
Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2013, Article ID 562140, 13 pages
http://dx.doi.org/10.1155/2013/562140

Research Article
Numerical Solution of the Fractional Partial
Differential Equations by the Two-Dimensional
Fractional-Order Legendre Functions

Fukang Yin, Junqiang Song, Yongwen Wu, and Lilun Zhang

College of Computer, National University of Defense Technology, Changsha 410073, China

Correspondence should be addressed to Fukang Yin; yinfukang@nudt.edu.cn

Received 13 May 2013; Revised 8 September 2013; Accepted 8 September 2013

Academic Editor: Santanu Saha Ray

Copyright © 2013 Fukang Yin et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

A numerical method is presented to obtain the approximate solutions of the fractional partial differential equations (FPDEs). The
basic idea of this method is to achieve the approximate solutions in a generalized expansion form of two-dimensional fractional-
order Legendre functions (2D-FLFs). The operational matrices of integration and derivative for 2D-FLFs are first derived. Then,
by these matrices, a system of algebraic equations is obtained from FPDEs. Hence, by solving this system, the unknown 2D-FLFs
coefficients can be computed. Three examples are discussed to demonstrate the validity and applicability of the proposed method.

1. Introduction

Fractional partial differential equations play a significant role
in modeling physical and engineering processes. Therefore,
there is an urgent need to develop efficient and fast con-
vergent methods for FPDEs. Recently, several different tech-
niques, including Adomian’s decomposition method (ADM)
[1, 2], homotopy perturbation method (HPM) [3–5], varia-
tional iteration method (VIM) [6–8], spectral methods [9–
13], orthogonal polynomials method [14–17], and wavelets
method [18–21] have been presented and applied to solve
FPDEs.

The method based on the orthogonal functions is a won-
derful and powerful tool for solving the FDEs andhas enjoyed
many successes in this realm.The operational matrix of frac-
tional integration has been determined for some types of
orthogonal polynomials, such as Chebyshev polynomials
[16], Legendre polynomials [22], Laguerre polynomials [23–
25], and Jacobi polynomials [26]. Moreover, the operational
matrix of fractional derivative for Chebyshev polynomials
[9] and Legendre polynomials [9, 14] also has been derived.
However, since these polynomials using integer power series
to approximate fractional ones, it cannot accurately represent

properties of fractional calculus. Recently, Rida and Yousef
[27] presented a fractional extension of the classical Legendre
polynomials by replacing the integer order derivative in Rod-
rigues formula with fractional order derivatives.The defect is
that the complexity of these functions made them unsuitable
for solving FDEs. Subsequently, Kazem et al. [28] presented
the orthogonal fractional order Legendre functions based on
shifted Legendre polynomials to find the numerical solution
of FDEs and drew a conclusion that their method is accurate,
effective, and easy to implement.

Benefiting from their “exponential-convergence” prop-
erty when smooth solutions are involved, spectral methods
have been widely and effectively used for the numerical solu-
tion of partial differential equations.The basic idea of spectral
methods is to expand a function into sets of smooth global
functions, called the trial functions. Because of their special
properties, the orthogonal polynomials are usually chosen to
be trial functions. Spectral methods can obtain very accurate
approximations for a smooth solution while only need a few
degrees of freedom.Recently, Chebyshev spectralmethod [9],
Legendre spectral method [10], and adaptive pseudospectral
method [11] were proposed for solving fractional boundary
value problems. Moreover, generalized Laguerre spectral
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algorithms and Legendre spectral Galerkin method were
developed by Baleanu et al. [12] and Bhrawy and Alghamdi
[13] for fractional initial value problems, respectively.

Motivated and inspired by the ongoing research in or-
thogonal polynomials methods and spectral methods, we
construct two-dimensional fractional-order Legendre func-
tions and derive the operational matrices of integration and
derivative for the solution of FPDEs. To the best of the
authors’ knowledge, such approach has not been employed
for solving FPDEs.

The rest of the paper is organized as follows. In Section 2,
we introduce some mathematical preliminaries of the frac-
tional calculus theory and fractional-order Legendre func-
tions. In Section 3, a basis of 2D-FLFs is defined and some
properties are given. Section 4 is devoted to the operational
matrices of fractional derivative and integration for 2D-FLFs.
Some numerical examples are presented in Section 5. Finally,
we conclude the paper with some remarks.

2. Preliminaries and Notations

2.1. Fractional Calculus Theory. Some necessary definitions
and Lemmaof the fractional calculus theory [29, 30] are listed
here for our subsequent development.

Definition 1. A real function ℎ(𝑡), 𝑡 > 0, is said to be in the
space 𝐶𝜇, 𝜇 ∈ 𝑅, if there exists a real number 𝑝 > 𝜇, such that
ℎ(𝑡) = 𝑡

𝑝
ℎ1(𝑡), where ℎ1(𝑡) ∈ 𝐶(0,∞), and it is said to be in

the space 𝐶𝑛
𝜇
if and only if ℎ(𝑛) ∈ 𝐶𝜇, 𝑛 ∈ 𝑁.

Definition 2. Riemann-Liouville fractional integral operator
(𝐽𝛼) of order 𝛼 ≥ 0, of a function 𝑓 ∈ 𝐶𝜇, 𝜇 ≥ −1 is defined as

𝐽
𝛼
𝑓 (𝑡) =

1

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝜏)
𝛼−1
𝑓 (𝜏) 𝑑𝜏, 𝑡 > 0,

𝐽
0
𝑓 (𝑡) = 𝑓 (𝑡) ,

(1)

where Γ(𝛼) is the well-known Gamma function. Some prop-
erties of the operator 𝐽𝛼 can be found, for example, in [29, 30].

Definition 3. The fractional derivative of 𝑓(𝑥) in the Caputo
sense is defined as

(𝐷
𝛼
𝑓) (𝑥)

=

{{{{{{{{{

{{{{{{{{{

{

1

Γ (𝑚 − 𝛼)

×∫

𝑥

0

𝑓
(𝑚)
(𝜉)

(𝑥 − 𝜉)
𝛼−𝑚+1

𝑑𝜉, (𝛼 > 0, 𝑚 − 1 < 𝛼 < 𝑚) ,

𝑑
𝑚
𝑓 (𝑥)

𝑑𝑥𝑚
, 𝛼 = 𝑚,

(2)

where 𝑓 : 𝑅 → 𝑅, 𝑥 → 𝑓(𝑥) denotes a continuous (but not
necessarily differentiable) function.

Lemma 4. Let 𝑛 − 1 < 𝛼 ≤ 𝑛, 𝑛 ∈ 𝑁, 𝑡 > 0, ℎ ∈ 𝐶𝑛
𝜇
, 𝜇 ≥ −1.

Then

(𝐽
𝛼
𝐷
𝛼
) ℎ (𝑡) = ℎ (𝑡) −

𝑛−1

∑

𝑘=0

ℎ
(𝑘)
(0
+
)
𝑡
𝑘

𝑘!
. (3)

2.2. Fractional-Order Legendre Functions. In this section,
we introduce the fractional-order Legendre functions which
were first proposed by Kazem et al. [28]. The normalized
eigenfunctions problem for FLFs is

((𝑥 − 𝑥
1+𝛼
) 𝐿
󸀠𝛼

𝑖
(𝑥))
󸀠

+ 𝛼
2
𝑖 (𝑖 + 1) 𝑥

𝛼−1
𝐿
𝛼

𝑖
(𝑥) = 0,

𝑥 ∈ (0, 1) ,

(4)

which is a singular Sturm-Liouville problem. The fractional-
order Legendre polynomials, denoted by FL𝛼

𝑖
(𝑥), are defined

on the interval [0, 1] and can be determined with the aid of
following recurrence formulae:

FL𝛼
0
(𝑥) = 1, FL𝛼

1
(𝑥) = 2𝑥

𝛼
− 1,

FL𝛼
𝑖+1
(𝑥) =

(2𝑖 + 1) (2𝑥
𝛼
− 1)

𝑖 + 1
FL𝛼
𝑖
(𝑥)

−
𝑖

𝑖 + 1
FL𝛼
𝑖−1
(𝑥) , 𝑖 = 1, 2, . . . ,

(5)

and the analytic form of FL𝛼
𝑖
(𝑥) of degree 𝑖 is given by

FL𝛼
𝑖
(𝑥) =

𝑖

∑

𝑠=0

𝑏𝑠,𝑖𝑥
𝑠𝛼
, 𝑏𝑠,𝑖 =

(−1)
𝑖+𝑠
(𝑖 + 𝑠)!

