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The aim of this paper is to define modified weak 𝛼-𝜓-contractive mappings and to establish fixed point results for such mappings
defined on partialmetric spaces using the notion of triangular𝛼-admissibility. As an application, we prove newfixed point results for
graphic weak 𝜓-contractive mappings. Moreover, some examples and an application to integral equation are given here to illustrate
the usability of the obtained results.

1. Introduction and Preliminaries

The concept of partial metric space was introduced by
Matthews [1] in 1994. Partial metric space is a generalized
metric space in which each object does not necessarily have
to have a zero distance from itself. A motivation behind
introducing the concept of a partial metric was to obtain
appropriate mathematical models in the theory of compu-
tation and, in particular, to give a modified version of the
Banach contraction principle [2, 3]. Subsequently, several
authors studied the problem of existence and uniqueness of
a fixed point for mappings satisfying different contractive
conditions on partial metric spaces (e.g., [4–10]). For a recent
survey on the existence of fixed points in different spaces
with generalized distance functions, the reader may check
[11–18]. We start by recalling some definitions and properties
of partial metric spaces.

Definition 1. A partial metric on a nonempty set 𝑋 is a
function 𝑝 : 𝑋 × 𝑋 → R+ such that, for all 𝑥, 𝑦, 𝑧 ∈ 𝑋,

(p1) 𝑥 = 𝑦 ⇔ 𝑝(𝑥, 𝑥) = 𝑝(𝑥, 𝑦) = 𝑝(𝑦, 𝑦);

(p2) 𝑝(𝑥, 𝑥) ≤ 𝑝(𝑥, 𝑦);

(p3) 𝑝(𝑥, 𝑦) = 𝑝(𝑦, 𝑥);

(p4) 𝑝(𝑥, 𝑧) ≤ 𝑝(𝑥, 𝑦) + 𝑝(𝑦, 𝑧) − 𝑝(𝑦, 𝑦).

A partial metric space is a pair (𝑋, 𝑝) such that 𝑋 is
nonempty set and 𝑝 is a partial metric on𝑋.

From the above definition, if 𝑝(𝑥, 𝑦) = 0, then 𝑥 = 𝑦. But
if𝑥 = 𝑦,𝑝(𝑥, 𝑦)may not be 0 in general. A trivial example of a
partial metric space is the pair (R+, 𝑝), where 𝑝 : R+× R+ →

R+ is defined as 𝑝(𝑥, 𝑦) = max{𝑥, 𝑦}. For more examples of
partial metric spaces, we refer to [6, 7].

Each partial metric 𝑝 on𝑋 generates a 𝑇
0
topology 𝜏

𝑝
on

𝑋 which has as a base the family of open 𝑝-balls {𝐵
𝑝
(𝑥, 𝜖) :

𝑥 ∈ 𝑋, 𝜖 > 0}, where 𝐵
𝑝
(𝑥, 𝜖) = {𝑦 ∈ 𝑋 : 𝑝(𝑥, 𝑦) <

𝑝(𝑥, 𝑥) + 𝜖} for all 𝑥 ∈ 𝑋 and 𝜖 > 0. A sequence {𝑥
𝑛
} in 𝑋

converges to a point 𝑥 ∈ 𝑋, with respect to 𝜏
𝑝
, if and only

if 𝑝(𝑥, 𝑥) = lim
𝑛→∞

𝑝(𝑥, 𝑥
𝑛
). A sequence {𝑥

𝑛
} in 𝑋 is called

Cauchy sequence if lim
𝑛,𝑚→∞

𝑝(𝑥
𝑛
, 𝑥
𝑚
) exists and is finite.

A partial metric space (𝑋, 𝑝) is said to be complete if every
Cauchy sequence {𝑥

𝑛
} in𝑋 converges, with respect to 𝜏

𝑝
, to a

point 𝑥 ∈ 𝑋 such that 𝑝(𝑥, 𝑥) = lim
𝑛,𝑚→∞

𝑝(𝑥
𝑛
, 𝑥
𝑚
).

A sequence {𝑥
𝑛
} in 𝑋 is called 0-Cauchy sequence if

lim
𝑛,𝑚→∞

𝑝(𝑥
𝑛
, 𝑥
𝑚
) = 0. A partial metric space (𝑋, 𝑝) is

said to be 0-complete if every 0-Cauchy sequence {𝑥
𝑛
} in 𝑋

converges, with respect to 𝜏
𝑝
, to a point 𝑥 ∈ 𝑋 such that

𝑝(𝑥, 𝑥) = 0.
The partial metric space (Q∩[0;∞), 𝑝), whereQ denotes

the set of rational numbers and the partial metric 𝑝 is given
by 𝑝(𝑥, 𝑦) = max{𝑥, 𝑦}, provides an example of a 0-complete
partial metric space which is not complete.



2 Abstract and Applied Analysis

If 𝑝 is a partial metric on 𝑋, then the function 𝑝𝑠 : 𝑋 ×

𝑋 → R+ given by

𝑝
𝑠

(𝑥, 𝑦) = 2𝑝 (𝑥, 𝑦) − 𝑝 (𝑥, 𝑥) − 𝑝 (𝑦, 𝑦) (1)

is a metric on 𝑋. A partial metric space (𝑋, 𝑝) is complete
if and only if the metric space (𝑋, 𝑝𝑠) is complete. Fur-
thermore, lim

𝑛→∞
𝑝
𝑠
(𝑥
𝑛
, 𝑧) = 0 if and only if 𝑝(𝑧, 𝑧) =

lim
𝑛→∞

𝑝(𝑥
𝑛
, 𝑧) = lim

𝑛,𝑚→∞
𝑝(𝑥
𝑛
, 𝑥
𝑚
). Some more proper-

ties of partial metric spaces can be found in [3, 7, 19].
Samet et al. [20] defined the notion of 𝛼-admissible

mappings and proved the following result.

Definition 2. Let 𝑇 be a self-mapping on 𝑋 and 𝛼 : 𝑋 ×

𝑋 → [0, +∞) a function. One says that 𝑇 is an 𝛼-admissible
mapping if

𝑥, 𝑦 ∈ 𝑋, 𝛼 (𝑥, 𝑦) ≥ 1 󳨐⇒ 𝛼 (𝑇𝑥, 𝑇𝑦) ≥ 1. (2)

Denote with Ψ the family of nondecreasing functions 𝜓 :
[0, +∞) → [0, +∞) such that∑∞

𝑛=1
𝜓
𝑛
(𝑡) < +∞ for all 𝑡 > 0,

where 𝜓𝑛 is the 𝑛th iterate of 𝜓.

Theorem 3. Let (𝑋, 𝑑) be a complete metric space and 𝑇 be
𝛼-admissible mapping. Assume that

𝛼 (𝑥, 𝑦) 𝑑 (𝑇𝑥, 𝑇𝑦) ≤ 𝜓 (𝑑 (𝑥, 𝑦)) , (3)

where 𝜓 ∈ Ψ. Also, suppose that the following assertions hold:

(i) there exists 𝑥
0
∈ 𝑋 such that 𝛼(𝑥

0
, 𝑇𝑥
0
) ≥ 1;

(ii) either 𝑇 is continuous or for any sequence {𝑥
𝑛
} in 𝑋

with 𝛼(𝑥
𝑛
, 𝑥
𝑛+1
) ≥ 1 for all 𝑛 ∈ N ∪ {0} and 𝑥

𝑛
→ 𝑥

as 𝑛 → +∞, one has 𝛼(𝑥
𝑛
, 𝑥) ≥ 1 for all 𝑛 ∈ N ∪ {0}.

Then, 𝑇 has a fixed point.

Very recently, Salimi et al. [21] modified the notions
of 𝛼-𝜓-contractive mappings and 𝛼-admissible mappings as
follows.

Definition 4 (see [21]). Let𝑇 be a self-mapping on𝑋 and𝛼, 𝜂 :
𝑋 × 𝑋 → [0, +∞) two functions. One says that 𝑇 is an 𝛼-
admissible mapping with respect to 𝜂 if

𝑥, 𝑦 ∈ 𝑋, 𝛼 (𝑥, 𝑦) ≥ 𝜂 (𝑥, 𝑦)

󳨐⇒ 𝛼 (𝑇𝑥, 𝑇𝑦) ≥ 𝜂 (𝑇𝑥, 𝑇𝑦) .

(4)

Note that if we take 𝜂(𝑥, 𝑦) = 1, then this definition reduces
to Definition 2. Also, if we take, 𝛼(𝑥, 𝑦) = 1, then we say that
𝑇 is an 𝜂-subadmissible mapping.

The following result properly contains Theorem 3 and
Theorems 2.3 and 2.4 of [22].

Theorem 5 (see [21]). Let (𝑋, 𝑑) be a complete metric space
and 𝑇 be 𝛼-admissible mapping with respect to 𝜂. Assume that

𝑥, 𝑦 ∈ 𝑋, 𝛼 (𝑥, 𝑦) ≥ 𝜂 (𝑥, 𝑦)

󳨐⇒ 𝑑 (𝑇𝑥, 𝑇𝑦) ≤ 𝜓 (𝑀(𝑥, 𝑦)) ,

(5)

where 𝜓 ∈ Ψ and

𝑀(𝑥, 𝑦) = max{𝑑 (𝑥, 𝑦) ,
𝑑 (𝑥, 𝑇𝑥) + 𝑑 (𝑦, 𝑇𝑦)

2

,

𝑑 (𝑥, 𝑇𝑦) + 𝑑 (𝑦, 𝑇𝑥)

2

} .

