝑠) <

𝜑
2
(𝜉

2
− 𝑠) if 0 < 𝑠 < ∫

𝜑
0

0
(𝑚𝜎

𝑚−1
/𝜓

2
(𝜎))𝑑𝜎 and 𝜑

1
(𝜉

1
− 𝑠) =

𝜑
2
(𝜉

2
− 𝑠) = 0 if 𝑠 ≥ ∫

𝜑
0

0
(𝑚𝜎

𝑚−1
/𝜓

2
(𝜎))𝑑𝜎.

Proof. Recalling (19), we see that

𝑠 = ∫

𝜑
0

𝜑
𝑖𝑠

𝑚𝜎
𝑚−1

𝜓
𝑖
(𝜎)

𝑑𝜎 if ∫

𝜑
0

0

𝑚𝜎
𝑚−1

𝜓
𝑖
(𝜎)

𝑑𝜎 > 𝑠,

𝜑
𝑖𝑠
= 0 if ∫

𝜑
0

0

𝑚𝜎
𝑚−1

𝜓
𝑖
(𝜎)

𝑑𝜎 ≤ 𝑠,

(26)

where 𝜑
𝑖𝑠
= 𝜑

𝑖
(𝜉

𝑖
−𝑠), 𝑖 = 1, 2.The desired conclusion follows

immediately.

Lemma 3. For any given 𝜏 > 0, and 𝑐
1
> 𝑐

2
≥ 0, let 𝜓

1
(𝜑),

𝜓
2
(𝜑) be solutions of (24) corresponding to 𝑐

1
, 𝑐

2
, respectively.

Then, 𝜓
1
(𝜑) > 𝜓

2
(𝜑) for any 𝜑 ∈ (0, 𝛽

2
), where (0, 𝛽

2
) is the

maximal existence interval of the solution 𝜓
2
(𝜑) > 0. In addi-

tion, 𝜓
1
(𝛽

2
) > 0. (See Figure 3(a).)

Proof. We first show that 𝜓
1
(𝜑) > 𝜓

2
(𝜑) for sufficiently small

𝜑 > 0. The argument consists of three cases,𝑚 + 𝑝 > 2, 𝑚 +

𝑝 = 2, and 1 < 𝑚 + 𝑝 < 2.
(i) Consider the case 𝑚 + 𝑝 > 2. According to (24), we

have

𝑑𝜓

𝑑𝜑
= 𝑐 +

𝑚𝜑
𝑚+𝑝−1

(1 − 𝜑)
𝑞

(𝑎 − 𝜑
𝑐𝜏
)

𝜓
. (27)

Noticing that 𝜑
𝑐𝜏
≤ 𝜑, we have for 𝜑 ≤ 𝑎 that

𝑑𝜓

𝑑𝜑
≥ 𝑐. (28)

Integrating from 0 to 𝜑 yields

𝜓 (𝜑) ≥ 𝑐𝜑. (29)

We further have

𝑑𝜓

𝑑𝜑
= 𝑐 +

𝑚𝜑
𝑚+𝑝−1

(1 − 𝜑)
𝑞

(𝑎 − 𝜑
𝑐𝜏
)

𝜓

≤ 𝑐 +
𝑚𝜑

𝑚+𝑝−1
(1 − 𝜑)

𝑞

(𝑎 − 𝜑
𝑐𝜏
)

𝑐𝜑

≤ 𝑐 +
𝑎𝑚

𝑐
𝜑
𝑚+𝑝−2

.

(30)

Integrating from 0 to 𝜑 gives

𝜓 (𝜑) ≤ 𝑐𝜑 +
𝑎𝑚

𝑐 (𝑚 + 𝑝 − 1)
𝜑
𝑚+𝑝−1

. (31)

That is,

𝜓 (𝜑) ∼ 𝑐𝜑 as 𝜑 → 0
+
. (32)

Therefore, 𝜓
1
(𝜑) > 𝜓

2
(𝜑) for sufficiently small 𝜑 > 0.

(ii) Consider the case𝑚 + 𝑝 = 2. Similar to (i), we have

𝜓 (𝜑) ≥ 𝑐𝜑, (33)

and, hence,

𝜓 (𝜑) ≤ (𝑐 +
𝑎𝑚

𝑐
)𝜑. (34)

Consider the sequences {𝐴
𝑛
} and {𝐵

𝑛
}, where

𝐴
1
= 𝑐, 𝐵

1
= 𝑐 +

𝑎𝑚

𝑐
,

𝐴
𝑛
= 𝑐 +

(1 − 𝜀)
𝑞
(𝑎 − 𝜀)𝑚

𝐵
𝑛−1

,

𝐵
𝑛
= 𝑐 +

𝑎𝑚

𝐴
𝑛−1

, 𝑛 = 2, 3, . . . ,

(35)



Abstract and Applied Analysis 5

𝜓

𝜑
0 𝛽2

𝑐1 > 𝑐2

1

𝜓𝑐1 (𝜑)

𝜓𝑐2 (𝜑)

(a)

𝜓

𝜑
0 1

𝐿𝑘1

𝜓𝑐(𝜑)

(b)
𝜓

𝜑
0 1

𝜓𝑐(𝜑)

𝜓∗(𝜑)

(c)

Figure 3: The properties of the trajectory 𝜓
𝑐
(𝜑). (a) The monotonicity of 𝜓

𝑐
(𝜑) on 𝑐. (b) The trajectory 𝜓

𝑐
(𝜑) wanders through 𝐿

𝑘
. (c) The

trajectory 𝜓
𝑐
(𝜑) intersects with 𝜓

∗
(𝜑) for large 𝑐.

and 𝜀 > 0 is sufficiently small. Noticing that 𝐴
1
< 𝐵

1
and

𝐴
1
< 𝐴

2
, by induction, we obtain

𝐴
1
< 𝐴

2
= 𝐴

3
< 𝐴

4
= 𝐴

5
< ⋅ ⋅ ⋅ < 𝐴

𝑛

< ⋅ ⋅ ⋅ < 𝐵
𝑛
< ⋅ ⋅ ⋅ < 𝐵

4
= 𝐵

3
< 𝐵

2
= 𝐵

1
.

(36)

For 0 < 𝜑 < 𝜀, if
𝐴

𝑛−1
𝜑 ≤ 𝜓 (𝜑) ≤ 𝐵

𝑛−1
𝜑, (37)

then

𝑑𝜓

𝑑𝜑
= 𝑐 +

𝑚𝜑(1 − 𝜑)
𝑞

(𝑎 − 𝜑
𝑐𝜏
)

𝜓

≤ 𝑐 +
𝑚𝜑(1 − 𝜑)

𝑞

(𝑎 − 𝜑
𝑐𝜏
)

𝐴
𝑛−1

𝜑

≤ 𝑐 +
𝑎𝑚

𝐴
𝑛−1

,

𝑑𝜓

𝑑𝜑
= 𝑐 +

𝑚𝜑(1 − 𝜑)
𝑞

(𝑎 − 𝜑
𝑐𝜏
)

𝜓

≥ 𝑐 +
𝑚𝜑(1 − 𝜑)

𝑞

(𝑎 − 𝜑
𝑐𝜏
)

𝐵
𝑛−1

𝜑

≥ 𝑐 +
(1 − 𝜀)

𝑞
(𝑎 − 𝜀)𝑚

𝐵
𝑛−1

.

(38)

Integrating from 0 to 𝜑 yields

𝐴
𝑛
𝜑 ≤ 𝜓 (𝜑) ≤ 𝐵

𝑛
𝜑. (39)
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Thus, we have

lim
𝑛→∞

𝐴
𝑛
= 𝐴

∗
(𝜀) , lim

𝑛→∞
𝐵
𝑛
= 𝐵

∗
(𝜀) ,

𝐴
∗
(𝜀) 𝜑 ≤ 𝜓 (𝜑) ≤ 𝐵

∗
(𝜀) 𝜑,

(40)

with 𝐴
∗
(𝜀) and 𝐵

∗
(𝜀) satisfying

𝐴
∗
(𝜀) = 𝑐 +

(1 − 𝜀)
𝑞
(𝑎 − 𝜀)𝑚

𝐵∗ (𝜀)
, 𝐵

∗
(𝜀) = 𝑐 +

𝑎𝑚

𝐴∗ (𝜀)
.

(41)

Letting 𝜀 → 0, we obtain

lim
𝜀→0

𝐴
∗
(𝜀) = lim

𝜀→0

𝐵
∗
(𝜀) =

√𝑐2 + 4𝑚𝑎 + 𝑐

2
. (42)

That is,

𝜓 (𝜑) ∼
√𝑐2 + 4𝑚𝑎 + 𝑐

2
𝜑 as 𝜑 → 0

+
. (43)

Therefore, 𝜓
1
(𝜑) > 𝜓

2
(𝜑) for sufficiently small 𝜑 > 0.

(iii) Consider the case 1 < 𝑚 + 𝑝 < 2. Notice that

𝑑𝜓

𝑑𝜑
≥
𝑚𝜑

𝑚+𝑝−1
(1 − 𝜑)

𝑞

(𝑎 − 𝜑)

𝜓
, (44)

which means that

𝜓
2
(𝜑) ≥ ∫

𝜑

0

2𝑚𝑠
𝑚+𝑝−1

(1 − 𝑠)
𝑞
(𝑎 − 𝑠) 𝑑𝑠

=
2𝑚𝑎

𝑚 + 𝑝
𝜑
𝑚+𝑝

+ 𝑜 (𝜑
𝑚+𝑝

) ;

(45)

that is,

𝜓 (𝜑) ≥ √
2𝑚𝑎

𝑚 + 𝑝
𝜑
(𝑚+𝑝)/2

+ 𝑜 (𝜑
(𝑚+𝑝)/2

) . (46)

Consequently,

𝑑𝜓

𝑑𝜑
≤ 𝑐 +

𝑚𝑎𝜑
𝑚+𝑝−1

𝜓

≤ 𝑐 +
𝑚𝑎𝜑

𝑚+𝑝−1

√2𝑚𝑎/(𝑚 + 𝑝)𝜑(𝑚+𝑝)/2 + 𝑜 (𝜑(𝑚+𝑝)/2)

= 𝑐 + √
𝑚𝑎 (𝑚 + 𝑝)

2
𝜑
(𝑚+𝑝−2)/2

+ 𝑜 (𝜑
(𝑚+𝑝−2)/2

) .

(47)

That is,

𝜓 (𝜑) ≤ 𝑐𝜑 + √
2𝑚𝑎

𝑚 + 𝑝
𝜑
(𝑚+𝑝)/2

+ 𝑜 (𝜑
(𝑚+𝑝)/2

) . (48)

Thus, we have

𝜓 (𝜑) = √
2𝑚𝑎

𝑚 + 𝑝
𝜑
(𝑚+𝑝)/2

+ 𝑜 (𝜑
(𝑚+𝑝)/2

) . (49)

Recalling (46), we see that

𝑑𝜓
2

𝑑𝜑
= 2𝑐𝜓 + 2𝑚𝜑

𝑚+𝑝−1
(1 − 𝜑)

𝑞

(𝑎 − 𝜑
𝑐𝜏
)

≥ 2𝑐√
2𝑚𝑎

𝑚 + 𝑝
𝜑
(𝑚+𝑝)/2

+ 2𝑚𝜑
𝑚+𝑝−1

(1 − 𝜑)
𝑞

(𝑎 − 𝜑)

+ 𝑜 (𝜑
(𝑚+𝑝)/2

) ,

(50)

which implies that

𝜓
2
(𝜑) ≥

4𝑐

𝑚 + 𝑝 + 2
√

2𝑚𝑎

𝑚 + 𝑝
𝜑
(𝑚+𝑝+2)/2

+
2𝑚𝑎

𝑚 + 𝑝
𝜑
𝑚+𝑝

+ 𝑜 (𝜑
(𝑚+𝑝+2)/2

) .