(𝑖 − 𝑠)!(𝑠!)
2
, (6)

where FL𝛼
𝑖
(0) = (−1)

𝑖 and FL𝛼
𝑖
(1) = 1. The orthogonality

condition is

∫

1

0

FL𝛼
𝑛
(𝑥) FL𝛼

𝑚
(𝑥) 𝜔 (𝑥) 𝑑𝑥 =

1

(2𝑛 + 1) 𝛼
𝛿𝑛𝑚, (7)

where 𝜔(𝑥) = 𝑥𝛼−1 is the weight function and 𝛿 is the
Kronecker delta. For more details, please see [28].

3. 2D-FLFs

In this section, the definitions and theorems of 2D-FLFs are
given by Liu’s method described in [31].

3.1. Definitions and Properties of the 2D-FLFs

Definition 5. Let {FL𝛼
𝑛
(𝑥)}
∞

𝑛=0
be the fractional Legendre poly-

nomials on [0, 1]; we call {FL𝛼
𝑖
(𝑥)FL𝛽

𝑗
(𝑦)}
∞

𝑖,𝑗=0
the two-dimen-

sional fractional Legendre polynomials on [0, 1] × [0, 1].

Theorem 6. The basis {𝐹𝐿𝛼
𝑖
(𝑥)𝐹𝐿

𝛽

𝑗
(𝑦)}
∞

𝑖,𝑗=0
is orthogonal on

[0, 1] × [0, 1] with the weight function 𝜔(𝑥, 𝑦) = 𝜔(𝑥)𝜔(𝑦) =
𝑥
𝛼−1
𝑦
𝛽−1.
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Proof. Let 𝑖 ̸=𝑚 or 𝑗 ̸= 𝑛

∫

1

0

∫

1

0

𝜔 (𝑥, 𝑦) FL𝛼
𝑖
(𝑥) FL𝛽

𝑗
(𝑦) FL𝛼

𝑚
(𝑥) FL𝛽

𝑛
(𝑦) 𝑑𝑥 𝑑𝑦

= ∫

1

0

𝜔 (𝑥) FL𝛼
𝑖
(𝑥) FL𝛼

𝑚
(𝑥) 𝑑𝑥

× ∫

1

0

𝜔 (𝑦) FL𝛽
𝑗
(𝑦) FL𝛽

𝑛
(𝑦) 𝑑𝑦 = 0.

(8)

Theorem 7. Consider

∫

1

0

∫

1

0

𝜔 (𝑥, 𝑦) [𝐹𝐿
𝛼

𝑖
(𝑥) 𝐹𝐿

𝛽

𝑗
(𝑦)]
2

𝑑𝑥 𝑑𝑦

=
1

(2𝑖 + 1) 𝛼

1

(2𝑗 + 1) 𝛽
,

∫

1

0

∫

1

0

𝜔 (𝑥, 𝑦) [𝐹𝐿
𝛼

𝑖
(𝑥) 𝐹𝐿

𝛽

𝑗
(𝑦)]
2

𝑑𝑥 𝑑𝑦

= ∫

1

0

𝜔 (𝑥) [𝐹𝐿
𝛼

𝑖
(𝑥)]
2
𝑑𝑥∫

1

0

𝜔 (𝑦) [𝐹𝐿
𝛽

𝑗
(𝑦)]
2

𝑑𝑦

=
1

(2𝑖 + 1) 𝛼

1

(2𝑗 + 1) 𝛽
.

(9)

3.2. 2D-FLFs Expansion

Definition 8. A function of two independent variables𝑓(𝑥, 𝑦)
which is integrable in square [0, 1] × [0, 1] can be expanded
as

𝑓 (𝑥, 𝑦) =

∞

∑

𝑖=0

∞

∑

𝑗=0

𝑎𝑖𝑗FL
𝛼

𝑖
(𝑥) FL𝛽

𝑗
(𝑦) , (10)

where

𝑎𝑖𝑗 = (2𝑖 + 1) (2𝑗 + 1) 𝛼𝛽

× ∫

1

0

∫

1

0

𝑓 (𝑥, 𝑦) 𝜔 (𝑥, 𝑦) FL𝛼
𝑖
(𝑥) FL𝛽

𝑗
(𝑦) 𝑑𝑥 𝑑𝑦.

(11)

Theorem 9. If the series∑∞
𝑖=0
∑
∞

𝑗=0
𝑎𝑖𝑗𝐹𝐿
𝛼

𝑖
(𝑥)𝐹𝐿

𝛽

𝑗
(𝑦) converges

uniformly to 𝑓(𝑥, 𝑦) on the square [0, 1] × [0, 1], then we have

𝑎𝑖𝑗 = (2𝑖 + 1) (2𝑗 + 1) 𝛼𝛽

× ∫

1

0

∫

1

0

𝑓 (𝑥, 𝑦) 𝜔 (𝑥, 𝑦) 𝐹𝐿
𝛼

𝑖
(𝑥) 𝐹𝐿

𝛽

𝑗
(𝑦) 𝑑𝑥 𝑑𝑦.

(12)

Proof. By multiplying 𝜔(𝑥, 𝑦)FL𝛼
𝑛
(𝑥)FL𝛽

𝑚
(𝑦) on both sides of

(10), where 𝑛 and 𝑚 are fixed and integrating termwise with
regard to 𝑥 and 𝑦 on [0, 1] × [0, 1], then

∫

1

0

∫

1

0

𝑓 (𝑥, 𝑦) 𝜔 (𝑥, 𝑦) FL𝛼
𝑛
(𝑥) FL𝛽

𝑚
(𝑦) 𝑑𝑥 𝑑𝑦

=

∞

∑

𝑖=0

∞

∑

𝑗=0

𝑎𝑖𝑗 ∫

1

0

∫

1

0

𝜔 (𝑥, 𝑦) FL𝛼
𝑖
(𝑥) FL𝛽

𝑗
(𝑦)

× FL𝛼
𝑛
(𝑥) FL𝛽

𝑚
(𝑦) 𝑑𝑥 𝑑𝑦

=

∞

∑

𝑖=0

∞

∑

𝑗=0

𝑎𝑖𝑗 ∫

1

0

𝜔 (𝑥) FL𝛼
𝑖
(𝑥) FL𝛼

𝑛
(𝑥) 𝑑𝑥

× ∫

1

0

𝜔 (𝑦) FL𝛽
𝑗
(𝑦) FL𝛽

𝑚
(𝑦) 𝑑𝑦

= 𝑎𝑛𝑚 ∫

1

0

𝜔 (𝑥) [FL𝛼
𝑛
(𝑥)]
2
𝑑𝑥∫

1

0

𝜔 (𝑦) [FL𝛽
𝑚
(𝑦)]
2

𝑑𝑦

= 𝑎𝑛𝑚
1

(2𝑛 + 1) 𝛼

1

(2𝑚 + 1) 𝛽
.

(13)

Finally one can get (11).

