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We introduce a b-metric on the cone b-metric space and then prove some equivalences between them. As applications, we show
that fixed point theorems on cone b-metric spaces can be obtained from fixed point theorems on b-metric spaces.

1. Introduction and Preliminaries

The fixed point theory in 𝑏-metric spaces was investigated
by Bakhtin [1], Czerwik [2], Akkouchi [3], Olatinwo and
Imoru [4], and Pǎcurar [5]. A 𝑏-metric space was also called a
metric-type space in [6].The fixed point theory inmetric-type
spaces was investigated in [6, 7]. Recently, Hussain and Shah
introduced the notion of a cone 𝑏-metric as a generalization
of a 𝑏-metric in [8]. Some fixed point theorems on cone 𝑏-
metric spaces were stated in [8–10].

Note that the relation between a cone 𝑏-metric and a 𝑏-
metric is likely the relation between a cone metric [11] and a
metric. Some authors have proved that fixed point theorems
on cone metric spaces are, essentially, fixed point theorems
on metric space; see [12–16] for example. Very recently, Du
used the method in [12] to introduce a 𝑏-metric on a cone 𝑏-
metric space and stated some relations between fixed point
theorems on cone 𝑏-metric spaces and on 𝑏-metric spaces
[17].

In this paper, we use the method in [13] to introduce
another 𝑏-metric on the cone 𝑏-metric space and then prove
some equivalences between them. As applications, we show
that fixed point theorems on cone 𝑏-metric spaces can be
obtained from fixed point theorems on 𝑏-metric spaces.

Now, we recall some definitions and lemmas.

Definition 1 (see [1]). Let 𝑋 be a nonempty set and 𝑑 : 𝑋 ×

𝑋 → [0, +∞). Then, 𝑑 is called a 𝑏-metric on𝑋 if

(1) 𝑑(𝑥, 𝑦) = 0 if and only if 𝑥 = 𝑦;
(2) 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥) for all 𝑥, 𝑦 ∈ 𝑋;
(3) there exists 𝑠 ≥ 1 such that 𝑑(𝑥, 𝑧) ≤ 𝑠[𝑑(𝑥, 𝑦) +

𝑑(𝑦, 𝑧)] for all 𝑥, 𝑦, 𝑧 ∈ 𝑋.

The pair (𝑋, 𝑑) is called a 𝑏-metric space. A sequence {𝑥
𝑛
}

is called convergent to 𝑥 in 𝑋, written lim
𝑛→∞

𝑥
𝑛

= 𝑥, if
lim
𝑛→∞

𝑑(𝑥
𝑛
, 𝑥) = 0. A sequence {𝑥

𝑛
} is called a Cauchy

sequence if lim
𝑛,𝑚→∞

𝑑(𝑥
𝑛
, 𝑥
𝑚
) = 0. The 𝑏-metric space

(𝑋, 𝑑) is called complete if every Cauchy sequence in 𝑋 is a
convergent sequence.

Remark 2. Ona 𝑏-metric space (𝑋, 𝑑), we consider a topology
induced by its convergence. For results concerning 𝑏-metric
spaces, readers are invited to consult papers [1, 2].

Remark 3. Let (𝑋, 𝑑) be a 𝑏-metric space. For each 𝑟 > 0 and
𝑥 ∈ 𝑋, we set

𝐵 (𝑥, 𝑟) = {𝑦 ∈ 𝑋 : 𝑑 (𝑥, 𝑦) < 𝑟} . (1)

In [3], Akkouchi claimed that the topology T(𝑑) on 𝑋

associated with 𝑑 is given by setting 𝑈 ∈ T(𝑑) if and
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only if, for each 𝑥 ∈ 𝑈, there exists some 𝑟 > 0

such that 𝐵(𝑥, 𝑟) ⊂ 𝑈 and the convergence of {𝑥
𝑛
}
𝑛
in

the 𝑏-metric space (𝑋, 𝑑) and that in the topological space
(𝑋,T(𝑑)) are equivalent. Unfortunately, this claim is not true
in general; see Example 13. Note that; on a 𝑏-metric space,
we always consider the topology induced by its convergence.
Most of concepts and results obtained for metric spaces
can be extended to the case of 𝑏-metric spaces. For results
concerning 𝑏-metric spaces, readers are invited to consult
papers [1, 2].

In what follows, let 𝐸 be a real Banach space, 𝑃 a subset
of 𝐸, 𝜃 the zero element of 𝐸, and int𝑃 the interior of 𝑃. We
define a partially ordering ≤ with respect to 𝑃 by 𝑥 ≤ 𝑦 if and
only if 𝑦 − 𝑥 ∈ 𝑃. We also write 𝑥 < 𝑦 to indicate that 𝑥 ≤ 𝑦

and 𝑥 ̸= 𝑦 and write 𝑥 ≪ 𝑦 to indicate that 𝑦 − 𝑥 ∈ int𝑃. Let
‖ ⋅ ‖ denote the norm on 𝐸.

Definition 4 (see [11]). 𝑃 is called a cone if and only if

(1) 𝑃 is closed and nonempty and 𝑃 ̸= {𝜃};
(2) 𝑎, 𝑏 ∈ R; 𝑎, 𝑏 ≥ 0; 𝑥, 𝑦 ∈ 𝑃 imply that 𝑎𝑥 + 𝑏𝑦 ∈ 𝑃;
(3) 𝑃 ∩ (−𝑃) = {𝜃}.

The cone 𝑃 is called normal if there exists 𝐾 ≥ 1 such
that, for all 𝑥, 𝑦 ∈ 𝐸, we have 𝜃 ≤ 𝑥 ≤ 𝑦 implies ‖𝑥‖ ≤ 𝐾‖𝑦‖.
The least positive number𝐾 satisfying the above is called the
normal constant of 𝑃.

Definition 5 (see [11, Definition 1]). Let 𝑋 be a nonempty set
and 𝑑 : 𝑋 × 𝑋 → 𝐸 satisfy

(1) 𝜃 ≤ 𝑑(𝑥, 𝑦) for all 𝑥, 𝑦 ∈ 𝑋 and 𝑑(𝑥, 𝑦) = 𝜃 if and only
if 𝑥 = 𝑦;

(2) 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥) for all 𝑥, 𝑦 ∈ 𝑋;
(3) 𝑑(𝑥, 𝑦) ≤ 𝑑(𝑥, 𝑧) + 𝑑(𝑧, 𝑦) for all 𝑥, 𝑦, 𝑧 ∈ 𝑋.

