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We have classified all five-dimensional nonconjugate subalgebras of the Lie algebra of the Poincaré group P(1,4) into classes of
isomorphic subalgebras. Using this classification, we have constructed invariant operators (generalized Casimir operators) for all
five-dimensional nonconjugate subalgebras of the Lie algebra of the Poincaré group P(1,4) and presented them in the explicit form.

1. Introduction

At present, there are many papers devoted to the methods for
construction and various applications of invariant operators
(generalized Casimir operators) of the Lie algebras to the
theory of representations of the Lie groups (and their Lie
algebras), theory of special functions, theoretical and mathe-
matical physics, and the theory of differential equations. The
details can be found in [1–27] and references therein.

The generalized Poincaré group P(1,4) is a group of
rotations and translations of the five-dimensionalMinkowski
space M(1,4). This group is applied to solve various problems
of theoretical and mathematical physics (see, e.g., [28–30]).
Invariant operators of the Lie algebra of the Poincaré group
P(1,4) have been constructed by Fushchich and Krivskiy
[4, 5, 28, 31]. Those operators are used for the classification
of the irreducible representations of the Lie algebra of the
Poincaré group P(1,4) and for the construction of P(1,4)-
invariant differential equations.

The subgroup structure of the group P(1,4) has been
studied in [32–36]. One of the nontrivial consequences of
the description of the nonconjugate subalgebras of the Lie
algebra of the group P(1,4) is that the Lie algebra of the group
P(1,4) contains, as subalgebras, the Lie algebra of the Poincaré

group P(1,3) and the Lie algebra of the extended Galilei group
G(1,3) [37], that is, it naturally unites the Lie algebras of the
symmetry groups of relativistic and nonrelativistic physics.

In [38, 39], invariant operators for some nonconjugate
subalgebras of the Lie algebra of the group P(1,4) have been
constructed. The description of invariant operators of eight-
dimensional nonconjugate subalgebras of the Lie algebra of
the group P(1,4) can be found in [40].

Invariant operators for all nonconjugate subalgebras of
dimension ≤4 of the Lie algebra of the group P(1,4) have been
constructed in [41, 42].

The aim of the paper is to construct the invariant
operators of all five-dimensional nonconjugate subalgebras of
the Lie algebra of the group P(1,4).

The outline of this paper is as follows. In Section 2,
we present the brief information about the methods for
calculating invariant operators. In Section 3, we define the
Lie algebra of the Poincaré group P(1,4). In Section 4, we
present the results of the classification of all five-dimensional
decomposable nonconjugate subalgebras of the Lie algebra
of the Poincaré group P(1,4) into isomorphism classes as
well as their invariant operators. Section 5 is devoted to the
presentation of the results of the classification of all five-
dimensional indecomposable nonconjugate subalgebras of
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the Lie algebra of the Poincaré group P(1,4) into isomorphism
classes as well as their invariant operators. The conclusions
and results are discussed in Section 6.

2. About Methods for Calculating
Invariant Operators

A method for calculating invariant operators of Lie algebras
goes back to the original work of Lie; it has been discussed in
detail in a paper of Patera et al. [7]. The method consists in
reducing this problem to that of solving a set of linear first-
order partial differential equations.

In the same work, the method has been applied for
calculating invariant operators of all real Lie algebras of
dimension less or equal five as well as real nilpotent algebras
of dimension six. A short version of this method as well
as the application for construction of invariant operators
of the Lie algebra of the Poincaré group P(1,3) can be
found in the paper by Patera et al. [8]. According to Patera
et al. [7, 8] we also distinguish between Casimir operators
(polynomials in the basic operators of the Lie algebra),
rational invariants (rational functions of the basic operators
of the Lie algebra), and general invariants (irrational and
transcendental functions of the basic operators of the Lie
algebra).

Recently, Boyko et al. [20] have proposed a new purely
algebraic algorithm for computation of invariant operators
(generalized Casimir operators) of Lie algebras. It uses the
Cartan method of moving frames and the knowledge of
the group of inner automorphisms of each Lie algebra. In
particular, the algorithm has been applied to the computation
of invariant operators for real low-dimensional Lie algebras,
finite-dimensional solvable Lie algebras restricted only by a
required structure of the nilradical, the class of triangular
algebras, the class of solvable triangular Lie algebras with one
nilindependent diagonal element, solvable Lie algebras with
triangular nilradicals, and diagonal nilindependent elements,
and so forth. The details can be found in Boyko et al. [20–
24]. The discussion of a purely algebraic algorithm for the
computation of invariant operators of Lie algebras by means
of moving frames as well as the extension of the exploitation
of Cartan’s method in the Fels-Olver version can be found in
the paper of Boyko et al. [25].

In order to construct invariant operators for five-
dimensional nonconjugate subalgebras of the Lie algebra of
the group P(1,4) we have done the following steps.

(i) Based on the complete classification of real struc-
tures of Lie algebras of dimension ≤5 obtained by
Mubarakzyanov in [43, 44], we classify all five-
dimensional nonconjugate subalgebras of the Lie
algebra of the group P(1,4) into classes of isomorphic
subalgebras.

In order to select nonconjugate subalgebras of the Lie
algebra of the Poincaré group P(1,4) from the classification
of five-dimensional Lie algebras provided byMubarakzyanov
we first choose any nonconjugate subalgebra of the Lie alge-
bra of the group P(1,4) and investigate for which subalgebra

from the Mubarakzyanov classification (or subalgebra from
some Mubarakzyanov’s class) this subalgebra is isomorphic.
In order to realize it we directly use the following theorem.

Theorem 1 (see [45]). If the structural constants of the Lie
algebra 𝐿

𝑟
are equal to the structural constants of the Lie alge-

bra 𝐿


𝑟
correspondingly, then these Lie algebras are isomorphic.

Inversely, if the Lie algebras 𝐿
𝑟
and 𝐿



𝑟
are isomorphic, then in

these algebras there exist such bases in which their structural
constants will be equal, correspondingly.

Next, we choose any other subalgebra from the remaining
nonconjugate subalgebras of the Lie algebra of the group
P(1,4) and do with it the same, and so on. We do the same
with all nonconjugate subalgebras of the Lie algebra of the
group P(1,4). In the result we obtain all classes of isomorphic
five-dimensional subalgebras of the Lie algebra of the group
P(1,4).

(ii) We use invariant operators for all real Lie algebras
of dimension ≤5 constructed by Patera et al. [7]
for the construction of invariant operators for all
five-dimensional nonconjugate subalgebras of the Lie
algebra of the group P(1,4).

In order to present the results obtained, we consider the
Lie algebra of the group P(1,4).

3. The Lie Algebra of the Poincaré
Group P(1,4)

The Lie algebra of the group P(1,4) is given by 15 basic
elements 𝑀

𝜇] = −𝑀]𝜇, 𝜇, ] = 0, 1, 2, 3, 4 and 𝑃


𝜇
, 𝜇 =

0, 1, 2, 3, 4 that satisfy the commutation relations

[𝑃


𝜇
, 𝑃


]] = 0,

[𝑀


𝜇], 𝑃


𝜎
] = 𝑔
𝜇𝜎

𝑃


] − 𝑔]𝜎𝑃


𝜇
,

[𝑀


𝜇],𝑀


𝜌𝜎
] = 𝑔
𝜇𝜌

𝑀


]𝜎 + 𝑔]𝜎𝑀


𝜇𝜌
− 𝑔]𝜌𝑀



𝜇𝜎
− 𝑔
𝜇𝜎

𝑀


]𝜌,

(1)

where 𝑔
𝜇], 𝜇, ] = 0, 1, 2, 3, 4 is the metric tensor with

components 𝑔
00

= −𝑔
11

= −𝑔
22

= −𝑔
33

= −𝑔
44

= 1 and
𝑔
𝜇] = 0 if 𝜇 ̸= ]. Here and below,𝑀

𝜇] = 𝑖𝑀
𝜇].

We pass from 𝑀


𝜇] and 𝑃


𝜇
to the following linear combi-

nations:

𝐺 = 𝑀


40
, 𝐿

1
= 𝑀


32
, 𝐿

2
= −𝑀



31
, 𝐿

3
= 𝑀


21
,

𝑃
𝑎
= 𝑀


4𝑎
− 𝑀


𝑎0
, 𝐶

𝑎
= 𝑀


4𝑎
+ 𝑀


𝑎0
, 𝑎 = 1, 2, 3,

𝑋
0
=

𝑃


0
− 𝑃


4

2
, 𝑋

𝑘
= 𝑃


𝑘
, 𝑘 = 1, 2, 3,

𝑋
4
=

𝑃


0
+ 𝑃


4

2
.

(2)

Definition 2. We say that two subalgebras of the Lie algebra
𝐿 which are map to each other by the group of inner
automorphisms of the Lie algebra 𝐿 are conjugate.
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Table 1: Invariant operators of subalgebras of the type 𝐴
3,1

⊕ 𝐴
1
⊕ 𝐴
1
.

Basis elements of subalgebras Invariant operators
⟨−2𝑋

4
, 𝑋
1
, 𝑃
1
⟩ ⊕ ⟨𝑃

3
⟩ ⊕ ⟨𝑃

2
⟩ 𝑋

4
, 𝑃
3
, 𝑃
2

⟨−2𝑋
4
, 𝑋
1
, 𝑃
1
⟩ ⊕ ⟨𝑃

2
⟩ ⊕ ⟨𝑋

3
⟩ 𝑋

4
, 𝑃
2
,𝑋
3

⟨2𝑋
4
, 𝑃
3
, 𝑋
3
⟩ ⊕ ⟨𝑋

1
⟩ ⊕ ⟨𝑋

2
⟩ 𝑋

4
,𝑋
1
,𝑋
2

⟨2𝑋
4
, 𝑃
3
+ 𝑋
0
, 𝑋
3
⟩ ⊕ ⟨𝑋

1
⟩ ⊕ ⟨𝑋

2
⟩ 𝑋

4
,𝑋
1
,𝑋
2

⟨−2𝑋
4
, 𝑋
1
, 𝑃
1
⟩ ⊕ ⟨𝑃

2
⟩ ⊕ ⟨𝑃

3
+ 𝑋
3
⟩ 𝑋

4
, 𝑃
2
, 𝑃
3
+ 𝑋
3

⟨2𝑋
4
, 𝑃
1
+ 𝑋
2
, 𝑋
1
⟩ ⊕ ⟨𝑋

3
⟩ ⊕ ⟨𝑃

2
+ 𝑋
1
⟩ 𝑋

4
,𝑋
3
, 𝑃
2
+ 𝑋
1

⟨2𝛾𝑋
4
, 𝑃
1
+ 𝛾𝑋
2
+ 𝛿𝑋
3
, −𝑃
2
, 𝛾 > 0⟩ ⊕ ⟨𝑃

3
+ 𝑋
3
+ 𝛿𝑋
1
⟩ ⊕ ⟨𝑃

2
+ 𝛾𝑋
1
, 𝛾 > 0⟩ 𝑋

4
, 𝑃
3
+ 𝑋
3
+ 𝛿𝑋
1
, 𝑃
2
+ 𝛾𝑋
1
, 𝛾 > 0

⟨2𝑋
4
, 𝑃
1
+ 𝛿𝑋
3
, −𝑃
2
+ 𝑋
1
, 𝛿 > 0⟩ ⊕ ⟨𝑃

3
+ 𝑋
3
+ 𝛿𝑋
1
, 𝛿 > 0⟩ ⊕ ⟨𝑃

2
⟩ 𝑋

4
,𝑃
2
,𝑃
3
+ 𝑋
3
+ 𝛿𝑋
1
, 𝛿 > 0

⟨2𝑋
4
, −𝑃
1
− 𝑋
2
, 𝑃
2
⟩ ⊕ ⟨𝑃

3
⟩ ⊕ ⟨𝑃

2
+ 𝑋
1
⟩ 𝑋

4
, 𝑃
3
, 𝑃
2
+ 𝑋
1

In order to describe nonconjugate subalgebras of the Lie
algebra of the group P(1,4), we have used a method proposed
by Patera et al. [46].