If the infinite series in (10) is truncated, then it can be
written as

𝑓 (𝑥, 𝑦) ≈

𝑚

∑

𝑖=0

𝑚
󸀠

∑

𝑗=0

𝑎𝑖𝑗FL
𝛼

𝑖
(𝑥) FL𝛽

𝑗
(𝑦) = 𝐶

𝑇
Ψ (𝑥
𝛼
, 𝑦
𝛼
) , (14)

where 𝐶 and Ψ(𝑥𝛼, 𝑦𝛽) are given by

𝐶 = [𝑐0,0, 𝑐0,1, . . . , 𝑐0,𝑚󸀠−1, 𝑐1,0, 𝑐1,1, . . . ,

𝑐1,𝑚󸀠−1, . . . , 𝑐𝑚−1,0, 𝑐𝑚−1,1, . . . , 𝑐𝑚−1,𝑚󸀠−1]
𝑇
,

(15)

Ψ(𝑥
𝛼
, 𝑦
𝛽
) = [𝜓0,0, 𝜓0,1, . . . , 𝜓0,𝑚󸀠−1, 𝜓1,0, 𝜓1,1, . . . ,

𝜓1,𝑚󸀠−1, . . . , 𝜓𝑚−1,0, 𝜓𝑚−1,1, . . . , 𝜓𝑚−1,𝑚󸀠−1]
𝑇
,

(16)

where 𝜓𝑖𝑗 = FL𝛼
𝑖
(𝑥)FL𝛽

𝑗
(𝑦), 𝑖 = 0, 1, . . . , 𝑚, and 𝑗 =

0, 1, . . . , 𝑚
󸀠.

According to the definition of FLFs, one can find that
fractional Legendre polynomials are identical to Legendre
polynomials shifted to [0, 1]when using the transform 𝑥𝛼 →
𝑥, 𝑦𝛽 → 𝑦. Therefore, in a similar method described in [31],
we can easily get the convergence and stability theorems of
proposed method.

Lemma 10. If the function 𝑓(𝑥, 𝑦) is a continuous function on
[0, 1] × [0, 1] and the series ∑∞

𝑖=0
∑
∞

𝑗=0
𝑎𝑖𝑗𝐹𝐿
𝛼

𝑖
(𝑥)𝐹𝐿

𝛽

𝑗
(𝑦) con-

verges uniformly to 𝑓(𝑥, 𝑦), then ∑∞
𝑖=0
∑
∞

𝑗=0
𝑎𝑖𝑗𝐹𝐿
𝛼

𝑖
(𝑥)𝐹𝐿

𝛽

𝑗
(𝑦)

is the 2D-FLFs expansion of 𝑓(𝑥, 𝑦).
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Proof (by contradiction). Let

𝑓 (𝑥, 𝑦) =

∞

∑

𝑖=0

∞

∑

𝑗=0

𝑏𝑖𝑗FL
𝛼

𝑖
(𝑥) FL𝛽

𝑗
(𝑦) ,

𝑓 (𝑥, 𝑦) ∼

∞

∑

𝑖=0

∞

∑

𝑗=0

𝑎𝑖𝑗FL
𝛼

𝑖
(𝑥) FL𝛽

𝑗
(𝑦) .

(17)

Then there is at least one coefficient such that 𝑎𝑛𝑚 ̸= 𝑏𝑛𝑚.
However,

𝑏𝑛𝑚 = (2𝑛 + 1) (2𝑚 + 1) 𝛼𝛽

× ∫

1

0

∫

1

0

𝑓 (𝑥, 𝑦) 𝜔 (𝑥, 𝑦) FL𝛼
𝑛
(𝑥) FL𝛽

𝑚
(𝑦) 𝑑𝑥 𝑑𝑦

= 𝑎𝑛𝑚.

(18)

Lemma 11. If two continuous functions defined on [0, 1] ×
[0, 1] have the identical 2D-FLFs expansions, then these two
functions are identical.

Proof. Suppose that 𝑓(𝑥, 𝑦) and 𝑔(𝑥, 𝑦) can be expanded by
2D-FLFs as follows:

𝑓 (𝑥, 𝑦) ∼

∞

∑

𝑖=0

∞

∑

𝑗=0

𝑎𝑖𝑗FL
𝛼

𝑖
(𝑥) FL𝛽

𝑗
(𝑦) ,

𝑔 (𝑥, 𝑦) ∼

∞

∑

𝑖=0

∞

∑

𝑗=0

𝑎𝑖𝑗FL
𝛼

𝑖
(𝑥) FL𝛽

𝑗
(𝑦) .

(19)

By subtracting the above two equations with each other, one
has

𝑓 (𝑥, 𝑦) − 𝑔 (𝑥, 𝑦) ∼

∞

∑

𝑖=0

∞

∑

𝑗=0

(𝑎𝑖𝑗 − 𝑎𝑖𝑗) FL
𝛼

𝑖
(𝑥) FL𝛽

𝑗
(𝑦)

= 0 =

∞

∑

𝑖=0

∞

∑

𝑗=0

0 × FL𝛼
𝑖
(𝑥) FL𝛽

𝑗
(𝑦) .

(20)

Then Lemma 11 can be proved.

Theorem 12. If the 2D-FLFs expansion of a continuous func-
tion 𝑓(𝑥, 𝑦) converges uniformly, then the 2D-FLFs expansion
converges to the function 𝑓(𝑥, 𝑦).

Proof. Theorem 12 can be proved byTheorems 7 and 9.

Theorem 13. If the sum of the absolute values of the 2D-FLFs
coefficients of a continuous function𝑓(𝑥, 𝑦) forms a convergent
series, then the 2D-FLFs expansion is absolutely uniformly
convergent, and converges to the function 𝑓(𝑥, 𝑦).

Proof. Consider
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∞

∑

𝑖=0

∞

∑

𝑗=0

𝑎𝑖𝑗FL
𝛼

𝑖
(𝑥) FL𝛽

𝑗
(𝑦)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤

∞

∑

𝑖=0

∞

∑

𝑗=0

󵄨󵄨󵄨󵄨󵄨
𝑎𝑖𝑗
󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨FL
𝛼

𝑖
(𝑥)
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨󵄨
FL𝛽
𝑗
(𝑦)
󵄨󵄨󵄨󵄨󵄨󵄨

≤

∞

∑

𝑖=0

∞

∑

𝑗=0

󵄨󵄨󵄨󵄨󵄨
𝑎𝑖𝑗
󵄨󵄨󵄨󵄨󵄨
.

(21)

Then ∑∞
𝑖=0
∑
∞

𝑗=0
𝑎𝑖𝑗FL
𝛼

𝑖
(𝑥)FL𝛽

𝑗
(𝑦) converges uniformly to the

function 𝑓(𝑥, 𝑦).

Theorem 14. If a continuous function 𝑓(𝑥, 𝑦), defined on [0,
1] × [0, 1], has bounded mixed partial derivative 𝐷2𝛼

𝑥
𝐷
2𝛽

𝑦
𝑓(𝑥,

𝑦), then the 2D-FLFs expansion of the function converges
uniformly to the function.

Proof. Let 𝑓(𝑥, 𝑦) be a function defined on [0, 1]× [0, 1] such
that

󵄨󵄨󵄨󵄨󵄨
𝐷
2𝛼

𝑥
𝐷
2𝛽

𝑦
𝑓 (𝑥, 𝑦)

󵄨󵄨󵄨󵄨󵄨
≤ 𝑀, (22)

where𝑀 is a positive constant and
𝑎𝑖𝑗 = (2𝑖 + 1) (2𝑗 + 1) 𝛼𝛽

× ∫

1

0

∫

1

0

𝑓 (𝑥, 𝑦) 𝜔 (𝑥, 𝑦) FL𝛼
𝑖
(𝑥) FL𝛽

𝑗
(𝑦) 𝑑𝑥 𝑑𝑦.