Then 𝑑 is called a cone metric on𝑋, and (𝑋, 𝑑) is called a cone
metric space.

Definition 6 (see [8, Definition 2.1]). Let𝑋 be a nonempty set
and 𝑑 : 𝑋 × 𝑋 → 𝑃 satisfy

(1) 𝜃 ≤ 𝑑(𝑥, 𝑦) for all 𝑥, 𝑦 ∈ 𝑋 and 𝑑(𝑥, 𝑦) = 𝜃 if and only
if 𝑥 = 𝑦;

(2) 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥) for all 𝑥, 𝑦 ∈ 𝑋;
(3) 𝑑(𝑥, 𝑦) ≤ 𝑠[𝑑(𝑥, 𝑧) + 𝑑(𝑧, 𝑦)] for some 𝑠 ≥ 1 and all

𝑥, 𝑦, 𝑧 ∈ 𝑋.

Then 𝑑 is called a cone 𝑏-metric with coefficient 𝑠 on 𝑋 and
(𝑋, 𝑑) is called a cone 𝑏-metric space with coefficient 𝑠.

Definition 7 (see [8, Definition 2.4]). Let (𝑋, 𝑑) be a cone 𝑏-
metric space and {𝑥

𝑛
} a sequence in 𝑋.

(1) {𝑥
𝑛
} is called convergent to 𝑥, written lim

𝑛→∞
𝑥
𝑛
= 𝑥,

if for each 𝑐 ∈ 𝐸 with 𝜃 ≪ 𝑐, there exists 𝑛
0
such that

𝑑(𝑥
𝑛
, 𝑥) ≪ 𝑐 for all 𝑛 ≥ 𝑛

0
.

(2) {𝑥
𝑛
} is called a Cauchy sequence if for each 𝑐 ∈ 𝐸 with

𝜃 ≪ 𝑐 there exists 𝑛
0
such that 𝑑(𝑥

𝑛
, 𝑥
𝑚
) ≪ 𝑐 for all

𝑛,𝑚 ≥ 𝑛
0
.

(3) (𝑋, 𝑑) is called complete if every Cauchy sequence in
𝑋 is a convergent sequence.

Lemma 8 (see [8, Proposition 2.5]). Let (𝑋, 𝑑) be a cone 𝑏-
metric space, 𝑃 a normal cone with normal constant𝐾, 𝑥 ∈ 𝑋,
and {𝑥

𝑛
} a sequence in 𝑋. Then one has the following.

(1) lim
𝑛→∞

𝑥
𝑛
= 𝑥 if and only if lim

𝑛→∞
𝑑(𝑥
𝑛
, 𝑥) = 𝜃.

(2) The limit point of a convergent sequence is unique.
(3) Every convergent sequence is a Cauchy sequence.
(4) {𝑥

𝑛
} is a Cauchy sequence if lim

𝑛,𝑚→∞
𝑑(𝑥
𝑛
, 𝑥
𝑚
) = 𝜃.

Lemma 9 (see [8, Remark 2.6]). Let (𝑋, 𝑑) be a cone 𝑏-metric
space over an ordered real Banach space 𝐸 with a cone 𝑃. Then
one has the following.

(1) If 𝑎 ≤ 𝑏 and 𝑏 ≪ 𝑐, then 𝑎 ≪ 𝑐.
(2) If 𝑎 ≪ 𝑏 and 𝑏 ≪ 𝑐, then 𝑎 ≪ 𝑐.
(3) If 𝜃 ≤ 𝑢 ≪ 𝑐 for all 𝑐 ∈ int𝑃, then 𝑢 = 𝜃.
(4) If 𝑐 ∈ int𝑃, 𝜃 ≤ 𝑎

𝑛
for all 𝑛 ∈ N and lim

𝑛→∞
𝑎
𝑛
= 𝜃,

then there exists 𝑛
0
such that 𝑎

𝑛
≪ 𝑐 for all 𝑛 ≥ 𝑛

0
.

(5) If 𝜃 ≪ 𝑐, 𝜃 ≤ 𝑑(𝑥
𝑛
, 𝑥) ≤ 𝑏

𝑛
for all 𝑛 ∈ N and

lim
𝑛→∞

𝑏
𝑛
= 𝜃, then 𝑑(𝑥

𝑛
, 𝑥) ≪ 𝑐 eventually.

(6) If 𝜃 ≤ 𝑎
𝑛

≤ 𝑏
𝑛
for all 𝑛 ∈ N and lim

𝑛→∞
𝑎
𝑛

= 𝑎,
lim
𝑛→∞

𝑏
𝑛
= 𝑏, then 𝑎 ≤ 𝑏.

(7) If 𝑎 ∈ 𝑃, 0 ≤ 𝜆 < 1, and 𝑎 ≤ 𝜆 ⋅ 𝑎, then 𝑎 = 𝜃.
(8) For each 𝛼 > 0, one has 𝛼 ⋅ int𝑃 ⊂ int𝑃.
(9) For each 𝛿 > 0 and 𝑥 ∈ int𝑃, there exists 0 < 𝛾 < 1

such that ‖𝛾 ⋅ 𝑥‖ < 𝛿.
(10) For each 𝜃 ≪ 𝑐

1
and 𝑐
2
∈ 𝑃, there exists 𝜃 ≪ 𝑑 such

that 𝑐
1
≪ 𝑑 and 𝑐

2
≪ 𝑑.

(11) For each 𝜃 ≪ 𝑐
1
and 𝜃 ≪ 𝑐

2
, there exists 𝜃 ≪ 𝑒 such

that 𝑒 ≪ 𝑐
1
and 𝑒 ≪ 𝑐

2
.

Remark 10 (see [10, Remark 1.3]). Every cone metric space
is a cone 𝑏-metric space. Moreover, cone 𝑏-metric spaces
generalize cone metric spaces, 𝑏-metric spaces, and metric
spaces.