(6)

Also, suppose that the following assertions hold:

(i) there exists 𝑥
0
∈ 𝑋 such that 𝛼(𝑥

0
, 𝑇𝑥
0
) ≥ 𝜂(𝑥

0
, 𝑇𝑥
0
);

(ii) either 𝑇 is continuous or for any sequence {𝑥
𝑛
} in 𝑋

with 𝛼(𝑥
𝑛
, 𝑥
𝑛+1
) ≥ 𝜂(𝑥

𝑛
, 𝑥
𝑛+1
) for all 𝑛 ∈ N ∪ {0} and

𝑥
𝑛
→ 𝑥 as 𝑛 → +∞, one has 𝛼(𝑥

𝑛
, 𝑥) ≥ 𝜂(𝑥

𝑛
, 𝑥) for

all 𝑛 ∈ N ∪ {0}.

Then, 𝑇 has a fixed point.

In fact, Banach contraction principle andTheorem 5 hold
for the following example, but Theorem 3 does not hold.

Example 6 (see [21]). Let 𝑋 = [0,∞) be endowed with the
usualmetric𝑑(𝑥, 𝑦) = |𝑥−𝑦| for all𝑥, 𝑦 ∈ 𝑋, and let𝑇 : 𝑋 →

𝑋 be defined by 𝑇𝑥 = (1/4)𝑥. Also, define, 𝛼 : 𝑋2 → [0,∞)

by 𝛼(𝑥, 𝑦) = 3 and 𝜓 : [0,∞) → [0,∞) by 𝜓(𝑡) = (1/2)𝑡.

In this paper, we define modified weak 𝛼-𝜓-contractive
mappings and establish fixed point results for such mappings
defined on ordinary as well as ordered partial metric spaces
using the notion of triangular 𝛼-admissibility. As an appli-
cation, we prove new fixed point results for graphic weak
𝜓-contractive mappings. Moreover, some examples and an
application to integral equation are given here to illustrate the
usability of the obtained results.

2. Modified Weak 𝛼-𝜓-Contractions

Recently, Karapınar et al. [23] introduced the notion of tri-
angular 𝛼-admissible mapping as follows.

Definition 7 (see [23]). Let 𝑇 : 𝑋 → 𝑋 and 𝛼 : 𝑋 × 𝑋 →

(−∞, +∞). One says that𝑇 is a triangular 𝛼-admissible map-
ping if

(T1) 𝛼(𝑥, 𝑦) ≥ 1 implies 𝛼(𝑇𝑥, 𝑇𝑦) ≥ 1, 𝑥, 𝑦 ∈ 𝑋;

(T2) 𝛼(𝑥, 𝑧) ≥ 1, 𝛼(𝑧, 𝑦) ≥ 1 imply 𝛼(𝑥, 𝑦) ≥ 1.

Lemma 8 (see [23]). Let 𝑇 : 𝑋 → 𝑋 be a triangular 𝛼-
admissible mapping. Assume that there exists 𝑥

0
∈ 𝑋 such that

𝛼(𝑥
0
, 𝑇𝑥
0
) ≥ 1. Define sequence {𝑥

𝑛
} by 𝑥

𝑛
= 𝑇
𝑛
𝑥
0
. Then,

𝛼 (𝑥
𝑚
, 𝑥
𝑛
) ≥ 1 ∀𝑚, 𝑛 ∈ N 𝑤𝑖𝑡ℎ 𝑚 < 𝑛. (7)

Motivated by Samet et al. [20] and Salimi et al. [21], we
introduce the following mapping.

Definition 9. Let (𝑋, 𝑝) be a partialmetric space and𝑇 : 𝑋 →

𝑋, 𝛼 : 𝑋 × 𝑋 → [0,∞) two mappings. If there exists an
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upper semicontinuous from the right nondecreasing function
𝜓 : R
+
→ R
+
with 𝜓(𝑡) < 𝑡 for all 𝑡 > 0 such that

𝑥, 𝑦 ∈ 𝑋, 𝛼 (𝑥, 𝑦) ≥ 1

󳨐⇒ 𝑝 (𝑇𝑥, 𝑇𝑦) ≤ 𝜓 (𝑀
𝑝
(𝑥, 𝑦)) ,

(8)

where

𝑀
𝑝
(𝑥, 𝑦) = max{𝑝 (𝑥, 𝑦) , 𝑝 (𝑥, 𝑇𝑥) ,

𝑝 (𝑦, 𝑇𝑦) ,

𝑝 (𝑥, 𝑇𝑦) + 𝑝 (𝑦, 𝑇𝑥)

2

} .

(9)

Then, we say that 𝑇 is a modified weak 𝛼-𝜓-contractive
mapping.

Definition 10. Let (𝑋, 𝑝) be a partial metric space. Let 𝛼 : 𝑋×
𝑋 → (−∞, +∞) and 𝑇 : 𝑋 → 𝑋. One says that 𝑇 is an
𝛼-continuous function on (𝑋, 𝑝𝑠) if for given 𝑥 and {𝑥

𝑛
} in𝑋,

𝑥
𝑛
󳨀→ 𝑥 as 𝑛 󳨀→ ∞,

𝛼 (𝑥
𝑛
, 𝑥
𝑛+1
) ≥ 1 ∀𝑛 ∈ N imply 𝑇𝑥

𝑛
󳨀→ 𝑇𝑥.

(10)

Example 11. Let 𝑋 = [0,∞) and 𝑝(𝑥, 𝑦) = max{𝑥, 𝑦}.
Assume that 𝑇 : 𝑋 → 𝑋 and 𝛼 : 𝑋2 → (−∞, +∞) defined
by

𝑇𝑥 = {

3𝑥
2
, if𝑥 ∈ [0, 1]

5𝑥 + 1, if (1,∞) ,

𝛼 (𝑥, 𝑦) = {

1, if 𝑥 ∈ [0, 1]
−1, otherwise.

(11)

Clearly, 𝑇 is not continuous, but 𝑇 is an 𝛼-continuous on
(𝑋, 𝑝
𝑠
). Indeed, if 𝑥

𝑛
→ 𝑥 as 𝑛 → ∞ and 𝛼(𝑥

𝑛
, 𝑥
𝑛+1
) ≥ 1,

then 𝑥
𝑛
∈ [0, 1] and so lim

𝑛→∞
𝑇𝑥
𝑛
= lim

𝑛→∞
3𝑥
2

𝑛
= 3𝑥
2
=

𝑇𝑥.

Theorem 12. Let (𝑋, 𝑝) be a 0-complete partial metric space
and 𝑇 a modified weak 𝛼-𝜓-contractive and triangular 𝛼-
admissiblemapping. Suppose that the following assertions hold:

(i) there exists 𝑥
0
∈ 𝑋 such that 𝛼(𝑥

0
, 𝑇𝑥
0
) ≥ 1;

(ii) 𝑇 is an 𝛼-continuous function on (𝑋, 𝑝𝑠).

Then, 𝑇 has a fixed point.

Proof. Let𝑥
0
∈ 𝑋 such that𝛼(𝑥

0
, 𝑇𝑥
0
) ≥ 1. Define a sequence

{𝑥
𝑛
} in 𝑋 by 𝑥

𝑛
= 𝑇
𝑛
𝑥
0
= 𝑇𝑥

𝑛−1
for all 𝑛 ∈ N. Then, by

Lemma 8, we have

𝛼 (𝑥
𝑚
, 𝑥
𝑛
) ≥ 1 ∀𝑚, 𝑛 ∈ N with 𝑚 < 𝑛. (12)

If 𝑥
𝑛+1

= 𝑥
𝑛
for some 𝑛 ∈ N, then 𝑥 = 𝑥

𝑛
is a fixed point for

𝑇, and the result is proved. Hence, we suppose that 𝑥
𝑛+1

̸= 𝑥
𝑛

for all 𝑛 ∈ N. Now, by (8) and (12) with 𝑥 = 𝑥
𝑛−1

, 𝑦 = 𝑥
𝑛
, we

get

𝑝 (𝑇𝑥
𝑛−1
, 𝑇𝑥
𝑛
) ≤ 𝜓 (𝑀 (𝑥

𝑛−1
, 𝑥
𝑛
)) (13)

On the other hand,

max {𝑝 (𝑥
𝑛−1
, 𝑥
𝑛
) , 𝑝 (𝑥

𝑛
, 𝑥
𝑛+1
)}

≤ 𝑀
𝑝
(𝑥
𝑛−1
, 𝑥
𝑛
)

= max{𝑝 (𝑥
𝑛−1
, 𝑥
𝑛
) , 𝑝 (𝑥

𝑛−1
, 𝑇𝑥
𝑛−1
) ,

𝑝 (𝑥
𝑛
, 𝑇𝑥
𝑛
) ,

𝑝 (𝑥
𝑛−1
, 𝑇𝑥
𝑛
) + 𝑝 (𝑥

𝑛
, 𝑇𝑥
𝑛−1
)

2

}

= max{𝑝 (𝑥
𝑛−1
, 𝑥
𝑛
) , 𝑝 (𝑥

𝑛−1
, 𝑥
𝑛
) ,

𝑝 (𝑥
𝑛
, 𝑥
𝑛+1
) ,

𝑝 (𝑥
𝑛−1
, 𝑥
𝑛+1
) + 𝑝 (𝑥

𝑛
, 𝑥
𝑛
)

2

}

≤ max{𝑝 (𝑥
𝑛−1
, 𝑥
𝑛
) , 𝑝 (𝑥

𝑛−1
, 𝑥
𝑛
) ,

𝑝 (𝑥
𝑛
, 𝑥
𝑛+1
) ,

𝑝 (𝑥
𝑛−1
, 𝑥
𝑛
) + 𝑝 (𝑥

𝑛
, 𝑥
𝑛+1
)

2

}

≤ max {𝑝 (𝑥
𝑛−1
, 𝑥
𝑛
) , 𝑝 (𝑥

𝑛
, 𝑥
𝑛+1
)}

(14)

and then, 𝑀
𝑝
(𝑥
𝑛−1
, 𝑥
𝑛
) = max{𝑝(𝑥

𝑛−1
, 𝑥
𝑛
), 𝑝(𝑥
𝑛
, 𝑥
𝑛+1
)}. So,

from (13), we have

𝑝 (𝑥
𝑛
, 𝑥
𝑛+1
)

≤ 𝜓 (max {𝑝 (𝑥
𝑛−1
, 𝑥
𝑛
) , 𝑝 (𝑥

𝑛
, 𝑥
𝑛+1
)}) .