(23)

By employing the transform 𝑋 = 2𝑥𝛼 − 1 and 𝑌 = 2𝑦𝛽 − 1,
one can obtain

𝑎𝑖𝑗 =
2𝑖 + 1

2

2𝑗 + 1

2
∫

1

−1

∫

1

−1

𝑓 (𝑋, 𝑌) 𝑝𝑖 (𝑋) 𝑝𝑗 (𝑌) 𝑑𝑋𝑑𝑌.

(24)
Consequently, in a similar method described in [31],
Theorem 14 can be proved.

4. Operational Matrices of 2D-FLFs

4.1. Integration Operational Matrices of 2D-FLFs

Lemma 15. The Riemann-Liouville fractional integration of
order 𝛾 > 0 of the 2D-FLFs 𝜓𝑖𝑗 can be obtained in the form
of

𝐽
𝛾

𝑥
{𝜓𝑖𝑗 (𝑥

𝛼
, 𝑦
𝛽
)} = 𝐹𝐿

𝛽

𝑗
(𝑦)

𝑖

∑

𝑠=0

𝑏𝑠𝑖
Γ (1 + 𝑠𝛼)

Γ (1 + 𝑠𝛼 + 𝛾)
𝑥
𝑠𝛼+𝛾
. (25)

Proof. Consider

𝐽
𝛾

𝑥
{𝜓𝑖𝑗 (𝑥

𝛼
, 𝑦
𝛽
)} = 𝐽

𝛾

𝑥
{FL𝛼
𝑖
(𝑥) FL𝛽

𝑗
(𝑦)}

= 𝐽
𝛾

𝑥
{FL𝛼
𝑖
(𝑥)} FL𝛽

𝑗
(𝑦)

= 𝐽
𝛾

𝑥
{

𝑖

∑

𝑠=0

𝑏𝑠𝑖𝑥
𝑠𝛼
} FL𝛽
𝑗
(𝑦)

= FL𝛽
𝑗
(𝑦)

𝑖

∑

𝑠=0

𝑏𝑠𝑖
Γ (1 + 𝑠𝛼)

Γ (1 + 𝑠𝛼 + 𝛾)
𝑥
𝑠𝛼+𝛾
.

(26)
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Lemma 16. Let 𝛾 > 0; then one has

∫

1

0

∫

1

0

𝐽
𝛾

𝑥
{𝜓𝑖𝑗} 𝜓𝑖󸀠𝑗󸀠𝜔 (𝑥, 𝑦) 𝑑𝑥 𝑑𝑦

=

{{{{{{{{

{{{{{{{{

{

𝑖

∑

𝑠=0

𝑖
󸀠

∑

𝑠󸀠=0

𝑏𝑠𝑖𝑏𝑠󸀠𝑖󸀠

(𝑠 + 𝑠󸀠 + 1) 𝛼 + 𝛾

×
Γ (1 + 𝑠𝛼)

Γ (1 + 𝑠𝛼 + 𝛾)

1

(2𝑗 + 1) 𝛽
, 𝑗 = 𝑗

󸀠

0, 𝑗 ̸= 𝑗
󸀠
.

(27)

Proof. Using previous Lemma 15 and (6), one can have

∫

1

0

∫

1

0

𝐽
𝛾

𝑥
{𝜓𝑖𝑗 (𝑥

𝛼
, 𝑦
𝛽
)} 𝜓𝑖󸀠𝑗󸀠 (𝑥

𝛼
, 𝑦
𝛽
) 𝜔 (𝑥, 𝑦) 𝑑𝑥 𝑑𝑦

= ∫

1

0

∫

1

0

𝜔 (𝑥, 𝑦) FL𝛼
𝑖󸀠
(𝑥
𝛼
) FL𝛽
𝑗󸀠
(𝑦
𝛽
) FL𝛽
𝑗
(𝑦
𝛽
)

×

𝑖

∑

𝑠=0

𝑏𝑠𝑖
Γ (1 + 𝑠𝛼)

Γ (1 + 𝑠𝛼 + 𝛾)
𝑥
𝑠𝛼+𝛾
𝑑𝑥 𝑑𝑦

= ∫

1

0

∫

1

0

𝜔 (𝑦) FL𝛽
𝑗
(𝑦
𝛽
) FL𝛽
𝑗󸀠
(𝑦
𝛽
)

×

𝑖

∑

𝑠=0

𝑖
󸀠

∑

𝑠󸀠=0

𝑏𝑠𝑖𝑏𝑠󸀠𝑖󸀠
Γ (1 + 𝑠𝛼)

Γ (1 + 𝑠𝛼 + 𝛾)

× 𝑥
(𝑠+𝑠
󸀠
+1)𝛼+𝛾−1

𝑑𝑥 𝑑𝑦

= ∫

1

0

𝜔 (𝑦) FL𝛽
𝑗
(𝑦
𝛽
) FL𝛽
𝑗󸀠
(𝑦
𝛽
)

× (∫

1

0

𝑖

∑

𝑠=0

𝑖
󸀠

∑

𝑠󸀠=0

𝑏𝑠𝑖𝑏𝑠󸀠𝑖󸀠
Γ (1 + 𝑠𝛼)

Γ (1 + 𝑠𝛼 + 𝛾)

× 𝑥
(𝑠+𝑠
󸀠
+1)𝛼+𝛾−1

𝑑𝑥)𝑑𝑦

=

𝑖

∑

𝑠=0

𝑖
󸀠

∑

𝑠󸀠=0

𝑏𝑠𝑖𝑏𝑠󸀠𝑖󸀠

(𝑠 + 𝑠󸀠 + 1) 𝛼 + 𝛾

Γ (1 + 𝑠𝛼)

Γ (1 + 𝑠𝛼 + 𝛾)

× ∫

1

0

𝜔 (𝑦) FL𝛽
𝑗
(𝑦
𝛽
) FL𝛽
𝑗󸀠
(𝑦
𝛽
) 𝑑𝑦

=

{{{{{{{

{{{{{{{

{

𝑖

∑

𝑠=0

𝑖
󸀠

∑

𝑠󸀠=0

𝑏𝑠𝑖𝑏𝑠󸀠𝑖󸀠

(𝑠 + 𝑠󸀠 + 1) 𝛼 + 𝛾

×
Γ (1 + 𝑠𝛼)

Γ (1 + 𝑠𝛼 + 𝛾)

1

(2𝑗 + 1) 𝛽
, 𝑗 = 𝑗

󸀠

0, 𝑗 ̸= 𝑗
󸀠
.

(28)

Theorem 17. Let Ψ(𝑥𝛼, 𝑦𝛽) be the 2D-FLFs vector defined in
(16); then one has

𝐽
𝛾

𝑥
Ψ(𝑥
𝛼
, 𝑦
𝛽
) ≃ P𝛾
𝑥
Ψ(𝑥
𝛼
, 𝑦
𝛽
) , (29)

where P𝛾
𝑥
is the 𝑚𝑚󸀠 × 𝑚𝑚󸀠 operational matrix of Riemann-

Liouville fractional integration of order 𝛾 > 0, and has the form
as follows:

P𝛾
𝑥
=

[
[
[
[

[

𝐸0,0 𝐸0,1 ⋅ ⋅ ⋅ 𝐸0,𝑚−1
𝐸1,0 𝐸1,1 ⋅ ⋅ ⋅ 𝐸1,𝑚−1
...

... d
...

𝐸𝑚−1,0 𝐸𝑚−1,1 ⋅ ⋅ ⋅ 𝐸𝑚−1,𝑚−1

]
]
]
]

]

, (30)

in which 𝐸𝑖,𝑖󸀠 is𝑚󸀠 ×𝑚󸀠 matrix and the elements are defined as
follows:

𝐸𝑖,𝑖󸀠 = 𝐼

𝑖

∑

𝑠=0

𝑖
󸀠

∑

𝑠󸀠=0

𝑏𝑠𝑖𝑏𝑠󸀠𝑖󸀠 (2𝑖
󸀠
+ 1) 𝛼

(𝑠 + 𝑠󸀠 + 1) 𝛼 + 𝛾

Γ (1 + 𝑠𝛼)

Γ (1 + 𝑠𝛼 + 𝛾)
,

𝑖, 𝑖
󸀠
= 0, 1, . . . , 𝑚 − 1,

(31)

and 𝐼 is𝑚󸀠 × 𝑚󸀠 identity matrix.

