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We apply the linear matrix inequality method to consensus and𝐻
∞
consensus problems of the single integrator multiagent system

with heterogeneous delays in directed networks. To overcome the difficulty caused by heterogeneous time-varying delays, we rewrite
the multiagent system into a partially reduced-order system and an integral system. As a result, a particular Lyapunov function is
constructed to derive sufficient conditions for consensus of multiagent systems with fixed (switched) topologies. We also apply this
method to the𝐻

∞
consensus of multiagent systems with disturbances and heterogeneous delays. Numerical examples are given to

illustrate the theoretical results.

1. Introduction

In recent years, decentralized coordination of multiagent
systems has received many researchers’ attention in the areas
of system control theory, biology, communication, applied
mathematics, computer science, and so forth. In cooperative
control of multiagent systems, a critical problem is to design
appropriate protocols such thatmultiple agents in a group can
reach consensus. So far, by using the matrix theory, the graph
theory, the frequency-domain analysismethod, the Lyapunov
direct method, and so forth, consensus problems for various
kinds ofmultiagent systems have been studied extensively [1–
3].

In the field of systems and control theory, the pioneering
work was done by Borkar and Varaiya [4] and Tsitsiklis and
Athans [5], where the asynchronous consensus problem with
an application in distributed decision-making systems was
considered. Later, Vicsek et al. [6] proposed a simple but
interesting discrete-time model of multiple agents which can
be viewed as a special case of a computer model mimicking
animal aggregation. Jadbabaie et al. [7] provided a theo-
retical explanation of the consensus property of the Vicsek
model.

For the case of single integrator multiagent systems,
Olfati-Saber and Murray [8] discussed the consensus prob-

lem for networks of dynamic agents by defining a dis-
agreement function. Ren and Beard [9] established some
more relaxable consensus conditions under dynamically
changing interaction topologies. Hui and Haddad [10], Liu
et al. [11], and Bauso et al. [12] investigated the consensus
problem for nonlinear multiagent systems. Tan and Liu [13]
studied consensus of networked multiagent systems via the
networked predictive control. Li and Zhang [14] gave the
necessary and sufficient condition of mean square average-
consensus for multiagent systems with noises. Zheng and
Wang [15] studied finite-time consensus of heterogenous
multiagent systems with and without velocity measurements.
The constrained consensus problem for multiagent systems
in unbalanced networks was investigated in Lin and Ren
[16, 17]. Liu et al. [18] considered the consensus problem
for multiagent systems with inherent nonlinear dynamics
under directed topologies. A distributed shortest-distance
consensus problem under dynamically changing network
topologies was studied by Lin and Ren [19]. Li et al. [20]
studied the distributed consensus problem of multiagent
systems with general continuous-time dynamics for both the
case without and with a leader.

When considering communication delays in the feed-
back, three types of consensus protocols have been analyzed:
(i) both the state of the agent and its neighbors are affected by
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identical delays [21–27]; (ii) communication delays only affect
the state received from neighbors of the agent [28–32]; (iii)
the state of the agent and its neighbors are affected by hetero-
geneous delays. Note that (i) and (ii) are special cases of (iii).
Compared to the cases of (i) and (ii), consensus for the case of
(iii) receives less attention. Under the restricted assumptions
that the graph is undirected and the communication delays
are constants, Münz et al. [32, 33] investigated the robustness
of the third kind of consensus protocols in both identical and
nonidentical agent dynamics.

We are here concerned with the third type of consensus
protocols, where the heterogeneous delays are time varying,
and the involved graph is directed. It seems to us that
the frequency-domain analysis method in [32, 33] becomes
invalid in this case, and it is difficult to employ the Lyapunov
method directly. In this paper, we will apply the linear matrix
inequality method to this problem. In [21–25], the linear
matrix inequality method has been used successfully in the
case of (i). When applying this method to the case of (iii), we
have to overcome some difficulties caused by heterogeneous
time-varying delays. For this sake, we first skillfully rewrite
the multiagent system by virtue of a partially-reduced-order
system and an integral system.Then, by defining a particular
Lyapunov function based on the above partially-reduced-
order system and the integral system, sufficient conditions
to consensus are derived in both cases of fixed topology and
switching topologies by using the linear matrix inequality
method.

We also consider the 𝐻
∞

consensus problem for the
single integratormultiagent systemwith heterogeneous time-
varying delays. So far, there are few 𝐻

∞
consensus results

for continuous time multiagent systems. Lin et al. [34]
studied distributed robust𝐻

∞
consensus problem in directed

networks of agents with identical delays. Ugrinovskii [35]
considered a problem of design of distributed robust filters
with 𝐻

∞
consensus by using the recent vector dissipativity

theory. Sun and Wang [36] investigated the 𝐻
∞

consensus
for the double integrator multiagent system with asymmetric
delays.