Example 11 (see [10, Example 2.2]). Let

𝐸 = 𝐶
1

R [0, 1] , 𝑃 = {𝜑 ∈ 𝐸 : 𝜑 ≥ 0} , 𝑋 = [1, +∞) ,

(2)

and 𝑑(𝑥, 𝑦)(𝑡) = |𝑥−𝑦|
2e𝑡 for all 𝑥, 𝑦 ∈ 𝑋 and 𝑡 ∈ [0, 1].Then

(𝑋, 𝑑) is a cone 𝑏-metric space with coefficient 𝑠 = 2, but it is
not a cone metric space.

Example 12 (see [10, Example 2.3]). Let 𝑋 be the set
of Lebesgue measurable functions on [0, 1] such that
∫
1

0

|𝑢(𝑥)|
2

𝑑𝑥 < +∞, 𝐸 = 𝐶R[0, 1], 𝑃 = {𝜑 ∈ 𝐸 : 𝜑 ≥ 0}.
Define 𝑑 : 𝑋 × 𝑋 → 𝐸 as

𝑑 (𝑢 (𝑡) , V (𝑡)) = e𝑡 ∫
1

0

|𝑢 (𝑠) − V (𝑠)|2𝑑𝑠, (3)

for all 𝑢, V ∈ 𝑋 and 𝑡 ∈ [0, 1]. Then (𝑋, 𝑑) is a cone 𝑏-metric
space with coefficient 𝑠 = 2, but it is not a cone metric space.
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2. Main Results

The following example shows that the family of all balls
𝐵(𝑥, 𝑟) does not form a base for any topology on a 𝑏-metric
space (𝑋, 𝑑).

Example 13. Let 𝑋 = {0, 1, 1/2, . . . , 1/𝑛, . . .} and

𝑑 (𝑥, 𝑦) =

{{{{{{

{{{{{{

{

0 if 𝑥 = 𝑦

1 if 𝑥 ̸= 𝑦 ∈ {0, 1}

𝑥 − 𝑦
 if 𝑥 ̸= 𝑦 ∈ {0,

1

2𝑛
,

1

2𝑚
}

4 otherwise.

(4)

Then we have the following.

(1) 𝑑 is a 𝑏-metric on𝑋 with coefficient 𝑠 = 8/3.

(2) 0 ∈ 𝐵(1, 2) but 𝐵(0, 𝑟) ̸⊂ 𝐵(1, 2) for all 𝑟 > 0.

Proof. (1) For all 𝑥, 𝑦 ∈ 𝑋, we have 𝑑(𝑥, 𝑦) ≥ 0, 𝑑(𝑥, 𝑦) = 0 if
and only if 𝑥 = 𝑦 and 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥).

If 𝑑(𝑥, 𝑦) = 𝑑(0, 1) = 1, then

𝑑 (𝑥, 𝑧) + 𝑑 (𝑧, 𝑦)

=

{{{{{{{{

{{{{{{{{

{

𝑑(0,
1

2𝑛
) + 𝑑(

1

2𝑛
, 1) =

1

2𝑛
+ 4 if 𝑧 =

1

2𝑛

𝑑 (0,
1

2𝑛 + 1
) + 𝑑 (

1

2𝑛 + 1
, 1)

= 4 + 4 if 𝑧 =
1

2𝑛 + 1
.

(5)

If 𝑑(𝑥, 𝑦) = 𝑑(0, 1/2𝑛) = 1/2𝑛, then

𝑑 (𝑥, 𝑧) + 𝑑 (𝑧, 𝑦)

=

{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{

{

𝑑(0,
1

2𝑚
) + 𝑑(

1

2𝑚
,
1

2𝑛
)

=
1

2𝑚
+



1

2𝑚
−

1

2𝑛


if 𝑧 =

1

2𝑚

𝑑(0,
1

2𝑚 + 1
)

+𝑑(
1

2𝑚 + 1
,
1

2𝑛
) = 4 + 4 if 𝑧 =

1

2𝑚 + 1
̸= 1

𝑑 (0, 1) + 𝑑 (1,
1

2𝑛
) = 1 + 4 if 𝑧 = 1.

(6)

If 𝑑(𝑥, 𝑦) = 𝑑(1/2𝑘, 1/2𝑛) = |1/2𝑘 − 1/2𝑛|, then

𝑑 (𝑥, 𝑧) + 𝑑 (𝑧, 𝑦)

=

{{{{{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{{{{{{

{

𝑑(
1

2𝑘
,

1

2𝑚
) + 𝑑(

1

2𝑚
,
1

2𝑛
)

=



1

2𝑘
−

1

2𝑚


+



1

2𝑚
−

1

2𝑛


if 𝑧 =

1

2𝑚

𝑑(
1

2𝑘
,

1

2𝑚 + 1
)

+𝑑(
1

2𝑚 + 1
,
1

2𝑛
) = 4 + 4 if 𝑧 =

1

2𝑚 + 1

𝑑 (
1

2𝑘
, 0) + 𝑑 (0,

1

2𝑛
)

=
1

2𝑘
+

1

2𝑛
if 𝑧 = 0.

(7)

If 𝑑(𝑥, 𝑦) = 𝑑(1/2𝑘, 1/(2𝑛 + 1)) = 4 with 1/(2𝑛 + 1) ̸= 1, then

𝑑 (𝑥, 𝑧) + 𝑑 (𝑧, 𝑦)

=

{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{

{

𝑑(
1

2𝑘
, 0) + 𝑑 (0,

1

2𝑛 + 1
) =

1

2𝑘
+ 4 if 𝑧 = 0

𝑑 (
1

2𝑘
,

1

2𝑚
) + 𝑑(

1

2𝑚
,

1

2𝑛 + 1
)

=



1

2𝑘
−

1

2𝑚


+ 4 if 𝑧 =

1

2𝑚

𝑑(
1

2𝑘
,

1

2𝑚 + 1
)

+𝑑(
1

2𝑚 + 1
,

1

2𝑛 + 1
) = 4 + 4 if 𝑧 =

1

2𝑚 + 1
.