Proof. Using (29) and orthogonality property of FLFs, one
can get

P𝛾
𝑥
= ⟨𝐽
𝛾

𝑥
Ψ(𝑥
𝛼
, 𝑦
𝛽
) , Ψ
𝑇
(𝑥
𝛼
, 𝑦
𝛽
)⟩𝐻
−1
, (32)

where ⟨𝐽𝛾
𝑥
Ψ(𝑥
𝛼
, 𝑦
𝛽
), Ψ
𝑇
(𝑥
𝛼
, 𝑦
𝛽
)⟩ and 𝐻−1 are two 𝑚󸀠 × 𝑚󸀠

matrices defined as

⟨𝐽
𝛾

𝑥
Ψ(𝑥
𝛼
, 𝑦
𝛽
) , Ψ
𝑇
(𝑥
𝛼
, 𝑦
𝛽
)⟩

= {∫

1

0

∫

1

0

𝐽
𝛾

𝑥
{Ψ𝑘 (𝑥

𝛼
, 𝑦
𝛽
)}

× Ψ𝑘󸀠 (𝑥
𝛼
, 𝑦
𝛽
) 𝜔 (𝑥, 𝑦) 𝑑𝑥 𝑑𝑦}

𝑚𝑚
󸀠

𝑘,𝑘󸀠

=
{

{

{

𝑖

∑

𝑠=0

𝑖
󸀠

∑

𝑠󸀠=0

𝑏𝑠𝑖𝑏𝑠󸀠𝑖󸀠
Γ (1 + 𝑠𝛼)

Γ (1 + 𝑠𝛼 + 𝛾)

×
1

(𝑠 + 𝑠󸀠 + 1) 𝛼 + 𝛾

1

(2𝑗 + 1) 𝛽

}

}

}

𝑚;𝑚
󸀠

𝑖,𝑖󸀠 ;𝑗=𝑗󸀠

,

𝐻
−1
= {(2𝑖

󸀠
+ 1) (2𝑗 + 1) 𝛼𝛽}

𝑚;𝑚
󸀠

𝑖,𝑖󸀠 ;𝑗=𝑗󸀠
.

(33)

Now by substituting above equations in (32), Theorem 12
can be proved.

In a similar way as previous, one can obtain the oper-
ational matrix of Riemann-Liouville fractional integration
with respect to variable 𝑦.

Theorem 18. Let Ψ(𝑥𝛼, 𝑦𝛽) be the 2D-FLFs vector defined in
(16); one has

𝐽
𝛾

𝑦
Ψ(𝑥
𝛼
, 𝑦
𝛽
) ≃ P𝛾
𝑦
Ψ(𝑥
𝛼
, 𝑦
𝛽
) , (34)
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where P𝛾
𝑦
is the 𝑚𝑚󸀠 × 𝑚𝑚󸀠 operational matrix of Riemann-

Liouville fractional integration of order 𝛾 > 0, and has the form
as follows:

P𝛾
𝑦
=

[
[
[
[

[

𝐸 𝑂 ⋅ ⋅ ⋅ 𝑂

𝑂 𝐸 ⋅ ⋅ ⋅ 𝑂

...
... d

...
𝑂 𝑂 ⋅ ⋅ ⋅ 𝐸

]
]
]
]

]

, (35)

in which 𝐸 is 𝑚󸀠 × 𝑚󸀠 matrix and the elements are defined as
follows:

𝐸𝑗,𝑗󸀠 =

𝑗

∑

𝑟=0

𝑗
󸀠

∑

𝑟󸀠=0

𝑏𝑟𝑗𝑏𝑟󸀠𝑗󸀠 (2𝑗
󸀠
+ 1) 𝛽

(𝑟 + 𝑟󸀠 + 1) 𝛽 + 𝛾

Γ (1 + 𝑟𝛽)

Γ (1 + 𝑟𝛽 + 𝛾)
,

𝑗, 𝑗
󸀠
= 0, 1, . . . , 𝑚

󸀠
− 1.

(36)

4.2. Derivative Operational Matrices of 2D-FLFs

Lemma 19. The FLFs Caputo fractional derivative of 𝛾 > 0
can be obtained in the form of

𝐷
𝛾

𝑥
{𝜓𝑖𝑗 (𝑥

𝛼
, 𝑦
𝛽
)} = 𝐹𝐿

𝛽

𝑗
(𝑦
𝛽
)

𝑖

∑

𝑠=0

𝑏
󸀠

𝑠𝑖

Γ (1 + 𝑠𝛼)

Γ (1 + 𝑠𝛼 − 𝛾)
𝑥
𝑠𝛼−𝛾
,

(37)

where 𝑏󸀠
𝑠,𝑖
= 0when 𝑠𝛼 ∈ 𝑁0 and 𝑠𝛼 < 𝛾 in other case 𝑏󸀠𝑠,𝑖 = 𝑏𝑠,𝑖.

Proof. Consider

𝐷
𝛾

𝑥
{𝜓𝑖𝑗 (𝑥

𝛼
, 𝑦
𝛽
)} = 𝐷

𝛾

𝑥
{FL𝛼
𝑖
(𝑥
𝛼
) FL𝛽
𝑗
(𝑦
𝛽
)}

= FL𝛽
𝑗
(𝑦
𝛽
)𝐷
𝛾

𝑥
{FL𝛼
𝑖
(𝑥
𝛼
)}

= 𝐷
𝛾

𝑥
{

𝑖

∑

𝑠=0

𝑏𝑠𝑖𝑥
𝑠𝛼
} FL𝛽
𝑗
(𝑦
𝛽
)

= FL𝛽
𝑗
(𝑦
𝛽
)

𝑖

∑

𝑠=0

𝑏
󸀠

𝑠𝑖

Γ (1 + 𝑠𝛼)

Γ (1 + 𝑠𝛼 − 𝛾)
𝑥
𝑠𝛼−𝛾
.

(38)

Lemma 20. Let 𝛾 > 0, 𝛼 ∉ 𝑁; then one has

∫

1

0

∫

1

0

𝐷
𝛾

𝑥
{𝜓𝑖𝑗} 𝜓𝑖󸀠𝑗󸀠𝜔 (𝑥, 𝑦) 𝑑𝑥 𝑑𝑦

=

{{{{{{{{{

{{{{{{{{{

{

𝑖

∑

𝑠=0

𝑖
󸀠

∑

𝑠󸀠=0

𝑏𝑠𝑖𝑏𝑠󸀠𝑖󸀠

(𝑠 + 𝑠󸀠 + 1) 𝛼 − 𝛾

×
Γ (1 + 𝑠𝛼)

Γ (1 + 𝑠𝛼 − 𝛾)

1

(2𝑗 + 1) 𝛽
, 𝑗 = 𝑗

󸀠

0, 𝑗 ̸= 𝑗
󸀠
.