In the paper, we use the complete list of nonconjugate (up
to P(1,4)-conjugation) subalgebras of the Lie algebra of the
group P(1,4) given in [47].

4. Invariant Operators of Five-Dimensional
Decomposable Nonconjugate Subalgebras of
the Lie Algebra of the Poincaré Group P(1,4)

In the paper, the symbol 𝐴𝑎
𝑟,𝑗

denotes the 𝑗th Lie algebra of
dimension 𝑟 and 𝑎 is a continuous parameter for the algebra.
It should be indicated that the notation 𝐴

𝑎

𝑟,𝑗
corresponds to

those used in the paper by Patera et al. [7]. In what follows,
for the given specific Lie algebra, we write only nonzero
commutation relations [7, 44].

Definition 3. We say that Lie algebra is decomposable if it is
the direct sum of algebras of lower dimension.

Let us consider two Lie algebras 𝐿 and 𝐿
.

Definition 4. We say that the Lie algebra 𝐿⊕𝐿
 is direct sum of

Lie algebras 𝐿 and 𝐿
 if it consists of the vector space 𝐿⊕𝐿

 of
the pairs (𝑋,𝑋



),𝑋 ∈ 𝐿,𝑋 ∈ 𝐿
, satisfying the commutation

relation

[(𝑋,𝑋


) , (𝑌, 𝑌


)] = ([𝑋, 𝑌] , [𝑋


, 𝑌


]) ,

𝑋, 𝑌 ∈ 𝐿, 𝑋


, 𝑌


∈ 𝐿


.

(3)

We present results for five-dimensional decomposable
nonconjugate subalgebras of the Lie algebra of the group
P(1,4).

4.1. Lie Algebras of the Type 5𝐴
1
. Consider ⟨𝑋

0
+𝑋
4
⟩⊕⟨𝑋

1
⟩⊕

⟨𝑋
2
⟩ ⊕ ⟨𝑋

3
⟩ ⊕ ⟨𝑋

0
− 𝑋
4
⟩.

Since the Lie algebras of the type 5𝐴
1
are Abelian, the

invariant operators of these algebras are their basis elements.

4.2. Lie Algebras of the Type𝐴
2
⊕𝐴
1
⊕𝐴
1
⊕𝐴
1
. The nonzero

commutation relation for algebra 𝐴
2
has the following form:

[𝑒
1
, 𝑒
2
] = 𝑒
2
. (4)

The nonconjugate subalgebra of the type 𝐴
2
⊕ 𝐴
1
⊕ 𝐴
1
⊕ 𝐴
1

of the Lie algebra of the group P(1,4) can be written as

⟨−𝐺,𝑋
4
⟩ ⊕ ⟨𝑋

1
⟩ ⊕ ⟨𝑋

2
⟩ ⊕ ⟨𝑋

3
⟩ . (5)

It is known that the invariant operators for Lie algebras of the
type𝐴

2
⊕𝐴
1
are invariant operators of the subalgebras𝐴

2
and

𝐴
1
(see, e.g., Patera et al. [7]). The Lie algebras of the type𝐴

2

do not have invariant operators according to Patera et al. [7,
8]. Each Lie algebra of the type𝐴

1
has one invariant operator,

which is its basis element. Therefore, the invariant operators
for Lie algebra of the type𝐴

2
⊕𝐴
1
⊕𝐴
1
⊕𝐴
1
are basis elements

of subalgebras 𝐴
1
, 𝐴
1
, and 𝐴

1
.

4.3. Lie Algebras of the Type 𝐴
3,1

⊕ 𝐴
1
⊕ 𝐴
1
. The nonzero

commutation relation for algebra𝐴
3,1

has the following form:

[𝑒
2
, 𝑒
3
] = 𝑒
1
. (6)

There exist nine five-dimensional nonconjugate subalgebras
of the Lie algebra of the group P(1,4) which are isomorphic to
algebra of the type 𝐴

3,1
⊕ 𝐴
1
⊕ 𝐴
1
. Two of them depend on

parameters and hence constitute continua of subalgebras.
For all nonconjugate subalgebras invariant operators are

Casimir operators.
The nonconjugate subalgebras of the type 𝐴

3,1
⊕𝐴
1
⊕𝐴
1

of the Lie algebra of the group P(1,4) and their invariant
operators are given in Table 1.

4.4. Lie Algebras of the Type 𝐴
3,2

⊕ 𝐴
1
⊕ 𝐴
1
. The nonzero

commutation relations for algebra 𝐴
3,2

have the following
form:

[𝑒
1
, 𝑒
3
] = 𝑒
1
, [𝑒

2
, 𝑒
3
] = 𝑒
1
+ 𝑒
2
. (7)

There exists only one class of five-dimensional nonconjugate
subalgebras of the Lie algebra of the group P(1,4) which are
isomorphic to subalgebra of the type 𝐴

3,2
⊕ 𝐴
1
⊕ 𝐴
1
.

Among invariant operators of nonconjugate subalgebras
there are Casimir operators, and general invariants.

The nonconjugate subalgebras of the type 𝐴
3,2

⊕𝐴
1
⊕𝐴
1

of the Lie algebra of the group P(1,4) and their invariant
operators are given in Table 2.
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Table 2: Invariant operators of subalgebras of the type 𝐴
3,2

⊕ 𝐴
1
⊕ 𝐴
1
.

Basis elements of subalgebras Invariant operators

⟨2𝑎𝑋
4
, 𝑃
3
, 𝐺 + 𝑎𝑋

3
, 𝑎 < 0⟩ ⊕ ⟨𝑋

1
⟩ ⊕ ⟨𝑋

2
⟩ 𝑋

4
exp [

−𝑃
3

2𝑎𝑋
4

],𝑋
1
,𝑋
2

Table 3: Invariant operators of subalgebra of the type 𝐴
3,3

⊕ 𝐴
1
⊕ 𝐴
1
.

Basis elements of subalgebras Invariant operators

⟨𝑃
3
, 𝑋
4
, 𝐺⟩ ⊕ ⟨𝑋

1
⟩ ⊕ ⟨𝑋

2
⟩

𝑋
4

𝑃
3

,𝑋
1
,𝑋
2

Table 4: Invariant operators of subalgebras of the type 𝐴
3,4

⊕ 𝐴
1
⊕ 𝐴
1
.

Basis elements of subalgebras Invariant operators
⟨𝑋
0
, 𝑋
4
, −𝐺⟩ ⊕ ⟨𝐿

3
⟩ ⊕ ⟨𝑋

3
⟩ 𝑋

0
𝑋
4
, 𝐿
3
,𝑋
3

⟨𝑋
0
, 𝑋
4
, −𝐺⟩ ⊕ ⟨𝑋

1
⟩ ⊕ ⟨𝑋

2
⟩ 𝑋

0
𝑋
4
,𝑋
1
,𝑋
2

⟨𝑋
0
, 𝑋
4
, −𝐺 − 𝑎

3
𝑋
3
, 𝑎
3
< 0⟩ ⊕ ⟨𝑋

1
⟩ ⊕ ⟨𝑋

2
⟩ 𝑋

0
𝑋
4
,𝑋
1
,𝑋
2

4.5. Lie Algebras of the Type 𝐴
3,3

⊕ 𝐴
1
⊕ 𝐴
1
. The nonzero

commutation relations for algebra 𝐴
3,3

have the following
form:

[𝑒
1
, 𝑒
3
] = 𝑒
1
, [𝑒

2
, 𝑒
3
] = 𝑒
2
. (8)

There exists only one five-dimensional nonconjugate subalge-
bra of the Lie algebra of the group P(1,4) which is isomorphic
to subalgebra of the type 𝐴

3,3
⊕ 𝐴
1
⊕ 𝐴
1
.

Among invariant operators of nonconjugate subalgebra
there are Casimir operators and rational invariant.

The nonconjugate subalgebra of the type𝐴
3,3

⊕𝐴
1
⊕𝐴
1
of

the Lie algebra of the group P(1,4) and its invariant operators
are given in Table 3.

4.6. Lie Algebras of the Type 𝐴
3,4

⊕ 𝐴
1
⊕ 𝐴
1
. The nonzero

commutation relations for algebra 𝐴
3,4

have the following
form:

[𝑒
1
, 𝑒
3
] = 𝑒
1
, [𝑒

2
, 𝑒
3
] = −𝑒

2
. (9)

There exist three five-dimensional nonconjugate subalgebras
of the Lie algebra of the group P(1,4) which are isomorphic to
subalgebra of the type 𝐴

3,4
⊕ 𝐴
1
⊕ 𝐴
1
. One of them depends

on parameters and hence constitute continua of subalgebras.
For all nonconjugate subalgebras invariant operators are

Casimir operators.
The nonconjugate subalgebras of the type 𝐴

3,4
⊕𝐴
1
⊕𝐴
1

of the Lie algebra of the group P(1,4) and their invariant
operators are given in Table 4.