(51)

On the other hand, by (49), we have

𝑑𝜓
2

𝑑𝜑
≤ 2𝑐𝜓 + 2𝑚𝑎𝜑

𝑚+𝑝−1

= 2𝑐√
2𝑚𝑎

𝑚 + 𝑝
𝜑
(𝑚+𝑝)/2

+ 2𝑚𝑎𝜑
𝑚+𝑝−1

+ 𝑜 (𝜑
(𝑚+𝑝)/2

) ,

(52)

and, hence,

𝜓
2
(𝜑) ≤

4𝑐

𝑚 + 𝑝 + 2
√

2𝑚𝑎

𝑚 + 𝑝
𝜑
(𝑚+𝑝+2)/2

+
2𝑚𝑎

𝑚 + 𝑝
𝜑
𝑚+𝑝

+ 𝑜 (𝜑
(𝑚+𝑝+2)/2

) .

(53)

Summing up, we arrive at

𝜓
2
(𝜑) =

4𝑐

𝑚 + 𝑝 + 2
√

2𝑚𝑎

𝑚 + 𝑝
𝜑
(𝑚+𝑝+2)/2

+
2𝑚𝑎

𝑚 + 𝑝
𝜑
𝑚+𝑝

+ 𝑜 (𝜑
(𝑚+𝑝+2)/2

) , as 𝜑 → 0
+
,

(54)

which implies that 𝜓
1
(𝜑) > 𝜓

2
(𝜑) for sufficiently small 𝜑 > 0.

We claim that 𝜓
1
(𝜑) > 𝜓

2
(𝜑) for any 𝜑 ∈ (0, 𝛽

2
). Suppose

for contradiction that there exists 𝜑
0

∈ (0, 𝛽
2
) such that

𝜓
1
(𝜑

0
) = 𝜓

2
(𝜑

0
) = 𝜓

0
and 𝜓

1
(𝜑) > 𝜓

2
(𝜑) for 𝜑 ∈ (0, 𝜑

0
).

Then,

𝜓


1
(𝜑

0
) ≤ 𝜓



2
(𝜑

0
) , (55)

which means that

𝑐
1
+
𝑚𝜑

𝑚+𝑝−1

0
(1 − 𝜑

0
)
𝑞

(𝑎 − 𝜑
0𝑐
1
𝜏
)

𝜓
0

≤ 𝑐
2
+
𝑚𝜑

𝑚+𝑝−1

0
(1 − 𝜑

0
)
𝑞

(𝑎 − 𝜑
0𝑐
2
𝜏
)

𝜓
0

;

(56)
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that is,

0 < 𝑐
1
− 𝑐

2
≤
𝑚𝜑

𝑚+𝑝−1

0
(1 − 𝜑

0
)
𝑞

𝜓
0

(𝜑
0𝑐
1
𝜏
− 𝜑

0𝑐
2
𝜏
) . (57)

Thus,

𝜑
0𝑐
1
𝜏
> 𝜑

0𝑐
2
𝜏
. (58)

Denote that 𝜑
1
(𝜉

1
) = 𝜑

2
(𝜉

2
) = 𝜑

0
. By Lemma 2, we have

𝜑
1
(𝜉

1
− 𝑐

1
𝜏) ≤ 𝜑

2
(𝜉

2
− 𝑐

1
𝜏) ≤ 𝜑

2
(𝜉

2
− 𝑐

2
𝜏) , (59)

which means that 𝜑
0𝑐
1
𝜏
≤ 𝜑

0𝑐
2
𝜏
, a contradiction.

In what follows, we will show that 𝜓
1
(𝛽

2
) > 0. Recalling

the first equation of (24), we infer that

1

2

𝑑𝜓
2

𝑖

𝑑𝜑
= 𝑐

𝑖
𝜓
𝑖
− 𝑚𝜑

𝑚+𝑝−1
(1 − 𝜑)

𝑞

(𝜑
𝑐
𝑖
𝜏
− 𝑎) , 𝑖 = 1, 2.

(60)

By Lemma 2, for any 𝜑
1
(𝜉

1
) = 𝜑

2
(𝜉

2
) < 𝛽

2
, we have

𝜑
1
(𝜉

1
− 𝑐

1
𝜏) ≤ 𝜑

2
(𝜉

2
− 𝑐

1
𝜏) ≤ 𝜑

2
(𝜉

2
− 𝑐

2
𝜏) , (61)

since 𝜓
1
> 𝜓

2
. Thus, we obtain

𝑑𝜓
2

1

𝑑𝜑
>
𝑑𝜓

2

2

𝑑𝜑
(62)

for any 𝜑 ∈ (0, 𝛽
2
). Integrating the previous inequality from

𝜑
0
to 𝜑 for any 0 < 𝜑

0
< 𝜑 < 𝛽

2
yields

𝜓
2

1
(𝜑) > 𝜓

2

2
(𝜑) + 𝜓

2

1
(𝜑

0
) − 𝜓

2

2
(𝜑

0
) . (63)

Letting 𝜑 → 𝛽
2
gives

𝜓
2

1
(𝛽

2
) ≥ 𝜓

2

1
(𝜑

0
) − 𝜓

2

2
(𝜑

0
) > 0; (64)

namely, 𝜓
1
(𝛽

2
) > 0. The proof is completed.

To deal with the behavior of the trajectories 𝜓
𝑐
(𝜑) of the

problem (24), we introduce the level set

𝐿
𝑘

= {(𝜑, 𝜓) ∈ R
2
;
1

2
𝜓
2
+ 𝑚∫

𝜑

0

𝑠
𝑚+𝑝−1

(1 − 𝑠)
𝑞
(𝑠 − 𝑎) 𝑑𝑠 = 𝑘}

(65)

for any 𝑘 ≥ 0. Clearly, for 𝑐 = 0, the level sets {𝐿
𝑘
} are exactly

the trajectories of solutions to (12) or (15). Now, we define

𝐿
+

𝑘
= 𝐿

𝑘
∩ {𝜓 > 0} . (66)

Notice that if (𝜑, 𝜓) ∈ 𝐿
+

𝑘
is a solution of the system (12), we

have
𝑑𝑘 (𝜉)

𝑑𝜉
= 𝜓𝜓


+ 𝑚𝜑

𝑚+𝑝−1
(1 − 𝜑)

𝑞

(𝜑 − 𝑎) 𝜑


=
𝑐

𝑚
𝜑
1−𝑚

𝜓
2
+ 𝜓𝜑

𝑝
(1 − 𝜑)

𝑞

(𝜑 − 𝜑
𝑐𝜏
)

≥
𝑐

𝑚
𝜑
1−𝑚

𝜓
2

> 0,

(67)

since 𝜑(𝜉) is increasing in 𝜉. This implies that (𝜑, 𝜓) wan-
ders through increasing level sets with increasing 𝜉. See
Figure 3(b). Let

𝑘
1
= 𝑚∫

1

0

𝑠
𝑚+𝑝−1

(1 − 𝑠)
𝑞
(𝑠 − 𝑎) 𝑑𝑠; (68)

we know that 𝐿
𝑘
1

passes through the critical point (1, 0).
Denote that

𝜓
∗
(𝜑) = √2𝑚∫

1

𝜑

𝑠𝑚+𝑝−1(1 − 𝑠)
𝑞
(𝑠 − 𝑎) 𝑑𝑠. (69)

In what follows, we will see that 𝜓∗
(𝜑) plays a special role for

the proof of themain result.We first need a lemma as follows.

Lemma4. The trajectory𝜓
𝑐
(𝜑) of the problem (24)must inter-

sect with 𝜓
∗
(𝜑) for sufficiently large 𝑐 > 0. (See Figure 3(c).)

Proof. For any 𝜑 ∈ (0, 𝑎], we have 𝜑
𝑐𝜏
∈ (0, 𝑎], and

𝜓


𝑐
(𝜑) ≥ 𝑐 > 0. (70)

Let 𝜑
0
∈ (𝑎, 1) be the first point such that 𝜓

𝑐
(𝜑

0
) = 0. Then,

we have

𝜓
𝑐
(𝜑

0
) =

𝑚𝜑
𝑚+𝑝−1

0
(1 − 𝜑

0
)
𝑞

(𝜑
0𝑐𝜏

− 𝑎)

𝑐
. (71)

Since

𝜓
𝑐
(𝜑

0
) > 𝜓

𝑐
(𝑎) ≥ 𝑎𝑐, (72)

we have

𝑚𝜑
𝑚+𝑝−1

0
(1 − 𝜑

0
)
𝑞

(𝜑
0𝑐𝜏

− 𝑎) > 𝑎𝑐
2
. (73)

Thus,

𝑚𝜑
𝑚+𝑝−1

0
(1 − 𝜑

0
)
𝑞

(𝜑
0
− 𝑎) > 𝑎𝑐

2
. (74)

Denote that

𝑀 = max
𝜑∈(𝑎,1)

{
𝑚𝜑

𝑚+𝑝−1
(1 − 𝜑)

𝑞

(𝜑 − 𝑎)

𝑎
} . (75)

Then, for any 𝑐 ≥ √𝑀, (74) does not hold and 𝜓
𝑐
(𝜑) is in-

creasing on (𝑎, 1). Therefore,𝜓
𝑐
(𝜑)must intersect with𝜓∗

(𝜑)

for any 𝑐 ≥ √𝑀. The proof is completed.

Theorem 5. (i) If ∫1
0
𝑠
𝑚+𝑝−1

(1 − 𝑠)
𝑞
(𝑠 − 𝑎)𝑑𝑠 ≤ 0, then there is

no nontrivial nonnegative solution for problem (23).
(ii) If ∫1

0
𝑠
𝑚+𝑝−1

(1 − 𝑠)
𝑞
(𝑠 − 𝑎)𝑑𝑠 > 0, then there exists a

unique 𝑐∗
1
> 0, such that the problem (23) admits a nonnegative

solution 𝜓(𝜑), and 𝜓(𝜑) > 0 for any 𝜑 ∈ (0, 1).

Proof. (i) The case ∫1
0
𝑠
𝑚+𝑝−1

(1 − 𝑠)
𝑞
(𝑠 − 𝑎)𝑑𝑠 ≤ 0 has been

discussed.
(ii) We know that for any fixed 𝑐 > 0, (𝜑, 𝜓

𝑐
) wanders

through increasing level sets {𝐿
𝑘
} strictly. Thus, (𝜑, 𝜓

𝑐
)
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intersects with a level set 𝐿
𝑘
at most once. Let (𝜎

𝑐
, 𝜙

𝑐
) be the

intersection point of (𝜑, 𝜓
𝑐
)with 𝐿

𝑘
1

. Then, if 𝜙
𝑐
> 0, we have

𝑑𝜓
∗

𝑑𝜑

𝜑=𝜎
𝑐

= −
𝑚𝜑

𝑚+𝑝−1
(1 − 𝜑)

𝑞

(𝜑 − 𝑎)

𝜓∗

𝜑=𝜎
𝑐

≤ −
𝑚𝜑

𝑚+𝑝−1
(1 − 𝜑)

𝑞

(𝜑
𝑐𝜏
− 𝑎)

𝜙
𝑐

𝜑=𝜎
𝑐

=
𝑑𝜓

𝑐

𝑑𝜑

𝜑=𝜎
𝑐

− 𝑐.

(76)

Define

𝑐
∗

1

= inf {𝑐 > 0; 𝜓
𝑐
intersects 𝜓∗ at (𝜎

𝑐
, 𝜙

𝑐
) with 𝜎

𝑐
∈ (0, 1]} .

(77)

By Lemma 4, 𝑐∗
1
is well defined. In what follows, we will show

that 𝑐∗
1
is just the desired wave speed.

Wefirst have 𝑐∗
1
> 0. Indeed,when 𝑐 = 0, the first equation

of (24) becomes

𝑑𝜓
0

𝑑𝜑
= −

𝑚𝜑
𝑚+𝑝−1

(1 − 𝜑)
𝑞

(𝜑 − 𝑎)

𝜓
0

. (78)

Noticing that 𝜓
0
(0

+
) = 0, we have

𝜓
2

0
(𝜑) = −2𝑚∫

𝜑

0

𝑠
𝑚+𝑝−1

(1 − 𝑠)
𝑞
(𝑠 − 𝑎) 𝑑𝑠. (79)

Then, there exists 𝜑
0
∈ (𝑎, 1) such that

𝜓
0
(𝜑

0
) = 0, (80)

since ∫1
0
𝑠
𝑚+𝑝−1

(1 − 𝑠)
𝑞
(𝑠 − 𝑎)𝑑𝑠 > 0. The continuous depen-

dence of 𝜓
𝑐
on 𝑐 ensures that 𝜓

𝑐
goes to zero before reaching

𝜓
∗ for sufficiently small 𝑐 > 0. Thus, 𝑐∗

1
> 0.