(8)

If 𝑑(𝑥, 𝑦) = 𝑑(1/(2𝑘 + 1), 1/(2𝑛 + 1)) = 4 with 1/(2𝑘 + 1) ̸= 1

and 1/(2𝑛 + 1) ̸= 1, then

𝑑 (𝑥, 𝑧) + 𝑑 (𝑧, 𝑦)

=

{{{{{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{{{{{{

{

𝑑(
1

2𝑘 + 1
, 0)

+𝑑 (0,
1

2𝑛 + 1
) = 4 + 4 if 𝑧 = 0

𝑑 (
1

2𝑘 + 1
,

1

2𝑚
)

+𝑑(
1

2𝑚
,

1

2𝑛 + 1
) = 4 + 4 if 𝑧 =

1

2𝑚

𝑑(
1

2𝑘 + 1
,

1

2𝑚 + 1
)

+𝑑(
1

2𝑚 + 1
,

1

2𝑛 + 1
) = 4 + 4 if 𝑧 =

1

2𝑚 + 1
.

(9)
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If 𝑑(𝑥, 𝑦) = 𝑑(1/2𝑘, 1) = 4, then

𝑑 (𝑥, 𝑧) + 𝑑 (𝑧, 𝑦)

=

{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{

{

𝑑(
1

2𝑘
, 0) + 𝑑 (0, 1) =

1

2𝑘
+ 1 if 𝑧 = 0

𝑑 (
1

2𝑘
,

1

2𝑚
) + 𝑑(

1

2𝑚
, 1)

=



1

2𝑘
−

1

2𝑚


+ 4 if 𝑧 =

1

2𝑚

𝑑(
1

2𝑘
,

1

2𝑚 + 1
)

+𝑑(
1

2𝑚 + 1
, 1) = 4 + 4 if 𝑧 =

1

2𝑚 + 1
̸= 1.

(10)

If 𝑑(𝑥, 𝑦) = 𝑑(1/(2𝑘 + 1), 1) = 4, then

𝑑 (𝑥, 𝑧) + 𝑑 (𝑧, 𝑦)

=

{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{

{

𝑑(
1

2𝑘 + 1
, 0) + 𝑑 (0, 1) = 4 + 1 if 𝑧 = 0

𝑑 (
1

2𝑘 + 1
,

1

2𝑚
) + 𝑑(

1

2𝑚
, 1)

= 4 + 4 if 𝑧 =
1

2𝑚

𝑑(
1

2𝑘 + 1
,

1

2𝑚 + 1
)

+𝑑(
1

2𝑚 + 1
, 1) = 4 + 4 if 𝑧 =

1

2𝑚 + 1
̸= 1.

(11)

If 𝑑(𝑥, 𝑦) = 𝑑(1/(2𝑘 + 1), 0) = 4, then

𝑑 (𝑥, 𝑧) + 𝑑 (𝑧, 𝑦)

=

{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{

{

𝑑(
1

2𝑘 + 1
, 1) + 𝑑 (1, 0) = 4 + 1 if 𝑧 = 1

𝑑 (
1

2𝑘 + 1
,

1

2𝑚
) + 𝑑(

1

2𝑚
, 0)

= 4 +
1

2𝑚
if 𝑧 =

1

2𝑚

𝑑(
1

2𝑘 + 1
,

1

2𝑚 + 1
)

+𝑑(
1

2𝑚 + 1
, 0) = 4 + 4 if 𝑧 =

1

2𝑚 + 1
̸= 1.

(12)

By the previous calculations, we get 𝑑(𝑥, 𝑦) ≤ (8/3)

[𝑑(𝑥, 𝑧) + 𝑑(𝑧, 𝑦)] for all 𝑥, 𝑦, 𝑧 ∈ 𝑋. This proves that 𝑑 is
a 𝑏-metric on𝑋 with 𝑠 = 8/3.

(2) We have 𝐵(1, 2) = {𝑥 ∈ 𝑋 : 𝑑(𝑥, 1) < 2} = {1, 0}. Then
0 ∈ 𝐵(1, 2).

For each 𝑟 > 0, since 𝑑(0, 1/2𝑛) = 1/2𝑛, we have 1/2𝑛 ∈

𝐵(0, 𝑟) for 𝑛 being large enough. Note that 𝑑(1, 1/2𝑛) = 4,

so 1/2𝑛 ∉ 𝐵(1, 2) for all 𝑛 ∈ N. This proves that 𝐵(0, 𝑟) ̸⊂

𝐵(1, 2).

We introduce a 𝑏-metric on the cone 𝑏-metric space and
then prove some equivalences between them as follows.

Theorem 14. Let (𝑋, 𝑑) be a cone 𝑏-metric space with coeffi-
cient 𝑠 and

𝐷(𝑥, 𝑦) = inf {‖𝑢‖ : 𝑢 ∈ 𝑃, 𝑢 ≥
1

𝑠
𝑑 (𝑥, 𝑦)} , (13)

for all 𝑥, 𝑦 ∈ 𝑋. Then one has the following.

(1) 𝐷 is a 𝑏-metric on 𝑋.

(2) lim
𝑛→∞

𝑥
𝑛
= 𝑥 in the cone 𝑏-metric space (𝑋, 𝑑) if and

only if lim
𝑛→∞

𝑥
𝑛
= 𝑥 in the 𝑏-metric space (𝑋,𝐷).

(3) {𝑥
𝑛
} is a Cauchy sequence in the cone 𝑏-metric space

(𝑋, 𝑑) if and only if {𝑥
𝑛
} is a Cauchy sequence in the

𝑏-metric space (𝑋,𝐷).

(4) The cone 𝑏-metric space (𝑋, 𝑑) is complete if and only
if the 𝑏-metric space (𝑋,𝐷) is complete.

Proof. (1) For all 𝑥, 𝑦 ∈ 𝑋, it is obvious that 𝐷(𝑥, 𝑦) ≥ 0 and
𝐷(𝑥, 𝑦) = 𝐷(𝑦, 𝑥).

If 𝑥 = 𝑦, then𝐷(𝑥, 𝑦) = inf{‖𝑢‖ : 𝑢 ∈ 𝑃, 𝑢 ≥ 𝜃} = 0.
If 𝐷(𝑥, 𝑦) = inf{‖𝑢‖ : 𝑢 ∈ 𝑃, 𝑢 ≥ (1/𝑠)𝑑(𝑥, 𝑦)} = 0, then,

for each 𝑛 ∈ N, there exists 𝑢
𝑛
∈ 𝑃 such that 𝑢

𝑛
≥ (1/𝑠)𝑑(𝑥, 𝑦)

and ‖𝑢
𝑛
‖ < 1/𝑛.Then lim

𝑛→∞
𝑢
𝑛
= 𝜃, and by Lemma 9(6), we

have 𝑑(𝑥, 𝑦) ≤ 𝜃. It implies that 𝑑(𝑥, 𝑦) ∈ 𝑃∩(−𝑃).Therefore,
𝑑(𝑥, 𝑦) = 𝜃; that is, 𝑥 = 𝑦.