4.7. Lie Algebras of the Type 𝐴
3,6

⊕ 𝐴
1
⊕ 𝐴
1
. The nonzero

commutation relations for algebra 𝐴
3,6

have the following
form:

[𝑒
1
, 𝑒
3
] = −𝑒

2
, [𝑒

2
, 𝑒
3
] = 𝑒
1
. (10)

There exist thirteen five-dimensional nonconjugate subal-
gebras of the Lie algebra of the group P(1,4) which are
isomorphic to subalgebra of the type 𝐴

3,6
⊕ 𝐴
1
⊕ 𝐴
1
. Three

of them depend on parameters and hence constitute continua
of subalgebras.

For all nonconjugate subalgebras invariant operators are
Casimir operators.

The nonconjugate subalgebras of the type 𝐴
3,6

⊕𝐴
1
⊕𝐴
1

of the Lie algebra of the group P(1,4) and their invariant
operators are given in Table 5.

4.8. Lie Algebras of the Type𝐴
3,6

⊕𝐴
2
. The nonzero commu-

tation relations for algebra 𝐴
3,6

have the following form:

[𝑒
1
, 𝑒
3
] = −𝑒

2
, [𝑒

2
, 𝑒
3
] = 𝑒
1
. (11)

The nonzero commutation relations for algebra 𝐴
2
have the

following form:

[𝑒
1
, 𝑒
2
] = 𝑒
2
. (12)

There exist five five-dimensional nonconjugate subalgebras of
the Lie algebra of the group P(1,4) which are isomorphic to
subalgebra of the type 𝐴

3,6
⊕ 𝐴
2
. Three of them depend on

parameters and hence constitute continua of subalgebras.
For all nonconjugate subalgebras invariant operators are

Casimir operators. In this case all nonconjugate subalgebras
have the same invariant operator.

The nonconjugate subalgebras of the type𝐴
3,6

⊕𝐴
2
of the

Lie algebra of the group P(1,4) and their invariant operators
are given in Table 6.

4.9. Lie Algebras of the Type 𝐴
3,8

⊕ 𝐴
1
⊕ 𝐴
1
. The nonzero

commutation relations for algebra 𝐴
3,8

have the following
form:

[𝑒
1
, 𝑒
3
] = −2𝑒

2
, [𝑒

1
, 𝑒
2
] = 𝑒
1
, [𝑒

2
, 𝑒
3
] = 𝑒
3
. (13)

There exists only one five-dimensional nonconjugate subalge-
bra of the Lie algebra of the group P(1,4) which is isomorphic
to subalgebra of the type 𝐴

3,8
⊕ 𝐴
1
⊕ 𝐴
1
.

For this nonconjugate subalgebra invariant operators are
Casimir operators.
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Table 5: Invariant operators of subalgebras of the type 𝐴
3,6

⊕ 𝐴
1
⊕ 𝐴
1
.

Basis elements of subalgebras Invariant operators
⟨𝑃
1
, 𝑃
2
, 𝐿
3
⟩ ⊕ ⟨𝑃

3
⟩ ⊕ ⟨𝑋

4
⟩ 𝑃

2

1
+ 𝑃
2

2
, 𝑃
3
,𝑋
4

⟨𝑃
1
, 𝑃
2
, 𝐿
3
⟩ ⊕ ⟨𝑋

3
⟩ ⊕ ⟨𝑋

4
⟩ 𝑃

2

1
+ 𝑃
2

2
,𝑋
3
,𝑋
4

⟨𝑋
1
, −𝑋
2
, −𝐿
3
⟩ ⊕ ⟨𝑃

3
⟩ ⊕ ⟨𝑋

4
⟩ 𝑋

2

1
+ 𝑋
2

2
, 𝑃
3
,𝑋
4

⟨𝑋
1
, −𝑋
2
, −𝐿
3
⟩ ⊕ ⟨𝐺⟩ ⊕ ⟨𝑋

3
⟩ 𝑋

2

1
+ 𝑋
2

2
, 𝐺,𝑋

3

⟨𝑋
1
, 𝑋
2
, 𝐿
3
⟩ ⊕ ⟨𝑋

0
+ 𝑋
4
⟩ ⊕ ⟨𝑃

3
+ 𝐶
3
⟩ 𝑋

2

1
+ 𝑋
2

2
,𝑋
0
+ 𝑋
4
, 𝑃
3
+ 𝐶
3

⟨𝑋
1
, 𝑋
2
, 𝐿
3
⟩ ⊕ ⟨𝑋

4
⟩ ⊕ ⟨𝑋

0
⟩ 𝑋

2

1
+ 𝑋
2

2
,𝑋
4
,𝑋
0

⟨𝑋
1
, 𝑋
2
, 𝐿
3
⟩ ⊕ ⟨𝑋

4
⟩ ⊕ ⟨𝑋

3
⟩ 𝑋

2

1
+ 𝑋
2

2
,𝑋
4
,𝑋
3

⟨𝑋
1
, 𝑋
2
, 𝐿
3
⟩ ⊕ ⟨𝑋

0
− 𝑋
4
⟩ ⊕ ⟨𝑋

3
⟩ 𝑋

2

1
+ 𝑋
2

2
,𝑋
0
− 𝑋
4
,𝑋
3

⟨𝑃
1
, 𝑃
2
, 𝐿
3
⟩ ⊕ ⟨𝑋

4
⟩ ⊕ ⟨𝑃

3
+ 𝑋
3
⟩ 𝑃

2

1
+ 𝑃
2

2
,𝑋
4
, 𝑃
3
+ 𝑋
3

⟨𝑋
1
, 𝑋
2
, 𝐿
3
⟩ ⊕ ⟨𝑋

4
⟩ ⊕ ⟨𝑃

3
+ 𝑋
0
⟩ 𝑋

2

1
+ 𝑋
2

2
,𝑋
4
, 𝑃
3
+ 𝑋
0

⟨𝑋
1
, 𝑋
2
, 𝐿
3
+ 𝑑
3
𝑋
3
, 𝑑
3
< 0⟩ ⊕ ⟨𝑋

4
⟩ ⊕ ⟨𝑋

0
⟩ 𝑋

2

1
+ 𝑋
2

2
,𝑋
4
,𝑋
0

⟨𝑋
1
, 𝑋
2
, 𝐿
3
+ 𝑑
0
𝑋
0
, 𝑑
0
< 0⟩ ⊕ ⟨𝑋

0
− 𝑋
4
⟩ ⊕ ⟨𝑋

3
⟩ 𝑋

2

1
+ 𝑋
2

2
,𝑋
0
− 𝑋
4
,𝑋
3

⟨𝑋
1
, 𝑋
2
, 𝐿
3
+ 𝛼(𝑋

0
+ 𝑋
4
), 𝛼 < 0⟩ ⊕ ⟨𝑋

4
⟩ ⊕ ⟨𝑋

3
⟩ 𝑋

2

1
+ 𝑋
2

2
,𝑋
4
,𝑋
3

Table 6: Invariant operators of subalgebras of the type 𝐴
3,6

⊕ 𝐴
2
.

Basis elements of subalgebras Invariant operators
⟨𝑋
1
, 𝑋
2
, 𝐿
3
⟩ ⊕ ⟨−𝐺, 𝑃

3
⟩ 𝑋

2

1
+ 𝑋
2

2

⟨𝑋
1
, 𝑋
2
, 𝐿
3
⟩ ⊕ ⟨−𝐺,𝑋

4
⟩ 𝑋

2

1
+ 𝑋
2

2

⟨𝑋
1
, 𝑋
2
, 𝐿
3
+ 𝑑𝑋
3
, 𝑑 < 0⟩ ⊕ ⟨−𝐺 − 𝑎𝑋

3
, 𝑋
4
, 𝑎 < 0⟩ 𝑋

2

1
+ 𝑋
2

2

⟨𝑋
1
, −𝑋
2
, −𝐿
3
⟩ ⊕ ⟨−𝐺 − 𝑎𝑋

3
, 𝑋
4
, 𝑎 < 0⟩ 𝑋

2

1
+ 𝑋
2

2

⟨𝑋
1
, 𝑋
2
, 𝐿
3
+ 𝑑𝑋
3
, 𝑑 < 0⟩ ⊕ ⟨−𝐺,𝑋

4
⟩ 𝑋

2

1
+ 𝑋
2

2

Table 7: Invariant operators of subalgebra of the type 𝐴
3,8

⊕ 𝐴
1
⊕ 𝐴
1
.

Basis elements of subalgebras Invariant operators
⟨−𝑃
3
, 𝐺, 𝐶

3
⟩ ⊕ ⟨𝑋

1
⟩ ⊕ ⟨𝑋

2
⟩ 2𝐺

2

− 𝑃
3
𝐶
3
− 𝐶
3
𝑃
3
,𝑋
1
,𝑋
2

Thenonconjugate subalgebra of the type𝐴
3,8

⊕𝐴
1
⊕𝐴
1
of

the Lie algebra of the group P(1,4) and its invariant operators
are given in Table 7.

4.10. Lie Algebras of the Type 𝐴
3,9

⊕ 𝐴
1
⊕ 𝐴
1
. The nonzero

commutation relations for algebra 𝐴
3,9

have the following
form:

[𝑒
1
, 𝑒
2
] = 𝑒
3
, [𝑒

2
, 𝑒
3
] = 𝑒
1
, [𝑒

3
, 𝑒
1
] = 𝑒
2
. (14)

There exist only two five-dimensional nonconjugate sub-
algebras of the Lie algebra of the group P(1,4) which are
isomorphic to subalgebra of the type 𝐴

3,9
⊕ 𝐴
1
⊕ 𝐴
1
.

For all nonconjugate subalgebras invariant operators are
Casimir operators.

The nonconjugate subalgebras of the type 𝐴
3,9

⊕𝐴
1
⊕𝐴
1

of the Lie algebra of the group P(1,4) and their invariant
operators are given in Table 8.

4.11. Lie Algebras of the Type 𝐴
3,9

⊕ 𝐴
2
. The nonzero

commutation relations for algebra 𝐴
3,9

have the following
form:

[𝑒
1
, 𝑒
2
] = 𝑒
3
, [𝑒

2
, 𝑒
3
] = 𝑒
1
, [𝑒

3
, 𝑒
1
] = 𝑒
2
. (15)

The nonzero commutation relations for algebra 𝐴
2
have the

following form:

[𝑒
1
, 𝑒
2
] = 𝑒
2
. (16)

There exist only one five-dimensional nonconjugate subalge-
bra of the Lie algebra of the group P(1,4) which is isomorphic
to subalgebra of the type 𝐴

3,9
⊕ 𝐴
2
.

For this nonconjugate subalgebra invariant operator is
Casimir operator.

The nonconjugate subalgebra of the type 𝐴
3,9

⊕𝐴
2
of the

Lie algebra of the group P(1,4) and its invariant operator are
given in Table 9.