In addition, by Lemma 3, we know that 𝜎
𝑐
is decreasing

on 𝑐. Assume that

lim
𝑐↘𝑐
∗

1

𝜎
𝑐
= 𝜎

𝑐
∗

1

. (81)

If 𝜎
𝑐
∗

1

< 1; namely, 𝜙
𝑐
∗

1

> 0, then by (76), we arrive at

𝜓


𝑐
∗

1

(𝜎
𝑐
∗

1

) ≥ 𝜓
∗


(𝜎
𝑐
∗

1

) + 𝑐
∗

1
> 𝜓

∗


(𝜎
𝑐
∗

1

) . (82)

So, there exists 𝜎
𝑐
∗

1

< 𝜑
1
< 1, such that 𝜓

𝑐
∗

1

(𝜑
1
) > 𝜓

∗
(𝜑

1
). By

the continuous dependence of 𝜓
𝑐
on 𝑐, there is 𝑐 > 0 with

𝑐 < 𝑐
∗

1
and close to 𝑐∗

1
sufficiently such that 𝜓

𝑐
(𝜑

1
) ≥ 𝜓

∗
(𝜑

1
),

which implies that𝜓
𝑐
intersects with 𝜓

∗.This contradicts the
definition of 𝑐∗

1
. Thus, 𝜎

𝑐
∗

1

= 1, which implies 𝜙
𝑐
∗

1

= 0.
Moreover, by Lemma 3, for 𝑐 > 𝑐

∗

1
, we have 𝜓

𝑐
(1) > 0.

However, if 0 < 𝑐 < 𝑐
∗

1
, there exists 𝜑

𝑐
with 𝑎 < 𝜑

𝑐
< 1 such

that 𝜓
𝑐
(𝜑) → 0 as 𝜑 ↗ 𝜑

𝑐
. The proof is completed.

Proposition 6. 𝜑(𝜉) is a monotone increasing sharp- or
smooth-type traveling wave front of the problem (8)-(9) for
some fixed 𝑐 > 0, if and only if 𝜓(𝜑) with 𝜓(𝜑) > 0 for any
𝜑 ∈ (0, 1) is a solution of the problem (23).

Proof. The necessity is clear. Consider the sufficient one. Let
𝜓(𝜑) > 0 for any 𝜑 ∈ (0, 1) be a solution of the problem (23),
and 𝜑(𝜉) solves

𝜑

(𝜉) =

1

𝑚
𝜑
1−𝑚

(𝜉) 𝜓 (𝜑 (𝜉)) . (83)

Without loss of generality, let 𝜑(0) = 1/2, and let (𝛼, 𝛽) be the
maximal existence interval of 𝜑 such that 0 < 𝜑 < 1. Firstly,
we have
(𝜑

𝑚
)


(𝜉) = 𝜓

(𝜑) 𝜑


(𝜉)

= (𝑐 −
𝑚𝜑

𝑚+𝑝−1
(1 − 𝜑)

𝑞

(𝜑
𝑐𝜏
− 𝑎)

𝜓
)𝜑



= 𝑐𝜑

− 𝜑

𝑝
(1 − 𝜑)

𝑞

(𝜑
𝑐𝜏
− 𝑎) .

(84)

Moreover,
𝜑 (𝜉) = 0 for 𝛼 − 𝑐𝜏 < 𝜉 ≤ 𝛼,

𝜑 (𝛽) = 1, (𝜑
𝑚
)


(𝛼) = (𝜑
𝑚
)


(𝛽) = 0.

(85)

Therefore, if 𝛼 > −∞ and 𝜑

(𝛼

+
) ̸= 0, 𝜑(𝜉) is a sharp-type

traveling wave front; if 𝛼 = −∞ or 𝜑
(𝛼

+
) = 0, 𝜑(𝜉) is a

smooth-type traveling wave front.

Theorem 5 and Proposition 6 imply the following result.

Theorem 7. (i) If ∫1
0
𝑠
𝑚+𝑝−1

(1 − 𝑠)
𝑞
(𝑠 − 𝑎)𝑑𝑠 ≤ 0, then there is

no increasing traveling wave front for the problem (8)-(9).
(ii) If ∫1

0
𝑠
𝑚+𝑝−1

(1 − 𝑠)
𝑞
(𝑠 − 𝑎)𝑑𝑠 > 0, then there is a unique

wave speed 𝑐
∗

1
> 0, such that the problem (8)-(9) admits an

increasing traveling wave front.

Furthermore, we have the following results.

Theorem8. Let𝜑(𝜉) be the traveling wave front of the problem
(8)-(9) corresponding to the wave speed 𝑐∗

1
.

(i) If 𝑚 < 2, then 𝜑(𝜉) is a smooth-type traveling wave
front.

(ii) If 𝑚 = 2, then 𝜑

(𝜉

+

𝑎
) = 𝑐

∗

1
/2 and 𝜑(𝜉) is a sharp-type

traveling wave front.
(iii) If 𝑚 > 2, then 𝜑


(𝜉

+

𝑎
) = +∞ and 𝜑(𝜉) is a sharp-type

traveling wave front.

Proof. (i) If 0 < 𝑚 ≤ 1, it is easy to see that

𝜑

(𝜉

+

𝑎
) =

1

𝑚
𝜑
1−𝑚

(𝜉
+

𝑎
) 𝜓 (𝜉

+

𝑎
) = 0. (86)

If 1 < 𝑚 < 2, from the proof of Lemma 3, we see that when
𝜑 > 0 is sufficiently small,

𝜓 (𝜑) = 𝑐
∗

1
𝜑 + 𝑜 (𝜑) , 𝑚 + 𝑝 > 2;

𝜓 (𝜑) =

√𝑐∗2
1

+ 4𝑚𝑎 + 𝑐
∗

1

2
𝜑 + 𝑜 (𝜑) , 𝑚 + 𝑝 = 2;

𝜓 (𝜑) = √
2𝑚𝑎

𝑚 + 𝑝
𝜑
(𝑚+𝑝)/2

+ 𝑜 (𝜑
(𝑚+𝑝)/2

) , 1 < 𝑚 + 𝑝 < 2.

(87)
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Since

𝜑

(𝜉) =

1

𝑚
𝜑
1−𝑚

(𝜉) 𝜓 (𝜉) , (88)

we have

𝜑

(𝜉) =

𝑐
∗

1

𝑚
𝜑
2−𝑚

(𝜉) + 𝑜 (𝜑
2−𝑚

(𝜉)) , 𝑚 + 𝑝 > 2;

𝜑

(𝜉) =

√𝑐∗2
1

+ 4𝑚𝑎 + 𝑐
∗

1

2𝑚
𝜑
2−𝑚

(𝜉) + 𝑜 (𝜑
2−𝑚

(𝜉)) ,

𝑚 + 𝑝 = 2;

𝜑

(𝜉) = √

2𝑎

𝑚 (𝑚 + 𝑝)
𝜑
(2−𝑚+𝑝)/2

(𝜉) + 𝑜 (𝜑
(2−𝑚+𝑝)/2

(𝜉)) ,

1 < 𝑚 + 𝑝 < 2.

(89)

Thus,

𝜑

(𝜉

+

𝑎
) = 0. (90)

(ii) If𝑚 = 2, we have

𝜑

(𝜉

+

𝑎
) =

𝑐
∗

1

2
. (91)

(iii) If𝑚 > 2, we have

𝜑

(𝜉

+

𝑎
) = +∞. (92)

The proof is completed.

Theorem 9. 𝑐∗
1
(𝜏) is nonincreasing in delay 𝜏; namely, if 𝜏

1
>

𝜏
2
, then 𝑐

∗

1
(𝜏

1
) ≤ 𝑐

∗

1
(𝜏

2
).

Proof. Suppose for contradiction that there exist time delays
𝜏
1
and 𝜏

2
, with 𝜏

1
> 𝜏

2
and 𝑐

∗

1
(𝜏

1
) > 𝑐

∗

1
(𝜏

2
). Denote that 𝑐

1
=

𝑐
∗

1
(𝜏

1
) and 𝑐

2
= 𝑐

∗

1
(𝜏

2
) for simplicity. Take 𝑐 such that

𝑐
2
< 𝑐 < 𝑐

1
. (93)

In what follows, denote the solutions of (24) corresponding
to wave speed and time delay (𝑐

1
, 𝜏

1
), (𝑐, 𝜏

1
), (𝑐

2
, 𝜏

2
) by𝜓

𝑐
1

,𝜓
𝑐
,

𝜓
𝑐
2

, respectively.
Similar to the proof of Lemma 3, we know that when 𝜑 >

0 is sufficiently small, for𝑚 + 𝑝 > 2,

𝜓
𝑐
(𝜑) = 𝑐𝜑 + 𝑜 (𝜑) ,

𝜓
𝑐
2

(𝜑) = 𝑐
2
𝜑 + 𝑜 (𝜑) ;

(94)

for𝑚 + 𝑝 = 2,

𝜓
𝑐
(𝜑) =

√𝑐2 + 4𝑚𝑎 + 𝑐

2
𝜑 + 𝑜 (𝜑) ,

𝜓
𝑐
2

(𝜑) =

√𝑐2
2
+ 4𝑚𝑎 + 𝑐

2

2
𝜑 + 𝑜 (𝜑) ;

(95)

for 1 < 𝑚 + 𝑝 < 2,

𝜓
2

𝑐
(𝜑) =

4𝑐

𝑚 + 𝑝 + 2
√

2𝑚𝑎

𝑚 + 𝑝
𝜑
(𝑚+𝑝+2)/2

+
2𝑚𝑎

𝑚 + 𝑝
𝜑
𝑚+𝑝

+ 𝑜 (𝜑
(𝑚+𝑝+2)/2

) ,

𝜓
2

𝑐
2

(𝜑) =
4𝑐

2

𝑚 + 𝑝 + 2
√

2𝑚𝑎

𝑚 + 𝑝
𝜑
(𝑚+𝑝+2)/2

+
2𝑚𝑎

𝑚 + 𝑝
𝜑
𝑚+𝑝

+ 𝑜 (𝜑
(𝑚+𝑝+2)/2

) .

(96)

Since 𝑐 > 𝑐
2
, we have

𝜓
𝑐
(𝜑) > 𝜓

𝑐
2

(𝜑) (97)

for sufficiently small 𝜑 > 0. Furthermore, we claim that
𝜓
𝑐
(𝜑) > 𝜓

𝑐
2

(𝜑) for 𝜑 ∈ (0, 1). Otherwise, there exists 𝜑
0
∈

(0, 1) such that 𝜓
𝑐
(𝜑) > 𝜓

𝑐
2

(𝜑) for 𝜑 ∈ (0, 𝜑
0
), and 𝜓

𝑐
(𝜑

0
) =

𝜓
𝑐
2

(𝜑
0
) = 𝜓

0
. Then, we have

𝜓


𝑐
(𝜑

0
) ≤ 𝜓



𝑐
2

(𝜑
0
) ; (98)

that is,

0 < 𝑐 − 𝑐
2
≤
𝑚𝜑

𝑚+𝑝−1

0
(1 − 𝜑

0
)
𝑞

(𝜑
0𝑐𝜏
1

− 𝜑
0𝑐
2
𝜏
2

)

𝜓
0

, (99)

which implies 𝜑
0𝑐𝜏
1

> 𝜑
0𝑐
2
𝜏
2

. On the other hand, by Lemma 2,
we have 𝜑

0𝑐𝜏
1

≤ 𝜑
0𝑐
2
𝜏
2

, a contradiction. Similarly, we can get
𝜓
𝑐
1

(𝜑) > 𝜓
𝑐
(𝜑). From the uniqueness of wave speed on any

fixed 𝜏 > 0, this contradicts the definition of 𝑐
1
.