(15)

Now, if max{𝑝(𝑥
𝑛−1
, 𝑥
𝑛
), 𝑝(𝑥
𝑛
, 𝑥
𝑛+1
)} = 𝑝(𝑥

𝑛
, 𝑥
𝑛+1
) for some

𝑛 ∈ N, then

𝑝 (𝑥
𝑛
, 𝑥
𝑛+1
)

≤ 𝜓 (max {𝑝 (𝑥
𝑛−1
, 𝑥
𝑛
) , 𝑝 (𝑥

𝑛
, 𝑥
𝑛+1
)})

= 𝜓 (𝑝 (𝑥
𝑛
, 𝑥
𝑛+1
)) < 𝑝 (𝑥

𝑛
, 𝑥
𝑛+1
) ,

(16)

which is a contradiction. Hence, for all 𝑛 ∈ N, we have

𝑝 (𝑥
𝑛
, 𝑥
𝑛+1
) ≤ 𝜓 (𝑝 (𝑥

𝑛−1
, 𝑥
𝑛
)) < 𝑝 (𝑥

𝑛−1
, 𝑥
𝑛
) . (17)

This implies that the sequence {𝑝(𝑥
𝑛−1
, 𝑥
𝑛
)} is decreasing,

and so, by (17), there is 𝑠 ≥ 0 such that

lim
𝑛→+∞

𝑝 (𝑥
𝑛
, 𝑥
𝑛+1
) = lim
𝑛→+∞

𝜓 (𝑝 (𝑥
𝑛−1
, 𝑥
𝑛
)) = 𝑠. (18)

Now, we show that 𝑠must be equal to 0.
In fact, if 𝑠 > 0, then we get

𝑠 = lim sup
𝑛→+∞

𝜓 (𝑝 (𝑥
𝑛−1
, 𝑥
𝑛
)) ≤ 𝜓 (𝑠) < 𝑠, (19)

which is a contradiction. Hence,
lim
𝑛→+∞

𝑝 (𝑥
𝑛
, 𝑥
𝑛+1
) = 0. (20)
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We prove that {𝑥
𝑛
} is a 0-Cauchy sequence. Suppose, to the

contrary, that {𝑥
𝑛
} is not a 0-Cauchy sequence. Then, there

is 𝜀 > 0 and sequences {𝑚(𝑘)} and {𝑛(𝑘)} such that, for all
positive integers 𝑘,

𝑛 (𝑘) > 𝑚 (𝑘) > 𝑘,

𝑝 (𝑥
𝑛(𝑘)
, 𝑥
𝑚(𝑘)

) ≥ 𝜀,

𝑝 (𝑥
𝑛(𝑘)
, 𝑥
𝑚(𝑘)−1

) < 𝜀.

(21)

Now, for all 𝑘 ∈ N, we have

𝜀 ≤ 𝑝 (𝑥
𝑛(𝑘)
, 𝑥
𝑚(𝑘)

)

≤ 𝑝 (𝑥
𝑛(𝑘)
, 𝑥
𝑚(𝑘)−1

) + 𝑝 (𝑥
𝑚(𝑘)−1

, 𝑥
𝑚(𝑘)

)

< 𝜀 + 𝑝 (𝑥
𝑚(𝑘)−1

, 𝑥
𝑚(𝑘)

) .

(22)

Taking the limit as 𝑘 → +∞ in the above inequality and
using (20), we get

lim
𝑘→+∞

𝑝 (𝑥
𝑛(𝑘)
, 𝑥
𝑚(𝑘)

) = 𝜀. (23)

Again, from

𝑝 (𝑥
𝑛(𝑘)
, 𝑥
𝑚(𝑘)

) ≤ 𝑝 (𝑥
𝑚(𝑘)

, 𝑥
𝑚(𝑘)+1

)

+ 𝑝 (𝑥
𝑚(𝑘)+1

, 𝑥
𝑛(𝑘)+1

)

+ 𝑝 (𝑥
𝑛(𝑘)+1

, 𝑥
𝑛(𝑘)
)

𝑝 (𝑥
𝑛(𝑘)+1

, 𝑥
𝑚(𝑘)+1

) ≤ 𝑝 (𝑥
𝑚(𝑘)

, 𝑥
𝑚(𝑘)+1

)

+ 𝑝 (𝑥
𝑚(𝑘)

, 𝑥
𝑛(𝑘)
)

+ 𝑝 (𝑥
𝑛(𝑘)+1

, 𝑥
𝑛(𝑘)
) ,

(24)

taking the limit as 𝑘 → +∞ and by (20) and (23), we deduce

lim
𝑘→+∞

𝑝 (𝑥
𝑛(𝑘)+1

, 𝑥
𝑚(𝑘)+1

) = 𝜀. (25)

Also, since

𝜀 ≤ 𝑝 (𝑥
𝑛(𝑘)
, 𝑥
𝑚(𝑘)

)

≤ 𝑝 (𝑥
𝑛(𝑘)
, 𝑥
𝑚(𝑘)+1

) + 𝑝 (𝑥
𝑚(𝑘)+1

, 𝑥
𝑚(𝑘)

) ,

(26)

then by taking limit as 𝑛 → ∞ in the last inequality and
applying (20) and (23), we deduce

lim
𝑘→+∞

𝑝 (𝑥
𝑛(𝑘)
, 𝑥
𝑚(𝑘)+1

) = 𝜀. (27)

Similarly,

lim
𝑘→+∞

𝑝 (𝑥
𝑚(𝑘)

, 𝑥
𝑛(𝑘)+1

) = 𝜀. (28)

Then, by (8) and (12), we obtain

𝑝 (𝑥
𝑛(𝑘)+1

, 𝑥
𝑚(𝑘)+1

) = 𝑝 (𝑇𝑥
𝑛(𝑘)
, 𝑇𝑥
𝑚(𝑘)

)

≤ 𝜓 (𝑀
𝑝
(𝑥
𝑛(𝑘)
, 𝑥
𝑚(𝑘)

)) ,

(29)

where

𝑀
𝑝
(𝑥
𝑛(𝑘)
, 𝑥
𝑚(𝑘)

)

= max{𝑝 (𝑥
𝑛(𝑘)
, 𝑥
𝑚(𝑘)

) , 𝑝 (𝑥
𝑛(𝑘)
, 𝑇𝑥
𝑛(𝑘)
) ,

𝑝 (𝑥
𝑚(𝑘)

, 𝑇𝑥
𝑚(𝑘)

) ,

𝑝 (𝑥
𝑛(𝑘)
, 𝑇𝑥
𝑚(𝑘)

) + 𝑝 (𝑥
𝑚(𝑘)

, 𝑇𝑥
𝑛(𝑘)
)

2

}

= max{𝑝 (𝑥
𝑛(𝑘)
, 𝑥
𝑚(𝑘)

) , 𝑝 (𝑥
𝑛(𝑘)
, 𝑥
𝑛(𝑘)+1

) ,

𝑝 (𝑥
𝑚(𝑘)

, 𝑥
𝑚(𝑘)+1

) ,

𝑝 (𝑥
𝑛(𝑘)
, 𝑥
𝑚(𝑘)+1

) + 𝑝 (𝑥
𝑚(𝑘)

, 𝑥
𝑛(𝑘)+1

)

2

} .

(30)

Taking limit supremum as 𝑛 → ∞ in the above inequality
and applying (20), (23), (25), (27), and (28), we get

𝜀 ≤ 𝜓 (𝜀) < 𝜀, (31)

which is a contradiction. Hence, {𝑥
𝑛
} is a 0-Cauchy sequence.

Since 𝑇 is orbitally 𝛼-continuous on (𝑋, 𝑝𝑠), 𝑥
𝑛
→ 𝑧 as

𝑛 → ∞ and 𝛼(𝑥
𝑛
, 𝑥
𝑛+1
) ≥ 1, then we have

𝑇𝑧 = lim
𝑛→∞

𝑇𝑥
𝑛
= lim
𝑛→∞

𝑥
𝑛+1

= 𝑧. (32)

So, 𝑧 is a fixed point of 𝑇.

Theorem 13. Let (𝑋, 𝑝) be a 0-complete partial metric space
and 𝑇 : 𝑋 → 𝑋 a modified weak 𝛼-𝜓-contractive and 𝛼-
admissiblemapping. Suppose that the following assertions hold:

(i) there exists 𝑥
0
∈ 𝑋 such that 𝛼(𝑥

0
, 𝑇𝑥
0
) ≥ 1;

(ii) 𝛼(𝑥, 𝑥) ≥ 1 for all 𝑥 ∈ 𝑋 and if {𝑥
𝑛
} is a sequence in𝑋

such that 𝛼(𝑥
𝑛
, 𝑥
𝑛+1
) ≥ 1 for all 𝑛 ∈ N and 𝑥

𝑛
→ 𝑥 as

𝑛 → +∞, then 𝛼(𝑥
𝑛
, 𝑥) ≥ 1 for all 𝑛 ∈ N.

Then, 𝑇 has a fixed point.