(39)

Proof. Using previous Lemma 19 and (6), one can have

∫

1

0

∫

1

0

𝐷
𝛾

𝑥
{𝜓𝑖𝑗 (𝑥

𝛼
, 𝑦
𝛽
)} 𝜓𝑖󸀠𝑗󸀠 (𝑥

𝛼
, 𝑦
𝛽
) 𝜔 (𝑥, 𝑦) 𝑑𝑥 𝑑𝑦

= ∫

1

0

∫

1

0

𝜔 (𝑥, 𝑦) FL𝛼
𝑖󸀠
(𝑥
𝛼
) FL𝛽
𝑗󸀠
(𝑦
𝛽
) FL𝛽
𝑗
(𝑦
𝛽
)

×

𝑖

∑

𝑠=0

𝑏
󸀠

𝑠𝑖

Γ (1 + 𝑠𝛼)

Γ (1 + 𝑠𝛼 − 𝛾)
𝑥
𝑠𝛼−𝛾
𝑑𝑥 𝑑𝑦

= ∫

1

0

∫

1

0

𝜔 (𝑦) FL𝛽
𝑗
(𝑦
𝛽
) FL𝛽
𝑗󸀠
(𝑦
𝛽
)

×

𝑖

∑

𝑠=0

𝑖
󸀠

∑

𝑠󸀠=0

𝑏
󸀠

𝑠𝑖
𝑏𝑠󸀠𝑖󸀠

Γ (1 + 𝑠𝛼)

Γ (1 + 𝑠𝛼 − 𝛾)

× 𝑥
(𝑠+𝑠
󸀠
+1)𝛼−𝛾−1

𝑑𝑥 𝑑𝑦

= ∫

1

0

𝜔 (𝑦) FL𝛽
𝑗
(𝑦
𝛽
) FL𝛽
𝑗󸀠
(𝑦
𝛽
)

× (∫

1

0

𝑖

∑

𝑠=0

𝑖
󸀠

∑

𝑠󸀠=0

𝑏
󸀠

𝑠𝑖
𝑏𝑠󸀠𝑖󸀠

Γ (1 + 𝑠𝛼)

Γ (1 + 𝑠𝛼 − 𝛾)

× 𝑥
(𝑠+𝑠
󸀠
+1)𝛼−𝛾−1

𝑑𝑥)𝑑𝑦

=

𝑖

∑

𝑠=0

𝑖
󸀠

∑

𝑠󸀠=0

𝑏
󸀠

𝑠𝑖
𝑏𝑠󸀠𝑖󸀠

(𝑠 + 𝑠󸀠 + 1) 𝛼 − 𝛾

Γ (1 + 𝑠𝛼)

Γ (1 + 𝑠𝛼 − 𝛾)

× ∫

1

0

𝜔 (𝑦) FL𝛽
𝑗
(𝑦
𝛽
) FL𝛽
𝑗󸀠
(𝑦
𝛽
) 𝑑𝑦

=

{{{{{{{

{{{{{{{

{

𝑖

∑

𝑠=0

𝑖
󸀠

∑

𝑠󸀠=0

𝑏
󸀠

𝑠𝑖
𝑏𝑠󸀠𝑖󸀠

(𝑠 + 𝑠󸀠 + 1) 𝛼 − 𝛾

×
Γ (1 + 𝑠𝛼)

Γ (1 + 𝑠𝛼 − 𝛾)

1

(2𝑗 + 1) 𝛽
, 𝑗 = 𝑗

󸀠

0, 𝑗 ̸= 𝑗
󸀠
.

(40)

Theorem 21. Let Ψ(𝑥𝛼, 𝑦𝛽) be the 2D-FLFs vector defined in
(16); one has

𝐷
𝛾

𝑥
Ψ(𝑥
𝛼
, 𝑦
𝛽
) ≃ D𝛾

𝑥
Ψ(𝑥
𝛼
, 𝑦
𝛽
) , (41)

where D𝛾
𝑥
is the 𝑚𝑚󸀠 × 𝑚𝑚󸀠 operational matrix of Caputo

fractional derivative of order 𝛾 > 0, and has the form as follows:

D𝛾
𝑥
=

[
[
[
[

[

𝑂 𝑂 ⋅ ⋅ ⋅ 𝑂

𝐹1,0 𝑂 ⋅ ⋅ ⋅ 𝑂

...
... d

...
𝐹𝑚−1,0 𝐹𝑚−1,1 ⋅ ⋅ ⋅ 𝑂

]
]
]
]

]

(42)
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in which 𝐹𝑖,𝑖󸀠 is𝑚󸀠 ×𝑚󸀠 matrix and the elements are defined as
follows:

𝐹𝑖,𝑖󸀠 = 𝐼

𝑖

∑

𝑠=0

𝑖
󸀠

∑

𝑠󸀠=0

𝑏
󸀠

𝑠𝑖
𝑏𝑠󸀠𝑖󸀠 (2𝑖

󸀠
+ 1) 𝛼

(𝑠 + 𝑠󸀠 + 1) 𝛼 − 𝛾

Γ (1 + 𝑠𝛼)

Γ (1 + 𝑠𝛼 − 𝛾)
,

𝑖, 𝑖
󸀠
= 0, 1, . . . , 𝑚 − 1,

(43)

and 𝐼 is a𝑚󸀠 × 𝑚󸀠 identity matrix.

Proof. Using (41) and the orthogonality property of FLFs, one
can have

D𝛾
𝑥
= ⟨𝐷
𝛾

𝑥
Ψ(𝑥
𝛼
, 𝑦
𝛽
) , Ψ
𝑇
(𝑥
𝛼
, 𝑦
𝛽
)⟩𝐻
−1
, (44)

where ⟨𝐷𝛾
𝑥
Ψ(𝑥
𝛼
, 𝑦
𝛽
), Ψ
𝑇
(𝑥
𝛼
, 𝑦
𝛽
)⟩ and 𝐻−1 are two 𝑚𝑚󸀠 ×

𝑚𝑚
󸀠 matrices defined as

⟨𝐷
𝛾

𝑥
Ψ(𝑥
𝛼
, 𝑦
𝛽
) , Ψ
𝑇
(𝑥
𝛼
, 𝑦
𝛽
)⟩

= {∫

1

0

∫

1

0

𝐷
𝛾

𝑥
{Ψ𝑘 (𝑥

𝛼
, 𝑦
𝛽
)}

× Ψ𝑘󸀠 (𝑥
𝛼
, 𝑦
𝛽
) 𝜔 (𝑥, 𝑦) 𝑑𝑥 𝑑𝑦}

𝑚𝑚
󸀠

𝑘,𝑘󸀠

=
{

{

{

𝑖

∑

𝑠=0

𝑖
󸀠

∑

𝑠󸀠=0

𝑏
󸀠

𝑠𝑖
𝑏𝑠󸀠𝑖󸀠

(𝑠 + 𝑠󸀠 + 1) 𝛼 − 𝛾

×
Γ (1 + 𝑠𝛼)

Γ (1 + 𝑠𝛼 − 𝛾)

1

(2𝑗 + 1) 𝛽

}

}

}

𝑚;𝑚
󸀠

𝑖,𝑖󸀠 ;𝑗=𝑗󸀠

𝐻
−1
= {(2𝑖

󸀠
+ 1) (2𝑗 + 1) 𝛼𝛽}

𝑚;𝑚
󸀠

𝑖,𝑖󸀠 ;𝑗=𝑗󸀠
.

(45)

Now by substituting above equations in (44), Theorem 21
can be proved.

In a similar way as above, one can get Caputo fractional
derivative of order 𝛾 > 0 with respect to variable 𝑦.