3. Existence of Decreasing Traveling Waves

In this section, we aim to find a solution 𝜓(𝜑) of the problem
(23) with 𝜓(𝜑) < 0 for 𝜑 ∈ (0, 1). We first introduce a com-
parison lemma.

Lemma 10. Let 𝑢, V be the solutions of the following problems,
respectively:

𝑑𝑢

𝑑𝜑
= 𝑐 −

𝑚𝜑
𝑚+𝑝−1

(1 − 𝜑)
𝑞

(𝜑 − 𝑎)

𝑢
for 𝜑 < 1, 𝑢 (1

−
) = 0,

𝑑V

𝑑𝜑
= 𝑐 −

𝑚𝜑
𝑚+𝑝−1

(1 − 𝜑)
𝑞

(1 − 𝑎)

V
for 𝜑 < 1, V (1

−
) = 0.

(100)

And let 𝜓 solve the problem (23). Then, 𝜓(𝜑) ≤ 𝑢(𝜑) ≤ V(𝜑)for
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𝜑 < 1 if 𝜓, 𝑢, V are positive, while V(𝜑) ≤ 𝜓(𝜑) ≤ 𝑢(𝜑) for
𝜑 < 1 if 𝜓, 𝑢, V are negative.

Proof. Notice that 𝜑
𝑐𝜏
≤ 𝜑 when 𝜓 is positive, and thus

1

2

𝑑𝜓
2

𝑑𝜑
− 𝑐𝜓 = −𝑚𝜑

𝑚+𝑝−1
(1 − 𝜑)

𝑞

(𝜑
𝑐𝜏
− 𝑎)

≥ −𝑚𝜑
𝑚+𝑝−1

(1 − 𝜑)
𝑞

(𝜑 − 𝑎)

=
1

2

𝑑𝑢
2

𝑑𝜑
− 𝑐𝑢;

(101)

that is,

𝑑 (𝜓
2
− 𝑢

2
)

𝑑𝜑
− 2𝑐 (𝜓

2
− 𝑢

2
) 𝑔 (𝜑) ≥ 0, (102)

where

𝑔 (𝜑) =
1

𝜓 + 𝑢
. (103)

Consequently,

𝑑((𝜓
2
− 𝑢

2
) 𝑒

2𝑐 ∫
1

𝜑

𝑔(𝑠)𝑑𝑠
)

𝑑𝜑
≥ 0.

(104)

Integrating from 𝜑 to 1 yields

𝜓
2
(𝜑) − 𝑢

2
(𝜑) ≤ 0, (105)

and so 𝜓(𝜑) ≤ 𝑢(𝜑) if 𝜓, 𝑢 > 0. Similarly, 𝑢(𝜑) ≤ V(𝜑) if
𝑢, V > 0.

The proof for 𝜓, 𝑢, V < 0 is similar and omitted here.

Since 𝜓 < 0, we see that 𝜑(𝜉) is decreasing in 𝜉, and so
𝜑
𝑐𝜏
(𝜉) ≥ 𝜑(𝜉). To get the behavior of the trajectories 𝜓

𝑐
(𝜑)

of (23), we have to study the trajectories starting from (1, 0),
since the property of 𝜓

𝑐
at 𝜑 depends on the behavior of 𝜓

𝑐
at

𝜑
𝑐𝜏
closely. Consider the following problem:

𝑑𝜓

𝑑𝜑
= 𝑐 −

𝑚𝜑
𝑚+𝑝−1

(1 − 𝜑)
𝑞

(𝜑
𝑐𝜏
− 𝑎)

𝜓
for 𝜑 ∈ (𝛼, 1) ,

𝜓 (1
−
) = 0,

𝜓 (𝜑) < 0 for 𝜑 ∈ (𝛼, 1) ,

(106)

where (𝛼, 1) with 𝛼 ≥ 0 is the maximal existence interval of
the solution 𝜓(𝜑) < 0. By (106),

1

2
𝜓
2
(𝜑) = −∫

1

𝜑

𝑐𝜓 (𝑠) 𝑑𝑠 + 𝑚∫

1

𝜑

𝑠
𝑚+𝑝−1

(1 − 𝑠)
𝑞
(𝑠

𝑐𝜏
− 𝑎) 𝑑𝑠

≥ −∫

1

𝜑

𝑐𝜓 (𝑠) 𝑑𝑠 + 𝑚∫

1

𝜑

𝑠
𝑚+𝑝−1

(1 − 𝑠)
𝑞
(𝑠 − 𝑎) 𝑑𝑠.

(107)

Hence, 𝜓(0+) = 0 is impossible if ∫1
0
𝑠
𝑚+𝑝−1

(1 − 𝑠)
𝑞
(𝑠 − 𝑎)𝑑𝑠 ≥

0. So, we only need to find the decreasing traveling wave
fronts for the case ∫1

0
𝑠
𝑚+𝑝−1

(1 − 𝑠)
𝑞
(𝑠 − 𝑎)𝑑𝑠 < 0. We first

give the following three lemmas.

Lemma 11. Assume that 0 < 𝜑
0
< 1 and 𝜓

1
(𝜑), 𝜓

2
(𝜑) are

solutions of (106) corresponding to different wave speeds 𝑐
1
, 𝑐

2
,

respectively, where 𝜓
1
(𝜑

0
) ≤ 𝜓

2
(𝜑

0
) < 0, 𝜓

1
(𝜑) < 𝜓

2
(𝜑) < 0

for 𝜑
0
< 𝜑 < 1, and 𝜑

1
(𝜉

1
) = 𝜑

2
(𝜉

2
) = 𝜑

0
. Then, 𝜑

1
(𝜉

1
− 𝑠) >

𝜑
2
(𝜉

2
− 𝑠) if 0 < 𝑠 < ∫

1

𝜑
0

(𝑚𝜎
𝑚−1

/ − 𝜓
2
(𝜎))𝑑𝜎, and 𝜑

1
(𝜉

1
− 𝑠) =

𝜑
2
(𝜉

2
− 𝑠) = 1 if 𝑠 ≥ ∫

1

𝜑
0

(𝑚𝜎
𝑚−1

/ − 𝜓
2
(𝜎))𝑑𝜎.

Proof. The proof is similar to that of Lemma 2.

Lemma 12. For any given 𝜏 > 0, and 𝑐
1
> 𝑐

2
≥ 0, let 𝜓

1
(𝜑),

𝜓
2
(𝜑) be solutions of (106) corresponding to 𝑐

1
, 𝑐

2
, respectively.

Then, 𝜓
1
(𝜑) < 𝜓

2
(𝜑) for any 𝜑 ∈ (𝛼

2
, 1), where (𝛼

2
, 1) is

the maximal existence interval of the solution 𝜓
2
(𝜑) < 0. In

addition, 𝜓
1
(𝛼

2
) < 0. (See Figure 4(a).)

Proof. Wefirst show that𝜓
1
(𝜑) < 𝜓

2
(𝜑) if 𝜑 is in a sufficiently

small left neighborhood of 1. The argument consists of three
cases, 𝑞 > 1, 𝑞 = 1, and 𝑞 < 1.

(i) Consider the case 𝑞 > 1. According to (106), we have

𝑑𝜓

𝑑𝜑
= 𝑐 −

𝑚𝜑
𝑚+𝑝−1

(1 − 𝜑)
𝑞

(𝜑
𝑐𝜏
− 𝑎)

𝜓
. (108)

Noticing that 𝜑
𝑐𝜏
≥ 𝜑, we have for 𝜑 ≥ 𝑎 that

𝑑𝜓

𝑑𝜑
≥ 𝑐. (109)

Integrating from 𝜑 to 1 yields

−𝜓 (𝜑) ≥ 𝑐 (1 − 𝜑) . (110)

We further have

𝑑𝜓

𝑑𝜑
= 𝑐 −

𝑚𝜑
𝑚+𝑝−1

(1 − 𝜑)
𝑞

(𝜑
𝑐𝜏
− 𝑎)

𝜓

≤ 𝑐 +
𝑚𝜑

𝑚+𝑝−1
(1 − 𝜑)

𝑞

(𝜑
𝑐𝜏
− 𝑎)

𝑐 (1 − 𝜑)

≤ 𝑐 +
𝑚 (1 − 𝑎)

𝑐
(1 − 𝜑)

𝑞−1

.

(111)

Integrating from 𝜑 to 1 gives

−𝜓 (𝜑) ≤ 𝑐 (1 − 𝜑) +
𝑚 (1 − 𝑎)

𝑐𝑞
(1 − 𝜑)

𝑞

. (112)

Thus,

𝜓 (𝜑) ∼ 𝑐 (𝜑 − 1) , as 𝜑 → 1
−
. (113)

Therefore, 𝜓
1
(𝜑) < 𝜓

2
(𝜑) in a left neighborhood of 𝜑 = 1.
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𝜓

0 1

𝑐1 > 𝑐2

𝜓𝑐1 (𝜑)

𝜓𝑐2 (𝜑)

𝛼2 𝜑

(a)

𝜓

0 1 𝜑

𝜓𝑐(𝜑)

𝑅𝑘2

(b)

𝜓

0 1 𝜑

𝜓𝑐(𝜑)

�̃�∗(𝜑)

(c)

Figure 4: The properties of the trajectory 𝜓
𝑐
(𝜑). (a) The monotonicity of 𝜓

𝑐
(𝜑) on 𝑐. (b) The trajectory 𝜓

𝑐
(𝜑) wanders through 𝑅

𝑘
. (c) The

trajectory 𝜓
𝑐
(𝜑) intersects with �̃�

∗
(𝜑) for large 𝑐.

(ii) When 𝑞 = 1, consider the following two systems:

𝜑

(𝜉) =

1

𝑚
𝜑
1−𝑚

(𝜉) 𝑢
1
(𝜉) ,

𝑢


1
(𝜉) =

𝑐

𝑚
𝜑
1−𝑚

(𝜉) 𝑢
1
(𝜉) − 𝜑(𝜉)

𝑝
(1 − 𝜑 (𝜉)) (𝜑 (𝜉) − 𝑎) ,

𝜑

(𝜉) =

1

𝑚
𝜑
1−𝑚

(𝜉) 𝑢
2
(𝜉) ,

𝑢


2
(𝜉) =

𝑐

𝑚
𝜑
1−𝑚

(𝜉) 𝑢
2
(𝜉) − 𝜑(𝜉)

𝑝
(1 − 𝜑 (𝜉)) (1 − 𝑎) .

(114)

Notice that the right hand side of the previous two systems
shares the same Jacobian matrix

𝑃 = (

0
1

𝑚

1 − 𝑎
𝑐

𝑚

) (115)

at (1, 0). By a simple calculation, we get the eigenvalues of the
matrix 𝑃 as

𝜆
+
=
𝑐 + √𝑐2 + 4𝑚 (1 − 𝑎)

2𝑚
, 𝜆

−
=
𝑐 − √𝑐2 + 4𝑚 (1 − 𝑎)

2𝑚
.

(116)
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It is easy to see that (1, 0) is a saddle point. And the eigenvec-
tor associated with the eigenvalue 𝜆

+
can be

𝑄 = (
1

𝑚𝜆
+

) . (117)

We express the local explicit solutions of the problem (114) in
the left neighborhood of (1, 0) to reach

𝜑 (𝜉) = 1 − 𝑙𝑒
𝜆
+
𝜉
+ O ((1 − 𝜑)

2

) ,

𝑢
𝑖
(𝜉) = −𝑙𝑚𝜆

+
𝑒
𝜆
+
𝜉
+ O (𝑢

2

𝑖
) , 𝑖 = 1, 2.

(118)

Therefore, near (1, 0), we have

𝑢
𝑖
∼ 𝑚𝜆

+
(𝜑 − 1) =

𝑐 + √𝑐2 + 4𝑚 (1 − 𝑎)

2
(𝜑 − 1) , 𝑖 = 1, 2.

(119)

By the comparison lemma, 𝑢
2
≤ 𝜓 ≤ 𝑢

1
, which implies

𝜓 (𝜑) ∼
𝑐 + √𝑐2 + 4𝑚 (1 − 𝑎)

2
(𝜑 − 1) , as 𝜑 → 1

−
.