Proof. Condition (ii) implies property (T2) in definition of
triangular 𝛼-admissible map. Indeed, if 𝛼(𝑥, 𝑦) ≥ 1 and
𝛼(𝑦, 𝑧) ≥ 1, then applying (ii) to (𝑥

𝑛
) defined by

𝑥
1
:= 𝑥, 𝑥

2
:= 𝑦, 𝑥

𝑛
:= 𝑧 for 𝑛 ≥ 3, (33)

we get 𝛼(𝑥
𝑛
, 𝑧) ≥ 1 for 𝑛 ∈ N, and hence, 𝛼(𝑥, 𝑧) ≥ 1. Thus,

as in Theorem 12, we obtain a 0-Cauchy sequence {𝑥
𝑛
} such

that 𝑥
𝑛
→ 𝑧 as 𝑛 → ∞. Since,

𝛼 (𝑥
𝑛
, 𝑥
𝑛+1
) ≥ 1 (34)

for all 𝑛 ∈ N and 𝑥
𝑛
→ 𝑧 as 𝑛 → ∞, then from (ii), we have

𝛼 (𝑥
𝑛
, 𝑧) ≥ 1 (35)

for all 𝑛 ∈ N. Then, from (8), we get

𝑝 (𝑥
𝑛+1
, 𝑇𝑧) ≤ 𝜓 (𝑀

𝑝
(𝑥
𝑛
, 𝑧)) , (36)
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where

𝑀
𝑝
(𝑥
𝑛
, 𝑧)

= max{𝑝 (𝑥
𝑛
, 𝑧) , 𝑝 (𝑥

𝑛
, 𝑥
𝑛+1
) ,

𝑝 (𝑧, 𝑇𝑧) ,

𝑝 (𝑥
𝑛
, 𝑇𝑧) + 𝑝 (𝑧, 𝑥

𝑛+1
)

2

} .

(37)

By taking limit supremum as 𝑛 → ∞ in the above inequality,
we have

𝑝 (𝑧, 𝑇𝑧) = lim sup
𝑛→∞

𝑝 (𝑥
𝑛+1
, 𝑇𝑧)

≤ lim sup
𝑛→∞

𝜓 (𝑀
𝑝
(𝑥
𝑛
, 𝑧))

≤ 𝜓(lim sup
𝑛→∞

𝑀
𝑝
(𝑥
𝑛
, 𝑧))

= 𝜓 (𝑝 (𝑧, 𝑇𝑧)) < 𝑝 (𝑧, 𝑇𝑧) ,

(38)

which is a contradiction. Hence, 𝑝(𝑧, 𝑇𝑧) = 0. That is, 𝑧 =
𝑇𝑧.

Example 14. Let 𝑋 = [0,∞) be endowed with the partial
metric 𝑝(𝑥, 𝑦) = max{𝑥, 𝑦} for all 𝑥, 𝑦 ∈ 𝑋, and let 𝑇 : 𝑋 →

𝑋 be defined by

𝑇𝑥 =

{

{

{

1

2

𝑥
3 if 𝑥 ∈ [0, 1]

𝑥
3
+ 2 ln𝑥 if 𝑥 ∈ (1,∞) .

(39)

Define 𝛼 : 𝑋 × 𝑋 → (−∞, +∞) and 𝜓 : [0,∞) → [0,∞)

by

𝛼 (𝑥, 𝑦) =

{

{

{

2 if 𝑥, 𝑦 ∈ [0, 1] or 𝑥 = 𝑦

−2 otherwise
𝜓 (𝑡) =

1

2

𝑡.

(40)

Clearly, (𝑋, 𝑝) is a 0-complete partial metric space. We
show that 𝑇 is a triangular 𝛼-admissible mapping. Let 𝑥, 𝑦 ∈
𝑋, if 𝛼(𝑥, 𝑦) ≥ 1, then 𝑥, 𝑦 ∈ [0, 1] or 𝑥 = 𝑦. On the other
hand, for all 𝑥 ∈ [0, 1], we have 𝑇𝑥 ≤ 1. It follows that
𝛼(𝑇𝑥, 𝑇𝑦) ≥ 1. Also, if 𝛼(𝑥, 𝑧) ≥ 1, and 𝛼(𝑧, 𝑦) ≥ 1 then
𝑥, 𝑦, 𝑧 ∈ [0, 1]. That is, 𝛼(𝑥, 𝑦) ≥ 1. Hence, the assertion
holds. In reason of the above arguments, 𝛼(0, 𝑇0) ≥ 1.

Now, if {𝑥
𝑛
} is a sequence in 𝑋 such that 𝛼(𝑥

𝑛
, 𝑥
𝑛+1
) ≥ 1

for all 𝑛 ∈ N ∪ {0} and 𝑥
𝑛
→ 𝑥 as 𝑛 → +∞, then {𝑥

𝑛
} ⊂

[0, 1], and hence, 𝑥 ∈ [0, 1]. This implies that 𝛼(𝑥
𝑛
, 𝑥) ≥ 1 for

all 𝑛 ∈ N.
Let 𝛼(𝑥, 𝑦) ≥ 1. Then, 𝑥, 𝑦 ∈ [0, 1]. We get

𝑝 (𝑇𝑥, 𝑇𝑦) =

1

2

max {𝑥3, 𝑦3}

≤

1

2

max {𝑥, 𝑦} ≤ 1
2

𝑀
𝑝
(𝑥, 𝑦)

= 𝜓 (𝑀
𝑝
(𝑥, 𝑦)) .

(41)

That is,

𝛼 (𝑥, 𝑦) ≥ 1 󳨐⇒ 𝑝 (𝑇𝑥, 𝑇𝑦) ≤ 𝜓 (𝑀
𝑝
(𝑥, 𝑦)) . (42)

Hence, all conditions ofTheorem 13 hold and 0 is a fixed point
of 𝑇.

Corollary 15. Let (𝑋, 𝑝) be a 0-complete partial metric space
and 𝑇 : 𝑋 → 𝑋 be such that 𝛼(𝑥

0
, 𝑇𝑥
0
) ≥ 1 for some 𝑥

0
∈ 𝑋.

Assume that
󵄨
󵄨
󵄨
󵄨
𝛼 (𝑥, 𝑦)

󵄨
󵄨
󵄨
󵄨
𝑝 (𝑇𝑥, 𝑇𝑦) ≤ 𝜓 (𝑀

𝑝
(𝑥, 𝑦)) (43)

hold for all 𝑥, 𝑦 ∈ 𝑋. Also, suppose that one of the following
assertions holds:

(i) 𝑇 is triangular 𝛼-admissible and 𝛼-continuous on
(𝑋, 𝑝
𝑠
);

(ii) 𝑇 is 𝛼-admissible, 𝛼(𝑥, 𝑥) ≥ 1 for all 𝑥 ∈ 𝑋 and if
{𝑥
𝑛
} is a sequence in𝑋 such that 𝛼(𝑥

𝑛
, 𝑥
𝑛+1
) ≥ 1 for all

𝑛 ∈ N and 𝑥
𝑛
→ 𝑥 as 𝑛 → +∞, then 𝛼(𝑥

𝑛
, 𝑥) ≥ 1

for all 𝑛 ∈ N.

Then, 𝑇 has a fixed point.

Corollary 16. Let (𝑋, 𝑝) be a 0-complete partial metric space
and 𝑇 : 𝑋 → 𝑋 be such that 𝛼(𝑥

0
, 𝑇𝑥
0
) ≥ 1 for some 𝑥

0
∈ 𝑋.

Assume that

(
󵄨
󵄨
󵄨
󵄨
𝛼 (𝑥, 𝑦)

󵄨
󵄨
󵄨
󵄨
+ ℓ)
𝑝(𝑇𝑥,𝑇𝑦)

≤ (1 + ℓ)
𝜓(𝑀𝑝(𝑥,𝑦)) (44)

hold for all 𝑥, 𝑦 ∈ 𝑋 where ℓ > 0. Also, suppose that one of the
following assertions holds:

(i) 𝑇 is triangular 𝛼-admissible and 𝛼-continuous on
(𝑋, 𝑝
𝑠
);

(ii) 𝑇 is 𝛼-admissible, 𝛼(𝑥, 𝑥) ≥ 1 for all 𝑥 ∈ 𝑋 and if
{𝑥
𝑛
} is a sequence in𝑋 such that 𝛼(𝑥

𝑛
, 𝑥
𝑛+1
) ≥ 1 for all

𝑛 ∈ N and 𝑥
𝑛
→ 𝑥 as 𝑛 → +∞, then 𝛼(𝑥

𝑛
, 𝑥) ≥ 1

for all 𝑛 ∈ N.

Then, 𝑇 has a fixed point.

Proof. Let 𝛼(𝑥, 𝑦) ≥ 1. Then, |𝛼(𝑥, 𝑦)| ≥ 1. Hence, by (44),
we have

(1 + ℓ)
𝑝(𝑇𝑥,𝑇𝑦)

≤ (
󵄨
󵄨
󵄨
󵄨
𝛼 (𝑥, 𝑦)

󵄨
󵄨
󵄨
󵄨
+ ℓ)
𝑝(𝑇𝑥,𝑇𝑦)

≤ (1 + ℓ)
𝜓(𝑀𝑝(𝑥,𝑦))

.

(45)

Thus, 𝑝(𝑇𝑥, 𝑇𝑦) ≤ 𝜓(𝑀
𝑝
(𝑥, 𝑦)). Hence, conditions of Corol-

lary 15 hold, and 𝑇 has a fixed point.

Similarly, we have the following corollary.

Corollary 17. Let (𝑋, 𝑝) be a 0-complete partial metric space
and 𝑇 : 𝑋 → 𝑋 be such that 𝛼(𝑥

0
, 𝑇𝑥
0
) ≥ 1 for some 𝑥

0
∈ 𝑋.