Theorem 22. Let Ψ(𝑥𝛼, 𝑦𝛽) be the 2D-FLFs vector defined in
(16); one can have

𝐷
𝛾

𝑦
Ψ(𝑥
𝛼
, 𝑦
𝛽
) ≃ D𝛾

𝑦
Ψ(𝑥
𝛼
, 𝑦
𝛽
) , (46)

where D𝛾
𝑦
is the 𝑚𝑚󸀠 × 𝑚𝑚󸀠 operational matrix of Caputo

fractional derivative of order 𝛾 > 0, and has the form as follows:

D𝛾
𝑦
=

[
[
[
[

[

𝐹 𝑂 ⋅ ⋅ ⋅ 𝑂

𝑂 𝐹 ⋅ ⋅ ⋅ 𝑂

...
... d

...
𝑂 𝑂 ⋅ ⋅ ⋅ 𝐹

]
]
]
]

]

, (47)

in which 𝐹 is 𝑚󸀠 × 𝑚󸀠 matrix and the elements are defined as
follows:

𝐹𝑗,𝑗󸀠 =

𝑗

∑

𝑟=0

𝑗
󸀠

∑

𝑟󸀠=0

𝑏
󸀠

𝑟𝑗
𝑏𝑟󸀠𝑗󸀠 (2𝑗

󸀠
+ 1) 𝛽

(𝑟 + 𝑟󸀠 + 1) 𝛽 + 𝛾

Γ (1 + 𝑟𝛽)

Γ (1 + 𝑟𝛽 + 𝛾)
,

𝑗, 𝑗
󸀠
= 0, 1, . . . , 𝑚

󸀠
− 1.

(48)

5. Applications and Results

Consider the following FPDEs:

𝐷
𝛼

𝑥
𝑢 (𝑥, 𝑡) + 𝐷

𝛽

𝑡
𝑢 (𝑥, 𝑡)

+ 𝑁 [𝑢 (𝑥, 𝑡)] + 𝐿 [𝑢 (𝑥, 𝑡)] = 𝑔 (𝑥, 𝑡) , 𝛼, 𝛽 ∈ (0, 1] ,

(49)

where 𝐿 and 𝑁 are linear operator and nonlinear operator;
respectively.𝐷𝛼 and𝐷𝛽 are the Caputo fractional derivatives
of order 𝛼 and 𝛽, respectively; 𝑔 is a known analytic function.

By employing operator 𝐽𝛽
𝑡
on both sides of (49) and then

using the Lemma 4, one can have

𝑢 (𝑥, 𝑡) + 𝐽
𝛽

𝑡
{𝐷
𝛼

𝑥
𝑢 (𝑥, 𝑡) + 𝑁𝑢 (𝑥, 𝑡) + 𝐿𝑢 (𝑥, 𝑡)}

−

𝑚−1

∑

𝑘=0

𝑢
(𝑘)
(𝑥, 0)

𝑥
𝑘

𝑘!
− 𝐽
𝛽

𝑡
𝑔 (𝑥, 𝑡) = 0.

(50)

We first express unknown function 𝑢(𝑥, 𝑡) and derivative
term𝐷𝛼

𝑥
𝑢(𝑥, 𝑡) as

𝑢 (𝑥, 𝑡) = 𝐶
𝑇
Ψ(𝑥
𝛼
, 𝑡
𝛽
) , 𝐷

𝛼

𝑥
𝑢 (𝑥, 𝑡) = 𝐶

𝑇D𝛼
𝑥
Ψ(𝑥
𝛼
, 𝑡
𝛽
) .

(51)

Now for the nonlinear part, by employing the nonlinear
term approximation method described in [32] and then by
using transform 𝑥 → 𝑥𝛼, 𝑡 → 𝑡𝛽, one can get the 2D-FLFs
expansion of nonlinear term as

𝑁𝑢 (𝑥, 𝑡) = 𝑁
𝑇
Ψ(𝑥
𝛼
, 𝑡
𝛽
) , (52)

where𝑁𝑇 is coefficient matrix of nonlinear term which must
be computed and its order is𝑚𝑚󸀠 × 𝑚𝑚󸀠.

For the linear part, we have

𝐿𝑢 (𝑥, 𝑡) = 𝐿
𝑇
Ψ(𝑥
𝛼
, 𝑡
𝛽
) , (53)

where 𝐿 is a matrix of order𝑚𝑚󸀠 × 𝑚𝑚󸀠.
After substituting (51)–(53) into (50), one can obtain

𝐶
𝑇
+ (𝐶
𝑇D𝛼
𝑥
+ 𝑁
𝑇
+ 𝐿
𝑇
)P𝛽
𝑦
− 𝐶
𝑇

guess = 0. (54)

According to the Wu’s [33] technology for determining the
initial iteration value, the initial iteration value is chosen as
𝑢guess =∑

𝑚−1

𝑘=0
𝑢
(𝑘)
(𝑥, 0)(𝑥

𝑘
/𝑘!) + 𝐽

𝛽

𝑡
{𝑔(𝑥, 𝑡)} = 𝐶𝑇guessΨ(𝑥

𝛼
, 𝑡
𝛽
).

The coefficient matrix 𝐶𝑇 can be computed by using the
MATLAB function fsolve( ) or the method described in [34].
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Figure 1: Numerical results for Example 23 when 𝛽 = 0.25, 0.50.

Now, the presentmethod is applied to solve the linear and
nonlinear FPDEs, and their results are compared with the
solution of other methods. The accuracy of our approach is
estimated by the following error functions:

𝑒𝑗 = (𝑢exact)𝑗 − (𝑢approx)𝑗
, 𝑒 = 𝑢exact − 𝑢approx,

‖𝑒‖𝐿
∞

= max
1≤𝑗≤𝑁

󵄨󵄨󵄨󵄨󵄨
𝑒𝑗
󵄨󵄨󵄨󵄨󵄨
, ‖𝑒‖𝐿

2

= √

𝑁

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨󵄨
(𝑒𝑗)
2󵄨󵄨󵄨󵄨󵄨󵄨
,

‖𝑒‖RMS = √
1

𝑁

𝑁

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨󵄨
(𝑒𝑗)
2󵄨󵄨󵄨󵄨󵄨󵄨
.

(55)

Example 23. Consider the one-dimensional linear inhomo-
geneous fractional Burger’s equation [35]:

𝜕
𝛽
𝑢 (𝑥, 𝑡)

𝜕𝑡𝛽
+
𝜕𝑢 (𝑥, 𝑡)

𝜕𝑥
−
𝜕
2
𝑢 (𝑥, 𝑡)

𝜕𝑥2

=
2𝑡
2−𝛽

Γ (3 − 𝛽)
+ 2𝑥 − 2, 0 < 𝛽 ≤ 1,

(56)

with the initial condition 𝑢(𝑥, 0) = 𝑥2 and the exact solution
being 𝑢(𝑥, 𝑡) = 𝑥2 + 𝑡2.

By employing 2D-FLFs method, one can get

𝐶
𝑇
[𝐼 + (D𝛼

𝑥
− (D𝛼
𝑥
)
2
)P𝛽
𝑡
] = 𝐶
𝑇

guess, (57)

where 𝛼 = 1. Then we can get 𝐶𝑇 = 𝐶𝑇guessinv(𝐼 + (D
𝛼

𝑥
−

(D𝛼
𝑥
)
2
)P𝛽
𝑡
).

Figures 1(a) and 1(b) show the numerical results for 𝛽 =
0.25 with 𝑚 = 3, 𝑚󸀠 = 9 and 𝛽 = 0.5 with 𝑚 = 3, 𝑚󸀠 = 5,
respectively. It should be found that the accuracy of 2D-FLFs
method is very high while only a small number of 2D-FLFs
are needed.

Example 24. Consider nonlinear fractional Klein-Gordon
equation [36, 37]:

𝐷
𝛽

𝑡
𝑢 (𝑥, 𝑡) − 𝐷

𝛼

𝑥
𝑢 (𝑥) + 𝑢

3
(𝑥) = 𝑔 (𝑥, 𝑡) ,

𝑥 ≥ 0, 𝑡 > 0, 𝛼, 𝛽 ∈ (1, 2] ,

(58)

subject to the initial conditions

𝑢 (𝑥, 0) = 0, 𝑢𝑡 (𝑥, 0) = 0, (59)

and 𝑔(𝑥, 𝑡) = Γ(𝛽 + 1)𝑥𝛼 − Γ(𝛼 + 1)𝑡𝛽 + 𝑥3𝛼𝑡3𝛽. The exact
solution of (58) is 𝑢(𝑥, 𝑡) = 𝑥𝛼𝑡𝛽.
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Figure 2: Numerical results of Example 24 for different values of 𝛼 and 𝛽.