(120)

Thus, 𝜓
1
(𝜑) < 𝜓

2
(𝜑) in a left neighborhood of 𝜑 = 1.

(iii) Consider the case 0 < 𝑞 < 1. Notice that

𝑑𝜓

𝑑𝜑
≥
𝑚𝜑

𝑚+𝑝−1
(1 − 𝜑)

𝑞

(𝑎 − 𝜑)

𝜓
, (121)

which means that

−𝜓
2
(𝜑) ≤ ∫

1

𝜑

2𝑚𝑠
𝑚+𝑝−1

(1 − 𝑠)
𝑞
(𝑎 − 𝑠) 𝑑𝑠

=
2𝑚 (𝑎 − 1)

𝑞 + 1
(1 − 𝜑)

𝑞+1

+ 𝑜 ((1 − 𝜑)
𝑞+1

) ;

(122)

that is,

−𝜓 (𝜑) ≥ √
2𝑚 (1 − 𝑎)

𝑞 + 1
(1 − 𝜑)

(𝑞+1)/2

+ 𝑜 ((1 − 𝜑)
(𝑞+1)/2

) .

(123)

Consequently,

𝑑𝜓

𝑑𝜑
≤ 𝑐 −

𝑚 (1 − 𝑎) (1 − 𝜑)
𝑞

𝜓

≤ 𝑐+
𝑚 (1 − 𝑎) (1 − 𝜑)

𝑞

√2𝑚 (1−𝑎) / (𝑞+1)(1−𝜑)
(𝑞+1)/2

+𝑜 ((1−𝜑)
(𝑞+1)/2

)

= 𝑐+√
𝑚 (1 − 𝑎) (𝑞 + 1)

2
(1−𝜑)

(𝑞−1)/2

+𝑜 ((1−𝜑)
(𝑞−1)/2

) .

(124)

That is,

−𝜓 (𝜑) ≤ 𝑐 (1 − 𝜑) + √
2𝑚 (1 − 𝑎)

𝑞 + 1
(1 − 𝜑)

(𝑞+1)/2

+ 𝑜 ((1 − 𝜑)
(𝑞+1)/2

) .

(125)

Thus, we have

−𝜓 (𝜑) = √
2𝑚 (1 − 𝑎)

𝑞 + 1
(1 − 𝜑)

(𝑞+1)/2

+ 𝑜 ((1 − 𝜑)
(𝑞+1)/2

) .

(126)

Recalling (123), we see that

−
𝑑𝜓

2

𝑑𝜑
= −2𝑐𝜓 + 2𝑚𝜑

𝑚+𝑝−1
(1 − 𝜑)

𝑞

(𝜑
𝑐𝜏
− 𝑎)

≥ 2𝑐√
2𝑚 (1 − 𝑎)

𝑞 + 1
(1 − 𝜑)

(𝑞+1)/2

+ 2𝑚𝜑
𝑚+𝑝−1

(1 − 𝜑)
𝑞

(𝜑 − 𝑎) + 𝑜 ((1 − 𝜑)
(𝑞+1)/2

) ,

(127)

which implies that

𝜓
2
(𝜑) ≥

4𝑐

𝑞 + 3
√
2𝑚 (1 − 𝑎)

𝑞 + 1
(1 − 𝜑)

(𝑞+3)/2

+
2𝑚 (1 − 𝑎)

𝑞 + 1
(1 − 𝜑)

𝑞+1

+ 𝑜 ((1 − 𝜑)
𝑞+1

) .

(128)

On the other hand, by (126), we have

−
𝑑𝜓

2

𝑑𝜑
≤ −2𝑐𝜓 + 2𝑚 (1 − 𝑎) (1 − 𝜑)

𝑞

= 2𝑐√
2𝑚 (1 − 𝑎)

𝑞 + 1
(1 − 𝜑)

(𝑞+1)/2

+ 2𝑚 (1 − 𝑎) (1 − 𝜑)
𝑞

+ 𝑜 ((1 − 𝜑)
(𝑞+1)/2

) ,

(129)

and, hence,

𝜓
2
(𝜑) ≤

4𝑐

𝑞 + 3
√
2𝑚 (1 − 𝑎)

𝑞 + 1
(1 − 𝜑)

(𝑞+3)/2

+
2𝑚 (1 − 𝑎)

𝑞 + 1
(1 − 𝜑)

𝑞+1

+ 𝑜 ((1 − 𝜑)
𝑞+1

) .

(130)

Summing up, we arrive at

𝜓
2
(𝜑) =

4𝑐

𝑞 + 3
√
2𝑚 (1 − 𝑎)

𝑞 + 1
(1 − 𝜑)

(𝑞+3)/2

+
2𝑚 (1 − 𝑎)

𝑞 + 1
(1 − 𝜑)

𝑞+1

+ 𝑜 ((1 − 𝜑)
𝑞+1

) ,

as 𝜑 → 1
−
,

(131)

which implies that 𝜓
1
(𝜑) < 𝜓

2
(𝜑) in a left neighborhood of

𝜑 = 1.
The proof for the claims that 𝜓

1
(𝜑) < 𝜓

2
(𝜑) for any 𝜑 ∈

(𝛼
2
, 1) and 𝜓

1
(𝛼

2
) < 0 is similar to the proof of Lemma 3 and

omitted here.



Abstract and Applied Analysis 13

Similar to Section 2, we denote level set 𝑅
𝑘
by

𝑅
𝑘

= {(𝜑, 𝜓) ∈ R
2
;
1

2
𝜓
2
− 𝑚∫

1

𝜑

𝑠
𝑚+𝑝−1

(1 − 𝑠)
𝑞
(𝑠 − 𝑎) 𝑑𝑠 = 𝑘}

(132)

for any 𝑘 ≥ 0, and correspondingly, define

𝑅
−

𝑘
= 𝑅

𝑘
∩ {𝜓 < 0} . (133)

Notice that if (𝜑, 𝜓) ∈ 𝑅
−

𝑘
solves system (12), then

𝑑𝑘 (𝜉)

𝑑𝜉
= 𝜓𝜓


+ 𝑚𝜑

𝑚+𝑝−1
(1 − 𝜑)

𝑞

(𝜑 − 𝑎) 𝜑


=
𝑐

𝑚
𝜑
1−𝑚

𝜓
2
+ 𝜓𝜑

𝑝
(1 − 𝜑)

𝑞

(𝜑 − 𝜑
𝑐𝜏
)

≥
𝑐

𝑚
𝜑
1−𝑚

𝜓
2

> 0,

(134)

since 𝜑(𝜉) is decreasing in 𝜉. This implies that the trajectory
(𝜑, 𝜓) of (106) wanders through increasing level sets with
increasing 𝜉. See Figure 4(b). Letting

𝑘
2
= −𝑚∫

1

0

𝑠
𝑚+𝑝−1

(1 − 𝑠)
𝑞
(𝑠 − 𝑎) 𝑑𝑠, (135)

we know that 𝑅
𝑘
2

passes through the critical point (0, 0).
Denote that

�̃�
∗
(𝜑) = −√−2𝑚∫

𝜑

0

𝑠𝑚+𝑝−1(1 − 𝑠)
𝑞
(𝑠 − 𝑎) 𝑑𝑠. (136)

We introduce the following lemma.

Lemma 13. The trajectory 𝜓
𝑐
(𝜑) of the problem (106) must

intersect with �̃�
∗
(𝜑) for sufficiently large 𝑐 > 0. (See

Figure 4(c).)

Proof. For any 𝜑 ∈ [𝑎, 1), we have 𝜑
𝑐𝜏
∈ [𝑎, 1) and

𝜓


𝑐
(𝜑) ≥ 𝑐 > 0. (137)

Let 𝜑
0
∈ (0, 𝑎) be the first point such that 𝜓

𝑐
(𝜑

0
) = 0. Then,

we have

𝜓
𝑐
(𝜑

0
) =

𝑚𝜑
𝑚+𝑝−1

0
(1 − 𝜑

0
)
𝑞

(𝜑
0𝑐𝜏

− 𝑎)

𝑐
. (138)

Since

𝜓
𝑐
(𝜑

0
) < 𝜓

𝑐
(𝑎) ≤ (𝑎 − 1) 𝑐, (139)

we have

𝑚𝜑
𝑚+𝑝−1

0
(1 − 𝜑

0
)
𝑞

(𝜑
0𝑐𝜏

− 𝑎) < (𝑎 − 1) 𝑐
2
. (140)

Thus,

𝑚𝜑
𝑚+𝑝−1

0
(1 − 𝜑

0
)
𝑞

(𝜑
0
− 𝑎) < (𝑎 − 1) 𝑐

2
. (141)

Denote that

�̃� = max
𝜑∈(0,𝑎)

{
𝑚𝜑

𝑚+𝑝−1
(1 − 𝜑)

𝑞

(𝑎 − 𝜑)

1 − 𝑎
} . (142)

Then, for any 𝑐 ≥ √�̃�, (141) does not hold, and 𝜓
𝑐
(𝜑) is in-

creasing on (0, 𝑎).Therefore,𝜓
𝑐
(𝜑)must intersect with �̃�

∗
(𝜑)

for any 𝑐 ≥ √�̃�. The proof is completed.

Theorem 14. (i) If ∫1
0
𝑠
𝑚+𝑝−1

(1 − 𝑠)
𝑞
(𝑠 − 𝑎)𝑑𝑠 ≥ 0, then there

is no nontrivial nonpositive solution for the problem (23).
(ii) If ∫1

0
𝑠
𝑚+𝑝−1

(1 − 𝑠)
𝑞
(𝑠 − 𝑎)𝑑𝑠 < 0, then there exists a

unique 𝑐∗
2
> 0, such that the problem (23) admits a nonpositive

solution 𝜓(𝜑), and 𝜓(𝜑) < 0 for any 𝜑 ∈ (0, 1).

Proof. The proof is similar to that of Theorem 5, and

𝑐
∗

2

= inf {𝑐 > 0; 𝜓
𝑐
intersects �̃�∗ at (𝜂

𝑐
, 𝜙

𝑐
) with 𝜂

𝑐
∈ [0, 1)} .

(143)

Proposition 15. 𝜑(𝜉) is a monotone decreasing sharp- or
smooth-type traveling wave front of the problem (10)-(11) for
some fixed 𝑐 > 0, if and only if 𝜓(𝜑) with 𝜓(𝜑) < 0 for any
𝜑 ∈ (0, 1) is a solution of the problem (23).

Proof. The proof is similar to that of Proposition 6.

Theorem 14 andProposition 15 imply the following result.

Theorem 16. (i) If ∫1
0
𝑠
𝑚+𝑝−1

(1 − 𝑠)
𝑞
(𝑠 − 𝑎)𝑑𝑠 ≥ 0, then there

is no decreasing traveling wave front for the problem (10)-(11).
(ii) If ∫1

0
𝑠
𝑚+𝑝−1

(1 − 𝑠)
𝑞
(𝑠 − 𝑎)𝑑𝑠 < 0, then there is a unique

wave speed 𝑐
∗

2
> 0, such that the problem (10)-(11) admits a

decreasing traveling wave front.

Furthermore, we have the following results.

Theorem17. The travelingwave front𝜑(𝜉) of the problem (10)-
(11) corresponding to the wave speed 𝑐

∗

2
obtained earlier is of

smooth type.

Proof. It is easy to see that

𝑑𝜓

𝑑𝜑
≤ 0, as 𝜑 → 0

+
. (144)

Thus,

𝜓 ≥
𝑚𝜑

𝑚+𝑝−1
(1 − 𝜑)

𝑞

(𝜑
𝑐
∗

2
𝜏
− 𝑎)

𝑐∗
2

≥ −
𝑚𝑎

𝑐∗
2

𝜑
𝑚+𝑝−1

.

(145)
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Recalling that

𝜑

(𝜉) =

1

𝑚
𝜑
1−𝑚

(𝜉) 𝜓 (𝜉) , (146)

we know that

−
𝑎

𝑐∗
2

𝜑
𝑝
(𝜉) ≤ 𝜑


(𝜉) ≤ 0, (147)

which means that

𝜑

(𝜉

−

𝑏
) = 0. (148)

The proof is completed.