For each 𝑥, 𝑦, 𝑧 ∈ 𝑋, we have

𝐷 (𝑥, 𝑧) = inf {𝑢1
 : 𝑢
1
∈ 𝑃, 𝑢

1
≥

1

𝑠
𝑑 (𝑥, 𝑧)} ,

𝐷 (𝑥, 𝑦) = inf {𝑢2
 : 𝑢
2
∈ 𝑃, 𝑢

2
≥

1

𝑠
𝑑 (𝑥, 𝑦)} ,

𝐷 (𝑦, 𝑧) = inf {𝑢3
 : 𝑢
3
∈ 𝑃, 𝑢

3
≥

1

𝑠
𝑑 (𝑦, 𝑧)} .

(14)

Since 𝑢
2
, 𝑢
3
∈ 𝑃 and 𝑢

2
≥ (1/𝑠)𝑑(𝑥, 𝑦), 𝑢

3
≥ (1/𝑠)𝑑(𝑦, 𝑧), we

have

𝑠 (𝑢
2
+ 𝑢
3
) ≥ 𝑑 (𝑥, 𝑦) + 𝑑 (𝑦, 𝑧) ≥

1

𝑠
𝑑 (𝑥, 𝑧) . (15)

Then we have

{𝑢
1
∈ 𝑃 : 𝑢

1
≥

1

𝑠
𝑑 (𝑥, 𝑧)}

⊃ {𝑠 (𝑢
2
+ 𝑢
3
) ∈ 𝑃 :

𝑢
2
≥

1

𝑠
𝑑 (𝑥, 𝑦) , 𝑢

3

1

𝑠
≥ 𝑑 (𝑦, 𝑧)} .

(16)
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It implies that

inf { 𝑠 (𝑢2 + 𝑢
3
)
 :

𝑢
2
, 𝑢
3
∈ 𝑃, 𝑢

2
≥

1

𝑠
𝑑 (𝑥, 𝑦) , 𝑢

3
≥

1

𝑠
𝑑 (𝑦, 𝑧)}

≥ inf {𝑢1
 : 𝑢
1
∈ 𝑃, 𝑢

1
≥

1

𝑠
𝑑 (𝑥, 𝑧)} .

(17)

Now, we have

𝐷 (𝑥, 𝑧) = inf {𝑢1
 : 𝑢
1
∈ 𝑃, 𝑢

1
≥

1

𝑠
𝑑 (𝑥, 𝑧)}

≤ inf { 𝑠 (𝑢2 + 𝑢
3
)
 :

𝑢
2
, 𝑢
3
∈ 𝑃, 𝑢

2
≥

1

𝑠
𝑑 (𝑥, 𝑦) ,

𝑢
3
≥

1

𝑠
𝑑 (𝑦, 𝑧)}

= 𝑠 inf { 𝑢2 + 𝑢
3

 :

𝑢
2
, 𝑢
3
∈ 𝑃, 𝑢

2
≥

1

𝑠
𝑑 (𝑥, 𝑦) ,

𝑢
3
≥

1

𝑠
𝑑 (𝑦, 𝑧)}

≤ 𝑠 inf { 𝑢2
 +

𝑢3
 :

𝑢
2
, 𝑢
3
∈ 𝑃, 𝑢

2
≥

1

𝑠
𝑑 (𝑥, 𝑦) ,

𝑢
3
≥

1

𝑠
𝑑 (𝑦, 𝑧)}

= 𝑠 inf {𝑢2
 : 𝑢
2
∈ 𝑃, 𝑢

2
≥

1

𝑠
𝑑 (𝑥, 𝑦)}

+ 𝑠 inf {𝑢3
 : 𝑢
3
∈ 𝑃, 𝑢

3
≥

1

𝑠
𝑑 (𝑦, 𝑧)}

= 𝑠 [𝐷 (𝑥, 𝑦) + 𝐷 (𝑦, 𝑧)] .

(18)

By the previously metioned, 𝐷 is a 𝑏-metric on𝑋.
(2) Necessity. Let lim

𝑛→∞
𝑥
𝑛

= 𝑥 in the cone 𝑏-metric
space (𝑋, 𝑑). For each 𝜀 > 0, by Lemma 9(8), if 𝜃 ≪ 𝑐, then
𝜃 ≪ 𝑠 ⋅ 𝜀 ⋅ (𝑐/‖𝑐‖). Then, for each 𝑐 ∈ 𝐸 with 𝜃 ≪ 𝑐, there
exists 𝑛

0
such that 𝑑(𝑥

𝑛
, 𝑥) ≪ 𝑠 ⋅ 𝜀 ⋅ (𝑐/‖𝑐‖) for all 𝑛 ≥ 𝑛

0
.

Using Lemma 9(8) again, we get (1/𝑠)𝑑(𝑥
𝑛
, 𝑥) ≪ 𝜀 ⋅ (𝑐/‖𝑐‖).

It implies that

𝐷(𝑥
𝑛
, 𝑥) = inf {‖𝑢‖ : 𝑢 ∈ 𝑃, 𝑢 ≥

1

𝑠
𝑑 (𝑥
𝑛
, 𝑥)}

≤ 𝜀 ⋅



𝑐

‖𝑐‖


= 𝜀,

(19)

for all 𝑛 ≥ 𝑛
0
. This proves that lim

𝑛→∞
𝐷(𝑥
𝑛
, 𝑥) = 0; that is,

lim
𝑛→∞

𝑥
𝑛
= 𝑥 in the 𝑏-metric space (𝑋,𝐷).