4.12. Lie Algebras of the Type 𝐴
4,1

⊕ 𝐴
1
. The nonzero

commutation relations for algebra 𝐴
4,1

have the following
form:

[𝑒
2
, 𝑒
4
] = 𝑒
1
, [𝑒

3
, 𝑒
4
] = 𝑒
2
. (17)

There exist five five-dimensional nonconjugate subalgebras of
the Lie algebra of the group P(1,4) which are isomorphic to
subalgebra of the type 𝐴

4,1
⊕ 𝐴
1
. One of them depends on

parameters and hence constitute continua of subalgebras.
For all nonconjugate subalgebras invariant operators are

Casimir operators.
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Ta
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3
,
9
⊕
𝐴
1
⊕
𝐴
1
.

Ba
sis

ele
m
en
ts
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su
ba
lg
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ra
s

In
va
ria

nt
op

er
at
or
s

⟨
𝐿
3
,
𝐿
1
,
𝐿
2
⟩
⊕
⟨
𝑋
4
⟩
⊕
⟨
𝑋
0
⟩

𝐿
2 1
+
𝐿
2 2
+
𝐿
2 3
,𝑋
4
,𝑋
0

⟨
1 2
𝐿
3
+

1 4
(
𝑃
3
+
𝐶
3
)
,
1 2
𝐿
2
+

1 4
(
𝑃
2
+
𝐶
2
)
,
−
1 2
𝐿
1
−

1 4
(
𝑃
1
+
𝐶
1
)
⟩

⊕
⟨
𝑋
0
+
𝑋
4
⟩
⊕
⟨
𝐿
3
−

1 2
(
𝑃
3
+
𝐶
3
)
⟩

(
2
𝐿
1
+
𝑃
1
+
𝐶
1
)
2

+
(
2
𝐿
2
+
𝑃
2
+
𝐶
2
)
2

+
(
2
𝐿
3
+
𝑃
3
+
𝐶
3
)
2

,
𝑋
0
+
𝑋
4
,2

𝐿
3
−
(
𝑃
3
+
𝐶
3
)
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Table 9: Invariant operator of subalgebra of the type 𝐴
3,9

⊕ 𝐴
2
.

Basis elements of subalgebras Invariant operators
⟨−𝐿
3
, −𝐿
1
, 𝐿
2
⟩ ⊕ ⟨−𝐺,𝑋

4
⟩ 𝐿

2

1
+ 𝐿
2

2
+ 𝐿
2

3

Table 10: Invariant operators of subalgebras of the type 𝐴
4,1

⊕ 𝐴
1
.

Basis elements of subalgebras Invariant operators
⟨2𝑋
4
, −𝑋
3
, 𝑋
0
, 𝑃
3
⟩ ⊕ ⟨𝐿

3
⟩ 𝑋

4
,𝑋2
3
− 4𝑋
4
𝑋
0
, 𝐿
3

⟨2𝑋
4
, −𝑋
3
, 𝑋
0
, 𝑃
3
⟩ ⊕ ⟨𝑋

1
⟩ 𝑋

4
,𝑋2
3
− 4𝑋
4
𝑋
0
,𝑋
1

⟨2𝑋
4
, −𝑋
3
, 𝑋
0
, 𝑃
3
+ 𝑋
2
⟩ ⊕ ⟨𝑋

1
⟩ 𝑋

4
,𝑋2
3
− 4𝑋
4
𝑋
0
,𝑋
1

⟨2𝑋
4
, −𝑋
1
, 𝑃
2
+ 𝑋
0
, 𝑃
1
⟩ ⊕ ⟨𝑋

3
⟩ 𝑋

4
,𝑋2
1
− 4𝑋
4
(𝑃
2
+ 𝑋
0
),𝑋
3

⟨2𝛾𝑋
4
, −𝛾𝑋

1
, 𝑃
2
+ 𝛾𝑋
0
+ 𝑋
1
, 𝑃
1
+ 𝑋
2
, 𝛾 > 0⟩ ⊕ ⟨𝑋

3
⟩ 𝑋

4
, 𝛾2𝑋2
1
− 4𝛾𝑋

4
(𝑃
2
+ 𝛾𝑋
0
+ 𝑋
1
),𝑋
3

Table 11: Invariant operators of subalgebras of the type 𝐴
𝑎

4,2
⊕ 𝐴
1
.

Basis elements of subalgebras Invariant operators

𝑎 = 1 : ⟨𝑃
2
, 2𝑎
1
𝑋
4
, 𝑃
1
, 𝐺 + 𝑎

1
𝑋
1
, 𝑎
1
< 0⟩ ⊕ ⟨𝑋

3
⟩ 𝑋

4
exp(

−𝑃
1

2𝑎
1
𝑋
4

), 𝑋4
𝑃
2

,𝑋
3

Table 12: Invariant operators of subalgebra of the type 𝐴
𝑎𝑏

4,5
⊕ 𝐴
1
.

Basis elements of subalgebras Invariant operators

𝑎 = 1, 𝑏 = 1 : ⟨𝑋
4
, 𝑃
1
, 𝑃
2
, 𝐺⟩ ⊕ ⟨𝑋

3
⟩

𝑋
4

𝑃
1

, 𝑋4
𝑃
2

,𝑋
3

Thenonconjugate subalgebras of the type𝐴
4,1

⊕𝐴
1
of the

Lie algebra of the group P(1,4) and their invariant operators
are given in Table 10.

4.13. Lie Algebras of the Type 𝐴
𝑎

4,2
⊕ 𝐴
1
. The nonzero

commutation relations for algebra 𝐴
𝑎

4,2
have the following

form:
[𝑒
1
, 𝑒
4
] = 𝑎𝑒

1
, [𝑒

2
, 𝑒
4
] = 𝑒
2
,

[𝑒
3
, 𝑒
4
] = 𝑒
2
+ 𝑒
3
, (𝑎 ̸= 0) .

(18)

There exists only one class of five-dimensional nonconjugate
subalgebras of the Lie algebra of the group P(1,4) which are
isomorphic to subalgebras of the type 𝐴

𝑎

4,2
⊕ 𝐴
1
.

Among invariant operators of nonconjugate subalgebras
there are Casimir operator, rational invariant and general
invariants.

The nonconjugate subalgebras of the type𝐴𝑎
4,2

⊕𝐴
1
of the

Lie algebra of the group P(1,4) and their invariant operators
are given in Table 11.

4.14. Lie Algebras of the Type 𝐴
𝑎𝑏

4,5
⊕ 𝐴
1
. The nonzero

commutation relations for algebra 𝐴
𝑎𝑏

4,5
have the following

form:
[𝑒
1
, 𝑒
4
] = 𝑒
1
, [𝑒

2
, 𝑒
4
] = 𝑎𝑒

2
,

[𝑒
3
, 𝑒
4
] = 𝑏𝑒

3
, (𝑎𝑏 ̸= 0, −1 ≤ 𝑎 ≤ 𝑏 ≤ 1) .

(19)

There exists only one five-dimensional nonconjugate subalge-
bra of the Lie algebra of the group P(1,4) which is isomorphic
to subalgebra of the type 𝐴

𝑎𝑏

4,5
⊕ 𝐴
1
.

Among invariant operators of nonconjugate subalgebra
there are Casimir operator and rational invariants.

The nonconjugate subalgebra of the type 𝐴𝑎𝑏
4,5

⊕𝐴
1
of the

Lie algebra of the group P(1,4) and its invariant operators are
given in Table 12.

4.15. Lie Algebras of the Type 𝐴
𝑎𝑏

4,6
⊕ 𝐴
1
. The nonzero

commutation relations for algebra 𝐴
𝑎𝑏

4,6
have the following

form:

[𝑒
1
, 𝑒
4
] = 𝑎𝑒

1
, [𝑒

2
, 𝑒
4
] = 𝑏𝑒

2
− 𝑒
3
,

[𝑒
3
, 𝑒
4
] = 𝑒
2
+ 𝑏𝑒
3
, (𝑎 ̸= 0, 𝑏 ≥ 0) .

(20)

There exist only two classes of five-dimensional nonconjugate
subalgebras of the Lie algebra of the group P(1,4) which are
isomorphic to subalgebras of the type 𝐴

𝑎𝑏

4,6
⊕ 𝐴
1
.

Among invariant operators of nonconjugate subalgebras
there are Casimir operators, rational invariant and general
invariants.

The nonconjugate subalgebras of the type𝐴𝑎𝑏
4,6

⊕𝐴
1
of the

Lie algebra of the group P(1,4) and their invariant operators
are given in Table 13.

4.16. Lie Algebras of the Type 𝐴
𝑏

4,9
⊕ 𝐴
1
. The nonzero

commutation relations for algebra 𝐴
𝑏

4,9
have the following

form:

[𝑒
2
, 𝑒
3
] = 𝑒
1
, [𝑒

1
, 𝑒
4
] = (1 + 𝑏) 𝑒

1
,

[𝑒
2
, 𝑒
4
] = 𝑒
2
, [𝑒

3
, 𝑒
4
] = 𝑏𝑒

3
, (−1 < 𝑏 ≤ 1) .

(21)
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Table 13: Invariant operators of subalgebras of the type 𝐴
𝑎𝑏

4,6
⊕ 𝐴
1
.

Basis elements of subalgebras Invariant operators

𝑎 = 𝑒, 𝑏 = 𝑒 : ⟨𝑋
4
, 𝑃
1
, 𝑃
2
, 𝐿
3
+ 𝑒𝐺, 𝑒 > 0⟩ ⊕ ⟨𝑋

3
⟩

𝑋
2

4

𝑃
2

1
+ 𝑃
2

2

, (𝑃2
1
+ 𝑃
2

2
) (

𝑃
1
+ 𝑖𝑃
2

𝑃
1
− 𝑖𝑃
2

)

𝑖𝑒

,𝑋
3
, 𝑒 > 0

𝑎 = 𝑒, 𝑏 = 0 : ⟨𝑋
4
, 𝑋
1
, 𝑋
2
, 𝐿
3
+ 𝑒𝐺, 𝑒 > 0⟩ ⊕ ⟨𝑋

3
⟩ 𝑋

2

1
+ 𝑋
2

2
, ln𝑋

4
+ 𝑒 arcsin 𝑋

1

√𝑋
2

1
+ 𝑋
2

2

,𝑋
3
, 𝑒 > 0

Table 14: Invariant operators of subalgebras of the type 𝐴
𝑏

4,9
⊕ 𝐴
1
(𝑏 = 0).