To the best of our knowledge, little has been known
about the 𝐻

∞
consensus problem for the single integrator

multiagent systems with heterogeneous time-varying delays
and directed network topologies.Therefore, another purpose
of this paper is to establish 𝐻

∞
consensus criteria in the

cases of heterogeneous delays and directed fixed topology (or
switching topologies) by using the linear matrix inequality
technique.

This paper is structured as follows. The problem state-
ment and the transformation of the multiagent system are
summarized in Section 2. In Section 3, sufficient conditions
in terms of linear matrix inequalities are established for
consensus and 𝐻

∞
consensus of the single integrator mul-

tiagent system with heterogeneous delays. These results are
also extended to the case of switching topologies. Numerical
examples and simulation results are given in Section 4. The
paper is concluded in Section 5.

The notation used throughout this paper is fairly stan-
dard. 𝐴𝑇 means the transpose of the matrix 𝐴. 𝐼

𝑚
is an

𝑚 × 𝑚-dimensional identity matrix. a
𝑚

= (𝑎, 𝑎, . . . , 𝑎)
𝑇

is an 𝑚-dimensional column vector with 𝑎 ∈ R. We say
𝑋 > 𝑌 if 𝑋 − 𝑌 is positive definite, where 𝑋 and 𝑌 are
symmetric matrices of the same dimensions. We use an
asterisk ∗ to represent a term that is induced by symmetry
and diag{⋅ ⋅ ⋅ } stands for a block-diagonal matrix. 𝐿

2
[0,∞)

denotes the space of square-integrable vector functions
over [0,∞).

2. Preliminaries

Throughout this paper, we denote a weighted digraph byG =

(𝑉, 𝐸, 𝐴), where 𝑉 = {V
1
, V
2
, . . . , V

𝑛
} is the set of nodes with

𝑛 ≥ 2 and node V
𝑖
represents the 𝑖th agent; 𝐸 ⊆ 𝑉 × 𝑉 is the

set of edges, an edge of G is denoted by an order pair (𝑖, 𝑗),
and (𝑖, 𝑗) ∈ 𝐸 if and only if 𝑎

𝑗𝑖
> 0; 𝐴 = [𝑎

𝑖𝑗
] is an 𝑛 × 𝑛-

dimensional weighted adjacency matrix with 𝑎
𝑖𝑖
= 0. If (𝑖, 𝑗)

is an edge ofG, node 𝑖 is called the parent of node 𝑗. A directed
tree is a directed graph, where every node, except one special
node without any parent, which is called the root, has exactly
one parent, and the root can be connected to any other nodes
through paths. The Laplacian matrix 𝐿 = [𝑙

𝑖𝑗
] of digraph G

is defined by 𝑙
𝑖𝑖
= −∑

𝑛

𝑗=1
𝑎
𝑖𝑗
and 𝑙
𝑖𝑗
= 𝑎
𝑖𝑗
for 𝑖 ̸= 𝑗, 𝑖, 𝑗 ∈ N =

{1, 2, . . . , 𝑛}.
Consider the following multiagent system with heteroge-

neous delays:

�̇�
𝑖
(𝑡) =

𝑛

∑

𝑗=1

𝑎
𝑖𝑗
(𝑥
𝑗
(𝑡 − 𝑑

1
(𝑡)) − 𝑥

𝑖
(𝑡 − 𝑑

2
(𝑡))) , 𝑖 ∈ N,

(1)

where 𝑡 ≥ 0, 𝑎
𝑖𝑗

≥ 0, 𝑖, 𝑗 ∈ N, are entries of the weighted
adjacency matrix 𝐴, 𝑑

1
(𝑡) and 𝑑

2
(𝑡) are different piecewise

continuous communication delays satisfying 0 ≤ 𝑑
1
(𝑡) ≤ ℎ

1

and 0 ≤ 𝑑
2
(𝑡) ≤ ℎ

2
for 𝑡 ≥ 0, and ℎ

1
and ℎ

2
are positive

constants.
Denote 𝑥 = (𝑥

1
, 𝑥
2
, . . . sd, 𝑥

𝑛
)
𝑇 and 𝑦 = (𝑦

1
, 𝑦
2
, . . . ,

𝑦
𝑛−1

)
𝑇. If we set 𝑦

𝑖
= 𝑥
𝑖+1

− 𝑥
1
for 𝑖 = 1, 2, . . . , 𝑛 − 1, by the

straightforward computation, we get

𝑦 = 𝐸𝑥, 𝑥 = 𝑥
1
1
𝑛
+ 𝐹𝑦, (2)

where the (𝑛−1) × 𝑛-dimensional matrix 𝐸 and the 𝑛 × (𝑛 −

1)-dimensional matrix 𝐹 are defined as follows:

𝐸 = (−1
𝑛−1

, 𝐼
𝑛−1

) , 𝐹 = (
0𝑇
𝑛−1

𝐼
𝑛−1

) . (3)

Next, we make use of transformation (2) to derive two
descriptor systems of the system (1). Rewrite (1) as follows:

�̇�
𝑖
(𝑡) =

𝑛

∑

𝑗=1

𝑎
𝑖𝑗
(𝑥
𝑗
(𝑡) − 𝑥

𝑖
(𝑡)) +

𝑛

∑

𝑗=1

𝑎
𝑖𝑗
(𝑥
𝑗
(𝑡 − 𝑑

1
(𝑡)) − 𝑥

𝑗
(𝑡))

+

𝑛

∑

𝑗=1

𝑎
𝑖𝑗
(𝑥
𝑖
(𝑡) − 𝑥

𝑖
(𝑡 − 𝑑

2
(𝑡))) , 𝑖 ∈ N.

(4)
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Therefore, by the Newton-Leibniz formula, we get a matrix
form of (4):

�̇� (𝑡) = 𝐿𝑥 (𝑡) + 𝐴∫

𝑡−𝑑
1
(𝑡)

𝑡

�̇� (𝑠) 𝑑𝑠 + Δ∫

𝑡

𝑡−𝑑
2(𝑡)

�̇� (𝑠) 𝑑𝑠, (5)

where Δ = 𝐴 − 𝐿.
Denote 𝑧(𝑡) = �̇�(𝑡). By transformation (2) and the

property of the Laplacianmatrix 𝐿 that 𝐿1
𝑛
= 0
𝑛
, we get from

(5) the following two descriptor systems:

̇𝑦 (𝑡) = 𝐸𝐿𝐹𝑦 (𝑡) + 𝐸𝐴∫

𝑡−𝑑
1
(𝑡)

𝑡

𝑧 (𝑠) 𝑑𝑠 + 𝐸Δ∫

𝑡

𝑡−𝑑
2(𝑡)

𝑧 (𝑠) 𝑑𝑠,

𝑧 (𝑡) = 𝐿𝐹𝑦 (𝑡) + 𝐴∫

𝑡−𝑑
1
(𝑡)

𝑡

𝑧 (𝑠) 𝑑𝑠 + Δ∫

𝑡

𝑡−𝑑
2(𝑡)

𝑧 (𝑠) 𝑑𝑠.

(6)

When the system involves disturbance input, we consider
the following multiagent system of the form

�̇�
𝑖
(𝑡) =

𝑛

∑

𝑗=1

𝑎
𝑖𝑗
(𝑥
𝑗
(𝑡 − 𝑑

1
(𝑡)) − 𝑥

𝑖
(𝑡 − 𝑑

2
(𝑡)) + 𝑤

𝑖𝑗
(𝑡)) ,

𝑖 ∈ N,

(7)

where 𝑎
𝑖𝑗
, 𝑑
1
(𝑡), and 𝑑

2
(𝑡) are defined as above and 𝑤

𝑖𝑗
(𝑡) is

the disturbance input satisfying 𝑤
𝑖𝑗
(𝑡) ∈ 𝐿

2
[0,∞).

Denote the 𝑖th row of the matrix 𝐴 by 𝛼
𝑖
, Σ =

diag{𝛼
1
, 𝛼
2
, . . . , 𝛼

𝑛
}, 𝑤
𝑖
(𝑡) = (𝑤

𝑖1
(𝑡), 𝑤
𝑖2
(𝑡), . . . , 𝑤

𝑖𝑛
(𝑡)]
𝑇,

and 𝑤(𝑡) = (𝑤
𝑇

1
(𝑡), 𝑤
𝑇

2
(𝑡), . . . , 𝑤

𝑇

𝑛
(𝑡)]
𝑇. Similar to the

above procedure, we can get the following matrix form
of (7):

̇𝑦 (𝑡) = 𝐸𝐿𝐹𝑦 (𝑡) + 𝐸𝐴∫

𝑡−𝑑
1
(𝑡)

𝑡

𝑧 (𝑠) 𝑑𝑠

+ 𝐸Δ∫

𝑡

𝑡−𝑑
2(𝑡)

𝑧 (𝑠) 𝑑𝑠 + 𝐸Σ𝑤 (𝑡) ,

𝑧 (𝑡) = 𝐿𝐹𝑦 (𝑡) + 𝐴∫

𝑡−𝑑
1
(𝑡)

𝑡

𝑧 (𝑠) 𝑑𝑠

+ Δ∫

𝑡

𝑡−𝑑
2(𝑡)

𝑧 (𝑠) 𝑑𝑠 + Σ𝑤 (𝑡) .