Sufficiency. Let lim
𝑛→∞

𝑥
𝑛

= 𝑥 in the 𝑏-metric space
(𝑋,𝐷). For each 𝜃 ≪ 𝑐, there exists 𝜀 > 0 such that 𝑐+𝐵(0, 𝜀) ⊂

𝑃. For this 𝜀, there exists 𝑛
0
such that

𝐷(𝑥
𝑛
, 𝑥) = inf {‖𝑢‖ : 𝑢 ∈ 𝑃, 𝑢 ≥

1

𝑠
𝑑 (𝑥
𝑛
, 𝑥)} ≤

𝜀

4
. (20)

Then, there exist V ∈ 𝑃 and 𝑑(𝑥
𝑛
, 𝑥) ≤ V such that ‖V‖ ≤ 𝜀/2.

So −V ∈ 𝐵(0, 𝜀), and we have 𝑐 − V ∈ int𝑃. Therefore,
𝑑(𝑥
𝑛
, 𝑥) ≤ V ≪ 𝑐 for all 𝑛 ≥ 𝑛

0
. By Lemma 9(1), we get

𝑑(𝑥
𝑛
, 𝑥) ≪ 𝑐 for all 𝑛 ≥ 𝑛

0
. This proves that lim

𝑛→∞
𝑥
𝑛
= 𝑥

in the cone 𝑏-metric space (𝑋, 𝑑).
(3)Necessity. Let {𝑥

𝑛
} be a Cauchy sequence in the cone 𝑏-

metric space (𝑋, 𝑑). For each 𝜀 > 0, by Lemma 9(6), if 𝜃 ≪ 𝑐,
then 𝜃 ≪ 𝑠 ⋅ 𝜀 ⋅ (𝑐/‖𝑐‖). Then for each 𝑐 ∈ 𝐸 with 𝜃 ≪ 𝑐, there
exists 𝑛

0
such that 𝑑(𝑥

𝑛
, 𝑥
𝑚
) ≪ 𝑠 ⋅ 𝜀 ⋅ (𝑐/‖𝑐‖) for all 𝑛,𝑚 ≥ 𝑛

0
.

Using Lemma 9(6) again, we get (1/𝑠)𝑑(𝑥
𝑛
, 𝑥
𝑚
) ≪ 𝜀 ⋅ (𝑐/‖𝑐‖).

It implies that

𝐷(𝑥
𝑛
, 𝑥
𝑚
) = inf {‖𝑢‖ : 𝑢 ∈ 𝑃, 𝑢 ≥

1

𝑠
𝑑 (𝑥
𝑛
, 𝑥
𝑚
)}

≤ 𝜀 ⋅



𝑐

‖𝑐‖


= 𝜀,

(21)

for all 𝑛,𝑚 ≥ 𝑛
0
. This proves that {𝑥

𝑛
} is a Cauchy sequence

in the 𝑏-metric space (𝑋,𝐷).
Sufficiency. Let {𝑥

𝑛
} be a Cauchy sequence in the 𝑏-metric

space (𝑋,𝐷). Then lim
𝑛,𝑚→∞

𝐷(𝑥
𝑛
, 𝑥
𝑚
) = 0. For each 𝜃 ≪ 𝑐,

there exists 𝜀 > 0 such that 𝑐 + 𝐵(0, 𝜀) ⊂ 𝑃. For this 𝜀, there
exists 𝑛

0
such that

𝐷(𝑥
𝑛
, 𝑥
𝑚
) = inf {‖𝑢‖ : 𝑢 ∈ 𝑃, 𝑢 ≥

1

𝑠
𝑑 (𝑥
𝑛
, 𝑥
𝑚
)} ≤

𝜀

4
,

(22)

for all 𝑛,𝑚 ≥ 𝑛
0
. Then, there exists V ∈ 𝑃, 𝑑(𝑥

𝑛
, 𝑥
𝑚
) ≤ V

such that ‖V‖ ≤ 𝜀/2. So −V ∈ 𝐵(0, 𝜀), and we have 𝑐 − V ∈

int𝑃. Therefore, 𝑑(𝑥
𝑛
, 𝑥
𝑚
) ≤ V ≪ 𝑐 for all 𝑛,𝑚 ≥ 𝑛

0
. By

Lemma 9(1), we get 𝑑(𝑥
𝑛
, 𝑥
𝑚
) ≪ 𝑐 for all 𝑛,𝑚 ≥ 𝑛

0
. This

proves that {𝑥
𝑛
} is a Cauchy sequence in the cone 𝑏-metric

space (𝑋, 𝑑).
(4) It is a direct consequence of (2) and (3).

By choosing 𝑠 = 1 in Theorem 14, we get the following
results.

Corollary 15 (see [13, Lemma2.1]). Let (𝑋, 𝑑) be a conemetric
space. Then

𝐷(𝑥, 𝑦) = inf {‖𝑢‖ : 𝑢 ∈ 𝑃, 𝑢 ≥ 𝑑 (𝑥, 𝑦)} , (23)

for all 𝑥, 𝑦 ∈ 𝑋 is a metric on 𝑋.

Corollary 16 (see [10, Theorem 2.2]). Let (𝑋, 𝑑) be a cone
metric space and

𝐷(𝑥, 𝑦) = inf {‖𝑢‖ : 𝑢 ∈ 𝑃, 𝑢 ≥ 𝑑 (𝑥, 𝑦)} , (24)

for all 𝑥, 𝑦 ∈ 𝑋.Then the metric space (𝑋,𝐷) is complete if and
only if the cone metric space (𝑋, 𝑑) is complete.
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The following examples show that Corollaries 15 and 16
are not applicable to cone 𝑏-metric spaces in general.

Example 17. Let (𝑋, 𝑑) be a cone 𝑏-metric space as in
Example 11. We have

𝐷(𝑥, 𝑦) = inf {‖u‖ : 𝑢 ∈ 𝑃, 𝑢 ≥ 𝑑 (𝑥, 𝑦)}

=
𝑑 (𝑥, 𝑦)

 = sup {
𝑥 − 𝑦


2e𝑡 : 𝑡 ∈ [0, 1]}

= e𝑥 − 𝑦

2

.

(25)

It implies that
𝐷 (0, 2) = 4e > 𝐷 (0, 1) + 𝐷 (1, 2) = e + e = 2e. (26)

Then 𝐷 is not a metric on 𝑋. This proves that Corollaries 15
and 16 are not applicable to given cone 𝑏-metric space (𝑋, 𝑑).