Basis elements of subalgebras Invariant operators
⟨2𝑋
4
, 𝑃
3
, 𝑋
3
, 𝐺⟩ ⊕ ⟨𝐿

3
⟩ 𝐿

3

⟨2𝑋
4
, 𝑃
3
, 𝑋
3
, 𝐺⟩ ⊕ ⟨𝑋

1
⟩ 𝑋

1

⟨2𝑒𝑋
4
, 𝑃
3
, 𝑋
1
+ 𝑒𝑋
3
, 𝐺, 𝑒 > 0⟩ ⊕ ⟨𝑋

2
⟩ 𝑋

2

⟨2𝑋
4
, 𝑃
3
, 𝑋
3
, 𝐺 + 𝑎𝑋

2
, 𝑎 < 0⟩ ⊕ ⟨𝑋

1
⟩ 𝑋

1

⟨2𝜇𝑋
4
, 𝑃
3
, 𝑋
1
+ 𝜇𝑋
3
, 𝐺 + 𝛼𝑋

1
, 𝛼 < 0, 𝜇 > 0⟩ ⊕ ⟨𝑋

2
⟩ 𝑋

2

Table 15: Invariant operators of subalgebras of the type 𝐴
4,10

⊕ 𝐴
1
.

Basis elements of subalgebras Invariant operators
⟨−4𝑋

4
, 𝑃
1
+ 𝑋
2
, 𝑃
2
− 𝑋
1
, 𝐿
3
⟩ ⊕ ⟨𝑃

3
+ ℎ̃
3
𝑋
3
⟩ 𝑋

4
, −8𝑋

4
𝐿
3
+ (𝑃
1
+ 𝑋
2
)
2

+ (𝑃
2
− 𝑋
1
)
2, 𝑃
3
+ ℎ̃
3
𝑋
3

⟨−4𝑋
4
, 𝑃
1
+ 𝑋
2
, 𝑃
2
− 𝑋
1
, 𝐿
3
⟩ ⊕ ⟨𝑋

3
⟩ 𝑋

4
, −8𝑋

4
𝐿
3
+ (𝑃
1
+ 𝑋
2
)
2

+ (𝑃
2
− 𝑋
1
)
2,𝑋
3

Table 16: Invariant operator of subalgebra of the type 𝐴
4,12

⊕ 𝐴
1
.

Basis elements of subalgebras Invariant operators
⟨−𝑃
1
, 𝑃
2
, 𝐺, −𝐿

3
⟩ ⊕ ⟨𝑋

3
⟩ 𝑋

3

There exist five five-dimensional nonconjugate subalgebras
of the Lie algebra of the group P(1,4) which are isomorphic
to algebra of the type 𝐴

𝑏

4,9
⊕ 𝐴
1
. Three of them depend on

parameters and hence constitute continua of subalgebras.
For all nonconjugate subalgebras invariant operators are

Casimir operators.
The nonconjugate subalgebras of the type 𝐴

𝑏

4,9
⊕ 𝐴
1
(𝑏 =

0) of the Lie algebra of the group P(1,4) and their invariant
operators are given in Table 14.

4.17. Lie Algebras of the Type 𝐴
4,10

⊕ 𝐴
1
. The nonzero

commutation relations for algebra 𝐴
4,10

have the following
form:

[𝑒
2
, 𝑒
3
] = 𝑒
1
, [𝑒

2
, 𝑒
4
] = −𝑒

3
, [𝑒

3
, 𝑒
4
] = 𝑒
2
. (22)

There exist twofive-dimensional nonconjugate subalgebras of
the Lie algebra of the group P(1,4) which are isomorphic to
subalgebra of the type 𝐴

4,10
⊕ 𝐴
1
. One of them depends on

parameters and hence constitute continua of subalgebras.
For all nonconjugate subalgebras invariant operators are

Casimir operators.
The nonconjugate subalgebras of the type 𝐴

4,10
⊕ 𝐴
1

of the Lie algebra of the group P(1,4) and their invariant
operators are given in Table 15.

4.18. Lie Algebras of the Type 𝐴
4,12

⊕ 𝐴
1
. The nonzero

commutation relations for algebra 𝐴
4,12

have the following
form:

[𝑒
1
, 𝑒
3
] = 𝑒
1
, [𝑒

2
, 𝑒
3
] = 𝑒
2
,

[𝑒
1
, 𝑒
4
] = −𝑒

2
, [𝑒

2
, 𝑒
4
] = 𝑒
1
.

(23)

There exists only one five-dimensional nonconjugate subalge-
bra of the Lie algebra of the group P(1,4) which is isomorphic
to algebra of the type 𝐴

4,12
⊕ 𝐴
1
.

For this nonconjugate subalgebra invariant operator is
Casimir operator.

The nonconjugate subalgebra of the type𝐴
4,12

⊕𝐴
1
of the

Lie algebra of the group P(1,4) and its invariant operator are
given in Table 16.

Thus, we have described the invariant operators for
all decomposable five-dimensional subalgebras of the Lie
algebra of the group P(1,4).

5. Invariant Operators of Five-Dimensional
Indecomposable Nonconjugate Subalgebras
of the Lie Algebra of the Poincaré
Group P(1,4)

Wepresent results for five-dimensional indecomposable non-
conjugate subalgebras of the Lie algebra of the group P(1,4).
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Table 17: Invariant operators of subalgebras of the type 𝐴
5,4
.

Basis elements of subalgebras Invariant operators
⟨2𝑋
4
, 𝑃
1
, 𝑃
2
, 𝑋
1
, 𝑋
2
⟩ 𝑋

4

⟨2𝑋
4
, 𝑃
1
, 𝑃
2
, 𝑋
1
+ 𝑒𝑋
3
, 𝑋
2
, 𝑒 > 0⟩ 𝑋

4

⟨2𝑋
4
, 𝑃
1
+ 𝑋
3
, 𝑃
2
, 𝑋
1
, 𝑋
2
⟩ 𝑋

4

⟨2𝑋
4
, 𝑃
1
, 𝑃
2
+ 𝑋
3
, 𝑋
1
+ 𝜇𝑋
3
, 𝑋
2
⟩ 𝑋

4

⟨2𝑋
4
, 𝑃
1
, 𝑃
2
+ 𝑋
3
, 𝑋
1
, −

1

2
(𝑃
3
− 𝑋
2
)⟩ 𝑋

4

⟨2𝑋
4
, 𝑃
1
, 𝑃
2
+ 𝑋
3
, 𝑋
1
, −

1

2
(𝑃
3
− 𝑋
2
+ 𝜇𝑋
3
) , 𝜇 ̸= 0⟩ 𝑋

4

⟨4𝑋
4
, 𝑃
1
+ 𝛽𝑋
2
, 𝑃
2
+ 𝑋
3
+ 𝛽𝑋
1
, 𝑃
2
+ 𝑋
3
+ (𝛽 + 2)𝑋

1
, 𝑃
1
− 𝑃
3
+ (𝛽 + 1)𝑋

2
, 𝛽 > 0⟩ 𝑋

4

⟨4𝑋
4
, 𝑃
2
+ 𝛾𝑋
1
+ 𝑋
3
, 𝑃
1
+ 𝛾𝑋
2
+ 𝛿𝑋
3
, 𝑃
1
− 𝑃
3
− 𝛿𝑋
1
+ (𝛾 + 1)𝑋

2
+ (𝛿 − 𝜇)𝑋

3
, 𝑃
2
+ (𝛾 + 2)𝑋

1
+ 𝑋
3
, 𝛾 > 0, 𝜇 > 0⟩ 𝑋

4

⟨4𝑋
4
, 𝑃
1
+ 𝑃
2
+ (𝛿 + 2)𝑋

1
+ (𝛿 + 1)𝑋

3
, 𝑃
3
− 𝑃
1
− 𝑋
2
+ (𝜇 − 𝛿)𝑋

3
, 𝑃
2
+ 2𝑋
1
+ 𝑋
3
, 𝑃
2
+ 𝑋
3
⟩ 𝑋

4

Table 18: Invariant operators of subalgebras of the type 𝐴
5,5
.

Basis elements of subalgebras Invariant operators
⟨2𝑋
4
, −𝑋
2
, 𝑃
1
+ 𝑋
0
, 𝑋
1
, 𝑃
2
+ 𝛽𝑋
3
, 𝛽 > 0⟩ 𝑋

4

⟨2𝑋
4
, −𝑋
2
, 𝑃
1
+ 𝑋
0
, 𝑋
1
, 𝑃
2
⟩ 𝑋

4

⟨2𝑋
4
, −𝑋
2
, 𝑃
1
+ 𝑋
0
, 𝑋
1
+ 𝜇𝑋
3
, 𝑃
2
+ 𝛽𝑋
3
, 𝛽 > 0, 𝜇 > 0⟩ 𝑋

4

⟨2𝑋
4
, −𝑋
2
, 𝑃
1
+ 𝑋
0
, 𝑋
1
+ 𝜇𝑋
3
, 𝑃
2
, 𝜇 > 0⟩ 𝑋

4

Table 19: Invariant operators of subalgebra of the type 𝐴
𝑎𝑏𝑐

5,7
.

Basis elements of subalgebras Invariant operators

𝑎 = 1, 𝑏 = 1, 𝑐 = 1 : ⟨𝑃
1
, 𝑃
2
, 𝑃
3
, 𝑋
4
, 𝐺⟩

𝑃
1

𝑃
2

,
𝑃
1

𝑃
3

,
𝑃
1

𝑋
4

5.1. Lie Algebras of the Type 𝐴
5,4
. The nonzero commutation

relations for algebra 𝐴
5,4

have the following form:

[𝑒
2
, 𝑒
4
] = 𝑒
1
, [𝑒

3
, 𝑒
5
] = 𝑒
1
. (24)

This Lie algebra is nilpotent.
There are nine nonconjugate subalgebras of the Lie

algebra of the group P(1,4) which are isomorphic to Lie
algebra of type 𝐴

5,4
, six of which depend on parameters and

hence constitute continua of subalgebras.
Invariant operators of all subalgebras are Casimir oper-

ators. Moreover, all subalgebras have the same invariant
operator.

The nonconjugate subalgebras of the type 𝐴
5,4

of the Lie
algebra of the group P(1,4) and their invariant operators are
given in Table 17.