Assume that

(𝑝 (𝑇𝑥, 𝑇𝑦) + ℓ)
|𝛼(𝑥,𝑦)|

≤ 𝜓 (𝑀
𝑝
(𝑥, 𝑦)) + ℓ (46)

hold for all 𝑥, 𝑦 ∈ 𝑋 where ℓ > 0. Also, suppose that one of the
following assertions holds:
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(i) 𝑇 is triangular 𝛼-admissible and 𝛼-continuous on
(𝑋, 𝑝
𝑠
);

(ii) 𝑇 is 𝛼-admissible, 𝛼(𝑥, 𝑥) ≥ 1 for all 𝑥 ∈ 𝑋 and if
{𝑥
𝑛
} is a sequence in𝑋 such that 𝛼(𝑥

𝑛
, 𝑥
𝑛+1
) ≥ 1 for all

𝑛 ∈ N and 𝑥
𝑛
→ 𝑥 as 𝑛 → +∞, then 𝛼(𝑥

𝑛
, 𝑥) ≥ 1

for all 𝑛 ∈ N.

Then, 𝑇 has a fixed point.

Corollary 18 (Matthews [1]). Let (𝑋, 𝑝) be a 0-complete par-
tial metric space and 𝑇 : 𝑋 → 𝑋 a given mapping satisfying

𝑝 (𝑇𝑥, 𝑇𝑦) ≤ 𝑘𝑝 (𝑥, 𝑦) (47)

for all 𝑥, 𝑦 ∈ 𝑋, where 𝑘 ∈ [0, 1). Then, 𝑇 has a unique fixed
point.

3. Fixed Point Results in Partially Ordered
Partial Metric Spaces

Fixed point theorems for monotone operators in partially
orderedmetric spaces are widely investigated and have found
various applications in differential and integral equations (see
[24, 25] and references therein).

Theorem 19 (see [24]). Let (𝑋, 𝑑, ⪯) be a partially ordered
completemetric space and𝑇 : 𝑋 → 𝑋 a continuous increasing
self-mapping such that 𝑥

0
⪯ 𝑇𝑥
0
for some 𝑥

0
∈ 𝑋. Assume that

𝑑 (𝑇𝑥, 𝑇𝑦) ≤ 𝑟𝑑 (𝑥, 𝑦) (48)

hold for all 𝑥, 𝑦 ∈ 𝑋 with 𝑥 ⪯ 𝑦, where 0 ≤ 𝑟 < 1. Then, 𝑇 has
a fixed point.

Theorem 20. Let (𝑋, 𝑝, ⪯) be a partially ordered 0-complete
partial metric space and 𝑇 : 𝑋 → 𝑋 an increasing self-map-
ping such that 𝑥

0
⪯ 𝑇𝑥
0
for some 𝑥

0
∈ 𝑋. Assume that

𝑝 (𝑇𝑥, 𝑇𝑦) ≤ 𝜓 (𝑀
𝑝
(𝑥, 𝑦)) (49)

hold for all𝑥, 𝑦 ∈ 𝑋with 𝑥 ⪯ 𝑦. Now, if𝑇 is a continuousmap-
ping on (𝑋, 𝑝𝑠), then 𝑇 has a fixed point.

Proof. Define, 𝛼 : 𝑋2 → (−∞, +∞) by

𝛼 (𝑥, 𝑦) = {

1, if 𝑥 ⪯ 𝑦
0, otherwise.

(50)

At first we prove that 𝑇 is a triangular 𝛼-admissible mapping.
Let 𝛼(𝑥, 𝑦) ≥ 1, then 𝑥 ⪯ 𝑦. As 𝑇 is an increasing mapping,
we have 𝑇𝑥 ⪯ 𝑇𝑦. That is, 𝛼(𝑇𝑥, 𝑇𝑦) ≥ 1. Also, let 𝛼(𝑥, 𝑧) ≥ 1
and 𝛼(𝑧, 𝑦) ≥ 1, then 𝑥 ⪯ 𝑧 and 𝑧 ⪯ 𝑦. So, from transitivity,
we have 𝑥 ⪯ 𝑦. That is, 𝛼(𝑥, 𝑦) ≥ 1. Thus, 𝑇 is a triangular 𝛼-
admissible mapping. Also, there exists 𝑥

0
∈ 𝑋 such that 𝑥

0
⪯

𝑇𝑥
0
which implies 𝛼(𝑥

0
, 𝑇𝑥
0
) ≥ 1. Let 𝛼(𝑥, 𝑦) ≥ 1, then 𝑥 ⪯

𝑦. Now, from (49), we have 𝑝(𝑇𝑥, 𝑇𝑦) ≤ 𝜓(𝑀
𝑝
(𝑥, 𝑦)).That is,

𝛼 (𝑥, 𝑦) ≥ 1 󳨐⇒ 𝑝 (𝑇𝑥, 𝑇𝑦) ≤ 𝜓 (𝑀
𝑝
(𝑥, 𝑦)) . (51)

Hence, all conditions of Theorem 12 are satisfied, and 𝑇 has
a fixed point.

Theorem 21 (see [25]). Let (𝑋, 𝑑, ⪯) be a partially ordered
complete metric space and 𝑇 : 𝑋 → 𝑋 an increasing mapping
such that

𝑑 (𝑇𝑥, 𝑇𝑦) ≤ 𝑟𝑑 (𝑥, 𝑦) (52)

for all 𝑥, 𝑦 ∈ 𝑋 with 𝑥 ⪯ 𝑦, where 0 ≤ 𝑟 < 1. Suppose that the
following assertions hold:

(i) there exists 𝑥
0
∈ 𝑋 such that 𝑥

0
⪯ 𝑇𝑥
0
;

(ii) if {𝑥
𝑛
} is a sequence in 𝑋 such that 𝑥

𝑛
⪯ 𝑥
𝑛+1

for all
𝑛 ∈ N and 𝑥

𝑛
→ 𝑥 as 𝑛 → +∞, then 𝑥

𝑛
⪯ 𝑥 for all

𝑛 ∈ N.

Then, 𝑇 has a fixed point.

Theorem 22. Let (𝑋, 𝑝, ⪯) be a partially ordered 0-complete
partial metric space and 𝑇 : 𝑋 → 𝑋 an increasing mapping
such that

𝑝 (𝑇𝑥, 𝑇𝑦) ≤ 𝜓 (𝑀
𝑝
(𝑥, 𝑦)) (53)

for all 𝑥, 𝑦 ∈ 𝑋 with 𝑥 ⪯ 𝑦. Suppose that the following asser-
tions hold:

(i) there exists 𝑥
0
∈ 𝑋 such that 𝑥

0
⪯ 𝑇𝑥
0
;

(ii) if {𝑥
𝑛
} is a sequence in 𝑋 such that 𝑥

𝑛
⪯ 𝑥
𝑛+1

for all
𝑛 ∈ N and 𝑥

𝑛
→ 𝑥 as 𝑛 → +∞, then 𝑥

𝑛
⪯ 𝑥 for all

𝑛 ∈ N.

Then, 𝑇 has a fixed point.

Proof. Define𝛼 : 𝐴×𝐴 → (−∞, +∞) as in proof ofTheorem
20. Assume 𝛼(𝑥

𝑛
, 𝑥
𝑛+1
) ≥ 1 for all 𝑛 ∈ N such that 𝑥

𝑛
→ 𝑥

as 𝑛 → ∞. Then, 𝑥
𝑛
⪯ 𝑥
𝑛+1

for all 𝑛 ∈ N. Hence, by (ii),
we get 𝑥

𝑛
⪯ 𝑥 for all 𝑛 ∈ N and so 𝛼(𝑥

𝑛
, 𝑥) ≥ 1 for all 𝑛 ∈ N.

Proceeding as in proof ofTheorem 20, we can deduce that𝑇 is
a modified weak 𝛼-𝜓-contractive and 𝛼-admissible mapping
and there exists 𝑥

0
∈ 𝑋 such that 𝛼(𝑥

0
, 𝑇𝑥
0
) ≥ 1. Hence, all

conditions of Theorem 13 hold, and 𝑇 has a fixed point.

Remark 23. Similarly, wemay obtainmore fixed point results
on ordered partial metric spaces as immediate consequences
of Corollaries 15–17.

4. Fixed Point Results for
Graphic Contractions

Consistent with Jachymski [26], let (𝑋, 𝑝) be a partial metric
space, and let Δ denote the diagonal of the Cartesian product
𝑋 × 𝑋. Consider a directed graph 𝐺 such that the set 𝑉(𝐺)
of its vertices coincides with 𝑋 and the set 𝐸(𝐺) of its edges
contains all loops, that is, 𝐸(𝐺) ⊇ Δ. We assume that 𝐺
has no parallel edges, so we can identify 𝐺 with the pair
(𝑉(𝐺), 𝐸(𝐺)). Moreover, we may treat 𝐺 as a weighted graph
(see [26]) by assigning to each edge the distance between its
vertices. If 𝑥 and 𝑦 are vertices in a graph 𝐺, then a path in 𝐺
from 𝑥 to 𝑦 of length𝑁 (𝑁 ∈ N) is a sequence {𝑥

𝑖
}
𝑁

𝑖=0
of𝑁+1

vertices such that 𝑥
0
= 𝑥, 𝑥

𝑁
= 𝑦 and (𝑥

𝑛−1
, 𝑥
𝑛
) ∈ 𝐸(𝐺) for

𝑖 = 1, . . . , 𝑁. A graph𝐺 is connected if there is a path between
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any two vertices.𝐺 is weakly connected if𝐺 is connected (see
for details [11, 26–28]).

Recently, some results have appeared providing sufficient
conditions for a mapping to be a Picard operator if (𝑋, 𝑑) is
endowed with a graph. The first result in this direction was
given by Jachymski [26].