Example 18. Let (𝑋, 𝑑) be a cone 𝑏-metric space as in
Example 12. We have

𝐷 (𝑢, V) = inf {‖𝑧‖ : 𝑧 ∈ 𝑃, 𝑧 ≥ 𝑑 (𝑢, V)}

= ‖𝑑 (𝑢, V)‖

= sup{e𝑡 ∫
1

0

|𝑢 (𝑠) − V (𝑠)|2𝑑𝑠 : 𝑡 ∈ [0, 1]}

= e∫
1

0

|𝑢 (𝑠) − V (𝑠)|2𝑑𝑠.

(27)

For 𝑢(𝑠) = 0, V(𝑠) = 1, and 𝑤(𝑠) = 2 for all 𝑠 ∈ [0, 1], we have
𝐷(𝑢, 𝑤) = 4e > 𝐷 (𝑢, V) + 𝐷 (V, 𝑤) = e + e = 2e. (28)

Then 𝐷 is not a metric on 𝑋. This proves that Corollaries 15
and 16 are not applicable to given cone 𝑏-metric space (𝑋, 𝑑).

Next, by using Theorem 14, we show that some contrac-
tion conditions on cone 𝑏-metric spaces can be obtained from
certain contraction conditions on 𝑏-metric spaces.

Corollary 19. Let (𝑋, 𝑑) be a cone 𝑏-metric space with
coefficient 𝑠, let 𝑇 : 𝑋 → 𝑋 be a map, and let 𝐷 be defined as
in Theorem 14. Then the following statements hold.

(1) If 𝑑(𝑇𝑥, 𝑇𝑦) ≤ 𝑘𝑑(𝑥, 𝑦) for some 𝑘 ∈ [0, 1) and all
𝑥, 𝑦 ∈ 𝑋, then

𝐷(𝑇𝑥, 𝑇𝑦) ≤ 𝑘𝐷 (𝑥, 𝑦) , (29)
for all 𝑥, 𝑦 ∈ 𝑋.

(2) If 𝑑(𝑇𝑥, 𝑇𝑦) ≤ 𝜆
1
𝑑(𝑥, 𝑇𝑥)+𝜆

2
𝑑(𝑦, 𝑇𝑦)+𝜆

3
𝑑(𝑥, 𝑇𝑦)+

𝜆
4
𝑑(𝑦, 𝑇𝑥) for some 𝜆

1
, 𝜆
2
, 𝜆
3
, 𝜆
4

∈ [0, 1) with 𝜆
1
+

𝜆
2
+ 𝑠(𝜆
3
+ 𝜆
4
) < min{1, 2/𝑠} and all 𝑥, 𝑦 ∈ 𝑋, then

𝐷(𝑇𝑥, 𝑇𝑦) ≤ 𝜆
1
𝐷 (𝑥, 𝑇𝑥) + 𝜆

2
𝐷(𝑦, 𝑇𝑦)

+ 𝜆
3
𝐷(𝑥, 𝑇𝑦) + 𝜆

4
𝐷(𝑦, 𝑇𝑥) ,

(30)

for all 𝑥, 𝑦 ∈ 𝑋.

Proof. (1) For each 𝑥, 𝑦 ∈ 𝑋 and V ∈ 𝑃 with V ≥ (1/𝑠)𝑑(𝑥, 𝑦),
it follows from Lemma 9(8) that

𝑘V ≥ 𝑘
1

𝑠
𝑑 (𝑥, 𝑦) ≥

1

𝑠
𝑑 (𝑇𝑥, 𝑇𝑦) . (31)

Thus, {𝑘V : V ∈ 𝑃, V ≥ (1/𝑠)𝑑(𝑥, 𝑦)} ⊂ {𝑢 : 𝑢 ∈ 𝑃, 𝑢 ≥

(1/𝑠)𝑑(𝑇𝑥, 𝑇𝑦)}. Then we have

𝐷(𝑇𝑥, 𝑇𝑦) = inf {‖𝑢‖ : 𝑢 ∈ 𝑃, 𝑢 ≥
1

𝑠
𝑑 (𝑇𝑥, 𝑇𝑦)}

≤ inf {‖𝑘V‖ : V ∈ 𝑃, V ≥
1

𝑠
𝑑 (𝑥, 𝑦)}

= 𝑘 inf {‖V‖ : V ∈ 𝑃, V ≥
1

𝑠
𝑑 (𝑥, 𝑦)}

= 𝑘𝐷 (𝑥, 𝑦) .

(32)

It implies that 𝐷(𝑇𝑥, 𝑇𝑦) ≤ 𝑘𝐷(𝑥, 𝑦).
(2) Let 𝑥, 𝑦 ∈ 𝑋 and V

1
, V
2
, V
3
, V
4
∈ 𝑃 satisfy

V
1
≥

1

𝑠
𝑑 (𝑥, 𝑇𝑥) , V

2
≥

1

𝑠
𝑑 (𝑦, 𝑇𝑦) ,

V
3
≥

1

𝑠
𝑑 (𝑥, 𝑇𝑦) , V

4
≥

1

𝑠
𝑑 (𝑦, 𝑇𝑥) .

(33)

From Lemma 9(8), we have

𝜆
1
V
1
+ 𝜆
2
V
2
+ 𝜆
3
V
3
+ 𝜆
4
V
4

≥
1

𝑠
[𝜆
1
𝑑 (𝑥, 𝑇𝑥) + 𝜆

2
𝑑 (𝑦, 𝑇𝑦)

+𝜆
3
𝑑 (𝑥, 𝑇𝑦) + 𝜆

4
𝑑 (𝑦, 𝑇𝑥)]

≥
1

𝑠
𝑑 (𝑇𝑥, 𝑇𝑦) .

(34)

It implies that

{V : V ∈ 𝑃, V ≥
1

𝑠
𝑑 (𝑇𝑥, 𝑇𝑦)}

⊃ {𝜆
1
V
1
+ 𝜆
2
V
2
+ 𝜆
3
V
3
+ 𝜆
4
V
4
:

V
1
, V
2
, V
3
, V
4
∈ 𝑃, V

1
≥

1

𝑠
𝑑 (𝑥, 𝑇𝑥) ,

V
2
≥

1

𝑠
𝑑 (𝑦, 𝑇𝑦) , V

3
≥

1

𝑠
𝑑 (𝑥, 𝑇𝑦) ,

V
4
≥

1

𝑠
𝑑 (𝑦, 𝑇𝑥)} .