(8)

In this paper, say that system (1) achieves consensus
asymptotically if

lim
𝑡→∞

[𝑥
𝑖
(𝑡) − 𝑥

𝑗
(𝑡)] = 0, ∀𝑖 ̸= 𝑗, 𝑖, 𝑗 ∈ N. (9)

Say that system (7) solves𝐻
∞
consensus if system (1) achieves

consensus asymptotically, and there exists a constant 𝛾 > 0

such that

∫

∞

0

𝑦
𝑇

(𝑡) 𝑦 (𝑡) 𝑑𝑡 ≤ 𝛾∫

∞

0

𝑤
𝑇

(𝑡) 𝑤 (𝑡) 𝑑𝑡 (10)

for all nonzero 𝑤 ∈ 𝐿
2
[0,∞) under zero initial condition.

3. Main Results

The following two lemmas can be concluded from [21, 22].

Lemma 1. The digraph G = {𝑉, 𝐸, 𝐴} has a spanning tree if
and only if the matrix 𝐸𝐿𝐹 is Hurwitz.

Lemma 2. For any continuous vector 𝑢(𝑡) ∈ R𝑚 on [𝑡 − ℎ
𝑘
, 𝑡]

for 𝑘 = 1, 2 and 𝑡 ≥ 0 and any 𝑚 × 𝑚-dimensional matrix
𝑊 > 0, the following inequality holds:

(∫

𝑡−𝑑
1
(𝑡)

𝑡

𝑢 (𝛼) 𝑑𝛼)

𝑇

𝑊∫

𝑡−𝑑
1
(𝑡)

𝑡

𝑢 (𝛼) 𝑑𝛼

≤ ℎ
1
∫

𝑡

𝑡−ℎ
1

𝑢
𝑇

(𝛼)𝑊𝑢 (𝛼) 𝑑𝛼,

(∫

𝑡

𝑡−𝑑
2(𝑡)

𝑢 (𝛼) 𝑑𝛼)

𝑇

𝑊∫

𝑡

𝑡−𝑑
2(𝑡)

𝑢 (𝛼) 𝑑𝛼

≤ ℎ
2
∫

𝑡

𝑡−ℎ
2

𝑢
𝑇

(𝛼)𝑊𝑢 (𝛼) 𝑑𝛼.

(11)

Based on Lemmas 1 and 2 and the preliminaries given in
Section 2, we have the following consensus result for system
(1).

Theorem 3. If the digraph G has a spanning tree, system (1)
achieves consensus asymptotically for appropriate constants
ℎ
1

> 0 and ℎ
2

> 0 which satisfy the following matrix
inequality:

(

(

(

(

𝑃�̃� + �̃�
𝑇

𝑃 𝑃𝐴 𝑃Δ̃ ℎ
1
𝐿

𝑇

𝑄
1

ℎ
2
𝐿

𝑇

𝑄
2

∗ −𝑄
1

0 ℎ
1
𝐴
𝑇

𝑄
1

ℎ
2
A𝑇𝑄
2

∗ ∗ −𝑄
2

ℎ
1
Δ
𝑇

𝑄
1

ℎ
2
Δ
𝑇

𝑄
2

∗ ∗ ∗ −𝑄
1

0

∗ ∗ ∗ ∗ −𝑄
2

)

)

)

)

< 0, (12)

where �̃� = 𝐸𝐿𝐹, 𝐴 = 𝐸𝐴, Δ̃ = 𝐸Δ, 𝐿 = 𝐿𝐹, and 𝑃, 𝑄
1
, and 𝑄

2

are positive-definite matrices of appropriate dimensions.
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Proof. First, we see that (12) is equivalent to

Ω + ℎ
2

1
Φ
𝑇

𝑄
1
Φ + ℎ

2

2
Φ
𝑇

𝑄
2
Φ < 0, (13)

where

Φ = (𝐿, 𝐴, Δ) , Ω = (

𝑃�̃� + �̃�
𝑇

𝑃 𝑃𝐴 𝑃Δ̃

∗ −𝑄
1

0

∗ ∗ −𝑄
2

) . (14)

On the other hand, we show that (13) is feasible if the
digraphG has a spanning tree. By Lemma 1, we see that there
exists a positive-definite matrix 𝑃 such that 𝑃�̃� + �̃�

𝑇

𝑃 <

0. Once the positive-definite matrix 𝑃 is determined, it is
not difficult to see that Ω < 0 for certain positive-definite
matrices 𝑄

1
and 𝑄

2
. Once the matrices 𝑃 > 0, 𝑄

1
> 0,

and 𝑄
2

> 0 are determined, (13) is valid for sufficiently
small ℎ

1
> 0 and ℎ

2
> 0. Therefore, (13) always holds

for appropriate matrices 𝑃 > 0, 𝑄
1

> 0, and 𝑄
2

>

0 and constants ℎ
1

> 0, ℎ
2

> 0 if G has a spanning
tree.