By employing 2D-FLFs method with 𝑚 = 3 and 𝑚󸀠 = 3,
one can have

𝐶
𝑇
+ (−𝐶

𝑇D𝛼
𝑥
+ 𝑁
𝑇
)P𝛽
𝑡
− 𝐶
𝑇

guess = 0. (60)

The numerical results of Example 24 for different values
of 𝛼 and 𝛽 are shown in Figure 2. In addition, 𝐿2 and
𝐿∞ errors are presented in Table 1. From Table 1, one can
conclude that the solutions of 2D-FLFs method are in good
agreement with the exact results. Compared with homotopy
analysis method (HAM) [36] and homotopy perturbation
method (HPM) [37], 2D-FLFs method can get high accuracy
solution while only need a few terms of 2D-FLFs.

Example 25. Consider the nonlinear time-fractional advec-
tion partial differential equation [37–39]

𝐷
𝛽

𝑡
𝑢 (𝑥, 𝑡) + 𝑢 (𝑥, 𝑡) 𝑢𝑥 (𝑥, 𝑡) = 𝑥 + 𝑥𝑡

2
,

𝑡 > 0, 𝑥 ∈ 𝑅, 0 < 𝛽 ≤ 1,

(61)

subject to the initial condition

𝑢 (𝑥, 0) = 0. (62)

Figure 3 gives the approximation solutions of (61) for
𝛽 = 0.50 with 𝑚 = 4, 𝑚󸀠 = 5 and 𝛽 = 0.75 with 𝑚 = 4,

𝑚
󸀠
= 9. Moreover, Table 2 shows the approximate solutions

for (61) obtained for different values of 𝛽 using the frac-
tional variational iterationmethod (FVIM) [39] and 2D-FLFs
method. The values of 𝛽 = 1 are the only case for which we
know the exact solution 𝑢(𝑥, 𝑡) = 𝑥𝑡. It should be noted that
only the fourth-order term of the FVIM was used in eval-
uating the approximate solutions for Table 2. From Table 2,
it clearly appears that 2D-FLFs method is more accurate than
FVIM and the obtained results are in good agreement with
exact solution.

Example 26. We finally consider the linear time-fractional
wave equation:

𝜕
2𝛽
𝑢

𝜕𝑡2𝛽
=
1

2
𝑥
2 𝜕
2
𝑢

𝜕𝑥2
, 𝑡 > 0, 𝑥 ∈ 𝑅, 0.5 < 𝛽 ≤ 1, (63)

subject to the initial conditions

𝑢 (𝑥, 0) = 𝑥,
𝜕𝑢 (𝑥, 0)

𝜕𝑡
= 𝑥
2
. (64)

Table 3 gives a comparison of the approximate solutions
at different values of 𝛽 using the FVIM [39] and 2D-FLFs
method. Figure 4 shows the numerical solutions of 2D-FLFs
method for (63) at different values of 𝛽 with 𝑚 = 3, 𝑚󸀠 = 9.
The values of 𝛽 = 1 are the only case for which we know
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Figure 3: Numerical results of Example 25 for different value of 𝛽.
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Figure 4: Numerical results of Example 26 for different value of 𝛽.

Table 1: Errors of Example 24 for different values of 𝛼 and 𝛽 with𝑀 = 𝑀󸀠 = 4.

Error 𝛼 = 𝛽 = 1.25 𝛼 = 𝛽 = 1.50 𝛼 = 𝛽 = 1.75 𝛼 = 𝛽 = 2.00

𝐿
2

5.6437𝑒 − 015 1.2075𝑒 − 015 3.4584𝑒 − 015 8.9917𝑒 − 016

𝐿
∞

4.4409𝑒 − 016 1.1102𝑒 − 016 3.3307𝑒 − 016 1.1102𝑒 − 016
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Table 2: Numerical values when 𝛽 = 0.50, 0.75, and 1.0 for (61).

𝑡 𝑥
𝛽 = 0.50 𝛽 = 0.75 𝛽 = 1.00

FVIM 2D-FLFs FVIM 2D-FLFs FVIM 2D-FLFs Exact

0.25

0.25 0.12422501 0.12225461 0.09230374 0.09224583 0.06250058 0.062500 0.062500
0.50 0.24845002 0.24450922 0.18460748 0.18449165 0.12500117 0.125000 0.125000
0.75 0.37267504 0.36676383 0.27691122 0.27673748 0.18750175 0.187500 0.187500
1.00 0.49690005 0.48901844 0.36921496 0.36898331 0.25000234 0.250000 0.250000

0.50

0.25 0.18377520 0.16584130 0.15148283 0.14985508 0.12507592 0.125000 0.125000
0.50 0.36755040 0.33168259 0.30296566 0.29971016 0.25015184 0.250000 0.250000
0.75 0.55132559 0.49752389 0.45444848 0.44956524 0.37522776 0.375000 0.375000
1.00 0.73510079 0.66336518 0.60593131 0.59942032 0.50030368 0.500000 0.500000

0.75

0.25 0.27227270 0.20678964 0.21407798 0.20119503 0.18881843 0.187500 0.187500
0.50 0.54454540 0.41357929 0.42815596 0.40239005 0.37763687 0.375000 0.375000
0.75 0.81681810 0.62036893 0.64223394 0.60358508 0.56645530 0.562500 0.562500
1.00 1.08909080 0.82715857 0.85631192 0.80478011 0.75527373 0.750000 0.750000

Table 3: Numerical values when 𝛽 = 0.750, 0.875, and 1.000 for (63).

𝑡 𝑥
𝛽 = 0.750 𝛽 = 0.875 𝛽 = 1.000

FVIM 2D-FLFs FVIM 2D-FLFs FVIM Exact

0.25

0.25 0.26622298 0.26622021 0.26593959 0.26594005 0.26578827 0.26578827
0.50 0.56489190 0.56488083 0.56375836 0.56376020 0.56315308 0.56315308
0.75 0.89600678 0.89598187 0.89345630 0.89346046 0.89209443 0.89209443
1.00 1.25956762 1.25952332 1.25503343 1.25504082 1.25261232 1.25261232

0.50

0.25 0.28474208 0.28474415 0.28340402 0.28340659 0.28256846 0.28256846
0.50 0.63896831 0.63897662 0.63361610 0.63362636 0.63027383 0.63027383
0.75 1.06267869 1.06269739 1.05063622 1.05065931 1.04311611 1.04311611
1.00 1.55587323 1.55590647 1.53446439 1.53450544 1.52109530 1.52109531

0.75

0.25 0.30690489 0.30690747 0.30361709 0.30361656 0.30139478 0.30139480
0.50 0.72761955 0.72762986 0.71446834 0.71446625 0.70557913 0.70557918
0.75 1.26214400 1.26216719 1.23255378 1.23254905 1.21255304 1.21255316
1.00 1.91047821 1.91051944 1.85787338 1.85786498 1.82231652 1.82231673

the exact solution 𝑢(𝑥, 𝑡) = 𝑥 + 𝑥2 sinh(𝑡). As previous, only
the fourth-order term of the FVIMwas used in evaluating the
numerical solutions for Table 3. In the case of 𝛽 = 1, it can
be found that absolute error of 2D-FLFs is not bigger than
1.0𝑒 − 10 which is very small compared with that obtained by
FVIM.

6. Conclusion

We define a basis of 2D-FLFs and derived its operational
matrices of fractional derivative and integration, which are
used to approximate the numerical solution of FPDEs. Com-
pared with other numerical methods, 2D-FLFs method can
accurately represent properties of fractional calculus. More-
over, only a small number of 2D-FLFs are needed to obtain
a satisfactory result. The obtained results demonstrate the
validity and applicability of proposed method for solving the
FPFEs.
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