(35)

Then we have
𝐷(𝑇𝑥, 𝑇𝑦)

= inf {‖V‖ : V ∈ 𝑃, V ≥
1

𝑠
𝑑 (𝑇𝑥, 𝑇𝑦)}

≤ inf { 𝜆1V1 + 𝜆
2
V
2
+ 𝜆
3
V
3
+ 𝜆
4
V
4

 :

V
1
, V
2
, V
3
, V
4
∈ 𝑃, V

1
≥

1

𝑠
𝑑 (𝑥, 𝑇𝑥) ,

V
2
≥

1

𝑠
𝑑 (𝑦, 𝑇𝑦) , V

3
≥

1

𝑠
𝑑 (𝑥, 𝑇𝑦) ,

V
4
≥

1

𝑠
𝑑 (𝑦, 𝑇𝑥)}
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≤ inf {𝜆
1

V1
 + 𝜆
2

V2


+ 𝜆
3

V3
 + 𝜆
4

V4
 :

V
1
, V
2
, V
3
, V
4
∈ 𝑃,

V
1
≥

1

𝑠
𝑑 (𝑥, 𝑇𝑥) , V

2
≥

1

𝑠
𝑑 (𝑦, 𝑇𝑦) ,

V
3
≥

1

𝑠
𝑑 (𝑥, 𝑇𝑦) , V

4
≥

1

𝑠
𝑑 (𝑦, 𝑇𝑥)}

= inf {𝜆
1

V1
 : V
1
∈ 𝑃, V

1
≥

1

𝑠
𝑑 (𝑥, 𝑇𝑥)}

+ inf {𝜆
2

V2
 : V
2
∈ 𝑃, V

2
≥

1

𝑠
𝑑 (𝑦, 𝑇𝑦)}

+ inf {𝜆
3

V3
 : V
3
∈ 𝑃, V

3
≥

1

𝑠
𝑑 (𝑥, 𝑇𝑦)}

+ inf {𝜆
4

V4
 : V
4
∈ 𝑃, V

4
≥

1

𝑠
𝑑 (𝑦, 𝑇𝑥)}

= 𝜆
1
inf {V1

 : V
1
∈ 𝑃, V

1
≥

1

𝑠
𝑑 (𝑥, 𝑇𝑥)}

+ 𝜆
2
inf {V2

 : V
2
∈ 𝑃, V

2
≥

1

𝑠
𝑑 (𝑦, 𝑇𝑦)}

+ 𝜆
3
⋅ inf {V3

 : V
3
∈ 𝑃, V

3
≥

1

𝑠
𝑑 (𝑥, 𝑇𝑦)}

+ 𝜆
4
⋅ inf {V4

 : V
4
∈ 𝑃, V

4
≥

1

𝑠
𝑑 (𝑦, 𝑇𝑥)}

= 𝜆
1
𝐷 (𝑥, 𝑇𝑥) + 𝜆

2
𝐷(𝑦, 𝑇𝑦)

+ 𝜆
3
𝐷(𝑥, 𝑇𝑦) + 𝜆

4
𝐷(𝑦, 𝑇𝑥) .

(36)

This proves that 𝐷(𝑇𝑥, 𝑇𝑦) ≤ 𝜆
1
𝐷(𝑥, 𝑇𝑥) + 𝜆

2
𝐷(𝑦, 𝑇𝑦) +

𝜆
3
𝐷(𝑥, 𝑇𝑦) + 𝜆

4
𝐷(𝑦, 𝑇𝑥).

Now, we show that main results in [9] are consequences
of preceding results on 𝑏-metric spaces.

Corollary 20. Let (𝑋, 𝑑) be a complete cone 𝑏-metric space
with coefficient 𝑠, and let 𝑇 : 𝑋 → 𝑋 be a map. Then the
following statements hold.

(1) (see [9, Theorem 2.1]) If 𝑑(𝑇𝑥, 𝑇𝑦) ≤ 𝑘𝑑(𝑥, 𝑦) for all
𝑥, 𝑦 ∈ 𝑋, then 𝑇 has a unique fixed point.

(2) (see [9, Theorem 2.3]) If 𝑑(𝑇𝑥, 𝑇𝑦) ≤ 𝜆
1
𝑑(𝑥, 𝑇𝑥) +

𝜆
2
𝑑(𝑦, 𝑇𝑦) + 𝜆

3
𝑑(𝑥, 𝑇𝑦) + 𝜆

4
𝑑(𝑦, 𝑇𝑥) for some

𝜆
1
, 𝜆
2
, 𝜆
3
, 𝜆
4

∈ [0, 1) with 𝜆
1
+ 𝜆
2
+ 𝑠(𝜆
3
+ 𝜆
4
) <

min{1, 2/𝑠} and all 𝑥, 𝑦 ∈ 𝑋, then 𝑇 has a unique fixed
point.

Proof. Let 𝐷 be defined as in Theorem 14. It follows from
Theorem 14(4) that (𝑋,𝐷) is a complete 𝑏-metric space.

(1) By Corollary 19(1), we see that 𝑇 satisfies all assump-
tions of [5, Theorem 2]. Then 𝑇 has a unique fixed
point.

(2) By Corollary 19(2), we see that 𝑇 satisfies all assump-
tions in [6, Theorem 3.7], where 𝐾 = 𝑠, 𝑓 = 𝑇, 𝑔 is
the identity, and 𝑎

1
= 0, 𝑎

2
= 𝜆
1
, 𝑎
3
= 𝜆
2
, and 𝑎

4
=

𝜆
3
, 𝑎
5
= 𝜆
4
. Note that condition (3.10) in [6,Theorem

3.7]was used to prove (3.16) and𝐾(𝑎
2
+𝑎
3
+𝑎
4
+𝑎
5
) < 2

at line 3, page 7 in the proof of [6,Theorem 3.7].These
claims also hold if 𝑎

1
= 0 and 𝜆

1
+ 𝜆
2
+ 𝑠(𝜆
3
+ 𝜆
4
) <

min{1, 2/𝑠}. Then 𝑇 has a unique fixed point.

Remark 21. By similar arguments as in Corollaries 19 and 20,
we may get fixed point theorems on cone 𝑏-metric spaces in
[8, 10] from preceding ones on 𝑏-metric spaces in [3, 5].
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