Next, by the definition of vector 𝑦, it is sufficient to
show that lim

𝑡→∞
𝑦(𝑡) = 0 if (13) holds. We construct the

Lyapunov function as follows:

𝑉 (𝑡) = 𝑦
𝑇

(𝑡) 𝑃𝑦 (𝑡)

+ ℎ
1
∫

𝑡

𝑡−ℎ
1

(𝑠 − 𝑡 + ℎ
1
) 𝑧
𝑇

(𝑠) 𝑄
1
𝑧 (𝑠) 𝑑𝑠

+ ℎ
2
∫

𝑡

𝑡−ℎ
2

(𝑠 − 𝑡 + ℎ
2
) 𝑧
𝑇

(𝑠) 𝑄
2
𝑧 (𝑠) 𝑑𝑠,

(15)

where positive constants ℎ
1
and ℎ

2
and positive-definite

matrices 𝑃, 𝑄
1
, and 𝑄

2
satisfy (13). We now consider the

derivative of 𝑉(𝑡) along the trajectory of system (6). For the
sake of convenience, set

𝜂
1
(𝑡) = ∫

𝑡−𝑑
1
(𝑡)

𝑡

𝑧 (𝑠) 𝑑𝑠, 𝜂
2
(𝑡) = ∫

𝑡

𝑡−𝑑
2(𝑡)

𝑧 (𝑠) 𝑑𝑠. (16)

A straightforward computation yields that

�̇� (𝑡) = 2𝑦
𝑇

(𝑡) 𝑃 [�̃�𝑦 (𝑡) + 𝐴𝜂
1
(𝑡) + Δ̃𝜂

2
(𝑡)]

+ ℎ
2

1
𝑧
𝑇

(𝑡) 𝑄
1
𝑧 (𝑡) − ℎ

1
∫

𝑡

𝑡−ℎ
1

𝑧
𝑇

(𝑠) 𝑄
1
𝑧 (𝑠) 𝑑𝑠

+ ℎ
2

2
𝑧
𝑇

(𝑡) 𝑄
2
𝑧 (𝑡) − ℎ

2
∫

𝑡

𝑡−ℎ
2

𝑧
𝑇

(𝑠) 𝑄
2
𝑧 (𝑠) 𝑑𝑠.

(17)

By Lemma 1, (6), and (17), we have that

�̇� (𝑡) ≤ 2𝑦
𝑇

(𝑡) 𝑃 [�̃�𝑦 (𝑡) + 𝐴𝜂
1
(𝑡) + Δ̃𝜂

2
(𝑡)]

+ ℎ
2

1
𝑧
𝑇

(𝑡) 𝑄
1
𝑧 (𝑡) − 𝜂

𝑇

1
(𝑡) 𝑄
1
𝜂
1
(𝑡)

+ ℎ
2

2
𝑧
𝑇

(𝑡) 𝑄
2
𝑧 (𝑡) − 𝜂

𝑇

2
(𝑡) 𝑄
2
𝜂
2
(𝑡)

= 𝜉
𝑇

(𝑡) (Ω + ℎ
2

1
Φ
𝑇

𝑄
1
Φ + ℎ

2

2
Φ
𝑇

𝑄
2
Φ) 𝜉 (𝑡) ,

(18)

where 𝜉(𝑡) = (𝑦
𝑇

(𝑡), 𝜂
𝑇

1
(𝑡), 𝜂
𝑇

2
(𝑡))
𝑇 and Φ and Ω are defined

by (14). From (13) and (18), we have that �̇�(𝑡) < 0 for 𝑡 ≥ 0.
Therefore, we eventually conclude that lim

𝑡→∞
𝑦(𝑡) = 0. This

completes the proof of Theorem 3.

Themethod used inTheorem 3 can also be applied to the
𝐻
∞

consensus problem of system (7).

Theorem 4. For given constants ℎ
1
> 0 and ℎ

2
> 0, if there

exist positive-definite matrices 𝑃, 𝑄
1
, and 𝑄

2
of appropriate

dimensions and positive constants 𝛼 > 0 and 𝛽 > 0 such that
the following linear matrix inequality holds:

(

(

(

(

(

(

(

𝑃�̃� + �̃�
𝑇

𝑃 + 𝛼𝐼
𝑛−1

𝑃𝐴 𝑃Δ̃ 𝑃Σ̃ ℎ
1
𝐿

𝑇

𝑄
1

ℎ
2
𝐿

𝑇

𝑄
2

∗ −𝑄
1

0 0 ℎ
1
𝐴
𝑇

𝑄
1

ℎ
2
𝐴
𝑇

𝑄
2

∗ ∗ −𝑄
2

0 ℎ
1
Δ
𝑇

𝑄
1

ℎ
2
Δ
𝑇

𝑄
2

∗ ∗ ∗ −𝛽𝐼
𝑛−1

ℎ
1
Σ
𝑇

𝑄
1

ℎ
2
Σ
𝑇

𝑄
2

∗ ∗ ∗ ∗ −𝑄
1

0

∗ ∗ ∗ ∗ ∗ −𝑄
2

)

)

)

)

)

)

)

< 0, (19)

where Σ̃ = 𝐸Σ,𝐴, Δ̃, �̃�, and 𝐿 are defined as above, then system
(7) solves𝐻

∞
consensus with 𝛾 = 𝛽/𝛼.

Proof. Choose the Lyapunov function defined by (15). First,
(19) implies that (12) holds. ByTheorem 3, system (1) achieves
consensus asymptotically. Next, we show that (10) holds with

𝛾 = 𝛽/𝛼 for all nonzero 𝑤 ∈ 𝐿
2
[0,∞) under zero initial

condition. In fact, similar to the computation in Theorem 3,
we have

�̇� (𝑡) ≤ 2𝑦
𝑇

(𝑡) 𝑃 [�̃�𝑦 (𝑡) + 𝐴𝜂
1
(𝑡) + Δ̃𝜂

2
(𝑡) + Σ̃𝑤 (𝑡)]

+ ℎ
2

1
𝑧
𝑇

(𝑡) 𝑄
1
𝑧 (𝑡) − 𝜂

𝑇

1
(𝑡) 𝑄
1
𝜂
1
(𝑡)
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+ ℎ
2

2
𝑧
𝑇

(𝑡) 𝑄
2
𝑧 (𝑡) − 𝜂

𝑇

2
(𝑡) 𝑄
2
𝜂
2
(𝑡) ,

(20)

which implies that

�̇� (𝑡) + 𝛼𝑦
𝑇

(𝑡) 𝑦 (𝑡) − 𝛽𝑤
𝑇

(𝑡) 𝑤 (𝑡)

≤
̃
𝜉
𝑇

(Ω̃ + ℎ
2

1
Φ̃
𝑇

𝑄
1
Φ̃ + ℎ

2

2
Φ̃
𝑇

𝑄
2
Φ̃)

̃
𝜉,

(21)

where ̃
𝜉 = (𝑦

𝑇

(𝑡), 𝜂
𝑇

1
(𝑡), 𝜂
𝑇

2
(𝑡), 𝑤
𝑇

(𝑡))
𝑇,

Φ̃ = (𝐿, 𝐴, Δ, Σ) ,

Ω =
(

(

𝑃�̃� + �̃�
𝑇

𝑃 + 𝛼𝐼
𝑛−1

𝑃𝐴 𝑃Δ̃ 𝑃Σ̃

∗ −𝑄
1

0 0

∗ ∗ −𝑄
2

0

∗ ∗ ∗ −𝛽𝐼
𝑛−1

)

)

.

(22)

By (19), (21), and (22), we have that

�̇� (𝑡) + 𝛼𝑦
𝑇

(𝑡) 𝑦 (𝑡) − 𝛽𝑤
𝑇

(𝑡) 𝑤 (𝑡) < 0, 𝑡 ≥ 0. (23)

Integrating (23) from 0 to∞ under zero initial condition, we
get

∫

∞

0

𝑦
𝑇

(𝑡) 𝑦 (𝑡) 𝑑𝑡 ≤

𝛽

𝛼

∫

∞

0

𝑤
𝑇

(𝑡) 𝑤 (𝑡) 𝑑𝑡. (24)

This completes the proof of Theorem 4.

Remark 5. Similar to the analysis in the proof of Theorem 3,
we see that a necessary condition to Theorem 3 is that the
digraph G has a spanning tree. That is, the linear matrix
inequality (19) implies thatG has a spanning tree.

Remark 6. Unlike most of consensus analysis for multiagent
systems, it does not require that 𝑎

𝑖𝑗
≥ 0 for all 𝑖 ̸= 𝑗 in the

proofs of Theorems 3 and 4. Therefore, even when 𝑎
𝑖𝑗

< 0

for some 𝑖 ̸= 𝑗, system (7) can also solve𝐻
∞
consensus under

appropriate conditions.