Definition 24 (see [26]). One says that a mapping 𝑇 : 𝑋 →

𝑋 is a Banach 𝐺-contraction or simply 𝐺-contraction if 𝑇
preserves edges of 𝐺, that is,

∀𝑥, 𝑦 ∈ 𝑋 (𝑥, 𝑦) ∈ 𝐸 (𝐺)

󳨐⇒ (𝑇 (𝑥) , 𝑇 (𝑦)) ∈ 𝐸 (𝐺) ,

(54)

and 𝑇 decreases weights of edges of 𝐺 in the following way:

∃𝛼 ∈ (0, 1) , ∀𝑥, 𝑦 ∈ 𝑋 (𝑥, 𝑦) ∈ 𝐸 (𝐺)

󳨐⇒ 𝑑 (𝑇 (𝑥) , 𝑇 (𝑦))

≤ 𝛼𝑑 (𝑥, 𝑦) .

(55)

Definition 25 (see [26]). A mapping 𝑇 : 𝑋 → 𝑋 is called
𝐺-continuous if given 𝑥 ∈ 𝑋 and sequence {𝑥

𝑛
}

𝑥
𝑛
󳨀→ 𝑥 as 𝑛 󳨀→ ∞,

(𝑥
𝑛
, 𝑥
𝑛+1
) ∈ 𝐸 (𝐺) ∀𝑛 ∈ N imply 𝑇𝑥

𝑛
󳨀→ 𝑇𝑥.

(56)

Definition 26. Let (𝑋, 𝑝) be a partial metric space endowed
with a graph 𝐺 and 𝑇 : 𝑋 → 𝑋 a self-mapping. If there
exists an upper semicontinuous from the right function 𝜓 :

R
+
→ R
+
with 𝜓(𝑡) < 𝑡 for all 𝑡 > 0 such that

∀𝑥, 𝑦 ∈ 𝑋, (𝑥, 𝑦) ∈ 𝐸 (𝐺)

󳨐⇒ (𝑇 (𝑥) , 𝑇 (𝑦)) ∈ 𝐸 (𝐺)

∀𝑥, 𝑦 ∈ 𝑋, (𝑥, 𝑦) ∈ 𝐸 (𝐺) ,

󳨐⇒ 𝑝 (𝑇𝑥, 𝑇𝑦) ≤ 𝜓 (𝑀
𝑝
(𝑥, 𝑦)) ,

(57)

where

𝑀
𝑝
(𝑥, 𝑦)

= max{𝑝 (𝑥, 𝑦) , 𝑝 (𝑥, 𝑇𝑥) ,

𝑝 (𝑦, 𝑇𝑦) ,

𝑝 (𝑥, 𝑇𝑦) + 𝑝 (𝑦, 𝑇𝑥)

2

} .

(58)

Then, 𝑇 is called a weak 𝜓-graphic contractive mapping.

Theorem 27. Let (𝑋, 𝑝) be a 0-complete partial metric space
endowed with a graph 𝐺 and 𝑇 : 𝑋 → 𝑋 a weak 𝜓-graphic
contractive mapping. Suppose that the following assertions
hold:

(i) there exists 𝑥
0
∈ 𝑋 such that (𝑥

0
, 𝑇𝑥
0
) ∈ 𝐸(𝐺);

(ii) 𝑇 is 𝐺-continuous on (𝑋, 𝑝𝑠);

(iii) (𝑥, 𝑧) ∈ 𝐸(𝐺) and (𝑧, 𝑦) ∈ 𝐸(𝐺) imply (𝑥, 𝑦) ∈ 𝐸(𝐺)
for all 𝑥, 𝑦, 𝑧 ∈ 𝑋, that is, 𝐸(𝐺) is a quasi-order [26].

Then, 𝑇 has a fixed point.

Proof. Define 𝛼 : 𝑋2 → (−∞, +∞) by

𝛼 (𝑥, 𝑦) = {

1, if (𝑥, 𝑦) ∈ 𝐸 (𝐺)
0, otherwise.

(59)

At first we prove that 𝑇 is a triangular 𝛼-admissible mapping.
Let 𝛼(𝑥, 𝑦) ≥ 1, then (𝑥, 𝑦) ∈ 𝐸(𝐺). As 𝑇 is a weak 𝜓-
graphic contractive mapping, we have (𝑇𝑥, 𝑇𝑦) ∈ 𝐸(𝐺). That
is, 𝛼(𝑇𝑥, 𝑇𝑦) ≥ 1. Also, let 𝛼(𝑥, 𝑧) ≥ 1 and 𝛼(𝑧, 𝑦) ≥ 1,
then (𝑥, 𝑧) ∈ 𝐸(𝐺) and (𝑧, 𝑦) ∈ 𝐸(𝐺). So, from (iii), we have
(𝑥, 𝑦) ∈ 𝐸(𝐺). That is, 𝛼(𝑥, 𝑦) ≥ 1. Thus, 𝑇 is a triangular 𝛼-
admissible mapping. Let𝑇 be𝐺-continuous on (𝑋, 𝑝𝑠).Then,

𝑥
𝑛
󳨀→ 𝑥 as 𝑛 󳨀→ ∞,

(𝑥
𝑛
, 𝑥
𝑛+1
) ∈ 𝐸 (𝐺) ∀𝑛 ∈ N imply 𝑇𝑥

𝑛
󳨀→ 𝑇𝑥.

(60)

That is,

𝑥
𝑛
󳨀→ 𝑥 as 𝑛 󳨀→ ∞,

𝛼 (𝑥
𝑛
, 𝑥
𝑛+1
) ≥ 1 ∀𝑛 ∈ N imply 𝑇𝑥

𝑛
󳨀→ 𝑇𝑥

(61)

which implies 𝑇 is 𝛼-continuous on (𝑋, 𝑝𝑠). From (i), there
exists 𝑥

0
∈ 𝑋 such that (𝑥

0
, 𝑇𝑥
0
) ∈ 𝐸(𝐺).That is, 𝛼(𝑥

0
, 𝑇𝑥
0
) ≥

1.
If 𝛼(𝑥, 𝑦) ≥ 1, then (𝑥, 𝑦) ∈ 𝐸(𝐺). Now, since 𝑇 is a weak

𝜓-graphic contractivemapping, so𝑝(𝑇𝑥, 𝑇𝑦) ≤ 𝜓(𝑀
𝑝
(𝑥, 𝑦)).

That is,

𝛼 (𝑥, 𝑦) ≥ 1 󳨐⇒ 𝑝 (𝑇𝑥, 𝑇𝑦) ≤ 𝜓 (𝑀
𝑝
(𝑥, 𝑦)) . (62)

Hence, all conditions ofTheorem 12 are satisfied, and 𝑇 has a
fixed point.

If𝐺 is a connected graph, then condition (iii) ofTheorem
27 is automatically satisfied. Thus, we have the following
result.

Corollary 28. Let (𝑋, 𝑝) be a 0-complete partial metric space
endowed with a graph 𝐺 and 𝑇 a weak 𝜓-graphic contractive
mapping. Suppose that the following assertions hold:

(i) there exists 𝑥
0
∈ 𝑋 such that (𝑥

0
, 𝑇𝑥
0
) ∈ 𝐸(𝐺);

(ii) 𝑇 is 𝐺-continuous on (𝑋, 𝑝𝑠);
(iii) 𝐺 is a connected graph.

Then, 𝑇 has a fixed point.

Theorem 29. Let (𝑋, 𝑝) be a 0-complete partial metric space
endowed with a graph 𝐺 and 𝑇 a weak 𝜓-graphic contractive
mapping. Suppose that the following assertions hold:

(i) there exists 𝑥
0
∈ 𝑋 such that (𝑥

0
, 𝑇𝑥
0
) ∈ 𝐸(𝐺);

(ii) if {𝑥
𝑛
} is a sequence in 𝑋 such that (𝑥

𝑛
, 𝑥
𝑛+1
) ∈ 𝐸(𝐺)

for all 𝑛 ∈ N and 𝑥
𝑛
→ 𝑥 as 𝑛 → +∞, then (𝑥

𝑛
, 𝑥) ∈

𝐸(𝐺) for all 𝑛 ∈ N.

Then, 𝑇 has a fixed point.
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Proof. Define, 𝛼 : 𝑋2 → (−∞, +∞) as in proof of Theorem
27. Condition (ii) implies that 𝐸(𝐺) is a quasi-order, that is,
(𝑥, 𝑧) ∈ 𝐸(𝐺) and (𝑧, 𝑦) ∈ 𝐸(𝐺) imply (𝑥, 𝑦) ∈ 𝐸(𝐺) for all
𝑥, 𝑦, 𝑧 ∈ 𝑋 (see Remark 3.1 [26]). Let, 𝑥

𝑛
→ 𝑥 as 𝑛 → ∞

and 𝛼(𝑥
𝑛
, 𝑥
𝑛+1
) ≥ 1 for all 𝑛 ∈ N. Then, {𝑥

𝑛
} is a sequence

in 𝑋 such that (𝑥
𝑛
, 𝑥
𝑛+1
) ∈ 𝐸(𝐺) for all 𝑛 ∈ N and 𝑥

𝑛
→ 𝑥

as 𝑛 → +∞. So, by (ii), we have (𝑥
𝑛
, 𝑥) ∈ 𝐸(𝐺) for all 𝑛 ∈

N. That is, 𝛼(𝑥
𝑛
, 𝑥) ≥ 1. All other conditions of Theorem 13,

follow similarly as in proof of Theorem 27 and consequently
𝑇 has a fixed point.

Theorem 3.2(2∘) in [26] and Theorem 2.3(2) in [29] are
extended to weak 𝜓-graphic contractive maps defined on a
0-complete partial metric space as follows.