5.2. Lie Algebras of the Type 𝐴
5,5
. The nonzero commutation

relations for algebra 𝐴
5,5

have the following form:

[𝑒
3
, 𝑒
4
] = 𝑒
1
, [𝑒

2
, 𝑒
5
] = 𝑒
1
, [𝑒

3
, 𝑒
5
] = 𝑒
2
. (25)

This Lie algebra is nilpotent.
There are four nonconjugate subalgebras of the Lie alge-

bra of the group P(1,4) which are isomorphic to Lie algebra
of the type 𝐴

5,5
, three of which depend on parameters and

hence constitute continua of subalgebras.
Invariant operators of all subalgebras are Casimir oper-

ators. Moreover, all subalgebras have the same invariant
operator.

The nonconjugate subalgebras of the type 𝐴
5,5

of the Lie
algebra of the group P(1,4) and their invariant operators are
given in Table 18.

5.3. Lie Algebras of the Type 𝐴𝑎𝑏𝑐
5,7
. The nonzero commutation

relations for algebra 𝐴
𝑎𝑏𝑐

5,7
have the following form:

[𝑒
1
, 𝑒
5
] = 𝑒
1
, [𝑒

2
, 𝑒
5
] = 𝑎𝑒

2
, [𝑒

3
, 𝑒
5
] = 𝑏𝑒

3
,

[𝑒
4
, 𝑒
5
] = 𝑐𝑒

4
, (𝑎𝑏𝑐 ̸= 0, −1 ≤ 𝑐 ≤ 𝑏 ≤ 𝑎 ≤ 1) .

(26)

This Lie algebra is solvable.
The isomorphism of five-dimensional nonconjugate sub-

algebras of the Lie algebra of the group P(1,4) and Lie algebras
of the type 𝐴

𝑎𝑏𝑐

5,7
is possible only when 𝑎 = 1, 𝑏 = 1, and

𝑐 = 1. Only one nonconjugate subalgebra is isomorphic to
subalgebra of this type.

Invariant operators for this subalgebra are rational
invariants.

The nonconjugate subalgebra of the type 𝐴
𝑎𝑏𝑐

5,7
of the Lie

algebra of the group P(1,4) and its invariant operators are
given in Table 19.

5.4. Lie Algebras of the Type 𝐴𝑏𝑐
5,9
. The nonzero commutation

relations for algebra 𝐴
𝑏𝑐

5,9
have the following form:

[𝑒
1
, 𝑒
5
] = 𝑒
1
, [𝑒

2
, 𝑒
5
] = 𝑒
1
+ 𝑒
2
,

[𝑒
3
, 𝑒
5
] = 𝑏𝑒

3
, [𝑒

4
, 𝑒
5
] = 𝑐𝑒

4
, (0 ̸= 𝑐 ≤ 𝑏) .

(27)

This Lie algebra is solvable.
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Table 20: Invariant operators of subalgebras of the type 𝐴
𝑏𝑐

5,9
.

Basis elements of subalgebras Invariant operators

𝑏 = 1, 𝑐 = 1 : ⟨2𝑎
2
𝑋
4
, 𝑃
1
, 𝑃
2
, 𝑃
3
, 𝐺 + 𝑎

2
𝑋
1
, 𝑎
2
< 0⟩

𝑋
4

𝑃
2

,
𝑋
4

𝑃
3

, 𝑋
4
exp(

−𝑃
1

2𝑎
2
𝑋
4

)

Table 21: Invariant operators of subalgebras of the type 𝐴
𝑎𝑝𝑞

5,13
.

Basis elements of subalgebras Invariant operators

𝑎 = 1, 𝑝 = 1, 𝑞 =
1

𝑒
: ⟨𝑃
3
, 𝑋
4
, 𝑃
1
, 𝑃
2
, 𝐺 +

1

𝑒
𝐿
3
, 𝑒 < 0⟩

𝑃
3

𝑋
4

,
𝑃
2

3

𝑃
2

1
+ 𝑃
2

2

, 𝑃2/𝑒
3

(
𝑃
1
+ 𝑖𝑃
2

𝑃
1
− 𝑖𝑃
2

)

𝑖

𝑎 = 1, 𝑝 = 0, 𝑞 =
1

𝑒
: ⟨𝑃
3
, 𝑋
4
, 𝑋
1
, 𝑋
2
, 𝐺 +

1

𝑒
𝐿
3
, 𝑒 < 0⟩

𝑃
3

𝑋
4

, 1

𝑋
2

1
+ 𝑋
2

2

, 𝑃2/𝑒
3

(
𝑋
1
+ 𝑖𝑋
2

𝑋
1
− 𝑖𝑋
2

)

𝑖

𝑎 = −1, 𝑝 = 0, 𝑞 =
1

𝑒
: ⟨𝑋
0
, 𝑋
4
, −𝑋
1
, 𝑋
2
, −𝐺 −

1

𝑒
𝐿
3
, 𝑒 > 0⟩

1

𝑋
0
𝑋
4

, 1

𝑋
2

1
+ 𝑋
2

2

,𝑋2/𝑒
0

(
𝑋
1
− 𝑖𝑋
2

𝑋
1
+ 𝑖𝑋
2

)

𝑖

𝑎 = −1, 𝑝 = 0, 𝑞 = −
1

𝑒
: ⟨𝑋
0
, 𝑋
4
, 𝑋
1
, 𝑋
2
, −𝐺 −

1

𝑒
𝐿
3
−

𝜅
3

𝑒
𝑋
3
, 𝑒 > 0, 𝜅

3
< 0⟩

1

𝑋
0
𝑋
4

, 1

𝑋
2

1
+ 𝑋
2

2

,𝑋−2/𝑒
0

(
𝑋
1
+ 𝑖𝑋
2

𝑋
1
− 𝑖𝑋
2

)

𝑖

Table 22: Invariant operators of subalgebras of the type 𝐴
𝑝

5,14
(𝑝 = 0).

Basis elements of subalgebras Invariant operators

⟨−2𝑋
4
, 𝑋
3
, −𝑃
1
, 𝑃
2
, 𝑃
3
− 𝐿
3
⟩ 𝑋

4
, 𝑃2
1
+ 𝑃
2

2
, arcsin 𝑃

1

√𝑃
2

1
+ 𝑃
2

2

+
𝑋
3

2𝑋
4

⟨2𝑋
4
, 𝑋
3
, 𝑋
1
, 𝑋
2
, 𝐿
3
− 𝑃
3
⟩ 𝑋

4
,𝑋2
1
+ 𝑋
2

2
, arcsin 𝑋

1

√𝑋
2

1
+ 𝑋
2

2

+
𝑋
3

2𝑋
4

⟨2𝑑
3
𝑋
4
, 𝑃
3
+ 𝑋
3
, 𝑃
1
, 𝑃
2
, 𝐿
3
− 𝑑
3
𝑋
3
, 𝑑
3
< 0⟩ 𝑋

4
, 𝑃2
1
+ 𝑃
2

2
, arcsin 𝑃

1

√𝑃
2

1
+ 𝑃
2

2

+
𝑃
3
+ 𝑋
3

2𝑑
3
𝑋
4

⟨2𝑑
3
𝑋
4
, 𝑃
3
, 𝑃
1
, 𝑃
2
, 𝐿
3
+ 𝑑
3
𝑋
3
, 𝑑
3
< 0⟩ 𝑋

4
, 𝑃2
1
+ 𝑃
2

2
, arcsin 𝑃

1

√𝑃
2

1
+ 𝑃
2

2

+
𝑃
3

2𝑑
3
𝑋
4

⟨2𝑑𝑋
4
, 𝑃
3
+ 𝑋
0
, 𝑋
1
, 𝑋
2
, 𝐿
3
+ 𝑑𝑋
3
, 𝑑 < 0⟩ 𝑋

4
,𝑋2
1
+ 𝑋
2

2
, arcsin 𝑋

1

√𝑋
2

1
+ 𝑋
2

2

+
𝑃
3
+ 𝑋
0

2𝑑𝑋
4

⟨−2𝑑𝑋
4
, 𝑃
3
, −𝑋
1
, 𝑋
2
, −𝐿
3
− 𝑑𝑋
3
, 𝑑 < 0⟩ 𝑋

4
,𝑋2
1
+ 𝑋
2

2
, arcsin 𝑋

1

√𝑋
2

1
+ 𝑋
2

2

+
𝑃
3

2𝑑𝑋
4

⟨2𝑋
4
, 𝑋
3
, 𝑋
1
, 𝑋
2
, 𝐿
3
− 𝑃
3
+ 𝛼
0
𝑋
0
, 𝛼
0
< 0⟩ 𝑋

4
,𝑋2
1
+ 𝑋
2

2
, arcsin 𝑋

1

√𝑋
2

1
+ 𝑋
2

2

+
𝑋
3

2𝑋
4

The isomorphism of five-dimensional nonconjugate sub-
algebras of the Lie algebra of the group P(1,4) and Lie algebras
of the type 𝐴

𝑏𝑐

5,9
is possible only when 𝑏 = 1 and 𝑐 = 1. Only

one class of nonconjugate subalgebras is isomorphic to Lie
algebra of this type.

Among the invariant operators of these subalgebras there
are rational invariants as well as general invariants.

The nonconjugate subalgebras of the type 𝐴
𝑏𝑐

5,9
of the Lie

algebra of the group P(1,4) and its invariant operators are
given in Table 20.

5.5. Lie Algebras of the Type𝐴𝑎𝑝𝑞
5,13

. Thenonzero commutation
relations for algebra 𝐴

𝑎𝑝𝑞

5,13
have the following form:

[𝑒
1
, 𝑒
5
] = 𝑒
1
, [𝑒

2
, 𝑒
5
] = 𝑎𝑒

2
, [𝑒

3
, 𝑒
5
] = 𝑝𝑒

3
− 𝑞𝑒
4
,

[𝑒
4
, 𝑒
5
] = 𝑞𝑒

3
+ 𝑝𝑒
4
, (𝑎𝑞 ̸= 0, |𝑎| ≤ 1) .

(28)

This Lie algebra is solvable.

There exist four classes of five-dimensional nonconjugate
subalgebras of the Lie algebra of the group P(1,4) which are
isomorphic to Lie algebras of the type𝐴𝑎𝑝𝑞

5,13
.They correspond

to four different values of parameters 𝑎, 𝑝, 𝑞.
Among the invariant operators of these subalgebras there

are rational invariants as well as general invariants.
The nonconjugate subalgebras of the type 𝐴𝑎𝑝𝑞

5,13
of the Lie

algebra of the group P(1,4) and their invariant operators are
given in Table 21.

5.6. Lie Algebras of the Type𝐴𝑝
5,14

. Thenonzero commutation
relations for algebra 𝐴

𝑝

5,14
have the following form:

[𝑒
2
, 𝑒
5
] = 𝑒
1
, [𝑒

3
, 𝑒
5
] = 𝑝𝑒

3
− 𝑒
4
, [𝑒

4
, 𝑒
5
] = 𝑒
3
+ 𝑝𝑒
4
.