Theorem 18. 𝑐∗
2
(𝜏) is nonincreasing in delay 𝜏; namely, if 𝜏

1
>

𝜏
2
, then 𝑐

∗

2
(𝜏

1
) ≤ 𝑐

∗

2
(𝜏

2
).

Proof. The proof is similar to that of Theorem 9.

4. Asymptotic Behavior of the Traveling
Wave Solutions

In this section, we first pay our attention to the finiteness of
𝜉
𝑎
, 𝜉

𝑏
, 𝜉

𝑎
, 𝜉

𝑏
. On the basis of this, the convergent rates of 𝜑

going to the steady states at far-field are discussed.

Theorem 19. Let𝜑(𝜉) be the increasing traveling wave solution
of the problem (8)-(9) corresponding to the unique wave speed
𝑐
∗

1
.
(i) If 0 < 𝑞 < 1, then 𝜉

𝑏
< +∞.

(ii) If 𝑞 ≥ 1, then 𝜉
𝑏
= +∞. More precisely,

(a) when 𝑞 > 1, one has

1 − 𝜑 (𝜉) ∼ (
(1 − 𝑎) (𝑞 − 1)

𝑐∗
1

𝜉)

1/(1−𝑞)

, as 𝜉 → +∞;

(149)

(b) when 𝑞 = 1, one has

1 − 𝜑 (𝜉) ∼ 𝑒
−((√𝑐

∗2

1
+4𝑚(1−𝑎)−𝑐

∗

1
)/2𝑚)𝜉

, as 𝜉 → +∞.

(150)

Proof. (i) For (1+𝑎)/2 ≤ 𝜑
𝑐
∗

1
𝜏
< 1, we have (1+𝑎)/2 ≤ 𝜑

𝑐
∗

1
𝜏
≤

𝜑 ≤ 1, and

1

2

𝑑𝜓
2

𝑑𝜑
− 𝑐

∗

1
𝜓 = −𝑚𝜑

𝑚+𝑝−1
(1 − 𝜑)

𝑞

(𝜑
𝑐
∗

1
𝜏
− 𝑎)

≤ −
𝑚 (1 − 𝑎)

2
(
1 + 𝑎

2
)

𝑚+𝑝−1

(1 − 𝜑)
𝑞

.

(151)

Consider the following inequality problem:

1

2

𝑑𝑢
2

𝑑𝜑
− 𝑐

∗

1
𝑢 ≥ −

𝑚 (1 − 𝑎)

2
(
1 + 𝑎

2
)

𝑚+𝑝−1

(1 − 𝜑)
𝑞

,

for 𝜑 ≤ 1,

𝑢 (1
−
) = 0,

𝑢 (𝜑) > 0, for 𝜑 < 1.

(152)

It is easy to prove that 𝜓(𝜑) ≥ 𝑢(𝜑) when 𝜑
𝑐
∗

1
𝜏
≥ (1 + 𝑎)/2.

Now, we construct a function 𝑢 satisfying (152). Let

𝑢 = 𝐴(1 − 𝜑)
𝜃

. (153)

Then, 𝑢 satisfies (152) if and only if

𝐴
2
𝜃(1 − 𝜑)

2𝜃−1−𝑞

+ 𝑐
∗

1
𝐴(1 − 𝜑)

𝜃−𝑞

≤
𝑚 (1 − 𝑎)

2
(
1 + 𝑎

2
)

𝑚+𝑝−1

.

(154)

Take

𝜃 = max {
1 + 𝑞

2
, 𝑞} . (155)

Then, (154) holds when 𝐴 is appropriately small. Thus,

𝜓 (𝜑) ≥ 𝐴(1 − 𝜑)
𝜃

, (156)

with 𝜃 = max{(1 + 𝑞)/2, 𝑞} and 𝐴 appropriately small. Since
𝜑(𝜉) is the solution of the problem (8)-(9), there exists 𝜑

0
< 1

with 1 − 𝜑
0
small enough such that when 𝜑

0
< 𝜑 < 1,

𝜉 (𝜑) − 𝜉 (𝜑
0
) = ∫

𝜑

𝜑
0

𝑚𝑠
𝑚−1

𝜓 (𝑠)
𝑑𝑠

≤
𝑚

𝐴
∫

𝜑

𝜑
0

𝑠
𝑚−1

(1 − 𝑠)
𝜃
𝑑𝑠.

(157)

When 0 < 𝑞 < 1, 𝜉(𝜑) < +∞ as 𝜑 → 1
−. Thus, 𝜉

𝑏
< +∞.

(ii) It is easy to see that

𝑑𝜓

𝑑𝜑
≤ 0, as 𝜑 → 1

−
. (158)

Thus,

𝜓 ≤
𝑚𝜑

𝑚+𝑝−1
(1 − 𝜑)

𝑞

(𝜑
𝑐
∗

1
𝜏
− 𝑎)

𝑐∗
1

≤
𝑚𝜑

𝑚+𝑝−1
(1 − 𝜑)

𝑞

(𝜑 − 𝑎)

𝑐∗
1

,

𝜉 (𝜑) − 𝜉 (𝜑
0
) = ∫

𝜑

𝜑
0

𝑚𝑠
𝑚−1

𝜓 (𝑠)
𝑑𝑠

≥ ∫

𝜑

𝜑
0

𝑐
∗

1

𝑠𝑝(1 − 𝑠)
𝑞
(𝑠 − 𝑎)

𝑑𝑠.

(159)

Letting 𝜑 → 1, we obtain

lim
𝜑→1

−

𝜉 (𝜑) = +∞; (160)

that is,

𝜉
𝑏
= +∞. (161)
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For any 𝜀 > 0, when 𝜑 approaches 1 enough, we have
𝜑
𝑐
∗

1
𝜏
> 1 − 𝜀. Consider the following two problems:

1

2

𝑑𝑢
2

𝑑𝜑
− 𝑐

∗

1
𝑢 ≤ −𝑚𝜑

𝑚+𝑝−1
(1 − 𝜑)

𝑞

(1 − 𝑎) ,

for 𝜑 ≤ 1,

𝑢 (1
−
) = 0,

𝑢 (𝜑) > 0 for 𝜑 < 1,

(162)

1

2

𝑑V2

𝑑𝜑
− 𝑐

∗

1
V ≥ −𝑚𝜑

𝑚+𝑝−1
(1 − 𝜑)

𝑞

(1 − 𝜀 − 𝑎) ,

for 𝜑 ≤ 1,

V (1
−
) = 0,

V (𝜑) > 0 for 𝜑 < 1.

(163)

It is easy to prove that V(𝜑) ≤ 𝜓(𝜑) ≤ 𝑢(𝜑) when 𝜑 < 1 with
𝜑
𝑐
∗

1
𝜏
> 1 − 𝜀. In what follows, we construct two functions 𝑢

and V satisfying (162) and (163), respectively. Let

𝑢 = 𝐴(1 − 𝜑)
𝜃

. (164)

Then, 𝑢 satisfies (162) if and only if

𝐴
2
𝜃(1 − 𝜑)

2𝜃−1−𝑞

+ 𝑐
∗

1
𝐴(1 − 𝜑)

𝜃−𝑞

≥ 𝑚 (1 − 𝑎) 𝜑
𝑚+𝑝−1

.

(165)

When 𝑞 > 1, take

𝜃 = 𝑞, 𝐴 =
𝑚 (1 − 𝑎)

𝑐∗
1

. (166)

When 𝑞 = 1, take

𝜃 = 1,

𝐴 =

√𝑐∗2
1

+ 4𝑚 (1 − 𝑎) − 𝑐
∗

1

2
.

(167)

Then, 𝑢 is a solution of problem (162).
On the other hand, let

V = 𝐴(1 − 𝜑)
𝜃

. (168)

Then, V satisfies (163) if and only if

𝐴
2
𝜃(1 − 𝜑)

2𝜃−1−𝑞

+ 𝑐
∗

1
𝐴(1 − 𝜑)

𝜃−𝑞

≤ 𝑚 (1 − 𝜀 − 𝑎) 𝜑
𝑚+𝑝−1

.

(169)

When 𝑞 > 1, take 𝜃 = 𝑞; then, (169) is ensured by

𝐴
2
𝑞𝜀

𝑞−1
+ 𝑐

∗

1
𝐴

≤ 𝑚 (1 − 𝜀 − 𝑎) (1 − 𝜀)
𝑚+𝑝−1

(1 − 𝜀
(𝑞−1)/2

+ 𝜀
(𝑞−1)/2

) ,

(170)

which holds if

𝐴
2
𝑞𝜀

(𝑞−1)/2
≤ 𝑚 (1 − 𝜀 − 𝑎) (1 − 𝜀)

𝑚+𝑝−1
,

𝑐
∗

1
𝐴 ≤ 𝑚 (1 − 𝜀 − 𝑎) (1 − 𝜀)

𝑚+𝑝−1
(1 − 𝜀

(𝑞−1)/2
) .

(171)

Take

𝐴 =
𝑚 (1 − 𝜀 − 𝑎) (1 − 𝜀)

𝑚+𝑝−1
(1 − 𝜀

(𝑞−1)/2
)

𝑐∗
1

. (172)

Then, when

𝜀 ≤ min{1 − 𝑎,
𝑐
∗4/(𝑞−1)

1

(𝑚 (1 − 𝑎))
2/(𝑞−1)

𝑞2/(𝑞−1)
} , (173)

(169) holds. When 𝑞 = 1, take 𝜃 = 1, and

𝐴 =

√𝑐∗2
1

+ 4𝑚 (1 − 𝜀 − 𝑎) (1 − 𝜀)
𝑚+𝑝−1

− 𝑐
∗

1

2
.

(174)

Then, (169) is ensured.
Summing up, for any 𝜑 < 1with 𝜑

𝑐
∗

1
𝜏
> 1−𝜀, when 𝑞 > 1,

𝑚(1 − 𝜀 − 𝑎) (1 − 𝜀)
𝑚+𝑝−1

(1 − 𝜀
(𝑞−1)/2

)

𝑐∗
1

(1 − 𝜑)
𝑞

≤ 𝜓 (𝜑) ≤
𝑚 (1 − 𝑎)

𝑐∗
1

(1 − 𝜑)
𝑞

.

(175)

Noticing that

𝜉 (𝜑) = 𝜉 (𝜑
0
) + ∫

𝜑

𝜑
0

𝑚𝑠
𝑚−1

𝜓 (𝑠)
𝑑𝑠, (176)

we have

𝑐
∗

1

(1 − 𝑎) (𝑞 − 1)

≤ lim
𝜑→1

−

𝜉 (𝜑) (1 − 𝜑)
𝑞−1

≤
𝑐
∗

1

(1 − 𝜀 − 𝑎) (1 − 𝜀)
𝑚+𝑝−1

(1 − 𝜀(𝑞−1)/2) (𝑞 − 1)
;

(177)

that is,

(
(1 − 𝑎) (𝑞 − 1)

𝑐∗
1

)

1/(1−𝑞)

≤ lim
𝜉→+∞

(1 − 𝜑 (𝜉)) 𝜉
1/(𝑞−1)

≤ (
(1 − 𝜀 − 𝑎) (1 − 𝜀)

𝑚+𝑝−1
(1 − 𝜀

(𝑞−1)/2
) (𝑞 − 1)

𝑐∗
1

)

1/(1−𝑞)

.

(178)
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When 𝑞 = 1,

√𝑐∗2
1

+ 4𝑚 (1 − 𝜀 − 𝑎) (1 − 𝜀)
𝑚+𝑝−1

− 𝑐
∗

1

2
(1 − 𝜑)

≤ 𝜓 (𝜑)

≤

√𝑐∗2
1

+ 4𝑚 (1 − 𝑎) − 𝑐
∗

1

2
(1 − 𝜑) .