Themethod used in this paper can also be extended to the
case of switching topology. Consider the followingmultiagent
system with switched topologies and heterogeneous delays:

�̇�
𝑖
(𝑡) =

𝑛

∑

𝑗=1

𝑎
𝜎

𝑖𝑗
(𝑥
𝑗
(𝑡 − 𝑑

1
(𝑡)) − 𝑥

𝑖
(𝑡 − 𝑑

2
(𝑡))) , 𝑖 ∈ N,

(25)

where 𝑡 ≥ 0, 𝜎(𝑡) : [0,∞) → Γ = {1, 2, . . . , 𝑝} is a switching
signal that determines which subsystem is active at time 𝑡,
and 𝑎

𝑘

𝑖𝑗
≥ 0, 𝑖, 𝑗 ∈ N, 𝑘 ∈ Γ, are entries of the weighted

adjacency matrix 𝐴
𝑘
. When 𝜎(𝑡) = 𝑘 ∈ Γ, we denote the

involved digraph byG
𝑘
= (𝑉, 𝐴

𝑘
, 𝐸
𝑘
).

Under the reduced-order transformation (2), system (25)
can be described by the following two systems:

̇𝑦 (𝑡) = 𝐸𝐿
𝜎
𝐹𝑦 (𝑡) + 𝐸𝐴

𝜎
∫

𝑡−𝑑
1
(𝑡)

𝑡

𝑧 (𝑠) 𝑑𝑠

+ 𝐸Δ
𝜎
∫

𝑡

𝑡−𝑑
2(𝑡)

𝑧 (𝑠) 𝑑𝑠,

𝑧 (𝑡) = 𝐿
𝜎
𝐹𝑦 (𝑡) + 𝐴

𝜎
∫

𝑡−𝑑
1
(𝑡)

𝑡

𝑧 (𝑠) 𝑑𝑠

+ Δ
𝜎
∫

𝑡

𝑡−𝑑
2(𝑡)

𝑧 (𝑠) 𝑑𝑠,

(26)

where 𝑦 and 𝑧 are defined as above and 𝐿
𝑘
, 𝐴
𝑘
, and Δ

𝑘

(𝑘 ∈ Γ) relative to the digraph G
𝑘
are defined as 𝐿, 𝐴,

and Δ, respectively. Let the Lyapunov function defined by
(15) be the common Lyapunov function for the switched
system (26). Then, similar to the proof of Theorem 3, we
have the following consensus result in the case of switching
topology.

Theorem 7. For given constants ℎ
1

> 0 and ℎ
2

>

0, system (25) solves consensus under arbitrary switching,
if there exist positive-definite matrices 𝑃, 𝑄

1
, and 𝑄

2
of

appropriate dimensions such that the following linear matrix
inequality

(

(

(

(

(

(

(

(

𝑃�̃�
𝑘
+ �̃�
𝑇

𝑘
𝑃 𝑃𝐴

𝑘
𝑃Δ̃
𝑘

ℎ
1
𝐿

𝑇

𝑘
𝑄
1

ℎ
2
𝐿

𝑇

𝑘
𝑄
2

∗ −𝑄
1

0 ℎ
1
𝐴
𝑇

𝑘
𝑄
1

ℎ
2
𝐴
𝑇

𝑘
𝑄
2

∗ ∗ −𝑄
2

ℎ
1
Δ
𝑇

𝑘
𝑄
1

ℎ
2
Δ
𝑇

𝑘
𝑄
2

∗ ∗ ∗ −𝑄
1

0

∗ ∗ ∗ ∗ −𝑄
2

)

)

)

)

)

)

)

)

< 0

(27)

holds for 𝑘 ∈ Γ, where �̃�
𝑘
= 𝐸𝐿
𝑘
𝐹,𝐴
𝑘
= 𝐸𝐴
𝑘
, Δ̃
𝑘
= 𝐸Δ

𝑘
, and

𝐿
𝑘
= 𝐿
𝑘
𝐹.

Similarly, for the following switched multiagent system
with disturbance input and heterogeneous delays

�̇�
𝑖
(𝑡) =

𝑛

∑

𝑗=1

𝑎
𝜎

𝑖𝑗
(𝑥
𝑗
(𝑡 − 𝑑

1
(𝑡)) − 𝑥

𝑖
(𝑡 − 𝑑

2
(𝑡)) + 𝑤

𝑖𝑗
(𝑡)) ,

𝑖 ∈ N,

(28)

we have the following𝐻
∞

consensus result.

Theorem 8. For given constants ℎ
1
> 0 and ℎ

2
> 0, if there

exist positive-definite matrices 𝑃, 𝑄
1
, and 𝑄

2
of appropriate

dimensions and positive constants 𝛼 > 0 and 𝛽 > 0 such that
the following linear matrix inequality
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1 2 3

456

(a)

1 2 3

456

(b)

1 2 3

456

(c)

1 2 3

456

(d)

Figure 1: Four digraphs: (a)G
𝑎
, (b)G

𝑏
, (c)G

𝑐
, and (d)G

𝑑
.