Corollary 30. Let (𝑋, 𝑝) be a 0-complete partial metric space
endowed with a graph 𝐺 and 𝑇 a weak 𝜓-graphic contractive
mapping. Suppose that the following assertions hold:

(i) there exists 𝑥
0
∈ 𝑋 such that (𝑥

0
, 𝑇𝑥
0
) ∈ 𝐸(𝐺);

(iis) 𝐸(𝐺) is a quasi-order and if {𝑥
𝑛
} is a sequence in 𝑋

such that (𝑥
𝑛
, 𝑥
𝑛+1
) ∈ 𝐸(𝐺) for all 𝑛 ∈ N and 𝑥

𝑛
→ 𝑥

as 𝑛 → +∞, then there is a subsequence {𝑥
𝑘𝑛
} with

(𝑥
𝑘𝑛
, 𝑥) ∈ 𝐸(𝐺) for all 𝑛 ∈ N.

Then, 𝑇 has a fixed point.

Proof. Condition (iis) implies that of (ii) inTheorem 29 (see
Remark 3.1 [26]). Now, the conclusion follows fromTheorem
29.

Corollary 31. Let (𝑋, 𝑝) be a 0-complete partial metric space
and 𝜖-chainable for some 𝜖 > 0, that is, given 𝑥, 𝑦 ∈ 𝑋, there
is𝑁 ∈ N and a sequence {𝑥

𝑖
}
𝑁

𝑖=0
such that 𝑥

0
= 𝑥, 𝑥

𝑁
= 𝑦 and

𝑝(𝑥
𝑖−1
, 𝑥
𝑖
) < 𝜖 for 𝑖 = 1, . . . , 𝑁. Suppose that 𝑇 : 𝑋 → 𝑋 is a

mapping satisfying

∀𝑥, 𝑦 ∈ 𝑋, 𝑝 (𝑥, 𝑦) < 𝜖,

󳨐⇒ 𝑝 (𝑇𝑥, 𝑇𝑦) ≤ 𝜓 (𝑝 (𝑥, 𝑦)) .

(63)

Then, 𝑇 has a fixed point.

Proof. Consider the graph 𝐺 with 𝑉(𝐺) = 𝑋 and 𝐸(𝐺) =
{(𝑥, 𝑦) ∈ 𝑋 × 𝑋 : 𝑝(𝑥, 𝑦) < 𝜖}. Then, 𝜖-chainability of
(𝑋, 𝑝)means 𝐺 is connected, and hence, 𝐸(𝐺) is quasi-order.
If (𝑥, 𝑦) ∈ 𝐸(𝐺), then

𝑝 (𝑇𝑥, 𝑇𝑦) ≤ 𝜓 (𝑝 (𝑥, 𝑦)) < 𝑝 (𝑥, 𝑦) < 𝜖, (64)

so (𝑇𝑥, 𝑇𝑦) ∈ 𝐸(𝐺), hence 𝑇 is a (𝐺, 𝜓)-contraction. Let {𝑥
𝑛
}

be in 𝑋 with 𝑥
𝑛
→ 𝑥, then 𝑝(𝑥

𝑛
, 𝑥) < 𝜖 for sufficiently

large 𝑛, so there is {𝑥
𝑘𝑛
} such that (𝑥

𝑘𝑛
, 𝑥) ∈ 𝐸(𝐺). Thus, by

Corollary 30, 𝑇 has a fixed point.

Definition 32. Let (𝑋, 𝑝, ⪯) be a partially ordered partial
metric space endowed with a graph 𝐺 and 𝑇 : 𝑋 → 𝑋 a
self-mapping. If there exists an upper semicontinuous from
the right function 𝜓 : R

+
→ R
+
with 𝜓(𝑡) < 𝑡 for all 𝑡 > 0

such that, for all 𝑥, 𝑦 ∈ 𝑋, (𝑥, 𝑦) ∈ 𝐸(𝐺) with 𝑥 ⪯ 𝑦 ⇒

(𝑇(𝑥), 𝑇(𝑦)) ∈ 𝐸(𝐺), where 𝑇𝑥 ⪯ 𝑇𝑦

(𝑥, 𝑦) ∈ 𝐸 (𝐺) with 𝑥 ⪯ 𝑦,

󳨐⇒ 𝑝 (𝑇𝑥, 𝑇𝑦) ≤ 𝜓 (𝑀
𝑝
(𝑥, 𝑦)) ,

(65)

where

𝑀
𝑝
(𝑥, 𝑦)

= max{𝑝 (𝑥, 𝑦) , 𝑝 (𝑥, 𝑇𝑥) ,

𝑝 (𝑦, 𝑇𝑦) ,

𝑝 (𝑥, 𝑇𝑦) + 𝑝 (𝑦, 𝑇𝑥)

2

} .

(66)

Then, we say 𝑇 is an ordered weak 𝜓-graphic contractive
mapping.

Theorem 33. Let (𝑋, 𝑝, ⪯) be a partially ordered 0-complete
partial metric space endowed with a graph 𝐺 and 𝑇 an
ordered weak 𝜓-graphic contractive mapping. Suppose that the
following assertions hold:

(i) there exists 𝑥
0
∈ 𝑋 such that (𝑥

0
, 𝑇𝑥
0
) ∈ 𝐸(𝐺) with

𝑥
0
⪯ 𝑇𝑥
0
,

(ii) either 𝑇 is 𝐺-continuous in (𝑋, 𝑝𝑠) and (𝑥, 𝑧) ∈ 𝐸(𝐺)
and (𝑧, 𝑦) ∈ 𝐸(𝐺) imply (𝑥, 𝑦) ∈ 𝐸(𝐺) or;

(iii) if {𝑥
𝑛
} is a sequence in 𝑋 such that (𝑥

𝑛
, 𝑥
𝑛+1
) ∈ 𝐸(𝐺)

with 𝑥
𝑛
⪯ 𝑥
𝑛+1

for all 𝑛 ∈ N ∪ {0} and 𝑥
𝑛
→ 𝑥 as

𝑛 → +∞, then (𝑥
𝑛
, 𝑥) ∈ 𝐸(𝐺) with 𝑥

𝑛
⪯ 𝑥 for all

𝑛 ∈ N ∪ 0.

Then, 𝑇 has a fixed point.

Proof. Define 𝛼 : 𝑋2 → (−∞, +∞) by

𝛼 (𝑥, 𝑦) = {

1, if (𝑥, 𝑦) ∈ 𝐸 (𝐺) with 𝑥 ⪯ 𝑦
0, otherwise.

(67)

At first, we prove that𝑇 is a triangular 𝛼-admissible mapping.
Let 𝛼(𝑥, 𝑦) ≥ 1, then (𝑥, 𝑦) ∈ 𝐸(𝐺) with 𝑥 ⪯ 𝑦. As 𝑇
is an ordered weak 𝜓-graphic contractive mapping, we have
(𝑇𝑥, 𝑇𝑦) ∈ 𝐸(𝐺) where 𝑇𝑥 ⪯ 𝑇𝑦. That is, 𝛼(𝑇𝑥, 𝑇𝑦) ≥ 1.
Also, let 𝛼(𝑥, 𝑧) ≥ 1 and 𝛼(𝑧, 𝑦) ≥ 1, then (𝑥, 𝑧) ∈ 𝐸(𝐺) with
𝑥 ⪯ 𝑧 and (𝑧, 𝑦) ∈ 𝐸(𝐺) with 𝑧 ⪯ 𝑦. So from (ii), we have
(𝑥, 𝑦) ∈ 𝐸(𝐺). Also, 𝑥 ⪯ 𝑧 and 𝑧 ⪯ 𝑦 implies 𝑥 ⪯ 𝑦. Hence,
𝛼(𝑥, 𝑦) ≥ 1.Thus,𝑇 is a triangular 𝛼-admissiblemapping. Let
𝑇 be 𝐺-continuous on (𝑋, 𝑝𝑠). Then,

𝑥
𝑛
󳨀→ 𝑥 as 𝑛 󳨀→ ∞,

(𝑥
𝑛
, 𝑥
𝑛+1
) ∈ 𝐸 (𝐺) ∀𝑛 ∈ N imply 𝑇𝑥

𝑛
󳨀→ 𝑇𝑥.

(68)

That is,

𝑥
𝑛
󳨀→ 𝑥 as 𝑛 󳨀→ ∞,

𝛼 (𝑥
𝑛
, 𝑥
𝑛+1
) ≥ 1 ∀𝑛 ∈ N imply 𝑇𝑥

𝑛
󳨀→ 𝑇𝑥

(69)
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which implies 𝑇 is 𝛼-continuous on (𝑋, 𝑝𝑠). From (i), there
exists 𝑥

0
∈ 𝑋 such that (𝑥

0
, 𝑇𝑥
0
) ∈ 𝐸(𝐺).That is,𝛼(𝑥

0
, 𝑇𝑥
0
) ≥

1.
Let 𝛼(𝑥, 𝑦) ≥ 1, then (𝑥, 𝑦) ∈ 𝐸(𝐺) with 𝑥 ⪯ 𝑦. Now,

since 𝑇 is an ordered weak 𝜓-graphic contractive mapping,
then 𝑝(𝑇𝑥, 𝑇𝑦) ≤ 𝜓(𝑀

𝑝
(𝑥, 𝑦)). That is,

𝛼 (𝑥, 𝑦) ≥ 1 󳨐⇒ 𝑝 (𝑇𝑥, 𝑇𝑦) ≤ 𝜓 (𝑀
𝑝
(𝑥, 𝑦)) . (70)

Hence, all conditions of Theorem 12 (or 13) are satisfied, and
𝑇 has a fixed point.

Remark 34. All our results established above are new even in
the setting of complete metric spaces.