(29)

This Lie algebra is solvable.
There exist seven five-dimensional nonconjugate sub-

algebras of the Lie algebra of the group P(1,4) which are
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Table 23: Invariant operators of subalgebras of the type 𝐴
𝑝𝑞

5,16
.

Basis elements of subalgebras Invariant operators

𝑝 = 1, 𝑞 = −
1

𝑏
: ⟨2

𝑘

𝑏
𝑋
4
, 𝑃
3
, −𝑃
1
, 𝑃
2
, 𝐺 +

1

𝑏
𝐿
3
+

𝑘

𝑏
𝑋
3
, 𝑏 > 0, 𝑘 < 0⟩

𝑋
2

4

𝑃
2

1
+ 𝑃
2

2

,𝑋−2/𝑏
4

(
𝑃
1
+ 𝑖𝑃
2

𝑃
1
− 𝑖𝑃
2

),𝑋
4
exp(

−𝑏𝑃
3

2𝑘𝑋
4

)

𝑝 = 0, 𝑞 =
1

𝑑
: ⟨2

𝛼
3

𝑑
𝑋
4
, 𝑃
3
, 𝑋
1
, 𝑋
2
, 𝐺 +

1

𝑑
𝐿
3
+

𝛼
3

𝑑
𝑋
3
, 𝛼
3
< 0, 𝑑 > 0⟩

1

𝑋
2

1
+ 𝑋
2

2

,𝑋2/𝑑
4

(
𝑋
1
− 𝑖𝑋
2

𝑋
1
+ 𝑖𝑋
2

),𝑋
4
exp(

−𝑑𝑃
3

2𝛼
3
𝑋
4

)

isomorphic to Lie algebras of the type 𝐴
𝑝

5,14
, five of which

depend on parameters and hence constitute continua of
subalgebras. This isomorphism is possible only if 𝑝 = 0.

Among the invariant operators of these subalgebras there
are Casimir operators as well as general invariants.

The nonconjugate subalgebras of the type 𝐴
𝑝

5,14
(𝑝 = 0)

of the Lie algebra of the group P(1,4) and their invariant
operators are given in Table 22.

5.7. Lie Algebras of the Type𝐴𝑝𝑞
5,16

. Thenonzero commutation
relations for algebra 𝐴

𝑝𝑞

5,16
have the following form:

[𝑒
1
, 𝑒
5
] = 𝑒
1
, [𝑒

2
, 𝑒
5
] = 𝑒
1
+ 𝑒
2
,

[𝑒
3
, 𝑒
5
] = 𝑝𝑒

3
− 𝑞𝑒
4
, [𝑒

4
, 𝑒
5
] = 𝑞𝑒

3
+ 𝑝𝑒
4
, (𝑞 ̸= 0) .

(30)

This Lie algebra is solvable.
There exist two classes of five-dimensional nonconjugate

subalgebras of the Lie algebra of the group P(1,4) which are
isomorphic to Lie algebras of the type𝐴𝑝𝑞

5,16
.They correspond

to two different values of parameters 𝑝, 𝑞.
Among the invariant operators of these subalgebras there

are rational invariants as well as general invariants.
The nonconjugate subalgebras of the type 𝐴𝑝𝑞

5,16
of the Lie

algebra of the group P(1,4) and their invariant operators are
given in Table 23.

5.8. Lie Algebras of the Type𝐴𝑠𝑝𝑞
5,17

. Thenonzero commutation
relations for algebra 𝐴

𝑠𝑝𝑞

5,17
have the following form:

[𝑒
1
, 𝑒
5
] = 𝑝𝑒

1
− 𝑒
2
, [𝑒

2
, 𝑒
5
] = 𝑒
1
+ 𝑝𝑒
2
,

[𝑒
3
, 𝑒
5
] = 𝑞𝑒

3
− 𝑠𝑒
4
, [𝑒

4
, 𝑒
5
] = 𝑠𝑒

3
+ 𝑞𝑒
4
, (𝑠 ̸= 0) .

(31)

This Lie algebra is solvable.
There exist three five-dimensional nonconjugate subal-

gebras of the Lie algebra of the group P(1,4) which are
isomorphic to Lie algebras of the type 𝐴

𝑠𝑝𝑞

5,17
, two of which

depend on parameters and hence constitute continua of
subalgebras. They correspond to two different values of
parameters 𝑠, 𝑝, 𝑞.

Among the invariant operators of these subalgebras there
are Casimir operators as well as general invariants.

The nonconjugate subalgebras of the type 𝐴𝑠𝑝𝑞
5,17

of the Lie
algebra of the group P(1,4) and their invariant operators are
given in Table 24.

5.9. Lie Algebras of the Type𝐴𝑎𝑏
5,19

. Thenonzero commutation
relations for algebra 𝐴

𝑎𝑏

5,19
have the following form:

[𝑒
2
, 𝑒
3
] = 𝑒
1
, [𝑒

1
, 𝑒
5
] = 𝑎𝑒

1
,

[𝑒
2
, 𝑒
5
] = 𝑒
2
, [𝑒

3
, 𝑒
5
] = (𝑎 − 1) 𝑒

3
,

[𝑒
4
, 𝑒
5
] = 𝑏𝑒

4
, (𝑏 ̸= 0) .

(32)

This Lie algebra is solvable.
There exist four five-dimensional nonconjugate subal-

gebras of the Lie algebra of the group P(1,4) which are
isomorphic to Lie algebras of the type 𝐴

𝑎𝑏

5,19
, three of which

depend on parameters and hence constitute continua of
subalgebras. Isomorphism is possible only if 𝑎 = 1, 𝑏 = 1.

Invariant operators of all subalgebras are rational invari-
ants. Moreover, all subalgebras have the same invariant
operator.

The nonconjugate subalgebras of the type 𝐴
𝑎𝑏

5,19
(𝑎 =

1, 𝑏 = 1) of the Lie algebra of the group P(1,4) and their
invariant operators are given in Table 25.

5.10. Lie Algebras of the Type 𝐴
𝑎

5,20
. The nonzero commuta-

tion relations for algebra 𝐴
𝑎

5,20
have the following form:

[𝑒
2
, 𝑒
3
] = 𝑒
1
, [𝑒

1
, 𝑒
5
] = 𝑎𝑒

1
,

[𝑒
2
, 𝑒
5
] = 𝑒
2
, [𝑒

3
, 𝑒
5
] = (𝑎 − 1) 𝑒

3
,

[𝑒
4
, 𝑒
5
] = 𝑒
1
+ 𝑎𝑒
4
.

(33)

This Lie algebra is solvable.
There exist four classes of five-dimensional nonconjugate

subalgebras of the Lie algebra of the group P(1,4) which are
isomorphic to Lie algebras of the type 𝐴

𝑎

5,20
. Isomorphism is

possible if 𝑎 = 1.
Invariant operators of these subalgebras are general

invariants.
The nonconjugate subalgebras of the type 𝐴

𝑎

5,20
(𝑎 = 1)

of the Lie algebra of the group P(1,4) and their invariant
operators are given in Table 26.

5.11. LieAlgebras of the Type𝐴𝑝𝜀
5,26

. Thenonzero commutation
relations for algebra 𝐴

𝑝𝜀

5,26
have the following form:

[𝑒
2
, 𝑒
3
] = 𝑒
1
, [𝑒

1
, 𝑒
5
] = 2𝑝𝑒

1
,

[𝑒
2
, 𝑒
5
] = 𝑝𝑒

2
+ 𝑒
3
, [𝑒

3
, 𝑒
5
] = 𝑝𝑒

3
− 𝑒
2
,

[𝑒
4
, 𝑒
5
] = 𝜀𝑒

1
+ 2𝑝𝑒

4
, (𝜀 = ±1) .

(34)

This Lie algebra is solvable.
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Table 25: Invariant operators of subalgebras of the type 𝐴
𝑎𝑏

5,19
(𝑎 = 1, 𝑏 = 1).

Basis elements of subalgebras Invariant operators

⟨2𝑋
4
, 𝑃
1
, 𝑋
1
, 𝑃
2
, 𝐺⟩

𝑋
4

𝑃
2

⟨2𝑋
4
, 𝑃
1
, 𝑋
1
+ 𝑒𝑋
3
, 𝑃
2
, 𝐺⟩

𝑋
4

𝑃
2

⟨2𝑋
4
, 𝑃
1
, 𝑋
1
, 𝑃
2
, 𝐺 + 𝑎

3
𝑋
3
, 𝑎
3
< 0⟩

𝑋
4

𝑃
2

⟨2𝑋
4
, 𝑃
1
, 𝑋
1
+ 𝜇𝑋
3
, 𝑃
2
, 𝐺 − 𝛼𝜇𝑋

3
, 𝛼 < 0, 𝜇 > 0⟩

𝑋
4

𝑃
2

Table 26: Invariant operators of subalgebras of the type 𝐴
𝑎

5,20
(𝑎 = 1).

Basis elements of subalgebras Invariant operators

⟨2𝑎
2
𝑋
4
, 𝑃
1
, 𝑎
2
𝑋
1
, 𝑃
2
, 𝐺 + 𝑎

2
𝑋
2
+ 𝑎
3
𝑋
3
, 𝑎
2
< 0, 𝑎

3
< 0⟩ 𝑋

4
exp(−

𝑃
2

2𝑎
2
𝑋
4

)

⟨2𝑎
2
𝑋
4
, 𝑃
1
, 𝑎
2
𝑋
1
, 𝑃
2
, 𝐺 + 𝑎

2
𝑋
2
, 𝑎
2
< 0⟩ 𝑋

4
exp(−

𝑃
2

2𝑎
2
𝑋
4

)

⟨2𝛼𝑋
4
, 𝑃
1
, 𝛼 (𝑋

1
+ 𝜇𝑋
3
) , 𝑃
2
, 𝐺 + 𝛼𝑋

2
, 𝛼 < 0, 𝜇 > 0⟩ 𝑋

4
exp(−

𝑃
2

2𝛼𝑋
4

)

⟨2𝛽𝑋
4
, 𝑃
1
, 𝛽 (𝑋

1
+ 𝜇𝑋
3
) , 𝑃
2
, 𝐺 + 𝛽𝑋

2
− 𝛼𝜇𝑋

3
, 𝛽 > 0, 𝜇 > 0, 𝛼 > 0⟩ 𝑋

4
exp(−

𝑃
2

2𝛽𝑋
4

)

Table 27: Invariant operators of subalgebras of the type 𝐴
𝑝𝜀

5,26
(𝑝 = 0, 𝜀 = −1).