(

(

(

(

(

(

(

(

(

(

(

(

𝑃�̃�
𝑘
+ �̃�
𝑇

𝑘
𝑃 + 𝛼𝐼

𝑛−1
𝑃𝐴
𝑘

𝑃Δ̃
𝑘

𝑃Σ̃
𝑘

ℎ
1
𝐿

𝑇

𝑘
𝑄
1

ℎ
2
𝐿

𝑇

𝑘
𝑄
2

∗ −𝑄
1

0 0 ℎ
1
𝐴
𝑇

𝑘
𝑄
1

ℎ
2
𝐴
𝑇

𝑘
𝑄
2

∗ ∗ −𝑄
2

0 ℎ
1
Δ
𝑇

𝑘
𝑄
1

ℎ
2
Δ
𝑇

𝑘
𝑄
2

∗ ∗ ∗ −𝛽𝐼
𝑛−1

ℎ
1
Σ
𝑇

𝑘
𝑄
1

ℎ
2
Σ
𝑇

𝑘
𝑄
2

∗ ∗ ∗ ∗ −𝑄
1

0

∗ ∗ ∗ ∗ ∗ −𝑄
2

)

)

)

)

)

)

)

)

)

)

)

)

< 0 (29)

holds for 𝑘 ∈ Γ, where �̃�
𝑘
,𝐴
𝑘
, Δ̃
𝑘
, Σ̃
𝑘
, Σ
𝑘
, and 𝐿

𝑘
relative to the

digraph G
𝑘
are defined as �̃�, 𝐴, Δ̃, Σ̃, Σ, and 𝐿 in Theorem 4,

then system (28) solves 𝐻
∞

consensus with 𝛾 = 𝛽/𝛼 under
arbitrary switching.

4. Numerical Examples

Consider the following four digraphs with six nodes shown
in Figure 1, where the weights relative to the edges shown by
solid lines and dashed lines are 1 and −0.5, respectively.

When G = G
𝑎
, we have that (12) is feasible for

given ℎ
1

≤ 0.38 and ℎ
2

≤ 0.24. By Theorem 3, system

(1) achieves consensus asymptotically. The state trajectory
under the stochastic initial condition is shown in Figure 2.
In Remark 6, we show that Theorem 3 can also be applied
to the extreme case when part of weights 𝑎

𝑖𝑗
is negative.

For example, if G = G
𝑏
, we have that (12) is still feasible

for given ℎ
1

≤ 0.26 and ℎ
2

≤ 0.22. Therefore, system
(1) also solves consensus asymptotically even when there
exist negative weights 𝑎

51
= 𝑎
53

= −0.5. The state
trajectory under the stochastic initial condition is shown
in Figure 3.

For the case of disturbance input, assume that G = G
𝑐

and 𝑤
𝑖𝑗
(𝑡) = 𝑤

𝑗
(𝑡) for 𝑖, 𝑗 ∈ N. Therefore, Σ = 𝐴. For given
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Figure 2: State trajectory of system (1) withG = G
𝑎
.

Time delays = 0.22, 0.26

St
at

e

Time (s)

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0 5 10 15 20 25 30

Figure 3: State trajectory of system (1) withG = G
𝑏
.

ℎ
1
= 0.2 and ℎ

2
= 0.1, we get from (19) that 𝛾 = 43.0731.

By Theorem 4, we have that system (7) solves 𝐻
∞

consensus
with 𝛾 = 43.0731. If we let

𝑤 (𝑡) = {

(0.1 sin 𝑡) 1, 0 ≤ 𝑡 ≤ 30,

0.0, otherwise,
(30)

the trajectory of system (7) under a stochastic initial condi-
tion is shown in Figure 4.

For the case of switching topologies {G
𝑐
,G
𝑑
}, we have

that (27) is feasible for given ℎ
1

≤ 0.24 and ℎ
2

≤ 0.18.
By Theorem 7, system (25) solves consensus under arbitrary
switching.

5. Conclusions

In this paper, we first apply the linear matrix inequality
method to consensus of the single integrator multiagent

Time delays = 0.1, 0.2

St
at

e

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

0 5 10 15 20 25 30

Time (s)

1

Figure 4: State trajectory of system (7) with G = G
𝑐
and given

disturbance.

system with heterogeneous time-varying delays in directed
networks. Unlike the case of identical delays, the multia-
gent system with heterogeneous delays usually cannot be
transformed to a reduced-order system. To overcome such
difficulty, we introduce a partially-reduced-order system and
an integral system. As a result, the linear matrix inequality
method becomes useful in the analysis of consensus and𝐻

∞

consensus by constructing a particular Lyapunov function.
The main results are also extended to the case of switch-
ing topologies. Finally, numerical examples and simulation
results are given to illustrate the theoretical results.
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