5. Application to Existence of Solutions of
Integral Equations

Fixed point theorems for monotone operators in ordered
metric spaces are widely investigated and have found various
applications in differential and integral equations (see [30, 31]
and references therein). In this section, we apply our result to
the existence of a solution of an integral equation. Let 𝑋 =

𝐶([0, 𝑇],R) be the set of real continuous functions defined
on [0, 𝑇], and let 𝑑 : 𝑋 × 𝑋 → R

+
be defined by

𝑑 (𝑥, 𝑦) =
󵄩
󵄩
󵄩
󵄩
𝑥 − 𝑦

󵄩
󵄩
󵄩
󵄩∞

(71)

for all 𝑥, 𝑦 ∈ 𝑋. Then, (𝑋, 𝑑) is a complete metric space. Also,
assume this metric space endowed with a graph 𝐺.

Consider the integral equation

𝑥 (𝑡) = 𝑝 (𝑡) + ∫

𝑇

0

𝑆 (𝑡, 𝑠) 𝑓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠 (72)

and let 𝐹 : 𝑋 → 𝑋 be defined by

𝐹 (𝑥) (𝑡) = 𝑝 (𝑡) + ∫

𝑇

0

𝑆 (𝑡, 𝑠) 𝑓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠. (73)

We assume that

(A) 𝑓 : [0, 𝑇] ×R → R is continuous;

(B) 𝑝 : [0, 𝑇] → R is continuous;

(C) 𝑆 : [0, 𝑇] ×R → [0, +∞) is continuous;

(D) there exists an upper semicontinuous from the right
nondecreasing function 𝜓 : R

+
→ R
+
with 𝜓(𝑡) < 𝑡

for all 𝑡 > 0 such that for all 𝑠 ∈ [0, 𝑇],

∀𝑥, 𝑦 ∈ 𝑋 (𝑥, 𝑦) ∈ 𝐸 (𝐺) 󳨐⇒ (𝐹 (𝑥) , 𝐹 (𝑦)) ∈ 𝐸 (𝐺)

∀𝑥, 𝑦 ∈ 𝑋 (𝑥, 𝑦) ∈ 𝐸 (𝐺) 󳨐⇒ 0

≤ 𝑓 (𝑠, 𝑥 (𝑠)) − 𝑓 (𝑠, 𝑦 (𝑠))

≤ 𝜓(max { 󵄨󵄨󵄨
󵄨
𝑥 (𝑠) − 𝑦 (𝑠)

󵄨
󵄨
󵄨
󵄨
,

|𝑥 (𝑠) − 𝐹 (𝑥 (𝑠))| ,

󵄨
󵄨
󵄨
󵄨
𝑦 (𝑠) − 𝐹 (𝑦 (𝑠))

󵄨
󵄨
󵄨
󵄨
,

1

2

[
󵄨
󵄨
󵄨
󵄨
𝑥 (𝑠) − 𝐹 (𝑦 (𝑠))

󵄨
󵄨
󵄨
󵄨

+
󵄨
󵄨
󵄨
󵄨
𝑦 (𝑠) − 𝐹 (𝑥 (𝑠))

󵄨
󵄨
󵄨
󵄨
] }) ;

(74)

(F) there exist 𝑥
0
∈ 𝑋 such that (𝑥

0
, 𝐹(𝑥
0
)) ∈ 𝐸(𝐺);

(G) if {𝑥
𝑛
} is a sequence in 𝑋 such that (𝑥

𝑛
, 𝑥
𝑛+1
) ∈ 𝐸(𝐺)

for all 𝑛 ∈ N and 𝑥
𝑛
→ 𝑥 as 𝑛 → +∞, then (𝑥

𝑛
, 𝑥) ∈

𝐸(𝐺) for all 𝑛 ∈ N;
(H) assume

sup
𝑡∈[0,𝑇]

∫

𝑇

0

𝑆 (𝑡, 𝑠) 𝑑𝑠 ≤ 1. (75)

Theorem 35. Under assumptions (𝐴)–(𝐻), the integral equa-
tion (72) has a solution in 𝑋 = 𝐶([0, 𝑇],R).

Proof. Consider the mapping 𝐹 : 𝑋 → 𝑋 defined by (73).
Let (𝑥, 𝑦) ∈ 𝐸(𝐺). Then, from (D), we deduce

󵄨
󵄨
󵄨
󵄨
𝐹 (𝑥) (𝑡) − 𝐹 (𝑦) (𝑡)

󵄨
󵄨
󵄨
󵄨

=

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

𝑇

0

𝑆 (𝑡, 𝑠) [𝑓 (𝑠, 𝑥 (𝑠)) − 𝑓 (𝑠, 𝑦 (𝑠))] 𝑑𝑠

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ ∫

𝑇

0

𝑆 (𝑡, 𝑠)
󵄨
󵄨
󵄨
󵄨
𝑓 (𝑠, 𝑥 (𝑠)) − 𝑓 (𝑠, 𝑦 (𝑠))

󵄨
󵄨
󵄨
󵄨
𝑑𝑠

≤ 𝜓(max { 󵄨󵄨󵄨
󵄨
𝑥 (𝑠) − 𝑦 (𝑠)

󵄨
󵄨
󵄨
󵄨
, |𝑥 (𝑠) − 𝐹 (𝑥 (𝑠))| ,

󵄨
󵄨
󵄨
󵄨
𝑦 (𝑠) − 𝐹 (𝑦 (𝑠))

󵄨
󵄨
󵄨
󵄨
,

1

2

[
󵄨
󵄨
󵄨
󵄨
𝑥 (𝑠) − 𝐹 (𝑦 (𝑠))

󵄨
󵄨
󵄨
󵄨

+
󵄨
󵄨
󵄨
󵄨
𝑦 (𝑠) − 𝐹 (𝑥 (𝑠))

󵄨
󵄨
󵄨
󵄨
] })

≤ 𝜓(max { 󵄩󵄩󵄩
󵄩
𝑥 (𝑠) − 𝑦 (𝑠)

󵄩
󵄩
󵄩
󵄩
, ‖𝑥 (𝑠) − 𝐹 (𝑥 (𝑠))‖ ,

󵄩
󵄩
󵄩
󵄩
𝑦 (𝑠) − 𝐹 (𝑦 (𝑠))

󵄩
󵄩
󵄩
󵄩
,

1

2

[
󵄩
󵄩
󵄩
󵄩
𝑥 (𝑠) − 𝐹 (𝑦 (𝑠))

󵄩
󵄩
󵄩
󵄩

+
󵄩
󵄩
󵄩
󵄩
𝑦 (𝑠) − 𝐹 (𝑥 (𝑠))

󵄩
󵄩
󵄩
󵄩
] }) .

(76)
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Then,
󵄩
󵄩
󵄩
󵄩
𝐹𝑥 − 𝐹𝑦

󵄩
󵄩
󵄩
󵄩∞

≤ 𝜓(max { 󵄩󵄩󵄩
󵄩
𝑥 (𝑠) − 𝑦 (𝑠)

󵄩
󵄩
󵄩
󵄩
, ‖𝑥 (𝑠) − 𝐹 (𝑥 (𝑠))‖ ,

󵄩
󵄩
󵄩
󵄩
𝑦 (𝑠) − 𝐹 (𝑦 (𝑠))

󵄩
󵄩
󵄩
󵄩
,

1

2

[
󵄩
󵄩
󵄩
󵄩
𝑥 (𝑠) − 𝐹 (𝑦 (𝑠))

󵄩
󵄩
󵄩
󵄩

+
󵄩
󵄩
󵄩
󵄩
𝑦 (𝑠) − 𝐹 (𝑥 (𝑠))

󵄩
󵄩
󵄩
󵄩
] }) .

(77)

That is, (𝑥, 𝑦) ∈ 𝐸(𝐺) implies
󵄩
󵄩
󵄩
󵄩
𝐹𝑥 − 𝐹𝑦

󵄩
󵄩
󵄩
󵄩∞

≤ 𝜓(max {󵄩󵄩󵄩
󵄩
𝑥 − 𝑦

󵄩
󵄩
󵄩
󵄩∞
, ‖𝑥 − 𝐹 (𝑥)‖

∞
,
󵄩
󵄩
󵄩
󵄩
𝑦 − 𝐹 (𝑦)

󵄩
󵄩
󵄩
󵄩∞
,

1

2

[
󵄩
󵄩
󵄩
󵄩
𝑥 − 𝐹 (𝑦)

󵄩
󵄩
󵄩
󵄩∞

+
󵄩
󵄩
󵄩
󵄩
𝑦 − 𝐹 (𝑥)

󵄩
󵄩
󵄩
󵄩∞
] }) .

(78)

Thus, all the hypotheses of Theorem 29 are satisfied, and
hence, the mapping 𝐹 has a fixed point, that is, a solution in
𝑋 = 𝐶([0, 𝑇],R) of the integral equation (72).
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[12] Lj. Ćirić, B. Samet, C. Vetro, and M. Abbas, “Fixed point results
for weak contractivemappings in ordered -metric spaces,” Fixed
Point Theory, vol. 13, no. 1, pp. 59–72, 2012.

[13] M. A. Khamsi and W. A. Kirk, An Introduction to Metric Spaces
and Fixed PointTheory, JohnWiley&Sons,NewYork,NY,USA,
2001.

[14] P. Kumam, C. Vetro, and F. Vetro, “Fixed points for weak 𝛼-
𝜓-contactions in partial metric spaces,” Abstract and Applied
Analysis, vol. 2013, Article ID 986028, 9 pages, 2013.

[15] A. Shoaib, M. Arshad, and J. Ahmad, “Fixed point results of
locally cotractive mappings in ordered quasi partial metric
spaces,”TheScientificWorld Journal, vol. 2013, Article ID 194897,
8 pages, 2013.
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