Basis elements of subalgebras Invariant operators

⟨−4𝑋
4
, 𝑃
1
+ 𝑋
2
, 𝑃
2
− 𝑋
1
, −

2

𝑑
3

(𝑃
3
+ ℎ̃
3
𝑋
3
) , −𝐿

3
− 𝑑
3
𝑋
3
, 𝑑
3
< 0⟩ 𝑋

4

⟨−4𝜇𝑋
4
, 𝑃
1
+ 𝜇𝑋
2
, 𝑃
2
− 𝜇𝑋
1
, −2𝜇𝑋

3
, 𝑃
3
− 𝐿
3
, 𝜇 > 0⟩ 𝑋

4

There exist two classes of five-dimensional nonconjugate
subalgebras of the Lie algebra of the group P(1,4) which are
isomorphic to Lie algebras of the type 𝐴

𝑝𝜀

5,26
. Isomorphism is

possible if 𝑝 = 0, 𝜀 = −1.
Invariant operators of all subalgebras are Casimir oper-

ators. Moreover, all subalgebras have the same invariant
operator.

Thenonconjugate subalgebras of the type𝐴𝑝𝜀
5,26

(𝑝 = 0, 𝜀 =

−1) of the Lie algebra of the group P(1,4) and their invariant
operators are given in Table 27.

5.12. Lie Algebras of the Type 𝐴
5,30

. The nonzero commuta-
tion relations for algebra 𝐴

5,30
have the following form:

[𝑒
2
, 𝑒
4
] = 𝑒
1
, [𝑒

3
, 𝑒
4
] = 𝑒
2
,

[𝑒
1
, 𝑒
5
] = (𝑎 + 1) 𝑒

1
, [𝑒

2
, 𝑒
5
] = 𝑎𝑒

2
,

[𝑒
3
, 𝑒
5
] = (𝑎 − 1) 𝑒

3
, [𝑒

4
, 𝑒
5
] = 𝑒
4
.

(35)

This Lie algebra is solvable.
There exist three five-dimensional nonconjugate subal-

gebras of the Lie algebra of the group P(1,4) which are
isomorphic to Lie algebras of the type 𝐴

5,30
, two of which

depend on parameters and hence constitute continua of
subalgebras. Isomorphism is possible only if 𝑎 = 0.

Invariant operators of all subalgebras are Casimir oper-
ators. Moreover, all subalgebras have the same invariant
operator.

The nonconjugate subalgebras of the type 𝐴
5,30

(𝑎 = 0)

of the Lie algebra of the group P(1,4) and their invariant
operators are given in Table 28.

5.13. Lie Algebras of the Type 𝐴
𝑎𝑏

5,35
. The nonzero commuta-

tion relations for algebra 𝐴
𝑎𝑏

5,35
have the following form:

[𝑒
1
, 𝑒
4
] = 𝑏𝑒

1
, [𝑒

2
, 𝑒
4
] = 𝑒
2
,

[𝑒
3
, 𝑒
4
] = 𝑒
3
, [𝑒

1
, 𝑒
5
] = 𝑎𝑒

1
,

[𝑒
2
, 𝑒
5
] = −𝑒

3
, [𝑒

3
, 𝑒
5
] = 𝑒
2
, (𝑎

2

+ 𝑏
2

̸= 0) .

(36)

This Lie algebra is solvable.
There exist five five-dimensional nonconjugate subal-

gebras of the Lie algebra of the group P(1,4) which are
isomorphic to Lie algebras of the type 𝐴

𝑎𝑏

5,35
, three of which

depend on parameters and hence constitute continua of
subalgebras. Isomorphism is possible only if 𝑎 = 0, 𝑏 = 1.

Invariant operators of all subalgebras are rational
invariants.
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Table 28: Invariant operators of subalgebras of the type 𝐴
5,30

(𝑎 = 0).

Basis elements of subalgebras Invariant operators
⟨2𝑋
4
, −𝑋
3
, 𝑋
0
, 𝑃
3
, 𝐺⟩ 𝑋

2

3
− 4𝑋
4
𝑋
0

⟨2𝑋
4
, −𝑋
3
, 𝑋
0
, 𝑃
3
, 𝐺 +

1

𝑒
𝐿
3
, 𝑒 > 0⟩ 𝑋

2

3
− 4𝑋
4
𝑋
0

⟨2𝑋
4
, −𝑋
3
, 𝑋
0
, 𝑃
3
, 𝐺 + 𝑎𝑋

1
, 𝑎 < 0⟩ 𝑋

2

3
− 4𝑋
4
𝑋
0

Table 29: Invariant operators of subalgebras of the type 𝐴
𝑎𝑏

5,35
(𝑎 = 0, 𝑏 = 1).

Basis elements of subalgebras Invariant operators

⟨𝑃
3
, 𝑃
1
, 𝑃
2
, 𝐺, 𝐿
3
⟩

𝑃
2

3

𝑃
2

1
+ 𝑃
2

2

⟨𝑋
4
, 𝑃
2
, 𝑃
1
, 𝐺, −𝐿

3
⟩

𝑋
2

4

𝑃
2

1
+ 𝑃
2

2

⟨𝑋
4
, 𝑃
2
, 𝑃
1
, 𝐺 + 𝑎

3
𝑋
3
, −𝐿
3
− 𝑑
3
𝑋
3
, 𝑑
3
< 0, 𝑎

3
< 0⟩

𝑋
2

4

𝑃
2

1
+ 𝑃
2

2

⟨𝑋
4
, 𝑃
2
, 𝑃
1
, 𝐺 + 𝑎

3
𝑋
3
, −𝐿
3
, 𝑎
3
< 0⟩

𝑋
2

4

𝑃
2

1
+ 𝑃
2

2

⟨𝑋
4
, 𝑃
2
, 𝑃
1
, 𝐺, −𝐿

3
− 𝑑
3
𝑋
3
, 𝑑
3
< 0⟩

𝑋
2

4

𝑃
2

1
+ 𝑃
2

2

The nonconjugate subalgebras of the type 𝐴
𝑎𝑏

5,35
(𝑎 =

0, 𝑏 = 1) of the Lie algebra of the group P(1,4) and their
invariant operators are given in Table 29.

As we write above, our investigation of isomorphism
of the five-dimensional nonconjugate subalgebras of the
Lie algebra of the group P(1,4) to Lie algebras from the
classification of five-dimensional Lie algebras given by
Mubarakzyanov [43, 44] is based on the Theorem from
Section 2. Direct application of this Theorem gives us that
there are no five-dimensional nonconjugate subalgebras of
the Lie algebra of the group P(1,4) which are isomorphic to
the Lie algebras of the following types: 𝐴

5,1
, 𝐴
5,2
, 𝐴
5,3
, 𝐴
5,6
,

𝐴
𝑐

5,8
,𝐴
5,10

,𝐴𝑐
5,11

,𝐴
5,12

, 𝐴𝑎
5,15

, 𝐴𝑝
5,18

, 𝐴
5,21

,𝐴
5,22

,𝐴𝑏
5,23

,𝐴𝜀
5,24

,
𝐴
𝑏𝑝

5,25
,𝐴
5,27

,𝐴𝑎
5,28

,𝐴
5,29

,𝐴
5,31

,𝐴𝑎
5,32

,𝐴𝑎𝑏
5,33

,𝐴𝑎
5,34

,𝐴
5,36

,𝐴
5,37

,
𝐴
5,38

,𝐴
5,39

, and𝐴
5,40

. Commutation relations for those types
of five-dimensional real Lie algebras as well as their invariant
operators have been described in the paper by Patera et al. [7].

6. Conclusions

The aim of this study was to construct invariant operators
(generalized Casimir operators) for all five-dimensional non-
conjugate subalgebras of the Lie algebra of the Poincaré group
P(1,4). To realize this aim,we at first perform the classification
of those subalgebras into classes of isomorphic subalgebras
by using a complete classification of real structures of Lie
algebras of dimension ≤5 obtained by Mubarakzyanov [43,
44]. Next, we construct invariant operators for all five-
dimensional nonconjugate subalgebras of the Lie algebra of
the group P(1,4) by using invariant operators of all real Lie
algebras of dimension ≤5 constructed by Patera et al. [7]. The
results obtained are summarized in Tables 1–29.

Let us give a few comments on the results of this paper.

(i) Invariant operators for nonconjugate subalgebras of
the Lie algebra of the Poincaré group P(1,4) which are

isomorphic to five-dimensional nilpotent Lie algebras
of the types 𝐴

5,4
and 𝐴

5,5
are Casimir operators.

(ii) Invariant operators for nonconjugate subalgebras of
the Lie algebra of the group P(1,4) which are iso-
morphic to five-dimensional solvable Lie algebras
from the Mubarakzyanov’s list are Casimir operators,
rational invariants, and general invariants.

(iii) All nonconjugate subalgebras of the Lie algebra of
the group P(1,4) from classes of ones which are
isomorphic to the following types of Lie algebras

𝐴
3,6

⊕ 𝐴
2
, 𝐴
5,4

, 𝐴
5,5

, 𝐴
𝑎𝑏

5,19
, 𝐴
𝑝𝜀

5,26
, 𝐴
5,30

. (37)

have the same invariant operators.

In particular, the results obtained can be used

(i) in the representation theory of the group P(1,4) and
its nonconjugate subgroups;

(ii) to solve the problems of reduction of the irreducible
representations of the group P(1,4) (or the Lie algebra
of the group P(1,4)) by the irreducible representations
of its subgroups (or its subalgebras); it should be noted
that the realisations of all classes of unitary irreducible
representations of the Poincaré group P(1,4) on a
basis in which the Casimir operators of its important
subgroup, that is, the Galilei group G(1,3), are of
diagonal form, have been found by Fushchich and
Nı̌kı̌ťın [37];

(iii) for the construction of differential equations invari-
ant with respect to nonconjugate subgroups of the
Poincaré group P(1,4);

(iv) for the construction of systems of coordinates, in
which differential equations, invariant with respect
to the group P(1,4) (or its nonconjugate subgroups),
admit partial or full separation of variables.
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Since the Lie algebra of the group P(1,4) contains, as
subalgebras, the Lie algebra of the Poincaré group P(1,3)
and the Lie algebra of the extended Galilei group G(1,3)
(Fushchich and Nı̌kı̌ťın [37]), the results obtained will be
useful to solve the problems of relativistic and nonrelativistic
physics.
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groups of the Poincaré group P(1, 4),” Journal of Mathematical
Physics, vol. 25, no. 11, pp. 3331–3333, 1984.
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