(179)

A direct calculation gives

−
2𝑚

√𝑐∗2
1

+ 4𝑚 (1 − 𝑎) − 𝑐∗
1

≤ lim
𝜑→1

−

𝜉 (𝜑)

ln (1 − 𝜑)

≤ −
2𝑚

√𝑐∗2
1

+ 4𝑚 (1 − 𝜀 − 𝑎) (1 − 𝜀)
𝑚+𝑝−1

− 𝑐∗
1

;

(180)

that is,

𝑒
−((√𝑐

∗2

1
+4𝑚(1−𝑎)−𝑐

∗

1
)/2𝑚)𝜉

≤ 1 − 𝜑 (𝜉)

≤ 𝑒
−((√𝑐

∗2

1
+4𝑚(1−𝜀−𝑎)(1−𝜀)

𝑚+𝑝−1

−𝑐
∗

1
)/2𝑚)𝜉

.

(181)

By the arbitrariness of 𝜀 > 0, (149)-(150) hold.

Theorem 20. Let 𝜑(𝜉) be the increasing traveling wave solu-
tion of the problem (8)-(9) corresponding to the unique wave
speed 𝑐∗

1
.

(i) If𝑚 > min{𝑝, 1}, then 𝜉
𝑎
> −∞.

(ii) If𝑚 ≤ min{𝑝, 1}, then 𝜉
𝑎
= −∞. More precisely,

(a) when𝑚 + 𝑝 > 2, if𝑚 = 1, one has

𝜑 (𝜉) ∼ 𝑒
𝑐
∗

1
𝜉
, as 𝜉 → −∞, (182)

and if𝑚 < 1, one has

𝜑 (𝜉) ∼ (
(𝑚 − 1) 𝑐

∗

1

𝑚
𝜉)

1/(𝑚−1)

, as 𝜉 → −∞; (183)

(b) when𝑚 + 𝑝 = 2, if𝑚 = 1, one has

𝜑 (𝜉) ∼ 𝑒
((√𝑐
∗2

1
+4𝑎+𝑐

∗

1
)/2)𝜉

, as 𝜉 → −∞, (184)

and if𝑚 < 1, one has

𝜑 (𝜉) ∼ (

(𝑚 − 1) (√𝑐∗2
1

+ 4𝑚𝑎 + 𝑐
∗

1
)

2𝑚
𝜉)

1/(𝑚−1)

,

as 𝜉 → −∞;

(185)

(c) when 1 < 𝑚 + 𝑝 < 2, noticing that 𝑚 ≤

min{𝑝, 1}, then𝑚 ≤ 𝑝; if𝑚 = 𝑝, one has

𝜑 (𝜉) ∼ 𝑒
(√a/𝑚)𝜉

, as 𝜉 → −∞, (186)

and if𝑚 < 𝑝, one has

𝜑 (𝜉) ∼ (
𝑚 − 𝑝

2𝑚
√

2𝑚𝑎

𝑚 + 𝑝
𝜉)

2/(𝑚−𝑝)

, as 𝜉 → −∞.

(187)

Proof. For any 𝜑
0
∈ (0, 𝑎), we see that

𝜉 (𝜑) = 𝜉 (𝜑
0
) − ∫

𝜑
0

𝜑

𝑚𝑠
𝑚−1

𝜓 (𝑠)
𝑑𝑠. (188)

From the proof of Lemma 3, we see that when 𝜑 > 0 is
sufficiently small,

𝜓 (𝜑) = 𝐴𝜑
𝛾
+ 𝑜 (𝜑

𝛾
) , (189)

where 𝛾 = 1 for𝑚+𝑝 ≥ 2, and 𝛾 = (𝑚+𝑝)/2 for 1 < 𝑚+𝑝 <

2. It is clear that 𝜉(𝜑) → −∞ as 𝜑 → 0
+ if 𝛾 ≥ 𝑚, and

𝜉(𝜑) is finite as 𝜑 → 0
+ if 𝛾 < 𝑚. That is, if 𝑚 > min{𝑝, 1},

then 𝜉
𝑎
> −∞; however, if 𝑚 ≤ min{𝑝, 1}, then 𝜉

𝑎
= −∞.

Furthermore, notice that as 𝜑 → 0
+, when𝑚 + 𝑝 > 2,

𝜓 (𝜑) = 𝑐
∗

1
𝜑 + 𝑜 (𝜑) . (190)

If𝑚 = 1, we have

lim
𝜑→0

+

𝜉 (𝜑)

ln𝜑
=

1

𝑐∗
1

. (191)

If𝑚 < 1,

lim
𝜑→0

+

𝜉 (𝜑)

𝜑𝑚−1
=

𝑚

(𝑚 − 1) 𝑐
∗

1

. (192)

When𝑚 + 𝑝 = 2,

𝜓 (𝜑) =

√𝑐∗2
1

+ 4𝑚𝑎 + 𝑐

2
𝜑 + 𝑜 (𝜑) .

(193)

If𝑚 = 1, we have

lim
𝜑→0

+

𝜉 (𝜑)

ln𝜑
=

√𝑐∗2
1

+ 4𝑎 − 𝑐
∗

1

2𝑎
. (194)

If𝑚 < 1,

lim
𝜑→0

+

𝜉 (𝜑)

𝜑𝑚−1
=

√𝑐∗2
1

+ 4𝑚𝑎 − 𝑐
∗

1

2𝑎 (𝑚 − 1)
. (195)

When 1 < 𝑚 + 𝑝 < 2,

𝜓 (𝜑) = √
2𝑚𝑎

𝑚 + 𝑝
𝜑
(𝑚+𝑝)/2

+ 𝑜 (𝜑
(𝑚+𝑝)/2

) . (196)
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If𝑚 = 𝑝, we have

lim
𝜑→0

+

𝜉 (𝜑)

ln𝜑
=

𝑚

√𝑎
. (197)

If𝑚 < 𝑝,

lim
𝜑→0

+

𝜉 (𝜑)

𝜑(𝑚−𝑝)/2
=

2𝑚

𝑚 − 𝑝
√
𝑚 + 𝑝

2𝑚𝑎
. (198)

By a simple calculation, (182)–(187) hold.

Theorem21. Let𝜑(𝜉) be the decreasing travelingwave solution
of the problem (10)-(11) corresponding to the unique wave speed
𝑐
∗

2
.

(i) If 0 < 𝑞 < 1, then 𝜉
𝑎
> −∞.

(ii) If 𝑞 ≥ 1, then 𝜉
𝑎
= −∞. More precisely,

(a) when 𝑞 > 1, one has

1 − 𝜑 (𝜉) ∼ 𝑒
(𝑐
∗

2
/𝑚)𝜉

, as 𝜉 → −∞; (199)

(b) when 𝑞 = 1, one has

1 − 𝜑 (𝜉) ∼ 𝑒
((√𝑐
∗2

2
+4𝑚(1−𝑎)+𝑐

∗

2
)/2𝑚)𝜉

, as 𝜉 → −∞.

(200)

Proof. Let 𝜑
0
approach 1 enough. Then, we have

𝜉 (𝜑
0
) − 𝜉 (𝜑) = ∫

𝜑
0

𝜑

𝑚𝑠
𝑚−1

𝜓 (𝑠)
𝑑𝑠. (201)

From the proof of Lemma 12, we see that

𝜓 (𝜑) ∼ 𝐴(1 − 𝜑)
𝛾

, (202)

as 𝜑 → 1
−, where 𝛾 = 1 for 𝑞 ≥ 1, and 𝛾 = (𝑞 + 1)/2 for

0 < 𝑞 < 1. It is clear that 𝜉(𝜑) → −∞ as 𝜑 → 1
− if 𝛾 ≥ 1,

and 𝜉(𝜑) is finite as𝜑 → 1
− if 𝛾 < 1.That is, if 0 < 𝑞 < 1, then

𝜉
𝑎
> −∞; however, if 𝑞 ≥ 1, then 𝜉

𝑎
= −∞. Furthermore,

notice that as 𝜑 → 1
−, when 𝑞 > 1,

𝜓 (𝜑) = 𝑐
∗

2
(𝜑 − 1) + 𝑜 (𝜑 − 1) ,

lim
𝜑→1

−

𝜉 (𝜑)

ln (1 − 𝜑)
=

𝑚

𝑐∗
2

.

(203)

When 𝑞 = 1,

𝜓 (𝜑) =

√𝑐∗2
2

+ 4𝑚 (1 − 𝑎) + 𝑐
∗

2

2
(𝜑 − 1) + 𝑜 (𝜑 − 1) ,

lim
𝜑→1

−

𝜉 (𝜑)

ln (1 − 𝜑)
=

2𝑚

√𝑐∗2
2

+ 4𝑚 (1 − 𝑎) + 𝑐∗
2

.

(204)

This yields (199)-(200).

Theorem 22. Let 𝜑(𝜉) be the decreasing traveling wave solu-
tion of the problem (10)-(11) corresponding to the unique wave
speed 𝑐∗

2
.

(i) If 𝑝 < min{𝑚, 1}, then 𝜉
𝑏
< +∞.

(ii) If 𝑝 ≥ min{𝑚, 1}, then 𝜉
𝑏
= +∞. More precisely,

(a) when𝑚 + 𝑝 > 2, if 𝑝 > 1, one has

𝜑 (𝜉) ∼ (
𝑎 (𝑝 − 1)

𝑐∗
2

𝜉)

1/(1−𝑝)

, as 𝜉 → +∞, (205)

and if 𝑝 = 1, one has

𝜑 (𝜉) ∼ 𝑒
−(𝑎/𝑐

∗

2
)𝜉
, as 𝜉 → +∞; (206)

(b) when𝑚 + 𝑝 = 2, if 𝑝 > 1, one has

𝜑 (𝜉) ∼ (

(1 − 𝑚) (√𝑐∗2
2

+ 4𝑚𝑎 − 𝑐
∗

2
)

2𝑚
𝜉)

1/(𝑚−1)

,

as 𝜉 → +∞,

(207)

and if 𝑝 = 1, one has

𝜑 (𝜉) ∼ 𝑒
−((√𝑐

∗2

2
+4𝑎−𝑐

∗

2
)/2)𝜉

, as 𝜉 → +∞; (208)

(c) when 1 < 𝑚 + 𝑝 < 2, noticing that 𝑝 ≥

min{𝑚, 1}, then 𝑝 ≥ 𝑚; if 𝑝 > 𝑚, one has

𝜑 (𝜉) ∼ (
𝑝 − 𝑚

2𝑚
√

2𝑚𝑎

𝑚 + 𝑝
𝜉)

2/(𝑚−𝑝)

, as 𝜉 → +∞,

(209)

and if 𝑝 = 𝑚, one has

𝜑 (𝜉) ∼ 𝑒
−(√𝑎/𝑚)𝜉

, as 𝜉 → +∞. (210)

Proof. (i) For 0 < 𝜑
𝑐
∗

2
𝜏
≤ 𝑎/2, we have 0 ≤ 𝜑 ≤ 𝜑

𝑐
∗

2
𝜏
≤ 𝑎/2,

and

1

2

𝑑𝜓
2

𝑑𝜑
− 𝑐

∗

2
𝜓 = −𝑚𝜑

𝑚+𝑝−1
(1 − 𝜑)

𝑞

(𝜑
𝑐
∗

2
𝜏
− 𝑎)

≥
𝑚𝑎

2
(1 −

𝑎

2
)

𝑞

𝜑
𝑚+𝑝−1

.

(211)

Consider the following inequality problem:

1

2

𝑑𝑢
2

𝑑𝜑
− 𝑐

∗

2
𝑢 ≤

𝑚𝑎

2
(1 −

𝑎

2
)

𝑞

𝜑
𝑚+𝑝−1

, for 𝜑 ≥ 0,

𝑢 (0
+
) = 0,

𝑢 (𝜑) < 0, for 𝜑 > 0.

(212)
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It is easy to prove that𝜓(𝜑) ≤ 𝑢(𝜑)when 𝜑
𝑐
∗

2
𝜏
≤ 𝑎/2. Now, we

construct a function 𝑢 satisfying (212). Let

𝑢 = −𝐵𝜑
𝑟
. (213)

Then, 𝑢 satisfies (212) if and only if

𝐵
2
𝑟𝜑

2𝑟−𝑚−𝑝
+ 𝑐

∗

2
𝐵𝜑

𝑟−𝑚−𝑝+1
≤
𝑚𝑎

2
(1 −

𝑎

2
)

𝑞

. (214)

Take

𝑟 = max {
𝑚 + 𝑝

2
, 𝑚 + 𝑝 − 1} . (215)

Then, (212) holds when 𝐵 is appropriately small. Thus,

𝜓 (𝜑) ≤ −𝐵𝜑
𝑟
, (216)

with 𝑟 = max{(𝑚+𝑝)/2,𝑚+𝑝−1} and 𝐵 appropriately small.
Since 𝜑(𝜉) is the solution of the problem (10)-(11), there exists
𝜑
0
> 0 sufficiently small such that

𝜉 (𝜑) − 𝜉 (𝜑
0
) = −∫

𝜑
0

𝜑

𝑚𝑠
𝑚−1

𝜓 (𝑠)
𝑑𝑠

≤
𝑚

𝐵
∫

𝜑
0

𝜑

1

𝑠𝜃−𝑚+1
𝑑𝑠.

(217)

When 𝑝 < min{𝑚, 1}, 𝜉(𝜑) < +∞ as 𝜑 → 0
+. Thus, 𝜉

𝑏
<

+∞.
(ii) From the proof of Theorem 14, we know that

𝜓 (𝜑) ≥ �̃�
∗
(𝜑) = −√2𝑚∫

𝜑

0

𝑠𝑚+𝑝−1(1 − 𝑠)
𝑞
(𝑎 − 𝑠) 𝑑𝑠

≥ −√
2𝑚𝑎

𝑚 + 𝑝
𝜑
(𝑚+𝑝)/2

.

(218)

On the other hand, from the proof of Theorem 17, we also
note that

𝜓 (𝜑) ≥ −
𝑚𝑎

𝑐∗
2

𝜑
𝑚+𝑝−1

. (219)

By (218)-(219) and

𝜉 (𝜑) − 𝜉 (𝜑
0
) = ∫

𝜑

𝜑
0

𝑚𝑠
𝑚−1

𝜓 (𝑠)
𝑑𝑠, (220)

it is easy to see that

lim
𝜑→0

+

𝜉 (𝜑) = +∞, (221)

if 𝑝 ≥ min{𝑚, 1}. That is,

𝜉
𝑏
= +∞. (222)

For any 0 < 𝜀 < 𝑎, when 𝜑 approaches 0 enough, we have
𝜑
𝑐
∗

2
𝜏
< 𝜀. Consider the following problem:

1

2

𝑑𝑢
2

𝑑𝜑
− 𝑐

∗

2
𝑢 ≤ 𝑚𝜑

𝑚+𝑝−1
(1 − 𝜑)

𝑞

(𝑎 − 𝜀) , for 𝜑 ≥ 0,

𝑢 (0
+
) = 0,

𝑢 (𝜑) < 0, for 𝜑 > 0.

(223)

It is easy to prove that 𝜓(𝜑) ≤ 𝑢(𝜑) when 𝜑 > 0 with 𝜑
𝑐
∗

2
𝜏
< 𝜀.

In what follows, we construct a function 𝑢 satisfying (223).
Let

𝑢 = −𝐵𝜑
𝑟
. (224)

Noticing that 0 < 𝜑 ≤ 𝜑
𝑐
∗

2
𝜏
< 𝜀, then 𝑢 satisfies (223) if

𝐵
2
𝑟𝜑

2𝑟−𝑚−𝑝
+ 𝑐

∗

2
𝐵𝜑

𝑟−𝑚−𝑝+1
≤ 𝑚(1 − 𝜀)

𝑞
(𝑎 − 𝜀) . (225)

When 𝑚 + 𝑝 > 2, take 𝑟 = 𝑚 + 𝑝 − 1. Then, (225) is ensured
by the following inequalities:

𝑐
∗

2
𝐵 ≤ 𝑚(1 − 𝜀)

𝑞
(𝑎 − 𝜀) (1 − 𝜀

(𝑚+𝑝−2)/2
) ,

(𝑚 + 𝑝 − 1) 𝐵
2
𝑞𝜀

(𝑚+𝑝−2)/2
≤ 𝑚(1 − 𝜀)

𝑞
(𝑎 − 𝜀) .

(226)

Take

𝐵 =
𝑚(1 − 𝜀)

𝑞
(𝑎 − 𝜀) (1 − 𝜀

(𝑚+𝑝−2)/2
)

𝑐∗
2

. (227)

Then, when 𝜀 < (𝑐
∗2

2
/𝑚(𝑚 + 𝑝 − 1))

2/(𝑚+𝑝−2), (225) holds.
Recalling (219), we obtain

−
𝑚𝑎

𝑐∗
2

𝜑
𝑚+𝑝−1

≤ 𝜓 (𝜑)

≤ −
𝑚(1 − 𝜀)

𝑞
(𝑎 − 𝜀) (1 − 𝜀

(𝑚+𝑝−2)/2
)

𝑐∗
2

𝜑
𝑚+𝑝−1

(228)

when 𝜑
𝑐
∗

2
𝜏
< 𝜀. When 𝑝 > 1, we have

𝑐
∗

2

(1 − 𝜀)
𝑞
(𝑎 − 𝜀) (1 − 𝜀(𝑚+𝑝−2)/2) (𝑝 − 1)

≤ lim
𝜑→0

+

𝜉 (𝜑) 𝜑
𝑝−1

≤
𝑐
∗

2

𝑎 (𝑝 − 1)
;

(229)

that is,

(
(1 − 𝜀)

𝑞
(𝑎 − 𝜀) (1 − 𝜀

(𝑚+𝑝−2)/2
) (𝑝 − 1)

𝑐∗
2

)

1/(1−𝑝)

≤ lim
𝜉→+∞

𝜑 (𝜉) 𝜉
1/(𝑝−1)

≤ (
𝑎 (𝑝 − 1)

𝑐∗
2

)

1/(1−𝑝)

.

(230)
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When 𝑝 = 1, we have

−
𝑐
∗

2

(1 − 𝜀)
𝑞
(𝑎 − 𝜀) (1 − 𝜀(𝑚+𝑝−2)/2)

≤ lim
𝜑→0

+

𝜉 (𝜑)

ln𝜑
≤ −

𝑐
∗

2

𝑎
;

(231)

that is,

𝑒
−(𝑎/𝑐

∗

2
)𝜉
≤ 𝜑 (𝜉) ≤ 𝑒

−((1−𝜀)
𝑞

(𝑎−𝜀)(1−𝜀
(𝑚+𝑝−2)/2

)/𝑐
∗

2
)𝜉
. (232)

By the arbitrariness of 𝜀 > 0, (205)-(206) hold.
When 1 < 𝑚 + 𝑝 < 2, take 𝑟 = (𝑚 + 𝑝)/2. Then, (225)

holds if
𝑚 + 𝑝

2
𝐵
2
≤ 𝑚(1 − 𝜀)

𝑞
(𝑎 − 𝜀) (1 − 𝜀

(2−𝑚−𝑝)/4
) ,

𝑐
∗

2
𝐵𝜀

(2−𝑚−𝑝)/4
≤ 𝑚(1 − 𝜀)

𝑞
(𝑎 − 𝜀) .

(233)

Take

𝐵 = √
2𝑚

𝑚 + 𝑝
(1 − 𝜀)

𝑞
(𝑎 − 𝜀) (1 − 𝜀(2−𝑚−𝑝)/4). (234)

Then, when

𝜀 ≤ min{𝑎

2
, (

𝑎

2
(1 −

𝑎

2
)

𝑞

)

2/(2−𝑚−𝑝)

×(
𝑚 (𝑚 + 𝑝)

2
𝑐
∗−2

2
)

2/(2−𝑚−𝑝)

} ,

(235)

(225) holds. Combining with (218), we obtain

− √
2𝑚𝑎

𝑚 + 𝑝
𝜑
(𝑚+𝑝)/2

≤ 𝜓 (𝜑)

≤ −√
2𝑚

𝑚 + 𝑝
(1 − 𝜀)

𝑞
(𝑎 − 𝜀) (1 − 𝜀(2−𝑚−𝑝)/4)𝜑

(𝑚+𝑝)/2

(236)

when 𝜑
𝑐
∗

2
𝜏
< 𝜀. When 𝑝 > 𝑚, a simple calculation yields

(
𝑝 − 𝑚

2𝑚

√
2𝑚(1 − 𝜀)

𝑞
(𝑎 − 𝜀) (1 − 𝜀

(2−𝑚−𝑝)/4
)

𝑚 + 𝑝
)

2/(𝑚−𝑝)

≤ lim
𝜉→+∞

𝜑 (𝜉) 𝜉
2/(𝑝−𝑚)

≤ (
𝑝 − 𝑚

2𝑚
√

2𝑚𝑎

𝑚 + 𝑝
)

2/(𝑚−𝑝)

.

(237)

When 𝑝 = 𝑚,

𝑒
−(√𝑎/𝑚)𝜉

≤ 𝜑 (𝜉) ≤ 𝑒
−(√(1−𝜀)

𝑞

(𝑎−𝜀)(1−𝜀
(1−𝑚)/2

)/𝑚)𝜉
. (238)

By the arbitrariness of 𝜀 > 0, (209)-(210) hold.
When𝑚 + 𝑝 = 2, take

𝑟 = 1, 𝐵 =

√𝑐∗2
2

+ 4𝑚(1 − 𝜀)
𝑞
(𝑎 − 𝜀) − 𝑐

∗

2

2
.

(239)

Then, (225) holds. On the other hand, consider the following
problem:

1

2

𝑑V2

𝑑𝜑
− 𝑐

∗

2
V ≥ 𝑚𝑎𝜑(1 − 𝜑)

𝑞

, for 𝜑 ≥ 0,

V (0
+
) = 0,

V (𝜑) < 0, for 𝜑 > 0.

(240)

We can see that 𝜓(𝜑) ≥ V(𝜑). Let

V = −

√𝑐∗2
2

+ 4𝑚𝑎 − 𝑐
∗

2

2
𝜑.

(241)

Then, V satisfies (240). Thus, we conclude that

−

√𝑐∗2
2

+ 4𝑚𝑎 − 𝑐
∗

2

2
𝜑

≤ 𝜓 (𝜑)

≤ −

√𝑐∗2
2

+ 4𝑚(1 − 𝜀)
𝑞
(𝑎 − 𝜀) − 𝑐

∗

2

2
𝜑.

(242)

When𝑚 < 1, that is, 𝑝 > 1,

(

(1 − 𝑚) (√𝑐∗2
2

+ 4𝑚(1 − 𝜀)
𝑞
(𝑎 − 𝜀) − 𝑐

∗

2
)

2𝑚
)

1/(𝑚−1)

≤ lim
𝜉→+∞

𝜑 (𝜉) 𝜉
1/(1−𝑚)

≤ (

(1 − 𝑚) (√𝑐∗2
2

+ 4𝑚𝑎 − 𝑐
∗

2
)

2𝑚
)

1/(𝑚−1)

.

(243)

When𝑚 = 1, that is, 𝑝 = 1,

𝑒
−((√𝑐

∗2

2
+4𝑎−𝑐

∗

2
)/2)𝜉

≤ 𝜑 (𝜉)

≤ 𝑒
−((√𝑐

∗2

2
+4(1−𝜀)

𝑞

(𝑎−𝜀)−𝑐
∗

2
)/2)𝜉

.

(244)

By the arbitrariness of 𝜀 > 0, (207)-(208) hold.

5. Discussion

When 𝑝 = 𝑞 = 1, the outcome in our work is reduced to the
results obtained in [23]. Comparing with [23], our definition
of sharp-type traveling wave fronts and smooth-type travel-
ing wave fronts is more precise. In the proof of Lemma 3, for
the case 𝑚 + 𝑝 = 2, we constructed two sequences to get the
asymptotic expression of 𝜓(𝜑) for 𝜑 > 0 sufficiently small.
This technique is not used in [23]. Moreover, the proof of
Theorem 17 is more concise than the proof of Proposition 2.7
in [23].
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